WO2020082363A1 - 一种环境感知系统及移动平台 - Google Patents

一种环境感知系统及移动平台 Download PDF

Info

Publication number
WO2020082363A1
WO2020082363A1 PCT/CN2018/112200 CN2018112200W WO2020082363A1 WO 2020082363 A1 WO2020082363 A1 WO 2020082363A1 CN 2018112200 W CN2018112200 W CN 2018112200W WO 2020082363 A1 WO2020082363 A1 WO 2020082363A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
laser
mobile platform
binocular
laser module
Prior art date
Application number
PCT/CN2018/112200
Other languages
English (en)
French (fr)
Inventor
李威
黄永结
沈劭劼
马陆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880038548.1A priority Critical patent/CN110799853B/zh
Priority to PCT/CN2018/112200 priority patent/WO2020082363A1/zh
Publication of WO2020082363A1 publication Critical patent/WO2020082363A1/zh
Priority to US17/239,522 priority patent/US20210255329A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Definitions

  • the present invention relates generally to the field of autonomous driving, and more particularly to an environment awareness system and mobile platform.
  • Self-driving cars can realize 360-degree perception of the surrounding environment through multi-sensors and autonomous navigation to lead passengers to their destinations.
  • many companies such as Google, Tesla, etc. are designing their own autonomous driving system, in which the selection of different types of sensors and the design of the location, the calibration of multiple sensors in the autonomous driving system, environmental perception, control decision-making and other modules Will have an important impact.
  • a good set of automatic driving sensor system should meet the following conditions: 1) Achieve 360-degree perception of the surrounding environment without dead angle; 2) Provide reliable and stable environmental perception data with less redundancy; 3) Can be convenient and fast Perform sensor calibration and meet the needs of real-time calibration results verification.
  • a visible light camera can detect various vehicles and pedestrians, but in the case of too much light or dark, there may be a greater probability of false detection.
  • lidar cannot provide color information, However, providing stable distance detection information is very important for automatic obstacle avoidance, but most of the lidar currently used have high prices and are difficult to be embedded in the body, which is a major obstacle to the popularization of automatic driving technology;
  • sensors such as wheel odometer, ultrasound, and millimeter-wave radar have important practical value for car navigation and environment perception. How to effectively configure and fuse these sensors to achieve a 360-degree perception of the surrounding environment, and provide stable and reliable data for the calibration and positioning navigation module in automatic driving technology is an urgent problem to be solved.
  • one aspect of the present invention provides an environment awareness system, which is used for surrounding environment perception of a mobile platform and includes a laser detection module, and the laser detection module includes a first laser module and a second laser module , The third laser module and the fourth laser module, the angle of view of each laser module is less than or equal to 120 °, where,
  • the first laser module and the second laser module are provided on the front side of the mobile platform to detect the area in front of the mobile platform, the first laser module and the second laser module
  • the fields of view of the groups partially overlap
  • the third laser module and the fourth laser module are respectively disposed on both sides of the mobile platform to detect the left front and right front areas of the mobile platform.
  • the third laser module is specifically provided on the left front side of the mobile platform, and the fourth laser module is specifically provided on the right front side of the mobile platform.
  • the mobile platform includes a vehicle, and the third laser module and the fourth laser module are respectively disposed at rearview mirrors on both sides of the vehicle.
  • the first laser module and the second laser module are respectively disposed at both ends of the front side of the mobile platform.
  • the field of view of the third laser module and the first laser module partially overlap
  • the field of view of the fourth laser module and the second laser module partially overlap
  • the percentage of overlap of the field of view of the first laser module and the second laser module is greater than 30% of the field of view of the first laser module or the second laser module;
  • the percentage of overlapping of the field of view of the third laser module and the first laser module is greater than 10% of the field of view of the third laser module or the first laser module;
  • the percentage of overlapping of the field of view of the fourth laser module and the second laser module is greater than 10% of the field of view of the fourth laser module or the second laser module.
  • the laser detection module further includes a fifth laser module disposed on the front side of the mobile platform to detect the area in front of the mobile platform.
  • the laser detection module further includes a sixth laser module and a seventh laser module, which are disposed on the left and right sides of the mobile platform, respectively, to detect the left and right rear areas of the mobile platform.
  • the sixth laser module is disposed on the left rear side of the mobile platform, and the seventh laser module is disposed on the right rear side of the mobile platform.
  • the fields of view of the sixth laser module and the seventh laser module partially overlap behind the moving platform, wherein the sixth laser module and the seventh laser module
  • the field of view overlap percentage is greater than 10% of the field of view of the sixth laser module or the seventh laser module.
  • the horizontal field angle of each laser module ranges from 40 ° to 120 °.
  • the angle of view of each laser module is less than or equal to 100 °.
  • each laser module includes at least two lidars, and the optical axes of the at least two lidars form an angle of a predetermined angle so that the fields of view of two adjacent lidars overlap.
  • the percentage of the overlapped portion in the field of view of any lidar ranges from 5% to 90%.
  • each laser module includes three lidars, and the optical axes of the three lidars form an angle of a predetermined angle so that the fields of view of two adjacent lidars overlap.
  • the included angle between the optical axes of adjacent laser radars in the three laser radars is approximately 30 °.
  • a laser radar is placed on the front side of the mobile platform, and the detection distance of the laser radar is greater than that of the first laser module and the second laser module.
  • the laser detection module further includes:
  • a first lidar provided on the rear side of the mobile platform to detect the area behind the mobile platform.
  • the laser detection module further includes a second laser radar and a third laser radar, which are respectively disposed on both sides of the mobile platform to detect areas on the left rear and right rear of the mobile platform.
  • the second laser radar is disposed above or below the third laser module, so that the field of view of the second laser radar and the third laser module partially overlap;
  • the third laser radar is disposed above or below the fourth laser module, so that the field of view of the third laser radar and the fourth laser module partially overlap.
  • the optical axis of any one of the lidars included in the laser detection module faces downward, and the angle between the optical axis and the horizontal direction is between 0 ° and 10 °.
  • the laser detection module is embedded in the body of the mobile platform, or the laser detection module is external to the body of the mobile platform.
  • the laser detection module is disposed on a bracket that substantially matches the top of the mobile platform, and the bracket is detachably mounted on the top of the mobile platform so that the laser detection module is external to the mobile The body of the platform.
  • the environment awareness system further includes a camera module, and the camera module further includes:
  • the first binocular module is arranged on the front side of the mobile platform to detect the area in front of the mobile platform.
  • the camera module further includes:
  • a second binocular module is provided on the front side of the mobile platform to detect an area in front of the mobile platform, wherein the baseline length of the first binocular module is less than the baseline length of the second binocular module .
  • the camera module further includes:
  • the third binocular module is arranged on the rear side of the mobile platform to detect the area behind the mobile platform.
  • the environment awareness system further includes a camera module, the camera module includes:
  • the fourth binocular module and the fifth binocular module are respectively disposed on the left rear side and the right rear side of the mobile platform to detect the left front and right front areas of the mobile platform;
  • the sixth binocular module and the seventh binocular module are respectively provided on the left front side and the right front side of the mobile platform, so as to detect the left and right rear areas of the mobile platform.
  • the detection areas of the fourth binocular module and the sixth binocular module partially overlap to detect an area on the left side of the mobile platform that is approximately 180 degrees
  • the fifth binocular module and the first The detection areas of the seven binocular modules partially overlap to detect the area on the right side of the mobile platform that is approximately 180 degrees.
  • the detection distance of the first binocular module is smaller than the detection distance of the second binocular module.
  • the first binocular module includes two monocular cameras
  • the second binocular module includes two monocular cameras, wherein the field of view of the monocular camera included in the first binocular module It is larger than the field of view of the monocular camera included in the second binocular module.
  • the fourth binocular module, the fifth binocular module, the sixth binocular module, and the seventh binocular module each include two monocular cameras arranged at intervals in the vertical direction.
  • the field of view of the monocular camera included in the first binocular module is approximately 83 °
  • the field of view of the monocular camera included in the second binocular module is approximately 20 °; and / or
  • the baseline length of the first binocular module is approximately 400 mm, and the baseline length of the second binocular module is approximately 1000 mm.
  • the field of view of the monocular camera included in the third binocular module is approximately 83 °; and / or
  • the baseline length of the third binocular module is approximately 400 mm.
  • the field of view angles of the monocular cameras included in the fourth binocular module, the fifth binocular module, the sixth binocular module, and the seventh binocular module are generally 83 ° or 110 °; and / or
  • the baseline lengths of the fourth binocular module, the fifth binocular module, the sixth binocular module and the seventh binocular module are approximately 200 mm.
  • the two monocular cameras included in the first binocular module are arranged at intervals in the horizontal direction
  • the two monocular cameras included in the second binocular module are arranged at intervals in the horizontal direction.
  • the two monocular cameras included in the first binocular module are disposed between the two monocular cameras included in the second binocular module.
  • the camera module is embedded in the body of the mobile platform, or the camera module is external to the body of the mobile platform.
  • the camera module is disposed on a bracket that substantially matches the top of the mobile platform, and the bracket is detachably mounted on the top of the mobile platform so that the camera module is external to the mobile platform In vitro.
  • the environment awareness system further includes millimeter wave radar modules disposed on the front and rear sides of the mobile platform to monitor moving objects and obstacles, wherein the detection distance of the millimeter wave radar module is greater than Describe the detection range of the lidar module.
  • the environment perception system further includes an ultrasonic sensor, wherein two ultrasonic sensors are provided on the front side, the rear side, the left side, and the right side of the mobile platform.
  • the environment awareness system further includes a GPS satellite positioning module, which is used to obtain real-time position data of the mobile platform, so as to perform path navigation planning for the mobile platform.
  • a GPS satellite positioning module which is used to obtain real-time position data of the mobile platform, so as to perform path navigation planning for the mobile platform.
  • the environment awareness system further includes an RTK antenna, which is used to send the carrier phase collected by the reference station to the user receiver for difference settlement and settlement coordinates.
  • RTK antenna which is used to send the carrier phase collected by the reference station to the user receiver for difference settlement and settlement coordinates.
  • the environment awareness system further includes:
  • Inertial measurement unit used to output the angular velocity and acceleration of the measured object in three-dimensional space in real time
  • Speedometer used to measure the distance traveled by wheels.
  • Yet another aspect of the present invention provides a mobile platform, including the foregoing environment awareness system.
  • the mobile platform includes a vehicle, a drone, or a boat.
  • the environment perception system of the present invention includes a laser detection module including a laser module arranged on the front side of the mobile platform, so as to detect the area in front of the mobile platform, and the two sets of laser modules arranged on the front side view
  • the fields partially overlap, and the point cloud density is higher in the overlapped part, which guarantees rich detection data in front of the mobile platform, and also includes two sets of laser modules respectively disposed on both sides of the mobile platform. Detection of the area in front of the left and front of the mobile platform, and in the process of traveling on the mobile platform to sense and detect its surrounding environment, and because the field of view of the laser module included in the environment awareness system is less than or equal to 120 °, the The wide angle of view range enables detection of a larger area around the mobile platform.
  • the environmental awareness system of the present invention uses a laser detection module to provide stable detection information, and a small number of laser modules can be used to detect a larger area around the mobile platform, which improves the redundancy and reliability of the system Real-time effective perception of the environment while reducing costs.
  • FIG. 1 shows a schematic layout diagram of a laser detection module included in an environment perception system in an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of the simulation of the detection range of the laser detection module in FIG. 1;
  • FIG. 3 shows a schematic diagram of a laser module in an embodiment of the invention
  • FIG. 4 shows a schematic diagram of the arrangement of a laser detection module included in an environment perception system in another embodiment of the invention
  • FIG. 5A shows a schematic layout diagram of a camera module included in an environment awareness system in an embodiment of the present invention
  • 5B shows another arrangement schematic diagram of the camera module included in the environment perception system in one embodiment of the present invention.
