WO2018218538A1 - 一种激光雷达的扫描控制方法、装置及设备 - Google Patents

一种激光雷达的扫描控制方法、装置及设备 Download PDF

Info

Publication number
WO2018218538A1
WO2018218538A1 PCT/CN2017/086678 CN2017086678W WO2018218538A1 WO 2018218538 A1 WO2018218538 A1 WO 2018218538A1 CN 2017086678 W CN2017086678 W CN 2017086678W WO 2018218538 A1 WO2018218538 A1 WO 2018218538A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
orientation
scan
laser radar
weight
Prior art date
Application number
PCT/CN2017/086678
Other languages
English (en)
French (fr)
Inventor
李琛
马陆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/086678 priority Critical patent/WO2018218538A1/zh
Priority to CN201780004603.0A priority patent/CN108700653A/zh
Publication of WO2018218538A1 publication Critical patent/WO2018218538A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a laser radar scanning control method, apparatus and device.
  • the information carrier of the radar is a radio wave.
  • the target object When detecting through the radar, the target object can be found by radio waves and their spatial position information can be measured, for example, the distance to the radar, the rate of change of the distance or the radial velocity can be scanned. , orientation, height, etc.
  • the embodiment of the invention provides a scanning control method, device and device for a laser radar, which can improve the detection efficiency of the laser radar.
  • a first aspect of the embodiments of the present invention discloses a laser radar scanning control method, including:
  • a scanning strategy indicating at least one scanning orientation of the laser radar to be scanned and a scanning weight for each scanning orientation, the laser radar having an angle of view of less than 180 degrees;
  • the lidar is controlled to scan the scan orientation with scan weights for each of the scan orientations.
  • the laser radar is loaded on the mobile device by using the orientation control device; and the controlling the laser radar to scan the scan orientation by using the scan weight of each scan orientation, specifically: controlling by using the orientation
  • the device controls the lidar to scan the scan orientation with scan weights for each of the scan orientations.
  • a second aspect of the embodiments of the present invention discloses a scan control apparatus, including:
  • a determining module configured to determine a scanning strategy, indicating that there is at least one scanning orientation to be scanned by the laser radar and a scanning weight for each scanning orientation, and the laser radar has an angle of view of less than 180 degrees;
  • control module configured to control the laser radar to scan the scan orientation with scan weights of each of the scan orientations.
  • a third aspect of the embodiments of the present invention discloses a scan control device, including: a processor and a laser radar; wherein
  • the laser radar is configured to emit laser rays for scanning
  • the processor is configured to determine a scanning policy, where the scanning strategy indicates at least one scanning orientation to be scanned by the laser radar and a scanning weight for each scanning orientation, and the laser radar has an angle of view of less than 180 degrees;
  • the lidar scans the scan orientation with scan weights for each of the scan orientations.
  • the scanning strategy including at least one scanning orientation to be scanned by the laser radar and the scanning weight for each scanning orientation may be determined, and the scanning radar weight of each scanning direction of the scanning strategy may be controlled by the laser radar.
  • the scan orientation is scanned, which improves the detection efficiency of the laser radar and avoids the waste of the scanned laser rays.
  • FIG. 1 is a schematic flow chart of a laser radar scanning control method according to an embodiment of the present invention
  • 2a is a front view of a loading of a laser radar and a pan/tilt provided by an embodiment of the present invention
  • 2b is a top view of a loading of a laser radar and a cloud platform according to an embodiment of the present invention
  • 2c is a left side view of a loading of a laser radar and a pan/tilt provided by an embodiment of the present invention
  • FIG. 3b is a top view showing the loading of the lidar and the pan/tilt after the pan-tilt is rotated according to an embodiment of the present invention
  • 4a is a schematic diagram of scanning of a laser radar after a pan-tilt rotation according to an embodiment of the present invention
  • FIG. 4b is a schematic diagram of scanning of a laser radar after a pan-tilt rotation according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a scenario for determining a scanning policy according to an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of another scenario for determining a scanning policy according to an embodiment of the present disclosure.
  • FIG. 5c is a schematic diagram of another scenario for determining a scanning policy according to an embodiment of the present disclosure.
  • FIG. 6a is a schematic diagram of deployment of a laser radar according to an embodiment of the present invention.
  • FIG. 6b is a schematic diagram of deployment of another laser radar according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a scan control apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a scan control device according to an embodiment of the present invention.
  • the embodiment of the invention discloses a scanning control method, device and device for a laser radar, which can improve the detection efficiency of the laser radar and avoid the waste of the scanned laser beam. The details are explained below.
  • FIG. 1 is a schematic flowchart of a laser radar scanning control method according to an embodiment of the present invention.
  • the scanning control of the laser radar described in this embodiment may include the following steps:
  • the method of the present embodiment may be performed by a scanning control device, and the scanning control device may be disposed in a scanning control device, such as various mobile devices, including a vehicle, a drone, etc., which is not limited in this embodiment. .
  • the laser radar can be referred to as an adaptive laser radar, and the adaptive laser radar can refer to a laser radar whose scanning orientation can be adjusted.
  • the technical solution of the present application can be implemented by an adaptive laser radar.
  • the laser radar may be a line-sweeping laser radar or other type of laser radar, and the field of view (FOV) of the laser radar may be configured to be less than 180 degrees, for example, 170 degrees, 150 degrees, 120 degrees, 90 degrees, 60 degrees or other values. That is to say, each time the laser radar is oriented in one scanning orientation, the laser radar can scan according to the configured viewing angle.
  • the scan control device may obtain the interest area weight distribution in the current scene by acquiring the mobile state information of the mobile device, the distribution information of the target object, such as an obstacle, and the like, that is, determining at least one scan orientation to be scanned. And the scan weight for each scan orientation to determine the lidar's scanning strategy.
  • the interest area may refer to a scanning area of the laser radar in a scanning orientation, that is, a scanning area corresponding to the viewing angle.
  • the lidar can be loaded onto the mobile device via an orientation control device.
  • the scanning orientation of the laser radar is specifically adjusted by the azimuth control device, so that the laser radar scans the scanning orientation with the scanning weight of each scanning orientation.
  • control laser radar scans the scanning orientation with the scanning weight of each scanning orientation, which may be specifically: determining the scanning time of the scanning orientation according to the scanning weight of each scanning orientation; controlling the laser radar by the azimuth control device
  • the scan orientation is scanned at the scan time.
  • the heavier the scan weight in a certain scanning orientation the longer the scanning time corresponding to the scanning orientation can be set.
  • the control laser radar scans the scan orientation with the scan weight of each scan orientation, and specifically, the laser radar for scanning the scan orientation is determined according to the scan weight of each scan orientation.
  • the heavier the scan weight in a certain scanning orientation the more the number of laser radars corresponding to the scanning orientation may be.
  • the scanning areas corresponding to the scanning directions of the respective laser radars may not overlap or partially overlap.
  • the scan time of the scan orientation and the number of laser radars may also be determined according to the scan weight of each scan orientation, so that the laser radar can be controlled by the orientation control device to scan the laser radar with the scan time and quantity.
  • the orientation is scanned and will not be described here.
  • the orientation control device may be a cloud platform, that is, the laser radar can be mounted on a cloud platform such as an electric cloud platform, so that the steering of the pan/tilt can be automatically controlled by the motor to realize the change of the laser radar scanning orientation.
  • the determined scanning strategy realizes a key scan of a high-interest area, that is, a heavier scanning orientation, so that a reasonable allocation of limited scanning resources is realized.
  • the orientation control device such as a pan/tilt, can be loaded on the mobile device.
  • FIGS. 2a to 2c a schematic diagram of the loading of the lidar and the pan/tilt
  • FIG. 2a is a front view of the loading of the lidar and the pan/tilt
  • FIG. 2b is a top view of the loading of the lidar and the pan/tilt
  • FIG. 2c is a top view of the loading of the lidar and the pan/tilt.
  • the current laser radar is a stationary laser radar, which is a fixed-loaded laser radar whose scanning orientation is fixed.
  • the fixed-loaded lidar can be regarded as a special case when the adaptive lidar is locked in the pan-tilt. Therefore, the external reference calibration scheme applicable to the fixed-loaded lidar can also be applied to the outside of the adaptive laser radar. Participate in the calibration.
  • the adaptive laser radar by using the adaptive laser radar to scan the azimuth controllable characteristics, it is also possible to control the pan/tilt rotation to generate multiple calibration data, thereby improving the calibration accuracy.