  • 6A shows a schematic diagram of the simulation of the detection range of the camera module in an embodiment of the invention
  • 6B shows a schematic diagram of the simulation of the detection range of the camera module in another embodiment of the present invention.
  • 6C shows a schematic diagram of the simulation of the detection range of the camera module in still another embodiment of the present invention.
  • 6D shows a schematic diagram of a simulation of a detection range of a camera module in still another embodiment of the present invention.
  • FIG. 7 shows a schematic diagram of the arrangement of camera modules included in an environment awareness system in another embodiment of the present invention.
  • FIG. 8 shows a schematic layout diagram of a millimeter wave radar module included in an environment perception system in an embodiment of the present invention
  • FIG. 9 shows a schematic diagram of the arrangement of ultrasonic modules included in the environment perception system in one embodiment of the present invention.
  • FIG. 10 shows a schematic layout of an inertial measurement unit (IMU) and an RTK antenna included in an environment awareness system in an embodiment of the present invention
  • FIG. 11 shows a system framework diagram of an environment awareness system in an embodiment of the present invention
  • FIG. 12 shows a schematic structural diagram of a laser distance measuring device in an embodiment of the present invention.
  • FIG. 13 shows a schematic diagram of a laser distance measuring device in an embodiment of the present invention.
  • the present invention provides an environment awareness system, which is used for surrounding environment perception of a mobile platform and includes a laser detection module, and the laser detection module includes a first laser module and a second laser module Group, the third laser module and the fourth laser module, the angle of view of each laser module is less than or equal to 120 °, where,
  • the first laser module and the second laser module are provided on the front side of the mobile platform to detect the area in front of the mobile platform, the first laser module and the second laser module
  • the fields of view of the groups partially overlap
  • the third laser module and the fourth laser module are respectively disposed on both sides of the mobile platform to detect the left front and right front areas of the mobile platform.
  • the environment perception system of the present invention includes a laser detection module including a laser module arranged on the front side of the mobile platform, so as to detect the area in front of the mobile platform, and the two sets of laser modules arranged on the front side view
  • the fields partially overlap, and the point cloud density is higher in the overlapped part, which guarantees rich detection data in front of the mobile platform, and also includes two sets of laser modules respectively disposed on both sides of the mobile platform. Detection of the area in front of the left and front of the mobile platform, and in the process of traveling on the mobile platform to sense and detect its surrounding environment, and because the field of view of the laser module included in the environment awareness system is less than or equal to 120 °, the The wide angle of view range enables detection of a larger area around the mobile platform.
  • the environmental awareness system of the present invention uses a laser detection module to provide stable distance detection information, and a small number of laser modules can be used to detect a larger area around the mobile platform, improving the redundancy and reliability of the system, providing The superior point cloud density realizes real-time effective perception of the environment and reduces costs.
  • the environment awareness system is used for surrounding environment perception of a mobile platform, for example, for collecting platform information and surrounding environment information of a mobile platform, wherein the surrounding environment information includes image information and three-dimensional coordinate information of the surrounding environment, and the mobile platform includes Mobile devices such as vehicles, drones, airplanes, and ships. In particular, the mobile platform includes driverless cars.
  • the environment awareness system is applied to a vehicle is taken as an example.
  • the lidar in order to facilitate the explanation and description of the position of the lidar included in the laser detection module, the lidar is only shown in the form of a circle, but it should be understood that the illustration is only for illustration and not for the lidar.
  • the shape constitutes a limitation.
  • the laser detection module may be embedded in the body of the mobile platform 20, for example, embedded in the body of a mobile platform such as a vehicle, to ensure the detection range and installation structure of the laser detection module Under the premise of stability, the laser detection module can be hidden to the greatest extent, avoiding the damage to the appearance and aesthetics of the mobile platform (such as a vehicle).
  • the environmental perception system of the present invention includes a laser detection module, and the laser detection module includes a first laser module 21, a second laser module 22, a third laser module 23, and a third Four laser modules 24, wherein the first laser module 21 and the second laser module 22 are disposed on the front side of the mobile platform 20 to detect the area in front of the mobile platform 20.
  • the first laser module 21 and the second laser module 22 are spaced apart on the front side of the mobile platform 20, and the separation distance is related to the overlapping percentage of the field of view (FOV) of the two laser modules that are predetermined, Generally, the larger the overlap percentage, the smaller the distance can be set.
  • the first laser module 21 and the second laser module 22 are respectively disposed at both ends of the front side of the mobile platform.
  • the mobile platform 20 includes a vehicle, and the first laser module 21 and the second laser module 22 may be a position of a car light disposed on a front side, a position of a window on a front side (eg, a window top ) Or the position of the front bumper.
  • the "front side” or “front” of the mobile platform refers to the direction of travel of the mobile platform (such as a vehicle).
  • the third laser module 23 and the fourth laser module 24 are respectively disposed on both sides of the mobile platform to detect areas on the left front and right front of the mobile platform.
  • the position of the third laser module 23 and the fourth laser module 24 can be reasonably set according to the predetermined detection area, for example, the third laser module is specifically arranged on the left front side of the mobile platform, the The fourth laser module is specifically provided on the right front side of the mobile platform.
  • the mobile platform includes a vehicle, and the left front side may include the position of the left rearview mirror of the vehicle, the body between the left rearview mirror and the left wheel The position, the position in front of the left rear-view mirror of the vehicle, or the position above the left wheel, etc.
  • the right front side may include the position of the right rear-view mirror of the vehicle, the body position between the right rear-view mirror and the right wheel, the right rear-view of the vehicle The position in front of the mirror, or the position above the right wheel, etc.
  • the mobile platform includes a vehicle, and the third laser module 23 and the fourth laser module 24 are respectively disposed at the rearview mirrors on both sides of the vehicle.
  • the field of view (FOV) of the first laser module and the second laser module partially overlap, and the third laser module and the first laser module
  • the fields of view partially overlap, and the fields of view of the fourth laser module and the second laser module partially overlap.
  • Partial overlap of the field of view (FOV) is also a partial overlap of the field of view, especially the horizontal field of view, so that the point cloud density is higher in the overlapped part, which ensures a wealth of detection data in front of the mobile platform and improves the detection.
  • the percentage of the field of view of the first laser module and the second laser module overlap is greater than 30% of the field of view of the first laser module or the second laser module or the overlapping
  • the horizontal angle of view is greater than 30 degrees; the percentage of the field of view overlapped by the third laser module and the first laser module is greater than 10% or overlapped by the field of view of the third laser module or the first laser module
  • the horizontal field of view angle is greater than 10 degrees; the percentage of overlap of the field of view of the fourth laser module and the second laser module is greater than 10% of the field of view of the fourth laser module or the second laser module or
  • the overlapping horizontal field of view angle is greater than 10 degrees.
  • the percentage of overlapping of the field of view of two adjacent laser modules is reasonably set according to the actual detection needs, and is not limited to the percentage value in the above example.
  • the overlap ratio of the first laser module and the second laser module may be greater than that of the first laser module and the third laser module and the second laser module and the fourth laser module Ratio, the purpose of this setting is to ensure a higher point cloud density in front of the mobile platform, and at the same time make the left and front front of the mobile platform have a larger detection field of view, reducing the number of laser film groups.
  • the laser module referred to herein is also a laser radar module, which includes at least one laser radar to detect the external environment.
  • Lidar can use single-line scanning laser radar or multi-beam laser radar, etc., mainly by emitting laser beams to detect the distance, position, speed and other characteristic quantities of the target, and can also use the echo intensity information of the laser radar for obstacle detection and Tracking etc.
  • the lidar in this embodiment is a field of view that is close to a cone, and the field of view angle that can be covered is generally 40 ° to 100 °, especially 40 ° to 60 °.
  • the optical axis of any one of the laser radars included in the laser detection module faces downward, and the angle between the optical axis and the horizontal direction is between 0 ° and 10 °, because, for example, the moving platform of the vehicle is in the process of traveling It is usually driven on the road, and when the lidar is set on a mobile platform, it has a certain height from the road. If the optical axis is kept horizontal, part of the beam is emitted upward, and this part of the detection result is not useful for the car.
  • the optical axis of the lidar is directed downward and the angle between the optical axis and the horizontal direction is greater than 0 ° to 10 °, then it can detect lower objects, thereby improving the detection Accuracy and range can avoid obstacles reasonably.
  • the field of view (FOV) of each laser module may be the same or different, and the range of the field of view angle may be reasonably set and selected according to the actual detection needs.
  • each laser The angle of view of the module is less than or equal to 120 °, in particular, the angle of view of each laser module is less than or equal to 100 °.
  • the horizontal field angle of each laser module ranges from 40 ° to 120 °. The wide angle of view range enables detection of a larger area around the mobile platform.
  • the field of view of the first laser module, the second laser module, the third laser module, and the fourth laser module is approximately 100 °
  • the four laser modules can detect the front and left of a mobile platform (such as a vehicle)
  • the large area on the side and right side for example, the area in the range of approximately 260 to 280 ° in the horizontal direction.
  • each laser module includes at least two lidars, and the optical axes of the at least two lidars form an angle of a predetermined angle so that the fields of view of two adjacent lidars overlap.
  • each lidar has been calibrated to each other, and the detection data of each lidar in the laser module is output through one output.
  • the lidar data in the laser module are fused and output. From the perspective of the data receiving end, the data output by the laser module is regarded as a lidar data, without the need for the laser The data of each lidar in the module is fused. For example, as shown in FIG.
  • the first laser module 21 includes three lidars 211, 212, and 213, the second laser module 22 includes three lidars 221, 222, and 223, and the third laser module 23 includes three There are three laser radars 231, 232, and 233, and the fourth laser module 24 includes three laser radars 241, 242, and 243.
  • the field of view of the lidar included in the laser module has an overlapping part, so as to ensure the occurrence of the detection blind area of the laser module, and the point cloud density of the overlapping part will be higher, which is more conducive to the detection of rich targets around the mobile platform.
  • the angle between the optical axes of two adjacent lidars in each laser module is determined by the predetermined overlap percentage of the laser modules and the size of the laser module's field of view.
  • the fields of view of two adjacent lidars have overlapping parts.
  • the size of the overlapping parts is reasonably set according to the actual field of view of the laser module and the point cloud density requirements of the laser module.
  • the overlapping part accounts for any
  • the percentage of the field of view of a lidar is 5% to 90%, for example, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, further, the overlap is greater than 30% of the field of view of a single lidar, and less than 80%.
  • the field of view of each lidar is between 30 degrees and 70 degrees, or between 40 degrees and 60 degrees.
  • the angle of the overlapping field of view of the two adjacent lidars that make up the laser module is between 10 degrees and 35 degrees, and the resulting field of view (FOV) of the laser module is between 80 degrees and 130 degrees, or Between 90 degrees and 120 degrees.
  • each laser module includes three lidars 301, 302, and 303, and the optical axes of the three lidars are at a predetermined angle so that two adjacent Lidar's field of view has overlapping parts.
  • the lidars 301, 302, and 303 may include single-line scanning lidars.
  • the three lidars 301, 302, and 303 each have a field of view angle of approximately 40 °, and the three lidars 301, 302, and 303.
  • the angle between the optical axes of adjacent lidars in 303 is approximately 30 °, so that the three lidars 301, 302, and 303 form a laser module with a horizontal field of view (FOV) of approximately 100 °.
  • FOV horizontal field of view
  • the overlapping angle of adjacent lidars is approximately 10 °.
  • the laser detection module further includes A laser radar on the front side of the platform, the detection distance of the laser radar is greater than the detection distance of the first laser module and the second laser module, the laser radar may have a greater distance than the first laser module and the second laser module
  • the lidar included in the group has a smaller field angle, and optionally, the field angle may be 10 ° to 30 °, for example, 10 °, 15 °, 20 °, 25 °, and 30 °.