  • FIGs 4a to 4c it is a schematic diagram of the scanning of the adaptive laser radar L 1 to the adaptive laser radar L 0 .
  • the external parameter matrix M 1to0 between the two adaptive lidars can be obtained by solving the following optimization problems:
  • P 0 is a point cloud scanned by the adaptive laser radar L 0
  • P 1 i is a point cloud scanned by the adaptive lidar L 1 when the pan-tilt rotation angle is ⁇ i
  • R is a rotation projection change, and the point is
  • the cloud P 1 i is projected into the coordinate system of L 1 .
  • the point cloud similarity energy equation D(P, Q) describes the similarity between two point clouds and can be described in different ways, for example:
  • the point q(q ⁇ Q) is the point closest to the distance point p(p ⁇ P ⁇ Q) in the point cloud Q, and P ⁇ Q can represent the part where the two point clouds overlap.
  • the target object can be positioned in the point cloud position in the L 0 coordinate system and the L 1 coordinate system, and then the target information such as the obstacle distribution information can be analyzed to realize the same scanning orientation or adjacent orientation of the multiple laser radars.
  • the scanning especially when there is overlap (coincidence) in the scanning area (region of interest) of the plurality of laser radars in the scanning orientation, improves the accuracy and reliability of the scanning result.
  • the laser radar may be loaded on the mobile device, and the determining the scanning strategy may be specifically: determining a range of azimuth to be scanned of the laser radar, the range of the to-be-scanned direction includes at least one scanning orientation; acquiring the mobile device
  • the movement state information includes movement direction or direction change information of the mobile device; and the scan weight of each scan orientation is determined according to the movement state information.
  • the movement state information may include state information such as acceleration, deceleration, steering, etc., that is, the scanning strategy may be determined according to the current driving state of the vehicle or the future driving state.
  • the distribution of the interest of the upper layer to the entire space is not uniform due to the change of the driving state of the vehicle. For example, when the vehicle accelerates, more attention is paid to the scene information in front of the vehicle; when the vehicle performs lane switching, more attention is paid to the side of the vehicle. If a uniform scanning strategy is still used, a large amount of scanning rays will be wasted in the low interest area. . Therefore, when the vehicle is traveling forward, the scene directly in front of the vehicle is more important to the whole system. Therefore, the interest area is mainly concentrated in the traveling direction of the vehicle, that is, the front, and the scanning weight of each scanning direction corresponding to the scanning strategy can be as shown in the figure.
  • the scanning weight of the scanning orientation in the traveling direction is heavier.
  • the scanning weight on the scanning orientation of the side of the vehicle plan lane change can be set to be heavier (larger).
  • the scan weight of each scan orientation corresponding to the scan strategy can be as shown in Figure 5b.
  • the scan weight corresponding to the movement state information may be represented by a probability P( ⁇
  • the influence of the driving state of the vehicle on the region of interest of the scene can be indicated by the depth of the shadow. The deeper the shadow, the greater the weight of the scanning orientation of the region of interest.
  • the determining the scanning strategy may be specifically: determining a range of azimuth to be scanned of the laser radar, the to-be-scanned azimuth range includes at least one scanning orientation; and performing the at least one scanning orientation according to a preset scanning density. Scanning to obtain target distribution information of the at least one scanning orientation; determining scanning weights for each scanning orientation based on the target distribution information.
  • the scanning may be performed by an adaptive laser radar, and the more the target distribution (or the greater the distribution density of the target), the larger the scanning weight of the scanning orientation.
  • the distribution of objects such as obstacles in the scene may also affect the distribution of the weights of the interest zones.
  • the scanning weight of the region of interest in the scanning direction of the scene more complicated can be set to be higher, and
  • the scanning weight is determined in conjunction with the movement state information of the vehicle such as the direction of travel, as shown in Figure 5c.
  • the scan weight corresponding to the target distribution information may be represented by a probability P( ⁇
  • the target distribution can be obtained by calculating the point cloud density of the scanning target. Further optionally, the target distribution of the low point cloud density can be supplemented and scanned to improve the accuracy and reliability of the acquired target distribution information.
  • the determining the scanning strategy may be specifically: using a fixed lidar to scan at least one scanning orientation to be scanned according to a preset scanning density, obtaining a scanning result, and/or using auxiliary detection
  • the device detects the at least one scanning orientation to obtain a detection result; determines target distribution information in the at least one scanning orientation according to the scanning result and/or the detection result; and determines a scan of each scanning orientation according to the target distribution information.
  • Weights may include one or more of a camera, a millimeter wave radar, and an ultrasonic sensor. Further optionally, the scan weight of the scan orientation of the target distribution is larger.
  • a fixed laser radar such as a plurality of fixed laser radars deployed, can be directly used to scan each scanning orientation of the scanning, thereby obtaining a target object such as an obstacle distribution corresponding to the interest area of each scanning orientation.
  • the stationary laser radar can be set to correspond one-to-one with the scanning orientation to be scanned.
  • the fixed laser radar can be combined with the auxiliary detection device to analyze the distribution information of the target.
  • the scanning direction of the scanned laser can be scanned by using the fixed laser radar to obtain the scanning result, and can be combined with an auxiliary detecting device such as a camera.
  • the adaptive laser radar can be determined according to the distribution of the target in each scanning orientation.
  • Scan weights to improve the accuracy and reliability of the acquired target distribution.
  • the FOV of the stationary laser radar can be configured at any angle, for example, 60 degrees, 90 degrees, 120 degrees, 180 degrees, 270 degrees, 360 degrees, or other values.
  • the scanning density of the multiple laser radars is selected.
  • the same can be set to ensure that the measurement conditions of the target distribution information determined in each scanning orientation are identical, thereby improving the reliability of the target distribution information determined in each scanning orientation.
  • the scanning areas corresponding to the scanning directions of the respective laser radars may not coincide or partially overlap.
  • the FOV of each laser radar having the same scanning density may be the same or different.
  • the scanning strategy may further include a scanning orientation constraint parameter of the laser radar, the at least one scanning orientation being within an azimuth range indicated by the scanning orientation constraint parameter.
  • its scanning azimuth constraint parameter can indicate that its scanning azimuth range is 360°, that is, the laser radar can scan in multiple scanning orientations in the range of [0,360°].
  • the plurality of laser radars may be limited to scan in different scanning directions by setting scanning orientation constraint parameters respectively to reduce scanning. The waste of rays.
  • the scanning azimuth constraint parameters corresponding to each adaptive laser radar can indicate that the scanning azimuth range is 120°, and the three adaptive laser radars can be respectively indicated in [0, 120]. Scan in multiple scan orientations within the range of [], [120, 240°], [240, 360°].
  • the scan policy may also be determined by combining the movement state information, the target distribution information, and the scan orientation constraint parameter:
  • ⁇ ) may represent the scanning weight corresponding to the movement state information
  • ⁇ ) may represent the scanning weight corresponding to the target distribution information
  • P( ⁇ ) is the direction prior, and the parameter may be constrained according to the scanning orientation described above. determine.
  • P( ⁇ ) when there is only one adaptive laser radar in the system, It can be used as a supplement to the existing conventional radar, and does not limit its scanning orientation, that is, P( ⁇ ) can be a constant function.
  • a range of scan orientations may be limited in order to set a different direction prior P( ⁇ ) for each lidar.
  • the mobile state information and the target distribution information may refer to the foregoing description, and details are not described herein.
  • adaptive laser radar can be used with fixed laser radar, or adaptive laser radar can directly replace the traditional fixed laser radar to achieve targeted scanning in each scanning orientation according to the scanning strategy.
  • adaptive lidar can be used with fixed laser radar: assuming a line-sweep fixed laser radar with a FOV of 60 degrees, it is necessary to call 6 laser radars to complete a 360-degree scan. Double the quality, you need to use 12 laser radars or even more laser radar, the cost has increased by at least 100%.
  • an adaptive laser radar it is possible to reduce the quality of the scan while ensuring the quality of the scan.
  • an adaptive laser radar can be additionally installed in addition to the six fixed-area lidars, as shown in Fig. 6a.
  • the adaptive laser radar can be automatically adjusted according to the moving state information of the vehicle such as the driving direction and/or the object distribution information (specifically, it can be adjusted by the rotation of the pan/tilt) to scan the area or the key scanning area, so that the automatic laser radar can be automatically
  • the driving obstacle avoidance path planning provides more valuable information.
  • the scanning position of the adaptive laser radar can be adjusted by controlling the rotation of the electric pan/tilt head to Areas that need to be scanned repeatedly can increase the robustness of the overall perception system.
  • the adaptive laser radar can also be used as a redundant backup of the fixed area of interest lidar. When one or more fixed lidars are not working properly, the overall scanning detection is not affected.
  • the adaptive laser radar can directly replace the traditional fixed laser radar: in the case of sufficient control accuracy of the gimbal, the adaptive laser radar can completely replace the loading method of the fixed interest area lidar, as shown in Fig. 6b. Show.
  • the scanning range of all adaptive lidars can be automatically adjusted by the direction of travel of the vehicle and the distribution of objects in the surrounding scene, which increases the flexibility and reliability of radar scanning.
  • FIG. 7 is a schematic structural diagram of a scan control apparatus according to an embodiment of the present invention.
  • the scan control apparatus described in this embodiment may include a determination module 701 and a control module 702;
  • a determining module 701 configured to determine a scanning policy, where the scanning strategy indicates that there is at least one scanning orientation to be scanned by the laser radar and a scanning weight for each scanning orientation, and the laser radar has an angle of view of less than 180 degrees;
  • the control module 702 is configured to control the laser radar to scan the scan orientation with the scan weight of each scan orientation.
  • the laser radar is loaded on the mobile device by using an orientation control device; the control module 702 is specifically configured to:
  • the laser radar is controlled by the orientation control device to scan the scanning orientation with the scanning time.
  • the laser radar is loaded on the mobile device by using an orientation control device; the control module 702 is specifically configured to:
  • the scanning orientation is scanned by the orientation control device invoking the number of laser radars.
  • the orientation control device may be a pan/tilt head, such as an electric pan/tilt head.
  • the scanned areas corresponding to the scanning orientations of the respective laser radars may not coincide or partially coincide.
  • the laser radar can be loaded on a mobile device, and the determining module 701 is specifically configured to:
  • a scan weight for each scan orientation is determined based on the movement state information.
  • the mobile device can be a vehicle or a drone.
  • the determining module 701 is specifically configured to:
  • the scan weight of each scan orientation is determined according to the target distribution information, wherein the scan weight of the scan orientation with the target distribution is larger.
  • the determining module 701 may be specifically configured to:
  • a fixed lidar Using a fixed lidar, scanning at least one scanning orientation to be scanned according to a preset scanning density to obtain a scanning result; and/or detecting the at least one scanning orientation by using an auxiliary detecting device to obtain a detection result;
  • the auxiliary detecting device may include one or more of a camera, a millimeter wave radar, and an ultrasonic sensor.
  • the scanning densities of the plurality of laser radars may be the same.
  • the scanning strategy may further include a scanning orientation constraint parameter of the lidar, the at least one scanning orientation being within an azimuth range indicated by the scanning orientation constraint parameter.
  • a scanning strategy including at least one scanning orientation of the laser radar to be scanned and a scanning weight for each scanning orientation, and control the laser radar to scan the scanning weight of each scanning orientation in the scanning strategy.
  • the scan orientation is scanned, which improves the detection efficiency of the laser radar and avoids the waste of the scanned laser rays.
  • FIG. 8 is a schematic structural diagram of a scan control device according to an embodiment of the present invention.
  • the scan control device described in this embodiment includes a processor 801, a laser radar 802, and a memory 803. Further optionally, the scan control device may further include a user interface 804 and/or an orientation control device 805.
  • the processor 801, the laser radar 802, the memory 803, the user interface 804, and/or the orientation control device 805 may be connected by a bus or may be connected by other means. In the present embodiment, a bus connection will be described.
  • the processor 801 can be a central processing unit (CPU) or other type of processing.
  • the processor 801 may further include a hardware chip.
  • the hardware chip may be an Application-Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), or a combination thereof.
  • the PLD may be a Complex Programmable Logic Device (CPLD), a Field-Programmable Gate Array (FPGA), a Generic Array Logic (GAL), or any combination thereof.
  • the memory 803 may include a volatile memory such as a random-access memory (RAM); the memory 803 may also include a non-volatile memory such as a flash memory. (flash memory), hard disk drive (HDD) or solid-state drive (SSD); the memory 803 may also include a combination of the above types of memories.
  • RAM random-access memory
  • non-volatile memory such as a flash memory.
  • flash memory flash memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the memory 803 may also include a combination of the above types of memories.
  • the user interface 804 can include touch screens, buttons, and the like that can receive user operations and/or feed back corresponding data and information to the user.
  • the user interface can include a display for outputting information of the detected target, and the like.
  • the memory 803 can be used to store program instructions, and the processor 801 can call the program instructions stored in the memory 803, and can perform one or more steps in the embodiment shown in FIG. 1, or an optional implementation thereof.
  • the scan control device implements the functions in the above method.
  • the laser radar 802 is configured to emit laser rays for scanning
  • the processor 801 is configured to determine a scanning policy, where the scanning strategy indicates at least one scanning orientation to be scanned by the laser radar 802 and a scanning weight for each scanning orientation, and the laser radar has an angle of view of less than 180 degrees; controlling the laser Radar 802 scans the scan orientation with scan weights for each of the scan orientations.
  • the scan control device may further include an orientation control device 805; the scan control device is a mobile device, and the laser radar 802 is loaded on the mobile device by an orientation control device 805;
  • the processor 801 is configured to: when performing the scanning of the laser radar to scan the scanning orientation with the scanning weight of each scanning orientation, specifically:
  • the laser radar is controlled by the orientation control device 805 to scan the scanning orientation with the scanning time.
  • the scan control device may further include an orientation control device 805; the scan control device is a mobile device, and the laser radar 802 is loaded on the mobile device by an orientation control device 805;
  • the processor 802 is specifically configured to: when performing the scanning of the laser radar to scan the scanning orientation with the scanning weight of each scanning orientation;
  • the number of laser radars 802 is invoked by the orientation control device 805 to scan the scan orientation.
  • the orientation control device 805 can be a pan/tilt.
  • the scanned areas corresponding to the scanning orientations of the respective laser radars do not coincide or partially coincide.
  • the laser radar is loaded on a mobile device, and the processor 801 is specifically configured to: when performing the determining a scanning policy:
  • the to-be-scanned azimuth range including at least one scanning orientation
  • a scan weight for each scan orientation is determined based on the movement state information.
  • the mobile device can be a vehicle or a drone.
  • the processor 801 when the determining the scanning policy is performed, the processor 801 is specifically configured to:
  • the to-be-scanned azimuth range including at least one scanning orientation
  • the scan weight of each scan orientation is determined according to the target distribution information, wherein the scan weight of the scan orientation with the target distribution is larger.
  • the processor 801 when the determining the scanning policy is performed, the processor 801 is specifically configured to:
  • a fixed laser radar scanning at least one scanning orientation to be scanned according to a preset scanning density, obtaining a scanning result, and/or detecting the at least one scanning orientation by using an auxiliary detecting device to obtain a detection result;
  • the auxiliary detecting device may include one or more of a camera, a millimeter wave radar, and an ultrasonic sensor.
  • the auxiliary detecting device may be configured in the scan control device (not shown), or the auxiliary detecting device may be independently configured and connected to the scan control device.
  • the scanning densities of the plurality of laser radars are the same.
  • the scanning strategy further includes a scan orientation constraint parameter of the lidar, the at least one scan orientation being within an azimuth range indicated by the scan orientation constraint parameter.
  • the processor 801, the laser radar 802, the memory 803, the user interface 804, and the orientation control device 805 described in the embodiments of the present invention may be described in the scanning control method of the laser radar provided in FIG. 1 according to the embodiment of the present invention. The implementation of this, not to repeat here.
  • the scanning weight of each of the scanning directions of the laser radar can be controlled by determining a scanning strategy including at least one scanning orientation of the laser radar to be scanned and a scanning weight for each scanning orientation.
  • the scanning orientation is scanned to enhance the laser thunder
  • the detection efficiency of the laser avoids the waste of scanned laser rays.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Abstract