  • the laser detection module further includes a first laser radar 251 disposed on the rear side of the mobile platform 20 to detect The area behind the mobile platform 20 is described.
  • the first lidar 251 is provided in the body of the rear side of the mobile platform, for example, the body position below the rear window of the vehicle, or In the window glass on the rear side of the vehicle.
  • the first lidar 251 is disposed in a central area on the rear side of the mobile platform.
  • the laser detection module further includes a second lidar 252 and a third lidar 253, which are respectively disposed on both sides of the mobile platform 20 to detect the left side of the mobile platform 20 Rear and right rear areas.
  • the second lidar 252 and the third lidar 253 are respectively disposed on the left front side and the right front side of the mobile platform 20.
  • the second laser radar 252 is adjacent to the third laser module 23, and the third laser radar 253 is adjacent to the fourth laser module 24.
  • the proximity means that the corresponding laser radar is close to the corresponding laser module So that the fields of view partially overlap between the two.
  • the second laser radar 252 is disposed above or below the third laser module 23 so that the field of view of the second laser radar 252 and the third laser module 23 partially overlap
  • the third laser radar 253 is disposed above or below the fourth laser module 24, so that the field of view of the third laser radar 253 and the fourth laser module 24 partially overlap.
  • the positional relationship between the second laser radar and the third laser module and the third laser radar and the fourth laser radar may also be other positional relationships, as long as the field of view of the second laser radar and the third laser module can be guaranteed For the overlapping part, it is sufficient that the field of view of the third laser radar 253 and the fourth laser module 24 have an overlapping part.
  • first lidar, the second lidar, and the third lidar can use the same lidar as the lidar included in the laser module, or other suitable lidars, which are not specifically limited here. .
  • the advantage of using three laser radar three-in-one modules to form a laser module is that the three-in-one laser radar has a more robust mechanical structure design, which can be installed in the body of the mobile platform ( For example, the body of the vehicle is calibrated in a specific environment before, which reduces the calibration burden after being mounted on the body of the mobile platform (such as the body of the vehicle).
  • an important link is the need to calibrate multi-sensors to accurately calibrate the data and provide correct environmental perception.
  • ICP iterative nearest Point
  • the embedded solution shown in FIG. 1 includes the first to fourth laser modules and the first to third laser radars, on the premise of ensuring that the mobile platform (such as a vehicle) can fully detect the surroundings It uses a minimum number of lidars and ensures a wealth of detection data in front, which can provide more effective information for the detection module and achieve a 360-degree detection range around mobile platforms (such as vehicles).
  • a laser module or a single lidar can also be installed at other locations on the body of the mobile platform (such as the body of a vehicle) to ensure that there is sufficient data to meet the mission requirements.
  • 15 lidars that is, four laser modules and three independent lidars are used.
  • a 360-degree detection range around a mobile platform (such as a vehicle) is achieved.
  • the laser detection module of the present invention is external to the body of the mobile platform, that is, installed on the housing of the mobile platform (such as a vehicle).
  • the above embedded solution can also be applied to an external solution, that is, the laser detection module embedded in the foregoing embodiment can also be externally placed outside the body of the mobile platform.
  • FIG. 4 is a solution for laser detection external to a mobile platform.
  • the laser detection module includes a first laser module disposed on the front side of the mobile platform Group 31, the second laser module 32 and the fifth laser module 35 to detect the area in front of the mobile platform, wherein the angle of view between two adjacent laser modules has an overlapping portion, the overlapping portion
  • the ratio can be set reasonably according to the actual field of view and point cloud density.
  • the angle between the central optical axis of the first laser module 31, the second laser module 32, and the fifth laser module 35 and the front is between 0 degrees and 10 degrees (for example, all along In front of).
  • the purpose of setting up 3 sets of laser modules on the front side of the mobile platform here is to increase the coverage density of the point cloud per unit time by increasing the number of lidars to achieve a better detection effect on the area in front of the mobile platform.
  • the laser detection module further includes the third laser module 33 and the fourth laser module 34, which are respectively disposed on both sides of the mobile platform to detect Describe the left front and right front areas of the mobile platform.
  • the included angle between the central axis of the third laser module 33 and the fourth laser module 34 and the front is between 30 degrees and 60 degrees, further, it may be between 40 degrees and 50 degrees (For example, about 45 degrees).
  • the third laser module 33 is specifically provided on the left front side of the mobile platform
  • the fourth laser module 34 is specifically provided on the right front side of the mobile platform.
  • the field of view of the third laser module 33 and the first laser module 31 partially overlap
  • the field of view of the fourth laser module 34 and the fifth laser module 35 partially overlap.
  • the laser detection module further includes a sixth laser module 36 and a seventh laser module 37, which are respectively disposed on the left and right sides of the mobile platform to detect the movement The area behind the left and right sides of the platform.
  • the sixth laser module 36 is disposed on the left rear side of the mobile platform
  • the seventh laser module 37 is disposed on the right rear side of the mobile platform.
  • the angle between the central axis of the sixth laser module 36 and the seventh laser module 37 and the right rear is between 30 degrees and 60 degrees, further, it can be between 40 degrees and 50 degrees (for example, 45 Degrees).
  • the field of view of the sixth laser module and the seventh laser module partially overlap behind the mobile platform, where the The field of view overlap percentage between the sixth laser module and the seventh laser module is greater than 10% of the field of view of the sixth laser module or the seventh laser module, or, the overlapping horizontal field of view angle is greater than 10 degrees .
  • the numerical values of this percentage and the numerical values of the angle are only examples, and other suitable numerical values can also be applied to the present invention.
  • the laser module may be the same as the laser module in the foregoing embodiment.
  • the first laser module 31 includes a laser Radar 6, 7, 8;
  • the second laser module 32 includes lidar 9, 10, 11;
  • the third laser module 33 includes lidar 3, 4, 5;
  • the fourth laser module 34 includes lidar 15, 16, 17;
  • the fifth laser module 35 includes lidars 12, 13, 14;
  • the sixth laser module 36 includes lidars 0, 1, 2;
  • the seventh laser module 37 includes lidars 18, 19, 20.
  • the laser detection module is disposed on a bracket that substantially matches the top of the mobile platform, and the bracket is detachably mounted on the top of the mobile platform so that the laser detection module is external to the The outside of the mobile platform.
  • the scanning area of the lidar is usually a cone, the scanning area of the lidar is not the same at different moments.
  • the coverage density of the point cloud per unit time can be increased to achieve a better detection effect.
  • three sets of laser modules are set to cover the area directly in front.
  • the number of lidars in each area can also be increased or decreased according to the data density requirements of the mission.
  • the lidar can detect all areas around the mobile platform (such as a vehicle).
  • the environment perception system further includes a camera module, which includes a visible light camera module, wherein the camera module may be embedded in the body of the mobile platform, for example, as shown in FIG. 5A and As shown in FIG. 5B, it is embedded in the body of the vehicle, or may be externally installed outside the body of the mobile platform, for example, as shown in FIG. 7, outside the body of the vehicle.
  • a camera module which includes a visible light camera module, wherein the camera module may be embedded in the body of the mobile platform, for example, as shown in FIG. 5A and As shown in FIG. 5B, it is embedded in the body of the vehicle, or may be externally installed outside the body of the mobile platform, for example, as shown in FIG. 7, outside the body of the vehicle.
  • the camera module further includes a first binocular module disposed on the front side of the mobile platform to detect the The area in front of the mobile platform; the camera module further includes a second binocular module, which is disposed on the front side of the mobile platform to detect the area in front of the mobile platform.
  • the mobile platform includes a vehicle 40, and the first binocular module and the second binocular module are arranged on the front window of the vehicle, especially the top of the front window, or may also be arranged At other locations on the front side of the vehicle.
  • the first binocular module includes two monocular cameras 411, 412; the monocular camera 411 and the monocular camera 412 are arranged at intervals in the horizontal direction, and the second binocular module includes Two monocular cameras 421,422, the monocular cameras 421,422 are arranged at intervals in the horizontal direction. Furthermore, the two monocular cameras 421,422 included in the first binocular module are disposed between the two monocular cameras 421,422 included in the second binocular module.
  • the camera module further includes a third binocular module, which is disposed on the rear side of the mobile platform to detect the area behind the mobile platform.
  • the first The tri-binocular module includes two monocular cameras 431,432.
  • monocular cameras 431, 432 are arranged on the mobile platform 40 at intervals in the horizontal direction.
  • the mobile platform includes a vehicle, then the rear side of the vehicle includes but is not limited to the rear window, and the third double The mesh module is provided on the rear window of the vehicle (for example, the top of the rear window).
  • FIG. 6C The detection field of view of the first binocular module, the second binocular module, and the third binocular module is shown in FIG. 6C, where FIG. 6C shows the angle of view from above.
  • the first binocular module and The field of view of the second binocular module has an overlapping portion, and its detection field of view covers the entire range of approximately 90 degrees to 130 degrees in front of the mobile platform.
  • the environment awareness system further includes a camera module
  • the camera module includes: a fourth binocular module and a fifth binocular module, which are respectively disposed at the left rear of the mobile platform Side and right back side to detect the left front and right front areas of the mobile platform, wherein, as shown in FIG. 5A, the fourth binocular module includes two monocular cameras 441,442 to detect the left front area of the mobile platform, As shown in FIG. 6A; as shown in FIG. 5B, the fifth module includes and further includes two monocular cameras 451, 452 to detect the area on the front right of the mobile platform.
  • the camera module includes: a sixth binocular module and a seventh binocular module, which are respectively disposed on the left front side and the right front side of the mobile platform to detect the The left and right rear areas of the mobile platform, where, as shown in FIG. 5A, the sixth binocular module includes two monocular cameras 461,462, and as shown in FIG. 5B, the seventh binocular module includes two monocular cameras 471,472.
  • the fourth binocular module, the fifth binocular module, the sixth binocular module, and the seventh binocular module all include Two monocular cameras arranged at intervals in the direction to form a stereo camera module in the vertical direction, so that the setting is easy to find the suitable position and reduce the difficulty of assembly, thereby achieving the detection of the lateral target, and this setting also facilitates the movement Observe the area below the platform, for example, it is convenient to observe the road surface of the vehicle.
  • the fourth binocular module and the fifth binocular module may be symmetrically arranged on both sides of the mobile platform (eg, vehicle), and the sixth binocular module and the seventh binocular module may be symmetrically arranged on the mobile platform (eg, vehicle) ) On both sides.
  • the detection areas of the fourth binocular module and the sixth binocular module partially overlap to detect an area on the left side of the mobile platform that is approximately 180 degrees
  • the fifth binocular module and the The detection area of the seventh binocular module partially overlaps to detect an area on the right side of the mobile platform that is approximately 180 degrees.
  • the first to seventh binocular modules perceive the 360-degree environment around the mobile platform, as shown in FIG. 6D, and because the binocular module is embedded in the body of the mobile platform (such as the body of a vehicle), the maximum The sensor is hidden to the limit to avoid damage to the appearance and aesthetics of the vehicle.
  • the binocular module referred to herein is also a binocular camera module or a stereo camera module, which is also referred to as a visual sensor, which may be any type of binocular camera well known to those skilled in the art.
  • the monocular camera may include an image sensor, sometimes with a light projector and other auxiliary equipment, and the image sensor may use a laser scanner or a linear array.
  • the area array CCD camera or TV camera may also be a digital camera, etc., or a CMOS image sensor.
  • the parallax of objects at a close distance is large, and the parallax of objects at a long distance is small, and the error is larger.
  • the length of the binocular baseline can be adjusted to improve the detection accuracy at a long distance, as shown in the binocular error formula:
  • T is the baseline length
  • ⁇ d is the parallax error
  • the baseline length of the first binocular module is less than the baseline length of the second binocular module.