一种激光雷达(802)的扫描控制方法、装置及设备,扫描控制方法包括:确定扫描策略,扫描策略指示有激光雷达(802)待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重(101),激光雷达(802)的视场角小于180度;控制激光雷达(802)以每一个扫描方位的扫描权重对扫描方位进行扫描(102),能够提升激光雷达(802)的探测效率。

Description

一种激光雷达的扫描控制方法、装置及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种激光雷达的扫描控制方法、装置及设备。
背景技术
随着雷达技术的不断发展,其已经在探测领域得到广泛应用。雷达的信息载体是无线电波,在通过雷达进行探测时,能够通过无线电波发现目标物体并测定它们的空间位置信息,比如能够扫描得到有关该目标物体至雷达的距离、距离变化率或径向速度、方位、高度等。
目前,传统的雷达系统一般是固定装载的,比如激光雷达系统,该激光雷达是对所有场景进行均匀扫描,以实现探测的。然而,该激光雷达扫描的大多数区域往往都不存在需要探测的目标物体,这就使得浪费了大量扫描的激光射线,且导致探测效率较低。
发明内容
本发明实施例提供了一种激光雷达的扫描控制方法、装置及设备,能够提升激光雷达的探测效率。
本发明实施例第一方面公开了一种激光雷达的扫描控制方法,包括:
确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;
控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
可选的,所述激光雷达通过方位控制装置装载在移动设备上;所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描,具体包括:通过所述方位控制装置控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
本发明实施例第二方面公开了一种扫描控制装置,包括:
确定模块,用于确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;
控制模块,用于控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
本发明实施例第三方面公开了一种扫描控制设备,包括:处理器和激光雷达;其中,
所述激光雷达,用于发射激光射线进行扫描;
所述处理器,用于确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
本发明实施例中,可通过确定包括激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重的扫描策略,并控制激光雷达以该扫描策略中每一个扫描方位的扫描权重对该扫描方位进行扫描,使得提升了激光雷达的探测效率,避免了扫描的激光射线的浪费。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种激光雷达的扫描控制方法的流程示意图;
图2a是本发明实施例提供的一种激光雷达与云台的装载正视图;
图2b是本发明实施例提供的一种激光雷达与云台的装载俯视图;
图2c是本发明实施例提供的一种激光雷达与云台的装载左视图;
图3a是本发明实施例提供的一种云台旋转后激光雷达与云台的装载正视图;
图3b是本发明实施例提供的一种云台旋转后激光雷达与云台的装载俯视图;
图3c是本发明实施例提供的一种云台旋转后激光雷达与云台的装载左视图;
图4a是本发明实施例提供的一种云台旋转后激光雷达的扫描示意图;
图4b是本发明实施例提供的另一种云台旋转后激光雷达的扫描示意图;
图4c是本发明实施例提供的又一种云台旋转后激光雷达的扫描示意图;
图5a是本发明实施例提供的一种确定扫描策略的场景示意图;
图5b是本发明实施例提供的另一种确定扫描策略的场景示意图;
图5c是本发明实施例提供的又一种确定扫描策略的场景示意图;
图6a是本发明实施例提供的一种激光雷达的部署示意图;
图6b是本发明实施例提供的另一种激光雷达的部署示意图;
图7是本发明实施例提供的一种扫描控制装置的结构示意图;
图8是本发明实施例提供的一种扫描控制设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种激光雷达的扫描控制方法、装置及设备,能够升激光雷达的探测效率,避免扫描的激光射线的浪费。以下分别详细说明。
请参阅图1,为本发明实施例提供的一种激光雷达的扫描控制方法的流程示意图。本实施例中所描述的激光雷达的扫描控制可以包括以下步骤:
101、确定扫描策略,该扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重。
具体实现中,本实施例的所描述的方法可通过扫描控制装置执行,该扫描控制装置可设置于扫描控制设备如各种移动设备,包括车辆、无人机等等,本实施例不做限定。
其中,该激光雷达可以是指自适应激光雷达,该自适应激光雷达可以指扫描方位可以调整的激光雷达,本申请的技术方案可通过自适应激光雷达实现。进一步的,该激光雷达可以是线扫式激光雷达或其他类型的激光雷达,且该激光雷达的视场角(Field of View,FOV)可以配置为小于180度,例如为170度、150度、120度、90度、60度或者其他数值。也就是说,激光雷达每朝向一个扫描方位,该激光雷达可以按照该配置的视场角进行扫描。
在一些可行的实施方式中,该扫描控制装置可通过获取移动设备的移动状态信息、目标物如障碍物的分布信息等,得到当前场景下兴趣区权重分配,即确定待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,以确定激光雷达的扫描策略。其中,该兴趣区可以是指激光雷达在一个扫描方位上的扫描区域,即该视场角对应的扫描区域。
102、控制该激光雷达以每一个扫描方位的扫描权重对该扫描方位进行扫描。
在一些可行的实施方式中,该激光雷达可以通过方位控制装置装载于移动设备上。在控制激光雷达的扫描方位时,具体通过方位控制装置来调整激光雷达的扫描方位,使得该激光雷达以每一个扫描方位的扫描权重对该扫描方位进行扫描。
进一步的,该控制激光雷达以每一个扫描方位的扫描权重对该扫描方位进行扫描,可以具体为:根据每一个扫描方位的扫描权重确定该扫描方位的扫描时间;通过方位控制装置控制该激光雷达以该扫描时间对该扫描方位进行扫描。可选的,在某一个扫描方位的扫描权重越重,则该扫描方位对应的扫描时间可以设置为越长。
在一些可行的实施方式中,该控制激光雷达以每一个扫描方位的扫描权重对该扫描方位进行扫描,可以具体为:根据每一个扫描方位的扫描权重确定用于扫描该扫描方位的激光雷达的数量,其中,每一个激光雷达装载于一个方位控制装置上;通过方位控制装置调用该数量的激光雷达对该扫描方位进行扫描。可选的,在某一个扫描方位的扫描权重越重,则该扫描方位对应的激光雷达的数量可以越多。进一步可选的,该数量对应的各激光雷达的扫描方位对应的扫描区域可以不重合或者部分重合。
在一些可行的实施方式中,还可以根据每一个扫描方位的扫描权重确定该扫描方位的扫描时间和激光雷达的数量,从而能够通过方位控制装置控制该激光雷达以该扫描时间和数量对该扫描方位进行扫描,此处不赘述。
可选的,该方位控制装置可以为云台,即该激光雷达可以装载在云台如电动云台上,从而能够通过电机自动控制云台的转向,以实现对激光雷达扫描朝向的改变,配合确定出的扫描策略,实现对高兴趣区即权重更重的扫描方位的重点扫描,使得实现了对有限扫描资源的合理分配。进一步可选的,该方位控制装置如云台可以装载于移动设备上。
例如,如图2a至2c所示,为激光雷达与云台的装载示意图,其中,图2a为激光雷达与云台的装载正视图,图2b为激光雷达与云台的装载俯视图,图2c为激光雷达与云台的装载左视图。其中,该云台具有两个方向的旋转自由度,即Θ=(θ,γ),以在两个自由度上调整激光雷达的扫描方位,如图中旋转箭头所示。其中θ的范围为[0,180°];γ的范围为[0,360°]。通过控制云台的转动,则能够控制激光雷达扫描的扫描方位的改变,从而避免在某一简单场景上浪费扫描射线。进一步的,如图3a至3c所示,分别为云台旋转后激光雷达与云台的装载正视图、俯视图及左视图。
目前的激光雷达为固定式激光雷达,该固定式激光雷达为固定装载的激光雷达,其扫描方位是固定的。该固定装载的激光雷达可以被看做是自适应激光雷达在云台锁死时的一种特殊情况,因此,适用于固定装载激光雷达的外参标定方案也可以应用于自适应激光雷达的外参标定。此外,利用自适应激光雷达扫描方位可控的特点,还可以通过控制云台旋转,产生多份标定数据,从而提升标定的精度。如图4a至4c所示,为自适应激光雷达L1到自适应激光雷达L0的扫描示意图。以自适应激光雷达L1到自适应激光雷达L0之间的标定为例,可以控制L1的云台旋转不同的角度,产生多份数据(或者也可以控制L0旋转,或者控制两个自适应雷达同时旋转)。从而两个自适应激光雷达之间的外参矩阵M1to0可以通过求解下列优化问题得到:
Figure PCTCN2017086678-appb-000001
其中,P0为自适应激光雷达L0扫描到的点云;P1 i为自适应激光雷达L1在云台旋转角度为αi时扫描得到的点云;R为旋转投影变化,将点云P1 i投影 到L1的坐标系下。点云相似度能量方程D(P,Q)描述了两个点云之间的相似度,可以采用不同的方式进行描述,例如:
Figure PCTCN2017086678-appb-000002
其中,点q(q∈Q)是点云Q中距离点p(p∈P∩Q)最近的点,P∩Q可以表示两个点云重叠的部分。
标定完成之后,即可目标物分别在L0坐标系和L1坐标系下的点云位置,进而分析得到目标物信息如障碍物分布信息,实现多个激光雷达对同一扫描方位或相邻方位的扫描,尤其是在该多个激光雷达在扫描方位上的扫描区域(兴趣区)存在重叠(重合)时,提升了扫描结果的准确性和可靠性。
在一些可行的实施方式中,该激光雷达可以装载于移动设备上,该确定扫描策略,可以具体为:确定激光雷达的待扫描方位范围,该待扫描方位范围包括至少一个扫描方位;获取移动设备的移动状态信息,该移动状态信息包括该移动设备的移动方向或方向变化信息;根据该移动状态信息确定每一个扫描方位的扫描权重。例如,该移动设备为车辆时,该移动状态信息可包括加速、减速、转向等状态信息,也就是说,该扫描策略可以根据车辆当前的行驶状态或未来的行驶状态确定出。
举例来说,由于目前的激光雷达的扫描方式都是对场景进行均匀扫描,但是由于车辆行驶状态的变化,使得上层应用对整个空间兴趣度的分布并不均匀。比如车辆加速行驶时,更多关心车辆前方的场景信息;当车辆进行车道切换时,更多关心车辆侧面的情况,此时如果仍采用均匀的扫描策略,会在低兴趣区浪费大量的扫描射线。因此,当车辆向前行驶时,车辆正前方的场景对整个系统更加重要,因此兴趣区主要集中在车辆的行驶方向,即前方,则该扫描策略对应的每个扫描方位的扫描权重可以如图5a所示,即行驶方向上的扫描方位的扫描权重更重。当车辆计划变更车道的时候,如计划变更到右侧车道时,为了提前预知可能的障碍物,可以将车辆计划变道的一侧的扫描方位上的扫描权重设置为更重(更大),该扫描策略对应的每个扫描方位的扫描权重可以如图5b所示。可选的,该与移动状态信息对应的扫描权重可以通过概率P(θ|Λ)来表示,即当未来的行驶状态为Λ时,与车辆行驶状态相符的区域可以获得更高 的权重。其中,可以用阴影深浅表示车辆行驶状态对场景兴趣区的影响,阴影越深可以表示该兴趣区的扫描方位上权重越大。
在一些可行的实施方式中,该确定扫描策略,可以具体为:确定激光雷达的待扫描方位范围,该待扫描方位范围包括至少一个扫描方位;按照预设的扫描密度对该至少一个扫描方位进行扫描,以获取得到该至少一个扫描方位的目标物分布信息;根据该目标物分布信息确定每一个扫描方位的扫描权重。可选的,可以通过自适应激光雷达进行扫描,该目标物分布越多(或目标物分布密度越大)的扫描方位的扫描权重越大。具体实现中,除了车辆行驶状态,场景中目标物如障碍物的分布也会影响兴趣区权重的分配。为了实现对障碍物准确的跟踪,需要保证每个障碍物获得足够的激光雷达扫描的激光射线数,因此,可以将场景更加复杂的扫描方位上的兴趣区的扫描权重设置为更高,并可结合车辆的移动状态信息如行驶方向确定该扫描权重,如图5c所示。可选的,该与目标物分布信息对应的扫描权重可以通过概率P(θ|Γ)来表示,即重点目标分布更多的的区域获取得到更高的扫描权重。可选的,该目标物分布Γ即可以通过计算扫描目标物的点云密度获得。进一步可选的,低点云密度的目标物分布可通过进行补充扫描,以提升获取的目标物分布信息的准确性和可靠性。
在一些可行的实施方式中,该确定扫描策略,可以具体为:利用固定式激光雷达,按照预设的扫描密度对待扫描的至少一个扫描方位进行扫描,得到扫描结果,和/或,利用辅助检测设备对该至少一个扫描方位进行检测,得到检测结果;根据该扫描结果和/或该检测结果确定该至少一个扫描方位中的目标物分布信息;根据该目标物分布信息确定每一个扫描方位的扫描权重。可选的,该辅助检测设备可包括相机、毫米波雷达和超声波传感器中的一种或多种。进一步可选的,该目标物分布越多的扫描方位的扫描权重越大。具体实现中,可以直接利用固定式激光雷达比如部署的多个固定式激光雷达,对待扫描的各个扫描方位进行扫描,进而得到各个扫描方位对应兴趣区的目标物如障碍物分布。可选的,该固定式激光雷达可以设置为与待扫描的扫描方位一一对应。或者,可以利用固定式激光雷达并结合辅助检测设备分析得到该目标物分布信息,比如,可先利用固定式激光雷达对待扫描的扫描方位进行扫描,得到扫描结果,并可结合辅助检测设备如相机可对该待扫描的扫描方位的拍摄图像,和 \或结合毫米波雷达的进一步扫描结果,和\或结合超声波传感器的检测结果,分析得到各扫描方位上的目标物分布,进而可根据该目标物分布确定自适应激光雷达在每一个扫描方位的扫描权重,以提升获取的目标物分布的准确性和可靠性。可选的,该固定式激光雷达的FOV可以配置为任意角度,例如为60度、90度、120度、180度、270度、360度或者其他数值。
可选的,当扫描该至少一个扫描方位的激光雷达(包括固定式激光雷达或自适应激光雷达)为多个时,即部署有多个激光雷达进行扫描时,该多个激光雷达的扫描密度可以设置为相同,以确保各扫描方位上确定出的目标物分布信息的测量条件一致,从而提升各扫描方位上确定出的目标物分布信息的可靠性。进一步可选的,各激光雷达的扫描方位对应的扫描区域可以不重合或者部分重合。进一步可选的,扫描密度相同的各激光雷达的FOV可以相同,也可以不同。
进一步可选的,该扫描策略还可包括该激光雷达的扫描方位约束参数,该至少一个扫描方位处于该扫描方位约束参数指示的方位范围内。比如,当系统中仅部署有一个自适应激光雷达时,其扫描方位约束参数可以指示其扫描方位范围为360°,即该激光雷达可以在[0,360°]范围内的多个扫描方位上进行扫描。又如,当系统中部署有多个自适应激光雷达时,为避免它们全部指向同一个方位,可分别通过设置扫描方位约束参数限定该多个激光雷达在不同的扫描方位进行扫描,以减少扫描射线的浪费。比如系统中部署有3个自适应激光雷达时,每个自适应激光雷达对应的扫描方位约束参数可以指示其扫描方位范围为120°,并可分别指示该3个自适应激光雷达分别在[0,120°],[120,240°],[240,360°]范围内的多个扫描方位上进行扫描。
在一些可行的实施方式中,还可结合该移动状态信息、该目标物分布信息以及该扫描方位约束参数来确定扫描策略:
Figure PCTCN2017086678-appb-000003
其中,P表示概率。P(θ|Λ)可以表示移动状态信息对应的扫描权重;P(θ|Γ)可以表示目标物分布信息对应的扫描权重;P(θ)为方向先验,可根据上述的扫描方位约束参数确定。具体实现中,当系统中只存在一个自适应激光雷达时, 可以将其作为已有传统激雷达的补充,不对其扫描方位进行限制,即P(θ)可以为一个常函数。当系统中存在一个以上的自适应激光雷达时,为了可以为每个激光雷达设置不同的方向先验P(θ)来限制其扫描方位的范围。其中,该移动状态信息和目标物分布信息可参照上述描述,此处不赘述。
举例来说,自适应激光雷达可以与固定式激光雷达配合使用,或者自适应激光雷达可以直接代替传统的固定式激光雷达来实现按照扫描策略在每一个扫描方位进行针对性扫描。例如,自适应激光雷达可以与固定式激光雷达配合使用:假设以FOV为60度的线扫式固定激光雷达为例,则需要调用6个激光雷达才能够完成360度的扫描,如果需将扫描质量翻倍,则需要使用12个激光雷达甚至更多的激光雷达,成本提升了至少100%。由此,可通过部署自适应激光雷达,使得在确保扫描质量的同时降低扫描质量。如在自动驾驶的使用场景中,可以在6个固定兴趣区激光雷达之外,额外装配一个自适应激光雷达,如图6a所示。从而该自适应激光雷达可以根据车辆的移动状态信息如行驶方向和/或目标物分布信息自动调整(具体可通过云台的转动控制其调整)扫描的区域或重点扫描的区域,使得能够为自动驾驶的避障路径规划提供更多的有价值的信息,比如当自动驾驶的感知系统需要重复确认某一方向的详细信息时,可通过控制电动云台的转动调整自适应激光雷达的扫描方位至需要重复扫描的区域,从而能够增加整体感知系统的鲁棒性。此外,自适应激光雷达还可以作为固定兴趣区激光雷达的冗余备份,当某一个或多个固定式激光雷达无法正常工作时,不影响整体的扫描探测。
又如,该自适应激光雷达可以直接代替传统的固定式激光雷达来使用:在云台控制精度足够的情况下,自适应激光雷达可以完全替代固定兴趣区激光雷达的装载方式,如图6b所示。从而所有的自适应激光雷达的扫描范围可以通过车辆的行驶方向,以及周围场景中的目标物分布而自动调整,这就提升了雷达扫描的灵活性和可靠性。
在本实施例中,能够通过确定包括激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重的扫描策略,并控制激光雷达以该扫描策略中每一个扫描方位的扫描权重对该扫描方位进行扫描,使得提升了激光雷达的探测效率,避免了扫描的激光射线的浪费。
请参阅图7,为本发明实施例提供的一种扫描控制装置的结构示意图。本实施例中所描述的扫描控制装置可包括确定模块701和控制模块702;其中,
确定模块701,用于确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;
控制模块702,用于控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
在一些可行的实施方式中,所述激光雷达通过方位控制装置装载于移动设备上;所述控制模块702具体用于:
根据所述每一个扫描方位的扫描权重确定该扫描方位的扫描时间;