  • the baseline length of the first binocular module is approximately 400 mm
  • the second binocular The baseline length of the module is approximately 1000mm
  • the detection distance of the first binocular module is less than the detection distance of the second binocular module
  • a second binocular module with a longer detection distance is provided on the front side of the mobile platform. The purpose is to detect obstacles farther away to meet the needs of detecting obstacles in a high-speed environment, and improve the ability to perceive the environment at a distance.
  • the baseline length of the third binocular module can be set to The first binocular module is the same or may be other suitable lengths.
  • the baseline length of the third binocular module is approximately 400 mm.
  • the baseline length of the binocular module provided on the side may be smaller than that provided on the front or rear
  • the baseline length of the binocular module, for example, the baseline length of the fourth binocular module, the fifth binocular module, the sixth binocular module and the seventh binocular module are the same, for example, all are approximately 200mm, or,
  • the four binocular modules can also have different baseline lengths, which can be reasonably set according to actual needs.
  • the field of view of the monocular camera included in the above binocular module can be reasonably set and adjusted according to specific needs. Since the larger the field of view angle, the shorter the detection distance, and the smaller the field angle, the longer the detection distance. Therefore, the field of view of the monocular cameras that can be set on the front and rear sides of the mobile platform is larger than that of the monocular cameras set on both sides.
  • the field of view of the monocular camera included in the first binocular module is roughly Is 83 °
  • the field angle of the monocular camera included in the second binocular module is approximately 20 °
  • the field angle of the monocular camera included in the third binocular module is approximately 83 °
  • the fourth binocular The viewing angles of the monocular cameras included in the module, the fifth binocular module, the sixth binocular module, and the seventh binocular module are all generally 110 °.
  • the first binocular module includes two monocular cameras
  • the second binocular module includes two monocular cameras
  • the field of view of the monocular camera included in the first binocular module Greater than the field of view of the monocular camera included in the second binocular module for example, the field of view of the monocular camera included in the first binocular module is generally 83 °
  • the monocular included in the second binocular module The field of view of the camera is approximately 20 °; the purpose of this setting is to detect obstacles further away, to meet the needs of detecting obstacles at a distance in a high-speed environment, and improve the Perception.
  • a binocular module also known as a stereo camera, realizes 360-degree perception of the surrounding environment of the vehicle.
  • a stereo camera can provide enough interested objects for detecting 2D, such as pedestrians, vehicles, traffic lights and traffic sign lights, and can provide depth information of these targets to guide vehicles for more accurate obstacle avoidance or driving .
  • a stereo camera with a small field of view (such as a second binocular module) can reach an obstacle detection distance of 200m, which can meet the needs of detecting obstacles at a long distance in a high-speed environment.
  • the camera module may also be external to the body of the mobile platform, for example, external to the body of the vehicle.
  • the camera module can be externally mounted in any suitable manner.
  • the camera module is provided on a bracket that substantially matches the top of the mobile platform, and the bracket is detachably installed on the mobile platform The top of the camera so that the camera module is external to the body of the mobile platform.
  • the camera module includes a first binocular module and a second binocular module, which are disposed on the front side of the mobile platform, that is, the front side of the bracket, to view the area in front of the mobile platform Probing.
  • the first binocular module includes two monocular cameras 74, 76
  • the second binocular module includes two monocular cameras 713, 714.
  • the field of view of the monocular camera included in the first binocular module is smaller than the field of view of the monocular camera included in the second binocular module, for example, the field of view of the two monocular cameras 74, 76 It is approximately 83 °, and the field of view of the two monocular cameras 713 and 714 is approximately 20 degrees. Therefore, the detection distance of the second binocular module is farther than that of the first binocular module.
  • the front side of the mobile platform (that is, the front side of the stand) is equivalent to two sets of binocular modules with a long detection distance and a set of modules with a short detection distance, using a stereo camera with a small field of view (such as the first Two binocular modules) can reach an obstacle detection distance of 200m, which can meet the needs of detecting long-distance obstacles in a high-speed environment.
  • the camera module further includes a third binocular module, which is disposed on the rear side of the mobile platform, that is, the rear side of the shelf, and is used to detect the area behind.
  • the camera module further includes a fourth binocular module and a fifth binocular module respectively arranged on the left rear side and the right rear side of the mobile platform, that is, arranged on the left rear side and the right rear side of the bracket to detect the left front and right
  • the area in front also includes the sixth binocular module and the seventh binocular module are located on the left front side and right front side of the mobile platform, that is, the left front side and right front side of the bracket to detect the left rear and right rear areas,
  • the fourth binocular module and the fifth binocular module are arranged symmetrically
  • the sixth binocular module and the seventh binocular module are arranged symmetrically.
  • the camera module further includes a fourth binocular module, a fifth binocular module, a sixth binocular module, and a seventh binocular module
  • the fourth binocular module includes Two monocular cameras 70, 71
  • the fifth binocular module includes two monocular cameras 709, 710
  • the sixth binocular module includes two monocular cameras 72, 73
  • the seventh binocular module includes two monocular cameras 77, 78.
  • the fourth binocular module is set at the left rear of the mobile platform to detect the area behind the left
  • the fifth binocular module is set at the right rear of the mobile platform to detect the area behind the right
  • the sixth binocular module is set at the left Front, to detect the area on the front left
  • the seventh binocular module is set on the front on the right to detect the area on the front right.
  • the fourth binocular module and the fifth binocular module are arranged symmetrically
  • the sixth binocular module and the seventh binocular module are arranged symmetrically.
  • the field of view angles of any two adjacent binocular modules have overlapping portions, and the ratio of the overlapping portions is reasonably set according to actual needs, and is not specifically limited herein.
  • the first binocular module and the third to seventh binocular modules may use monocular cameras with the same angle of view, or monocular cameras with different angles of view
  • the first binocular module and the third to seventh binocular modules may use monocular cameras having the same angle of view, for example, monocular cameras each having a field angle of approximately 83 degrees.
  • the first binocular module and the third to seventh binocular modules can use monocular cameras with the same configuration.
  • the symmetrical setting of the front and rear binocular modules and the symmetrical setting of the left and right binocular modules are convenient for placement , It is easy to find the suitable position and reduce the difficulty of assembly. Because the configuration of each pair of symmetrically set binocular modules is consistent, it is more conducive to the batch preparation of the module and the calibration of the sensor. If there is a problem with the sensor The module can also be replaced immediately, reducing the difficulty of system maintenance.
  • the position of the camera and the camera composition of the binocular module can be adjusted appropriately according to specific requirements.
  • the environment awareness system further includes millimeter wave radar modules disposed on the front and rear sides of the mobile platform to monitor moving objects and obstacles, wherein the millimeter wave The detection distance of the radar module is greater than the detection distance of the lidar module.
  • the millimeter wave radar module is provided in a mobile platform, such as a vehicle body.
  • the millimeter wave radar has stable detection performance, is not affected by the color and texture of the object surface, has strong penetration, the ranging accuracy is less affected by the environment, and the detection distance is longer, which can meet the needs of environmental monitoring in a large distance range , Is a good complement to laser and visible light cameras.
  • the millimeter wave radar is mainly placed in front of and behind the car, so as to meet the needs of remote monitoring of moving objects and obstacles.
  • the environment perception system further includes an ultrasonic sensor, wherein two ultrasonic sensors are provided on the front side, the rear side, the left side, and the right side of the mobile platform.
  • the two ultrasonic sensors on each side are spaced apart, where the two ultrasonic waves on the left detect the front left and rear areas, and the two ultrasonic waves on the right detect the front right and rear areas, respectively.
  • Ultrasonic sensors can reliably operate in harsh environments, such as dirty, dusty or misty environments, and are not affected by the target's color, reflectivity, and texture characteristics. Even small targets can be accurately detected. And its small size, easy to install, can effectively detect the close range of mobile platforms (such as vehicles) to make up for the blind spots of other sensors.
  • two ultrasonic sensors are placed on the front, back, left, and right of the mobile platform (such as a vehicle), and each sensor is equipped with a motor, which can control the ultrasonic sensor to rotate to avoid monitoring dead spots.
  • the effective monitoring distance of each sensor is within 10m, and the motor control can fully cover the close range of the mobile platform (such as a vehicle) and monitor the obstacles around the car, as shown in Figure 9.
  • the environment awareness system further includes a GPS satellite positioning module, which is used to obtain real-time position data of the mobile platform, so as to perform path navigation planning for the mobile platform.
  • GPS is a global satellite positioning system that allows mobile platforms (such as vehicles) to know their specific location in real time. It is very important for path navigation planning in automatic driving systems. After the destination is clear, GPS satellite data can be used , Guide mobile platforms (such as vehicles) in the right direction and road.
  • the environment perception system further includes an inertial measurement unit (IMU) 801 for real-time output of the angular velocity and acceleration of the measured object in three-dimensional space; the inertial measurement unit can output the measured object in real time Angular velocity and acceleration in three dimensions.
  • IMU inertial measurement unit
  • the cumulative error of the IMU will become larger and larger, but it can provide higher frequency and accurate measurement results, especially in the absence of other observations in some extreme occasions (such as tunnels), IMU can still provide effective information.
  • the environment perception system further includes an RTK antenna 802, which is used to send the carrier phase collected by the reference station to the user receiver for difference settlement coordinates.
  • the RTK technology is to send the carrier phase collected by the reference station to the user receiver, and calculate the difference settlement coordinates.
  • the RTK antenna can obtain centimeter-level positioning accuracy in real time, providing accurate location information to the positioning module.
  • the IMU and RTK antennas may be embedded in the mobile platform, for example, in the body of the vehicle, or may be externally installed on the mobile platform together with the aforementioned camera module, laser detection module, etc.
  • it is external to the body of the vehicle, for example, it is external to the body through a bracket mounted on the top of the vehicle.
  • the environment awareness system further includes a vehicle speed odometer for measuring the distance traveled by the wheels.
  • the speed odometer can measure the distance traveled by the wheels.
  • the real-time positioning module can provide more accurate distance driving information. Especially in the case of missing GPS data, it can provide a better estimate of the driving distance.
  • the data provided by the two sensors can be used in the car positioning system to realize the real-time estimation of the car's position, thus moving towards the correct destination.
  • FIG. 11 shows a system framework diagram of an environment awareness system according to an embodiment of the present invention, and various modules and system detection coverage areas included in the environment awareness system.
  • the detection range of the millimeter wave radar is generally within 150m
  • the detection range of the binocular vision system that is, the camera module is within 80m
  • the detection range of the ultrasonic sensor is within 10m
  • the laser detection module That is, the detection range of the lidar is generally within 200m, for example, about 5-100m.
  • the two modules can simultaneously sense the 360-degree environment around the mobile platform while the mobile platform is traveling.
  • the camera module and the laser module cooperate with each other to improve the detection coverage.
  • the other module can play a good supplementary role and still be able to detect the 360 ° range around the vehicle body, thus ensuring the normal driving of mobile platforms such as vehicles and the safety of driving.
  • the positioning module provided in the mobile platform (such as a vehicle) can solve stable and reliable attitude information.
  • the sensors mainly used in the present invention include scanning laser radar, visible light camera, millimeter wave radar, ultrasonic sensor, wheel odometer, IMU and GPS, etc. Redundancy, providing reliable and stable environmental perception data; can be convenient and fast sensor calibration, and can meet the needs of real-time calibration results verification.
  • different sensors make up a set of independent sensor modules to cover a specific detection area and range. Synthesizing the information of all sensors, you can get the data of the surrounding environment in real time, detect the road surface that can be driven, and other pedestrians and vehicles, and then pass the planning (planning) module to guide the mobile platform (such as a vehicle) to drive automatically.
  • the above environment awareness system is used to sense external environment information, for example, distance information, angle information, reflection intensity information, speed information, etc. of environmental targets.
  • the environment awareness system of the embodiment of the present invention can be applied to a mobile platform, and the environment awareness system can be installed on the platform body of the mobile platform.
  • a mobile platform with an environmental awareness system can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • mobile platforms include aircraft (eg, unmanned aerial vehicles), vehicles (eg, unmanned vehicles), boats, remotely controlled vehicles, and the like.
  • the environment awareness system is applied to an unmanned aerial vehicle
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the environment awareness system is applied to a vehicle
  • the vehicle may be a self-driving car or a semi-automatic car, and no limitation is made here.
  • a structure of a laser radar in an embodiment of the present invention will be described exemplarily with reference to FIGS. 12 and 13.
  • the laser radar is only used as an example, and other suitable laser radars may also be applied to the present application.
  • the XXX circuits provided by the various embodiments of the present invention may be applied to a distance measuring device, and the distance measuring device may be an electronic device such as a laser radar or a laser distance measuring device.
  • the distance measuring device is used to sense external environment information, for example, distance information, azimuth information, reflection intensity information, speed information, etc. of the environmental target.
  • the distance measuring device may detect the distance between the detection object and the distance measuring device by measuring the time of light propagation between the distance measuring device and the detection object, that is, Time-of-Flight (TOF).
  • TOF Time-of-Flight
  • the distance measuring device can also detect the distance between the detected object and the distance measuring device through other techniques, such as a distance measuring method based on phase shift measurement or a distance measuring method based on frequency shift measurement. There are no restrictions.
  • the distance measuring device 100 may include a transmitting circuit 110, a receiving circuit 120, a sampling circuit 130 and an arithmetic circuit 140.
  • the transmission circuit 110 may transmit a sequence of light pulses (for example, a sequence of laser pulses).
  • the receiving circuit 120 can receive the optical pulse sequence reflected by the detected object, and photoelectrically convert the optical pulse sequence to obtain an electrical signal, which can be output to the sampling circuit 130 after processing the electrical signal.
  • the sampling circuit 130 may sample the electrical signal to obtain the sampling result.
  • the arithmetic circuit 140 may determine the distance between the distance measuring device 100 and the detected object based on the sampling result of the sampling circuit 130.
  • the distance measuring device 100 may further include a control circuit 150, which may control other circuits, for example, may control the working time of each circuit and / or set parameters for each circuit.
  • a control circuit 150 may control other circuits, for example, may control the working time of each circuit and / or set parameters for each circuit.
  • the distance measuring device shown in FIG. 12 includes a transmitting circuit, a receiving circuit, a sampling circuit, and an arithmetic circuit for emitting a beam of light for detection
  • the embodiments of the present application are not limited thereto, and the transmitting circuit
  • the number of any of the receiving circuit, the sampling circuit, and the arithmetic circuit may also be at least two, for emitting at least two light beams in the same direction or respectively in different directions; wherein, the at least two light paths may be simultaneously The shot may be shot at different times.
  • the distance measuring apparatus 100 may further include a scanning module 160 for changing the propagation direction of at least one laser pulse sequence emitted from the transmitting circuit.
  • the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, and the arithmetic circuit 140, or the module including the transmitting circuit 110, the receiving circuit 120, the sampling circuit 130, the arithmetic circuit 140, and the control circuit 150 may be referred to as measurement
  • the distance measuring module 150 may be independent of other modules, for example, the scanning module 160.
  • a coaxial optical path may be used in the distance measuring device, that is, the light beam emitted by the distance measuring device and the reflected light beam share at least part of the optical path in the distance measuring device.
  • the distance measuring device may also adopt an off-axis optical path, that is, the light beam emitted by the distance measuring device and the reflected light beam are transmitted along different optical paths in the distance measuring device. 13 shows a schematic diagram of an embodiment of the distance measuring device of the present invention using a coaxial optical path.
  • the distance measuring device 100 includes an optical transceiver device 110 including a light source 103 (including the above-mentioned transmitting circuit), a collimating element 104, a detector 105 (may include the above-mentioned receiving circuit, sampling circuit and arithmetic circuit) and an optical path change Element 106.
  • the optical transceiver 110 is used to emit a light beam and receive the returned light, and convert the returned light into an electrical signal.
  • the light source 103 is used to emit a light beam.
  • the light source 103 may emit a laser beam.
  • the laser beam emitted by the light source 103 is a narrow-bandwidth beam with a wavelength outside the visible light range.
  • the collimating element 104 is disposed on the exit light path of the light source, and is used to collimate the light beam emitted from the light source 103 and collimate the light beam emitted from the light source 103 into parallel light.
  • the collimating element is also used to converge at least a part of the return light reflected by the detection object.
  • the collimating element 104 may be a collimating lens or other element capable of collimating the light beam.
  • the optical path changing element 106 is used to combine the transmitting optical path and the receiving optical path in the distance measuring device before the collimating element 104, so that the transmitting optical path and the receiving optical path can share the same collimating element, so that the optical path More compact.
  • the light source 103 and the detector 105 may also use respective collimating elements, and the optical path changing element 106 may be disposed after the collimating element.
  • the light path changing element can use a small-area reflector Combine the transmit and receive optical paths.
  • the optical path changing element may also use a reflective mirror with a through hole, where the through hole is used to transmit the outgoing light of the light source 103 and the reflective mirror is used to reflect the return light to the detector 105. This can reduce the blocking of the return light by the support of the small mirror in the case of using the small mirror.
  • the optical path changing element is offset from the optical axis of the collimating element 104. In some other implementations, the optical path changing element may also be located on the optical axis of the collimating element 104.
  • the distance measuring device 100 further includes a scanning module 102.
  • the scanning module 102 is placed on the exit optical path of the optical transceiver device 110.
  • the scanning module 102 is used to change the transmission direction of the collimated light beam 119 emitted through the collimating element 104 and project it to the outside environment, and project the return light to the collimating element 104 .
  • the returned light is converged on the detector 105 via the collimating element 104.
  • the scanning module 102 may include one or more optical elements, such as lenses, mirrors, prisms, gratings, optical phased arrays (Optical Phased Array), or any combination of the above optical elements.
  • multiple optical elements of the scanning module 102 can rotate about a common axis 109, and each rotating optical element is used to continuously change the direction of propagation of the incident light beam.
  • multiple optical elements of the scanning module 102 can rotate at different rotation speeds.
  • multiple optical elements of the scanning module 102 can rotate at substantially the same rotational speed.
  • the multiple optical elements of the scanning module may also rotate around different axes. In some embodiments, the multiple optical elements of the scanning module may also rotate in the same direction, or rotate in different directions; or vibrate in the same direction, or vibrate in different directions, which is not limited herein.
  • the scanning module 102 includes a first optical element 114 and a drive 116 connected to the first optical element 114.
  • the drive 116 is used to drive the first optical element 114 to rotate about a rotation axis 109 to change the first optical element 114 Collimate the direction of the light beam 119.
  • the first optical element 114 projects the collimated light beam 119 in different directions.
  • the angle between the direction of the collimated light beam 119 changed by the first optical element and the rotation axis 109 changes with the rotation of the first optical element 114.
  • the first optical element 114 includes a pair of opposed non-parallel surfaces through which the collimated light beam 119 passes.
  • the first optical element 114 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the first optical element 114 includes a wedge-angle prism that aligns the straight beam 119 for refraction. In one embodiment, the first optical element 114 is coated with an antireflection coating. The thickness of the antireflection coating is equal to the wavelength of the light beam emitted by the light source 103, which can increase the intensity of the transmitted light beam.
  • the scanning module 102 further includes a second optical element 115 that rotates about a rotation axis 109.
  • the rotation speed of the second optical element 115 is different from the rotation speed of the first optical element 114.
  • the second optical element 115 is used to change the direction of the light beam projected by the first optical element 114.
  • the second optical element 115 is connected to another driver 117, and the driver 117 drives the second optical element 115 to rotate.
  • the first optical element 114 and the second optical element 115 can be driven by different drivers, so that the rotation speeds of the first optical element 114 and the second optical element 115 are different, so that the collimated light beam 119 is projected to different directions in the external space and can be scanned Larger spatial range.
  • the controller 118 controls the drivers 116 and 117 to drive the first optical element 114 and the second optical element 115, respectively.
  • the rotation speeds of the first optical element 114 and the second optical element 115 may be determined according to the area and pattern expected to be scanned in practical applications.
  • the drives 116 and 117 may include motors or other driving devices.
  • the second optical element 115 includes a pair of opposed non-parallel surfaces through which the light beam passes. In one embodiment, the second optical element 115 includes a prism whose thickness varies along at least one radial direction. In one embodiment, the second optical element 115 includes a wedge angle prism. In one embodiment, the second optical element 115 is coated with an antireflection coating, which can increase the intensity of the transmitted light beam.
  • the rotation of the scanning module 102 can project light into different directions, such as directions 111 and 113, so as to scan the space around the distance measuring device 100.
  • directions 111 and 113 are directions that are projected by the scanning module 102.
  • the scanning module 102 receives the return light 112 reflected by the detection object 101 and projects the return light 112 to the collimating element 104.
  • the collimating element 104 converges at least a part of the return light 112 reflected by the probe 101.
  • the collimating element 104 is coated with an AR coating, which can increase the intensity of the transmitted beam.
  • the detector 105 and the light source 103 are placed on the same side of the collimating element 104. The detector 105 is used to convert at least part of the returned light passing through the collimating element 104 into an electrical signal.
  • the light source 103 may include a laser diode through which laser light in the nanosecond level is emitted.
  • the laser pulse emitted by the light source 103 lasts for 10 ns.
  • the laser pulse receiving time may be determined, for example, by detecting the rising edge time and / or the falling edge time of the electrical signal pulse. In this way, the distance measuring device 100 can use the pulse reception time information and the pulse emission time information to calculate the TOF, thereby determining the distance between the probe 101 and the distance measuring device 100.
  • the distance and orientation detected by the distance measuring device 100 can be used for remote sensing, obstacle avoidance, mapping, modeling, navigation, and the like.
  • the distance measuring device of the embodiment of the present invention can be applied to a mobile platform, and the distance measuring device can be installed on the platform body of the mobile platform.
  • the mobile platform with a distance measuring device can measure the external environment, for example, measuring the distance between the mobile platform and obstacles for obstacle avoidance and other purposes, and performing two-dimensional or three-dimensional mapping on the external environment.
  • the mobile platform includes at least one of an unmanned aerial vehicle, a car, a remote control car, a robot, and a camera.
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the distance measuring device is applied to an automobile, the platform body is the body of the automobile.
  • the car may be a self-driving car or a semi-automatic car, and no restriction is made here.
  • the platform body is the body of the remote control car.
  • the platform body is a robot.
  • the distance measuring device is applied to the camera, the platform body is the camera itself.
  • the above-mentioned distance measuring device such as lidar can only be used as an example type applied to the foregoing environment perception system, and other types of lidar are also applicable to the present invention, and details are not repeated herein.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another device, or some features can be ignored, or not implemented.
  • the various component embodiments of the present invention may be implemented in hardware, or implemented in software modules running on one or more processors, or implemented in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used to implement some or all functions of some modules according to embodiments of the present invention.
  • DSP digital signal processor
  • the present invention can also be implemented as a device program (for example, a computer program and a computer program product) for performing a part or all of the method described herein.