通过所述方位控制装置控制所述激光雷达以所述扫描时间对该扫描方位进行扫描。
在一些可行的实施方式中,所述激光雷达通过方位控制装置装载于移动设备上;所述控制模块702具体用于:
根据所述每一个扫描方位的扫描权重确定用于扫描该扫描方位的激光雷达的数量,其中,每一个激光雷达可以装载于一个所述方位控制装置上;
通过所述方位控制装置调用所述数量的激光雷达对该扫描方位进行扫描。
在一些可行的实施方式中,所述方位控制装置可以为云台,如电动云台。
在一些可行的实施方式中,所述数量的各激光雷达的扫描方位对应的扫描区域可以不重合或者部分重合。
在一些可行的实施方式中,所述激光雷达可以装载于移动设备上,所述确定模块701具体用于:
确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
获取移动设备的移动状态信息,所述移动状态信息包括所述移动设备的移动方向或方向变化信息;
根据所述移动状态信息确定每一个扫描方位的扫描权重。
在一些可行的实施方式中,所述移动设备可以为车辆或无人机。
在一些可行的实施方式中,所述确定模块701具体用于:
确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
按照预设的扫描密度对所述至少一个扫描方位进行扫描,以获取得到所述至少一个扫描方位的目标物分布信息;
根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大。
在一些可行的实施方式中,所述确定模块701可具体用于:
利用固定式激光雷达,按照预设的扫描密度对待扫描的至少一个扫描方位进行扫描,得到扫描结果;和/或,利用辅助检测设备对所述至少一个扫描方位进行检测,得到检测结果;
根据所述扫描结果和/或所述检测结果确定所述至少一个扫描方位中的目标物分布信息;根据所述目标物分布信息确定每一个扫描方位的扫描权重,
其中,所述目标物分布越多的扫描方位的扫描权重越大,所述辅助检测设备可以包括相机、毫米波雷达和超声波传感器中的一种或多种。
在一些可行的实施方式中,当扫描所述至少一个扫描方位的激光雷达为多个时,所述多个激光雷达的扫描密度可以相同。
在一些可行的实施方式中,所述扫描策略还可包括所述激光雷达的扫描方位约束参数,所述至少一个扫描方位处于所述扫描方位约束参数指示的方位范围内。
可以理解的是,本发明实施例的扫描控制装置的各功能模块的功能可根据上述方法实施例中的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
在本实施例中,能够通过确定包括激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重的扫描策略,并控制激光雷达以该扫描策略中每一个扫描方位的扫描权重对该扫描方位进行扫描,使得提升了激光雷达的探测效率,避免了扫描的激光射线的浪费。
请参阅图8,为本发明实施例提供的一种扫描控制设备的结构示意图。本实施例中所描述的扫描控制设备,包括:处理器801、激光雷达802和存储器803。进一步可选的,该扫描控制设备还可包括用户接口804和/或方位控制装置805。上述处理器801、激光雷达802、存储器803、用户接口804和/或方位控制装置805可通过总线连接,也可以通过其他方式数据连接。本实施例中以总线连接进行说明。
所述处理器801可以是中央处理器(central processing unit,CPU)或者其他类型的处理。所述处理器801还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC),可编程逻辑器件(Programmable Logic Device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),现场可编程逻辑门阵列(Field-Programmable Gate Array,FPGA),通用阵列逻辑(Generic Array Logic,GAL)或其任意组合。
所述存储器803可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器803也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器803还可以包括上述种类的存储器的组合。
所述用户接口804可包括触摸屏、按键等可以接收用户的操作和/或向用户反馈相应数据、信息的部件。例如,该用户接口可以包括显示器,用于输出探测到的目标物的信息等等。
可选的,存储器803可以用于存储程序指令,该处理器801可调用该存储器803中存储的程序指令,可以执行图1所示实施例中的一个或多个步骤,或其中可选的实施方式,使得该扫描控制设备实现上述方法中的功能。
具体的,该激光雷达802,用于发射激光射线进行扫描;
处理器801,用于确定扫描策略,所述扫描策略指示有激光雷达802待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;控制激光雷达802以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
在一些可行的实施方式中,所述扫描控制设备还可包括方位控制装置805;所述扫描控制设备为移动设备,所述激光雷达802通过方位控制装置805装载于所述移动设备上;所述处理器801在执行所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描时,具体用于:
根据所述每一个扫描方位的扫描权重确定该扫描方位的扫描时间;
通过所述方位控制装置805控制所述激光雷达以所述扫描时间对该扫描方位进行扫描。
在一些可行的实施方式中,所述扫描控制设备还可包括方位控制装置805;所述扫描控制设备为移动设备,所述激光雷达802通过方位控制装置805装载于所述移动设备上;所述处理器802在执行所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描时,具体用于:
根据所述每一个扫描方位的扫描权重确定用于扫描该扫描方位的激光雷达802的数量,其中,每一个激光雷达802装载于一个所述方位控制装置805上;
通过所述方位控制装置805调用所述数量的激光雷达802对该扫描方位进行扫描。
在一些可行的实施方式中,所述方位控制装置805可以为云台。
在一些可行的实施方式中,所述数量的各激光雷达的扫描方位对应的扫描区域不重合或者部分重合。
在一些可行的实施方式中,所述激光雷达装载于移动设备上,所述处理器801在执行所述确定扫描策略时,具体用于:
确定激光雷达802的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
获取移动设备的移动状态信息,所述移动状态信息包括所述移动设备的移动方向或方向变化信息;
根据所述移动状态信息确定每一个扫描方位的扫描权重。
在一些可行的实施方式中,所述移动设备可以为车辆或无人机。
在一些可行的实施方式中,所述处理器801在执行所述确定扫描策略时,具体用于:
确定激光雷达802的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
按照预设的扫描密度对所述至少一个扫描方位进行扫描,以获取得到所述至少一个扫描方位的目标物分布信息;
根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大。
在一些可行的实施方式中,所述处理器801在执行所述确定扫描策略时,具体用于:
利用固定式激光雷达,按照预设的扫描密度对待扫描的至少一个扫描方位进行扫描,得到扫描结果,和/或,利用辅助检测设备对所述至少一个扫描方位进行检测,得到检测结果;
根据所述扫描结果和/或所述检测结果确定所述至少一个扫描方位中的目标物分布信息;
根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大;
其中,所述辅助检测设备可包括相机、毫米波雷达和超声波传感器中的一种或多种。该辅助检测设备可以配置于该扫描控制设备中(图中未示出),或者,该辅助检测设备可以独立配置,并与该扫描控制设备相连接。
在一些可行的实施方式中,当扫描所述至少一个扫描方位的激光雷达为多个时,所述多个激光雷达的扫描密度相同。
在一些可行的实施方式中,所述扫描策略还包括所述激光雷达的扫描方位约束参数,所述至少一个扫描方位处于所述扫描方位约束参数指示的方位范围内。
具体实现中,本发明实施例中所描述的处理器801、激光雷达802、存储器803、用户接口804、方位控制装置805可执行本发明实施例图1提供的激光雷达的扫描控制方法中所描述的实现方式,此处不赘述。
本发明实施例中,可通过确定包括激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重的扫描策略,从而能够控制激光雷达以该扫描策略中每一个扫描方位的扫描权重对该扫描方位进行扫描,使得提升了激光雷 达的探测效率,避免了扫描的激光射线的浪费。
应理解,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本发明所必须的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (33)