  • a program implementing the present invention may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Abstract

一种环境感知系统及使用其的移动平台。环境感知系统包括激光探测模块,激光探测模块包括第一激光模组(21)、第二激光模组(22)、第三激光模组(23)和第四激光模组(24),每个激光模组的视场角小于或等于120度,第一、第二激光模组均设置在移动平台的前侧且视场部分重叠,以探测移动平台的前方区域;第三、第四激光模组分别设置在移动平台的两侧,以探测移动平台左前方和右前方的区域。这种系统使用少量的激光模组即可实现对移动平台周围更大区域的探测,提高了系统的冗余和可靠性,实现了对环境的实时有效感知,同时降低了成本。

Description

一种环境感知系统及移动平台
说明书
技术领域
本发明总地涉及自动驾驶领域,更具体地涉及一种环境感知系统及移动平台。
背景技术
自动驾驶汽车可通过多传感器实现360度感知周围环境,进行自主导航,从而带领乘客到达目的地。现在,很多公司如Google,特斯拉等都有在设计自己的自动驾驶系统,其中不同类型的传感器的选择和位置的设计,对自动驾驶系统中多传感器的标定、环境感知、控制决策等模块都会产生重要的影响。一套较好的自动驾驶传感器系统应该满足以下条件:1)实现360度无死角感知周围环境;2)以较少的冗余,提供可靠和稳定的环境感知数据;3)可以方便、快速的进行传感器标定,以及可满足实时标定结果验证的需求。
不同的传感器具有各自的优势和弱点,比如可见光相机能够检测各种车辆和行人,但是在光照过强或过暗的情况下可能会出现更大的误检测概率,激光雷达虽然不能提供色彩信息,但是能提供稳定的距离检测信息,对自动避障有很重要的意义,但是目前多数采用的激光雷达具有高昂的价格,以及难以内嵌于车身中,对于自动驾驶技术的普及是一大阻碍;此外,车轮里程表(wheel odometer)、超声波、毫米波雷达等传感器对汽车的导航定位、环境感知都有重要的实用价值。如何有效的配置、融合这些传感器实现对周围环境的360度感知,为自动驾驶技术中的标定和定位导航模块提供稳定可靠的数据目前亟待解决的问题。
发明内容
为了解决上述问题中的至少一个而提出了本发明。具体地,本发明一方面提供一种环境感知系统,所述环境感知系统用于移动平台的周围环境感知,包括激光探测模块,所述激光探测模块包括第一激光模组、第二激 光模组、第三激光模组和第四激光模组,每个激光模组的视场角小于或等于120°,其中,
所述第一激光模组和所述第二激光模组,设置在所述移动平台的前侧,以探测所述移动平台前方的区域,所述第一激光模组和所述第二激光模组的视场部分重叠;
所述第三激光模组和所述第四激光模组,分别设置在所述移动平台的两侧,以探测所述移动平台左前方和右前方的区域。
示例性地,所述第三激光模组具体地设置在所述移动平台左前侧,所述第四激光模组具体地设置在所述移动平台右前侧。
示例性地,所述移动平台包括车辆,第三激光模组和第四激光模组分别大体设置在所述车辆两侧的后视镜处。
示例性地,所述第一激光模组和所述第二激光模组分别设置在所述移动平台的前侧的两端部。
示例性地,所述第三激光模组和所述第一激光模组的视场部分重叠,所述第四激光模组和所述第二激光模组的视场部分重叠。
示例性地,所述第一激光模组和所述第二激光模组的视场重叠的百分比大于所述第一激光模组或所述第二激光模组视场的30%;
所述第三激光模组和所述第一激光模组的视场重叠的百分比大于所述第三激光模组或所述第一激光模组视场的10%;
所述第四激光模组和所述第二激光模组的视场重叠的百分比大于所述第四激光模组或所述第二激光模组视场的10%。
示例性地,所述激光探测模块还包括设置在所述移动平台的前侧的第五激光模组,以探测所述移动平台前方的区域。
示例性地,所述激光探测模块还包括第六激光模组和第七激光模组,分别设置在所述移动平台左侧和右侧,以探测所述移动平台左后方和右后方的区域。
示例性地,所述第六激光模组设置在所述移动平台的左后侧,所述第七激光模组设置在所述移动平台的右后侧。
示例性地,所述第六激光模组和所述第七激光模组的视场在所述移动平台的后方部分重叠,其中,所述第六激光模组和所述第七激光模组的视 场重叠百分比大于所述第六激光模组或所述第七激光模组视场的10%。
示例性地,每个激光模组的水平视场角范围为40°~120°。
示例性地,每个激光模组的视场角小于或等于100°。
示例性地,每个激光模组包括至少两个激光雷达,所述至少两个激光雷达的光轴呈预定角度的夹角,以使相邻两个激光雷达的视场有重叠部分。
示例性地,所述重叠部分占任意一个激光雷达的视场的百分比范围为5%~90%。
示例性地,每个激光模组均包括3个激光雷达,所述3个激光雷达的光轴呈预定角度的夹角,以使相邻两个激光雷达的视场有重叠部分。
示例性地,所述3个激光雷达中相邻的激光雷达的光轴之间的夹角大体为30°。
示例性地,在所述移动平台的前侧放置一个激光雷达,所述激光雷达的探测距离大于第一激光模组和所述第二激光模组的探测距离。
示例性地,所述激光探测模块还包括:
设置在所述移动平台的后侧的第一激光雷达,以探测所述移动平台后方的区域。
示例性地,所述激光探测模块还包括第二激光雷达和第三激光雷达,分别设置在所述移动平台的两侧,以探测所述移动平台左后方和右后方的区域。
示例性地,所述第二激光雷达设置在所述第三激光模组的上方或下方,以使所述第二激光雷达和所述第三激光模组的视场部分重叠;
所述第三激光雷达设置在所述第四激光模组的上方或下方,以使所述第三激光雷达和所述第四激光模组的视场部分重叠。
示例性地,所述激光探测模块包括的任意一个激光雷达的光轴朝下,所述光轴与水平方向的夹角位于0°~10°之间。
示例性地,所述激光探测模块内嵌在所述移动平台的本体中,或者,所述激光探测模块外置在所述移动平台的本体外。
示例性地,所述激光探测模块设置在与移动平台的顶部大体匹配的支架上,所述支架可拆卸的安装于所述移动平台的顶部,以使所述激光探测模块外置在所述移动平台的本体外。
示例性地,环境感知系统还包括相机模块,所述相机模块还包括:
第一双目模块,设置在所述移动平台的前侧,以探测所述移动平台前方的区域。
示例性地,所述相机模块还包括:
第二双目模块,设置在所述移动平台的前侧,以探测所述移动平台的前方的区域,其中,所述第一双目模块的基线长度小于所述第二双目模块的基线长度。
示例性地,所述相机模块还包括:
第三双目模块,设置在所述移动平台的后侧,以探测所述移动平台后方的区域。
示例性地,环境感知系统还包括相机模块,所述相机模块包括:
第四双目模块和第五双目模块,分别设置在所述移动平台的左后侧和右后侧,以探测移动平台左前方和右前方的区域;
第六双目模块和第七双目模块,分别设置在所述移动平台的左前侧和右前侧,以探测所述移动平台左后方和右后方的区域。
示例性地,所述第四双目模块和所述第六双目模块的探测区域部分重叠,以探测所述移动平台左侧大体180度的区域,所述第五双目模块和所述第七双目模块的探测区域部分重叠,以探测所述移动平台右侧大体180度的区域。
示例性地,所述第一双目模块的探测距离小于所述第二双目模块的探测距离。
示例性地,所述第一双目模块包括两个单目相机,所述第二双目模块包括两个单目相机,其中,所述第一双目模块包括的单目相机的视场角大于所述第二双目模块包括的单目相机的视场角。
示例性地,所述第四双目模块、所述第五双目模块、所述第六双目模块和所述第七双目模块均包括沿竖直方向间隔排列的两个单目相机。
示例性地,第一双目模块包括的单目相机的视场角大体为83°,所述第二双目模块包括的单目相机的视场角大体为20°;和/或
所述第一双目模块的基线长度大体为400mm,所述第二双目模块的基线长度大体为1000mm。
示例性地,第三双目模块包括的单目相机的视场角大体为83°;和/或
第三双目模块的基线长度大体为400mm。
示例性地,所述第四双目模块、所述第五双目模块、所述第六双目模块和所述第七双目模块包括的单目相机的视场角均大体为83°或者110°;和/或
所述第四双目模块、所述第五双目模块、第六双目模块和第七双目模块的基线长度均大体为200mm。
示例性地,所述第一双目模块包括的两个单目相机在水平方向间隔排列,所述第二双目模块包括的两个单目相机在水平方向间隔排列。
示例性地,所述第一双目模块包括的两个单目相机设置在所述第二双目模块包括的两个单目相机之间。
示例性地,所述相机模块内嵌于所述移动平台的本体内,或者,所述相机模块外置在所述移动平台的本体外。
示例性地,所述相机模块设置在与移动平台的顶部大体匹配的支架上,所述支架可拆卸的安装于所述移动平台的顶部,以使所述相机模块外置在所述移动平台的本体外。
示例性地,所述环境感知系统还包括设置在所述移动平台的前侧和后侧的毫米波雷达模块,以监测移动物体和障碍物,其中,所述毫米波雷达模块的探测距离大于所述激光雷达模块的探测距离。
示例性地,所述环境感知系统还包括超声波传感器,其中,在所述移动平台的前侧、后侧、左侧和右侧各设置2个所述超声波传感器。
示例性地,所述环境感知系统还包括GPS卫星定位模块,用于获知所述移动平台的实时方位数据,以对所述移动平台进行路径导航规划。
示例性地,所述环境感知系统还包括RTK天线,用于将基准站采集的载波相位发送给用户接收机,以进行求差结算坐标。
示例性地,所述环境感知系统还包括:
惯性测量单元,用于实时输出测量物体在三维空间中的角速度和加速度;
车速里程计,用于测量车轮行驶的距离。
本发明再一方面提供一种移动平台,包括前述的环境感知系统。
示例性地,所述移动平台包括车辆、无人机或船。
本发明的环境感知系统包括激光探测模块,该激光探测模块包括设置在移动平台前侧的激光模组,从而对移动平台前方的区域进行探测,并且设置在前侧的两组激光模组的视场部分重叠,在重叠部分其点云密度更高,保证了在移动平台前方有丰富的检测数据,并且还包括分别设置在移动平台的两侧的两组激光模组,该两组激光模块实现对移动平台左前方和右前方的区域的探测,进而在移动平台行进过程中对其周围环境进行感知和探测,并且由于环境感知系统包括的激光模组的视场角小于或等于120°,该视场角范围大,能够实现对移动平台周围更大区域的探测。因此,本发明的环境感知系统利用激光探测模块提供稳定的检测信息,并且利用少量的激光模组即可实现对移动平台周围更大区域的探测,提高了系统的冗余和可靠性,实现了对环境的实时有效感知,同时降低了成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明一个实施例中的环境感知系统包括的激光探测模块的布置示意图;
图2示出了图1中激光探测模块的探测范围的模拟示意图;
图3示出了本发明一个实施例中的激光模组的示意图;
图4示出了本发明另一个实施例中的环境感知系统包括的激光探测模块的布置示意图;
图5A示出了本发明一个实施例中的环境感知系统包括的相机模块的一个布置示意图;
图5B示出了本发明一个实施例中的环境感知系统包括的相机模块的另一个布置示意图;
图6A示出了本发明一个实施例中的相机模块的探测范围的模拟示意图;
图6B示出了本发明另一个实施例中的相机模块的探测范围的模拟 示意图;
图6C示出了本发明再一个实施例中的相机模块的探测范围的模拟示意图;
图6D示出了本发明又一个实施例中的相机模块的探测范围的模拟示意图;
图7示出了本发明另一个实施例中的环境感知系统包括的相机模块的布置示意图;
图8示出了本发明一个实施例中的环境感知系统包括的毫米波雷达模块的布置示意图;
图9示出了本发明一个实施例中的环境感知系统包括的超声波模块的布置示意图;
图10示出了本发明一个实施例中的环境感知系统包括的惯性测量单元(IMU)和RTK天线的布置示意图;
图11示出了本发明一个实施例中的环境感知系统的系统框架图;
图12示出本发明一实施例中的激光测距装置的架构示意图;
图13示出了本发明一个实施例中的激光测距装置的示意图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的 限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本发明,将在下列的描述中提出详细的结构,以便阐释本发明提出的技术方案。本发明的可选实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
为了解决上述问题,本发明提供了一种环境感知系统,所述环境感知系统用于移动平台的周围环境感知,包括激光探测模块,所述激光探测模块包括第一激光模组、第二激光模组、第三激光模组和第四激光模组,每个激光模组的视场角小于或等于120°,其中,
所述第一激光模组和所述第二激光模组,设置在所述移动平台的前侧,以探测所述移动平台前方的区域,所述第一激光模组和所述第二激光模组的视场部分重叠;
所述第三激光模组和所述第四激光模组,分别设置在所述移动平台的两侧,以探测所述移动平台左前方和右前方的区域。
本发明的环境感知系统包括激光探测模块,该激光探测模块包括设置在移动平台前侧的激光模组,从而对移动平台前方的区域进行探测,并且设置在前侧的两组激光模组的视场部分重叠,在重叠部分其点云密度更高,保证了在移动平台前方有丰富的检测数据,并且还包括分别设置在移动平台的两侧的两组激光模组,该两组激光模块实现对移动平台左前方和右前方的区域的探测,进而在移动平台行进过程中对其周围环境进行感知和探测,并且由于环境感知系统包括的激光模组的视场角小于或等于120°,该视场角范围大,能够实现对移动平台周围更大区域的探测。因此,本发明的环境感知系统利用激光探测模块提供稳定的距离检测信息,并且利用少量的激光模组即可实现对移动平台周围更大区域的探测,提高了系统的冗余和可靠性,提供优越的点云密度,实现了对环境的实时有效感知,同时降低了成本。
下面结合附图,对本申请的环境感知系统进行详细说明。在不冲突的 情况下,下述的实施例及实施方式中的特征可以相互组合。
所述环境感知系统用于移动平台的周围环境感知,例如用于采集移动平台的平台信息和周围环境信息,其中,周围环境信息包括周围环境的影像信息和三维坐标信息等,所述移动平台包括车辆、无人机、飞机、船等移动设备,特别是,所述移动平台包括无人驾驶汽车。下文为了便于对本发明的环境感知系统进行解释和说明,主要以环境感知系统应用于车辆的情况为例。
在图1中为了便于对激光探测模块包括的激光雷达的位置进行解释和说明,仅以圆圈的形式示出了激光雷达,但应该理解的是,该图示仅用于示意并不对激光雷达的形状构成限制。
作为示例,如图1所示,激光探测模块可以内嵌在所述移动平台20的本体中,例如,内嵌在例如车辆的移动平台的车身中,在保证激光探测模块的探测范围和安装结构稳定性的前提下,能够最大限度隐藏激光探测模块,避免了对移动平台(例如车辆)的外形和美观的破坏。
在一个示例中,如图1所示,本发明的环境感知系统包括激光探测模块,所述激光探测模块包括第一激光模组21、第二激光模组22、第三激光模组23和第四激光模组24,其中,所述第一激光模组21和所述第二激光模组22设置在移动平台20的前侧,以探测所述移动平台20前方的区域。
所述第一激光模组21和所述第二激光模组22在移动平台20的前侧间隔设置,该间隔距离与预定设置的两个激光模组的视场(FOV)的重叠百分比相关,通常重叠百分比越大,该距离可以设置的越小。在一个示例中,所述第一激光模组21和所述第二激光模组22分别设置在所述移动平台前侧的两端部。在另一个示例中,移动平台20包括车辆,第一激光模组21和所述第二激光模组22可以是设置在前侧的车灯位置、前侧的车窗位置(例如,车窗顶部)或者前侧的保险杠位置等。
值得一提的是,在本文中,移动平台的“前侧”或“前方”是指移动平台(例如车辆)的行进方向。
在一个示例中,如图1所示,第三激光模组23和第四激光模组24分别设置在所述移动平台的两侧,以探测所述移动平台左前方和右前方的区域。其中,可以根据第三激光模组23和第四激光模组24预定探测的范围区域合理设定其位置,例如,所述第三激光模组具体地设置在所述移动平 台左前侧,所述第四激光模组具体地设置在所述移动平台右前侧,例如,所述移动平台包括车辆,所述左前侧可以包括车辆的左后视镜位置、左后视镜和左车轮之间的车身位置、车辆的左后视镜前方位置、或者左车轮上方位置等,所述右前侧可以包括车辆的右后视镜位置、右后视镜和右车轮之间的车身位置、车辆的右后视镜前方位置、或者右车轮上方位置等。在一个示例中,所述移动平台包括车辆,第三激光模组23和第四激光模组24分别大体设置在车辆两侧的后视镜处。
示例性地,如图2所示,所述第一激光模组和所述第二激光模组的视场(FOV)部分重叠,所述第三激光模组和所述第一激光模组的视场部分重叠,所述第四激光模组和所述第二激光模组的视场部分重叠。视场(FOV)部分重叠也即视场角部分重叠,特别是,水平视场部分重叠,从而在重叠部分其点云密度更高,保证了在移动平台前方有丰富的检测数据,提高探测的精度,并且所述第一激光模组、第二激光模组、第三激光模组和第四激光模组中相邻的激光模组的视场重叠,从而可以避免探测盲区的出现,并且能够对移动平台前方、左侧和右侧较大范围的区域进行探测。
在一个示例中,所述第一激光模组和所述第二激光模组的视场重叠的百分比大于所述第一激光模组或所述第二激光模组视场的30%或重叠的水平视场角大于30度;所述第三激光模组和所述第一激光模组的视场重叠的百分比大于第三激光模组或所述第一激光模组视场的10%或重叠的水平视场角大于10度;所述第四激光模组和所述第二激光模组的视场重叠的百分比大于第四激光模组或所述第二激光模组视场的10%或重叠的水平视场角大于10度。相邻两个激光模组的视场重叠的百分比根据实际的探测需要合理设定,并不限于上述示例的百分比数值。
在一个示例中,还可以使第一激光模组和第二激光模组的重叠比例大大于第一激光模组和和第三激光模组以及第二激光模组和第四激光模组的重叠比例,这样设置的目的是保证在移动平台前方具有更高的点云密度,并同时使得在移动平台的左前方和右前方具有更大的探测视野范围,减少对激光膜组数量。
值得一提的是,本文所提及的激光模组也即激光雷达模组,其包括至少一个激光雷达,以对外界环境进行探测。激光雷达可以采用单线扫描式激光雷达或多线束激光雷达等,主要是通过发射激光束,来探测目标的距离、 位置、速度等特征量,还能够利用激光雷达的回波强度信息进行障碍检测和追踪等。在一个示例中,本实施例中的激光雷达是接近锥形的一个视场,可以覆盖的视场角大体为40°~100°,特别是40°~60°。可选地,所述激光探测模块包括的任意一个激光雷达的光轴朝下,所述光轴与水平方向的夹角位于0°~10°之间,因为例如车辆的移动平台在行进过程中通常是在路面上行驶,而激光雷达设置在移动平台上时其距离路面有一定高度,如果使光轴保持为水平方向,部分光束是往上发射的,而这部分探测结果对车的用处不大,因此,如果使激光雷达的光轴朝下,所述光轴与水平方向的夹角大于位于0°~10°之间,那么其就能够探测到更低处的物体,从而提高探测的精度和范围,能够合理避障。
在本发明实施例中,每个激光模组的视场角(FOV)可以相同或者不同,视场角的范围可以根据实际的探测需要进行合理的设定和选择,可选地,每个激光模组的视场角小于或等于120°,特别是,每个激光模组的视场角小于或等于100°。可选地,每个激光模组的水平视场角范围为40°~120°。该视场角范围大,能够实现对移动平台周围更大区域的探测。例如,第一激光模组、第二激光模组、第三激光模组和第四激光模组的视场大体为100°,该四个激光模组能够探测移动平台(例如车辆)前方、左侧和右侧较大范围的区域,例如大体为水平方向260~280°范围的区域。
在一个示例中,每个激光模组包括至少两个激光雷达,所述至少两个激光雷达的光轴呈预定角度的夹角,以使相邻两个激光雷达的视场有重叠部分。在一个激光模组中,各激光雷达已经相互标定好,通过一个输出将该激光模组中的各激光雷达的探测数据输出。在一个示例中,该激光模组中的各激光雷达数据进行融合后输出,从数据的接收端来看,该激光模组输出的数据是作为一个激光雷达是数据,而不需自己对该激光模组中的各激光雷达的数据进行融合。例如,如图1所示,第一激光模组21包括3个激光雷达211、212、213,第二激光模组22包括3个激光雷达221、222、223,第三激光模组23包括3个激光雷达231、232、233,第四激光模组24包括3个激光雷达241、242、243。激光模组包括的激光雷达的视场具有重叠部分,从而保证激光模组的探测盲区的出现,并且重叠部分的点云密度会更高,更有利于对移动平台周围丰富的目标物进行探测。每个激光模组 中相邻两个激光雷达的光轴的夹角由激光模组预定的重叠部分百分比以及激光模组的视场大小决定。
相邻两个激光雷达的视场有重叠部分,该重叠部分的大小根据实际的激光模组视场范围以及激光模组的点云密度要求等合理设定,可选地,该重叠部分占任意一个激光雷达的视场的百分比范围为5%~90%,例如,10%、20%、30%、40%、50%、60%、70%、80%、90%,进一步,重叠部分大于单个激光雷达的视场的30%,而小于80%。
示例性地,每个激光雷达的视场在30度~70度之间,或在40度~60度之间。组成激光模组的相邻两个激光雷达的视场重叠部分的角度在10度~35度之间,最终形成的激光模组的视场角(FOV)在80度~130度之间,或在90度~120度之间。
在一个示例中,在移动平台的前侧仅设置两组激光模组的情况中,其中一组激光模组的中心光轴与正前方的夹角在45度~75度之间,进一步,可以在55度~65度之间。在一个示例中,如图3所示,每个激光模组均包括3个激光雷达301、302、303,所述3个激光雷达的光轴呈预定角度的夹角,以使相邻两个激光雷达的视场有重叠部分。示例性地,激光雷达301、302、303可以包括单线扫描式激光雷达,可选地,3个激光雷达301、302、303的视场角均大体为40°,3个激光雷达301、302、303中相邻的激光雷达的光轴之间的夹角大体为30°,从而使该3个激光雷达301、302、303组成一个水平视场角(FOV)大体为100°的激光模组,则在该种激光模组中相邻激光雷达重叠的角度大体为10°。
由于激光雷达的探测距离范围越远,其视场角往往越小,因此,为了使设置在移动平台前方的激光雷达能够探测到更远的范围,所述激光探测模块还包括放置在所述移动平台的前侧的一个激光雷达,所述激光雷达的探测距离大于第一激光模组和所述第二激光模组的探测距离,该激光雷达可以具有比第一激光模组和第二激光模组包括的激光雷达更小的视场角,可选地,其视场角可以为10°~30°,例如10°、15°、20°、25°、30°。
为了对移动平台后方的区域进行探测,本发明的实施例中,如图1所示,所述激光探测模块还包括设置在所述移动平台20的后侧的第一激光雷达251,以探测所述移动平台20后方的区域。可选地,在所述移动平台20 包括车辆时,所述第一激光雷达251设置在所述移动平台的后侧的车身中,例如设置在车辆的后侧车窗下方的车身位置、或者设置在车辆的后侧的车窗玻璃中。可选地,所述第一激光雷达251设置在移动平台后侧的中心区域。