  1. 一种激光雷达的扫描控制方法,其特征在于,包括:
    确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;
    控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
  2. 根据权利要求1所述的方法,其特征在于,所述激光雷达通过方位控制装置装载于移动设备上;所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描,包括:
    根据所述每一个扫描方位的扫描权重确定该扫描方位的扫描时间;
    通过所述方位控制装置控制所述激光雷达以所述扫描时间对该扫描方位进行扫描。
  3. 根据权利要求1所述的方法,其特征在于,所述激光雷达通过方位控制装置装载在移动设备上;所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描,包括:
    根据所述每一个扫描方位的扫描权重确定用于扫描该扫描方位的激光雷达的数量,其中,每一个激光雷达装载于一个所述方位控制装置上;
    通过所述方位控制装置调用所述数量的激光雷达对该扫描方位进行扫描。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述方位控制装置为云台。
  5. 根据权利要求3所述的方法,其特征在于,
    所述数量的各激光雷达的扫描方位对应的扫描区域不重合或者部分重合。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述激光雷达装 载于移动设备上,所述确定扫描策略,包括:
    确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
    获取移动设备的移动状态信息,所述移动状态信息包括所述移动设备的移动方向或方向变化信息;
    根据所述移动状态信息确定每一个扫描方位的扫描权重。
  7. 根据权利要求2或6所述的方法,其特征在于,
    所述移动设备为车辆或无人机。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述确定扫描策略,包括:
    确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
    按照预设的扫描密度对所述至少一个扫描方位进行扫描,以获取得到所述至少一个扫描方位的目标物分布信息;
    根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大。
  9. 根据权利要求1-5所述的方法,其特征在于,所述确定扫描策略,包括:
    利用固定式激光雷达,按照预设的扫描密度对待扫描的至少一个扫描方位进行扫描,得到扫描结果,和/或,利用辅助检测设备对所述至少一个扫描方位进行检测,得到检测结果;
    根据所述扫描结果和/或所述检测结果确定所述至少一个扫描方位中的目标物分布信息;
    根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大;
    其中,所述辅助检测设备包括相机、毫米波雷达和超声波传感器中的一种 或多种。
  10. 根据权利要求8或9所述的方法,其特征在于,
    当扫描所述至少一个扫描方位的激光雷达为多个时,所述多个激光雷达的扫描密度相同。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述扫描策略还包括所述激光雷达的扫描方位约束参数,所述至少一个扫描方位处于所述扫描方位约束参数指示的方位范围内。
  12. 一种扫描控制装置,其特征在于,包括:
    确定模块,用于确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;
    控制模块,用于控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
  13. 根据权利要求12所述的装置,其特征在于,所述激光雷达通过方位控制装置装载于移动设备上;所述控制模块具体用于:
    根据所述每一个扫描方位的扫描权重确定该扫描方位的扫描时间;
    通过所述方位控制装置控制所述激光雷达以所述扫描时间对该扫描方位进行扫描。
  14. 根据权利要求12所述的装置,其特征在于,所述激光雷达通过方位控制装置装载在移动设备上;所述控制模块具体用于:
    根据所述每一个扫描方位的扫描权重确定用于扫描该扫描方位的激光雷达的数量,其中,每一个激光雷达装载于一个所述方位控制装置上;
    通过所述方位控制装置调用所述数量的激光雷达对该扫描方位进行扫描。
  15. 根据权利要求13或14所述的装置,其特征在于,
    所述方位控制装置为云台。
  16. 根据权利要求14所述的装置,其特征在于,
    所述数量的各激光雷达的扫描方位对应的扫描区域不重合或者部分重合。
  17. 根据权利要求12-16任一项所述的装置,其特征在于,所述激光雷达装载于移动设备上,所述确定模块具体用于:
    确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
    获取移动设备的移动状态信息,所述移动状态信息包括所述移动设备的移动方向或方向变化信息;
    根据所述移动状态信息确定每一个扫描方位的扫描权重。
  18. 根据权利要求13或17所述的装置,其特征在于,
    所述移动设备为车辆或无人机。
  19. 根据权利要求12-16任一项所述的装置,其特征在于,所述确定模块具体用于:
    确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
    按照预设的扫描密度对所述至少一个扫描方位进行扫描,以获取得到所述至少一个扫描方位的目标物分布信息;
    根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大。
  20. 根据权利要求12-16所述的装置,其特征在于,所述确定模块具体用于:
    利用固定式激光雷达,按照预设的扫描密度对待扫描的至少一个扫描方位 进行扫描,得到扫描结果,和/或,利用辅助检测设备对所述至少一个扫描方位进行检测,得到检测结果;
    根据所述扫描结果和/或所述检测结果确定所述至少一个扫描方位中的目标物分布信息;
    根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大;
    其中,所述辅助检测设备包括相机、毫米波雷达和超声波传感器中的一种或多种。
  21. 根据权利要求19或20所述的装置,其特征在于,
    当扫描所述至少一个扫描方位的激光雷达为多个时,所述多个激光雷达的扫描密度相同。
  22. 根据权利要求12-21任一项所述的装置,其特征在于,所述扫描策略还包括所述激光雷达的扫描方位约束参数,所述至少一个扫描方位处于所述扫描方位约束参数指示的方位范围内。
  23. 一种扫描控制设备,其特征在于,包括:处理器和激光雷达;其中,
    所述激光雷达,用于发射激光射线进行扫描;
    所述处理器,用于确定扫描策略,所述扫描策略指示有激光雷达待扫描的至少一个扫描方位以及对每一个扫描方位的扫描权重,所述激光雷达的视场角小于180度;控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描。
  24. 根据权利要求23所述的设备,其特征在于,所述扫描控制设备还包括方位控制装置;所述扫描控制设备为移动设备,所述激光雷达通过所述方位控制装置装载于所述移动设备上;
    所述处理器在执行所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描时,具体用于:
    根据所述每一个扫描方位的扫描权重确定该扫描方位的扫描时间;
    通过所述方位控制装置控制所述激光雷达以所述扫描时间对该扫描方位进行扫描。
  25. 根据权利要求23所述的设备,其特征在于,所述扫描控制设备还包括方位控制装置;所述扫描控制设备为移动设备,所述激光雷达通过所述方位控制装置装载于所述移动设备上;
    所述处理器在执行所述控制所述激光雷达以所述每一个扫描方位的扫描权重对该扫描方位进行扫描时,具体用于:
    根据所述每一个扫描方位的扫描权重确定用于扫描该扫描方位的激光雷达的数量,其中,每一个激光雷达装载于一个所述方位控制装置上;
    通过所述方位控制装置调用所述数量的激光雷达对该扫描方位进行扫描。
  26. 根据权利要求24或25所述的设备,其特征在于,
    所述方位控制装置为云台。
  27. 根据权利要求25所述的设备,其特征在于,
    所述数量的各激光雷达的扫描方位对应的扫描区域不重合或者部分重合。
  28. 根据权利要求23-27任一项所述的设备,其特征在于,所述激光雷达装载于移动设备上,所述处理器在执行所述确定扫描策略时,具体用于:
    确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
    获取移动设备的移动状态信息,所述移动状态信息包括所述移动设备的移动方向或方向变化信息;
    根据所述移动状态信息确定每一个扫描方位的扫描权重。
  29. 根据权利要求24或28所述的设备,其特征在于,
    所述移动设备为车辆或无人机。
  30. 根据权利要求23-27任一项所述的设备,其特征在于,所述处理器在执行所述确定扫描策略时,具体用于:
    确定激光雷达的待扫描方位范围,所述待扫描方位范围包括至少一个扫描方位;
    按照预设的扫描密度对所述至少一个扫描方位进行扫描,以获取得到所述至少一个扫描方位的目标物分布信息;
    根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大。
  31. 根据权利要求23-27所述的设备,其特征在于,所述处理器在执行所述确定扫描策略时,具体用于:
    利用固定式激光雷达,按照预设的扫描密度对待扫描的至少一个扫描方位进行扫描,得到扫描结果,和/或,利用辅助检测设备对所述至少一个扫描方位进行检测,得到检测结果;
    根据所述扫描结果和/或所述检测结果确定所述至少一个扫描方位中的目标物分布信息;
    根据所述目标物分布信息确定每一个扫描方位的扫描权重,其中,所述目标物分布越多的扫描方位的扫描权重越大;
    其中,所述辅助检测设备包括相机、毫米波雷达和超声波传感器中的一种或多种。
  32. 根据权利要求30或31所述的设备,其特征在于,
    当扫描所述至少一个扫描方位的激光雷达为多个时,所述多个激光雷达的扫描密度相同。
  33. 根据权利要求23-32任一项所述的设备,其特征在于,所述扫描策略还包括所述激光雷达的扫描方位约束参数,所述至少一个扫描方位处于所述扫描方位约束参数指示的方位范围内。
PCT/CN2017/086678 2017-05-31 2017-05-31 一种激光雷达的扫描控制方法、装置及设备 WO2018218538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/086678 WO2018218538A1 (zh) 2017-05-31 2017-05-31 一种激光雷达的扫描控制方法、装置及设备
CN201780004603.0A CN108700653A (zh) 2017-05-31 2017-05-31 一种激光雷达的扫描控制方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086678 WO2018218538A1 (zh) 2017-05-31 2017-05-31 一种激光雷达的扫描控制方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2018218538A1 true WO2018218538A1 (zh) 2018-12-06

Family

ID=63843749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086678 WO2018218538A1 (zh) 2017-05-31 2017-05-31 一种激光雷达的扫描控制方法、装置及设备

Country Status (2)

Country Link
CN (1) CN108700653A (zh)
WO (1) WO2018218538A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020082363A1 (zh) * 2018-10-26 2020-04-30 深圳市大疆创新科技有限公司 一种环境感知系统及移动平台
CN109597093A (zh) * 2018-11-14 2019-04-09 深圳市速腾聚创科技有限公司 激光雷达的参数调整方法及装置
CN111566510A (zh) * 2018-12-05 2020-08-21 深圳市大疆创新科技有限公司 测距装置及其扫描视场的均衡方法、移动平台
CN109343030A (zh) * 2018-12-10 2019-02-15 江苏慧光电子科技有限公司 扫描结构与激光雷达及交通工具
WO2020147090A1 (zh) * 2019-01-17 2020-07-23 深圳市大疆创新科技有限公司 一种测距装置及移动平台
CN111830517B (zh) * 2019-04-17 2023-08-01 北京地平线机器人技术研发有限公司 调整激光雷达扫描范围的方法、装置及电子设备
CN112313534A (zh) * 2019-05-31 2021-02-02 深圳市大疆创新科技有限公司 一种多通道激光雷达点云插值的方法和测距装置
CN110296698B (zh) * 2019-07-12 2023-04-28 贵州电网有限责任公司 一种以激光扫描为约束的无人机路径规划方法
CN112825618A (zh) * 2019-09-20 2021-05-21 深圳市大疆创新科技有限公司 一种点云显示方法、设备、可移动平台及存储介质
CN111289979B (zh) * 2020-02-20 2022-07-01 北京小马慧行科技有限公司 车载雷达的控制方法及装置、运载工具
CN111367300B (zh) * 2020-05-27 2021-03-23 弗徕威智能机器人科技(上海)有限公司 多路超声波的障碍检测方法、移动机器人及存储介质
CN112098971B (zh) * 2020-09-16 2022-07-15 上海商汤临港智能科技有限公司 一种配置雷达的方法、装置、电子设备及存储介质
CN112180398A (zh) * 2020-09-29 2021-01-05 广州大学 一种多线激光雷达及其控制方法
CN112802002B (zh) * 2021-02-05 2021-11-16 杭州思锐迪科技有限公司 物体表面数据侦测方法、系统、电子装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211878A (ja) * 1983-05-17 1984-11-30 Nec Corp 三次元レ−ダ−
JP2003066140A (ja) * 2001-08-28 2003-03-05 Murata Mfg Co Ltd レーダ
US20100066586A1 (en) * 2008-09-18 2010-03-18 Bae Systems Controls Inc. Range and azimuth resolution enhancement for real-beam radar
CN104569981A (zh) * 2015-01-28 2015-04-29 中国科学院大气物理研究所 协同自适应观测方法
CN204679638U (zh) * 2015-06-24 2015-09-30 武汉万集信息技术有限公司 一种可变扫描分辨率的激光测距传感器
CN105083283A (zh) * 2015-08-04 2015-11-25 北汽福田汽车股份有限公司 用于车载雷达的控制方法、控制装置和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10360890A1 (de) * 2003-12-19 2005-07-21 Robert Bosch Gmbh Radarsensor und Verfahren zu dessen Betrieb
US9383753B1 (en) * 2012-09-26 2016-07-05 Google Inc. Wide-view LIDAR with areas of special attention

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211878A (ja) * 1983-05-17 1984-11-30 Nec Corp 三次元レ−ダ−
JP2003066140A (ja) * 2001-08-28 2003-03-05 Murata Mfg Co Ltd レーダ
US20100066586A1 (en) * 2008-09-18 2010-03-18 Bae Systems Controls Inc. Range and azimuth resolution enhancement for real-beam radar
CN104569981A (zh) * 2015-01-28 2015-04-29 中国科学院大气物理研究所 协同自适应观测方法
CN204679638U (zh) * 2015-06-24 2015-09-30 武汉万集信息技术有限公司 一种可变扫描分辨率的激光测距传感器
CN105083283A (zh) * 2015-08-04 2015-11-25 北汽福田汽车股份有限公司 用于车载雷达的控制方法、控制装置和系统

Also Published As

Publication number Publication date
CN108700653A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2018218538A1 (zh) 一种激光雷达的扫描控制方法、装置及设备
US20210287037A1 (en) Object detection method and apparatus, electronic device, and storage medium
TWI710798B (zh) 被搭載於移動體處之雷射掃描系統、被搭載於移動體處之雷射掃描器之雷射掃描方法及雷射掃描程式
JP6985793B2 (ja) 可変分解能光レーダーシステム
WO2020243962A1 (zh) 物体检测方法、电子设备和可移动平台
CN111045024A (zh) 一种基于光检测和测距的车辆追踪方法和系统
US20200218289A1 (en) Information processing apparatus, aerial photography path generation method, program and recording medium
WO2021016854A1 (zh) 一种标定方法、设备、可移动平台及存储介质
CN111045025A (zh) 一种基于光检测和测距的车辆追踪方法和系统
WO2019047389A1 (zh) 激光雷达控制方法及激光雷达
US20220137272A1 (en) Dynamic matrix filter for vehicle image sensor
CN112130165A (zh) 一种定位方法、装置、介质及无人设备
CN111045022A (zh) 一种基于光检测和测距的车辆追踪方法和系统
WO2022179207A1 (zh) 视窗遮挡检测方法及装置
CN112313535A (zh) 距离检测方法、距离检测设备、自主移动平台和存储介质
CN113535877A (zh) 智能机器人地图的更新方法、装置、设备、介质及芯片
CN116529630A (zh) 探测方法、装置、可移动平台及存储介质
WO2020155142A1 (zh) 一种点云重采样的方法、装置和系统
CN114693799A (zh) 参数标定方法、目标物体跟踪方法、设备和系统
US11550043B2 (en) Spatially and temporally coherent multi-LiDAR point cloud fusion
WO2023141782A1 (zh) 激光雷达和激光雷达的控制方法
WO2022160101A1 (zh) 朝向估计方法、装置、可移动平台及可读存储介质
CN117970366A (zh) 一种大测量范围激光雷达
WO2023046617A1 (en) Road lane delimiter classification
CN117911478A (zh) 一种可测量极近距离的深度相机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912195

Country of ref document: EP

Kind code of ref document: A1