在一个示例中,如图1所示,所述激光探测模块还包括第二激光雷达252和第三激光雷达253,分别设置在所述移动平台20的两侧,以探测所述移动平台20左后方和右后方的区域。在一个示例中,所述第二激光雷达252和第三激光雷达253,分别设置在所述移动平台20的左前侧和右前侧。例如,所述第二激光雷达252邻近所述第三激光模组23,所述第三激光雷达253邻近所述第四激光模组24,在此邻近是指相应激光雷达靠近相应的激光模组,以使得两者之间的视场部分重叠。在一个示例中,所述第二激光雷达252设置在所述第三激光模组23的上方或下方,以使所述第二激光雷达252和所述第三激光模组23的视场部分重叠;所述第三激光雷达253设置在所述第四激光模组24的上方或下方,以使所述第三激光雷达253和所述第四激光模组24的视场部分重叠。其中,第二激光雷达和第三激光模组的位置关系以及第三激光雷达和第四激光雷达还可以是其他的位置关系,只要能够保证第二激光雷达和第三激光模组的视场具有重叠部分,所述第三激光雷达253和所述第四激光模组24的视场具有重叠部分即可。
值得一提的是,第一激光雷达、第二激光雷达以及第三激光雷达可以使用与激光模组包括的激光雷达相同的激光雷达,也可以是其他适合的激光雷达,在此不做具体限定。
在本发明实施例中,使用3个激光雷达的三合一模组构成激光模组的优点在于三合一激光雷达之间有更为牢固的机械结构设计,可以在装入移动平台的本体(例如车辆的车身)前在特定的环境中进行标定,减轻了安装到移动平台的本体(例如车辆的车身)后的标定负担。
在多传感器数据的融合中,一个比较重要环节,就是需要对多传感器进行标定,准确的标定数据,提供正确的环境感知。可以根据具体的相邻激光模组之间视场角重叠的角度来选择适合的算法进行标定,例如,在相邻的两个激光模组的重叠部分超过30度时,可以使用经典的迭代最近点(ICP)算法进行直接标定;三个单独的激光雷达(第一激光雷达、第二激 光雷达和第三激光雷达)和相邻的激光模组之间的重叠区域较少,可以通过基于vins(Visual-Inertial Navigation System)补偿的方法对它们进行标定。
在前述实施例中,如图1所示的内嵌方案中,包括第一至第四激光模组和第一至第三激光雷达,在确保移动平台(例如车辆)可以完全检测四周的前提下,使用了最少数量激光雷达,并保证了前方有丰富的检测数据,能够为检测模块提供更多有效信息,实现了环绕移动平台(例如车辆)360度的检测范围。此外,根据特定任务需求,也可以在移动平台的本体(例如车辆的车身)其他位置上加装激光模组或者单个激光雷达,确保有充足的数据满足任务需求。在内嵌方案中使用15个激光雷达,也即4个激光模组和三个独立的激光雷达,如图2所示,实现了环绕移动平台(例如车辆)360度的检测范围。
除了上述的内嵌方案,本发明的所述激光探测模块外置在所述移动平台的本体外,也即安装在移动平台(例如车辆)的外壳上。其中,上述的内嵌方案也可以适用于外置方案,也即前述实施例中内嵌的激光探测模块还可以外置在所述移动平台的本体外。在另一个实施例中,如图4所示为一种激光探测外置在移动平台的方案,在此方案中,所述激光探测模块包括设置在所述移动平台的前侧的第一激光模组31、所述第二激光模组32和第五激光模组35,以探测所述移动平台前方的区域,其中相邻两个激光模组之间的视场角具有重叠部分,该重叠部分的比例可以根据实际的视场以及点云密度需要进行合理设定。一个实施例中,第一激光模组31、所述第二激光模组32和第五激光模组35的中心光轴和正前方的夹角位于0度~10度之间(例如都是沿着正前方)。在此处在移动平台的前侧设置3组激光模组的目的是通过提高激光雷达数量增加单位时间内点云的覆盖密度从而对移动平台前方区域达到更好的检测效果。
在一个示例中,如图4所示,所述激光探测模块还包括所述第三激光模组33和所述第四激光模组34,分别设置在所述移动平台的两侧,以探测所述移动平台左前方和右前方的区域。一个实施例中,所述第三激光模组33和所述第四激光模组34的中心轴和正前方的夹角位于30度~60度之间,进一步,可以位于40度~50度之间(例如是45度左右)。可选地,所述第三激光模组33具体地设置在所述移动平台左前侧,所述第四激光模组 34具体地设置在所述移动平台右前侧。示例性地,所述第三激光模组33和所述第一激光模组31的视场部分重叠,所述第四激光模组34和所述第五激光模组35的视场部分重叠。
在一个示例中,如图4所示,所述激光探测模块还包括第六激光模组36和第七激光模组37,分别设置在所述移动平台左侧和右侧,以探测所述移动平台左后方和右后方的区域。可选地,所述第六激光模组36设置在所述移动平台的左后侧,所述第七激光模组37设置在所述移动平台的右后侧。一个实施例中,第六激光模组36和第七激光模组37的中心轴和正后方的夹角位于30度~60度之间,进一步,可以位于40度~50度之间(例如是45度左右)。
为了使激光探测模块的探测范围覆盖整个的移动平台后方的区域,所述第六激光模组和所述第七激光模组的视场在所述移动平台的后方部分重叠,其中,所述第六激光模组和所述第七激光模组的视场重叠百分比为大于第六激光模组或所述第七激光模组视场的10%,或者,或重叠的水平视场角大于10度。该百分比的数值和角度数值仅作为示例,对于其他适合的数值也可同样适用于本发明。
在本实施例中激光模组可以与前述实施例中的激光模组相同,在此为了避免重复不再对激光模组的结构和特征进行赘述,示例性地,第一激光模组31包括激光雷达6,7,8;第二激光模组32包括激光雷达9,10,11;第三激光模组33包括激光雷达3,4,5;第四激光模组34包括激光雷达15,16,17;第五激光模组35包括激光雷达12,13,14;第六激光模组36包括激光雷达0,1,2;第七激光模组37包括激光雷达18,19,20。
在一个示例中,所述激光探测模块设置在与移动平台的顶部大体匹配的支架上,所述支架可拆卸的安装于所述移动平台的顶部,以使所述激光探测模块外置在所述移动平台的本体外。
由于激光雷达扫描区域通常为一个锥形,不同时刻激光雷达的扫描区域并不相同,可以通过提高激光雷达数量增加单位时间内点云的覆盖密度从而达到更好的检测效果。为了确保前向有比较充足的激光雷达数据,设置三组激光模组覆盖了正前方的区域。此外,也可以根据任务对数据密度的需求增加或减少各个区域的激光雷达数量。通过本实施例中的激光探测 模块的设置方式可以激光雷达检测到移动平台(例如车辆)周围的所有区域。
为了实现对移动平台周围影像信息的探测,环境感知系统还包括相机模块,该相机模块包括可见光相机模块,其中,所述相机模块可以内嵌于所述移动平台的本体内,例如如图5A和图5B所示,内嵌在车辆的车身内,或者也可以是外置在所述移动平台的本体外,例如如图7所示,外置在车辆的车身外。
下面首先参考图5A和图5B对相机模块内嵌的方案进行描述,如图5A所示,所述相机模块还包括设置在所述移动平台的前侧的第一双目模块,以探测所述移动平台前方的区域;所述相机模块还包括第二双目模块,设置在所述移动平台的前侧,以探测所述移动平台的前方的区域。示例性地,所述移动平台包括车辆40,所述第一双目模块和所述第二双目模块设置在所述车辆的前车窗上,特别是前车窗的顶部,或者也可以设置在车辆的前侧的其他位置处。
可选地,如图5A所示,所述第一双目模块包括的两个单目相机411,412;单目相机411和单目相机412在水平方向间隔排列,所述第二双目模块包括的两个单目相机421,422,单目相机421,422在水平方向间隔排列。更进一步地,所述第一双目模块包括的两个单目相机421,422设置在所述第二双目模块包括的两个单目相机421,422之间。
在一个示例中,如图5B所示,所述相机模块还包括第三双目模块,设置在所述移动平台的后侧,以探测所述移动平台后方的区域,示例性地,所述第三双目模块包括两个单目相机431,432。其中,单目相机431,432沿水平方向间隔设置在所述移动平台40上,示例性地,所述移动平台包括车辆,则所述车辆的后侧包括但不限于后车窗,所述第三双目模块设置在车辆的后车窗上(例如后车窗的顶部)。
第一双目模块、第二双目模块和第三双目模块探测视场如图6C所示,其中图6C示出的为俯视视场角,由图可以看出,第一双目模块和第二双目模块的视场角具有重叠部分,其探测视场角整体覆盖了移动平台前方大体90度~130度的范围。
在一个示例中,如图5A和图5B所示,环境感知系统还包括相机模块, 所述相机模块包括:第四双目模块和第五双目模块,分别设置在所述移动平台的左后侧和右后侧,以探测移动平台左前方和右前方的区域,其中,如图5A所示,所述第四双目模块包括两个单目相机441,442,以探测移动平台左前方的区域,如图6A所示;如图5B所示,所述第五模块包括以及还包括两个单目相机451,452,以探测移动平台右前方的区域。
在一个示例中,如图5A和图5B所示,所述相机模块包括:第六双目模块和第七双目模块,分别设置在所述移动平台的左前侧和右前侧,以探测所述移动平台左后方和右后方的区域,其中,如图5A所示,第六双目模块包括两个单目相机461,462,如图5B所示,第七双目模块包括两个单目相机471,472。
在一个示例中,如图5A和图5B所示,所述第四双目模块、所述第五双目模块、所述第六双目模块和所述第七双目模块均包括沿竖直方向间隔排列的两个单目相机,以按照竖直方向组成立体相机模块,这样设置容易找出适合的位置,降低组装的难度,从而实现了侧向目标的检测,并且这样设置还便于对移动平台偏下方的区域进行观测,例如便于对车辆行驶路面进行观测。
在一个示例中,第四双目模块和第五双目模块可以对称设置在移动平台(例如车辆)的两侧,第六双目模块和第七双目模块可以对称设置在移动平台(例如车辆)的两侧。
如图6B所示,所述第四双目模块和所述第六双目模块的探测区域部分重叠,以探测所述移动平台左侧大体180度的区域,所述第五双目模块和所述第七双目模块的探测区域部分重叠,以探测所述移动平台右侧大体180度的区域。
通过上述设置第一至第七双目模块对移动平台周围360度环境的感知,如图6D所示,并且由于上述双目模块内嵌在移动平台的本体(例如车辆的车身)内,所以最大限度隐藏了传感器,避免了对车辆的外形和美观的破坏。
在本文中涉及的双目模块也即为双目相机模块或者立体相机模块,其也称为视觉传感器,其可以是本领域技术人员熟知的任何类型的双目相机,在本实施例中主要以双目模块包括两个单目相机的情况为例进行了描述, 其中,单目相机可以包括图像传感器,有时还要配以光投射器及其他辅助设备,图像传感器可以使用激光扫描器、线阵和面阵CCD摄像机或者TV摄像机,也可以是数字摄像机等,或者也可以是CMOS图像传感器等。
根据双目成像的原理,近距离的物体视差大,远距离的物体视差小,误差也更大。为了检测远距离的物体,可以通过调整双目基线的长度,提高远距离的检测精度,如双目误差公式所示:
Figure PCTCN2018112200-appb-000001
其中z是被测物距离像平面的深度,T是基线长度,∈ d是视差误差。
因此,基于上述原理,所述第一双目模块的基线长度小于所述第二双目模块的基线长度,例如,所述第一双目模块的基线长度大体为400mm,所述第二双目模块的基线长度大体为1000mm,那么所述第一双目模块的探测距离小于所述第二双目模块的探测距离,在移动平台的前侧设置具有更远的探测距离的第二双目模块的目的是为了对更远处的障碍物进行检测,以满足在高速环境下的对远距离障碍物进行检测的需要,提高了对远距离环境的感知能力。
而对于设置在移动平台后侧的第三双目模块来说,由于其需要探测的距离相对于侧面的探测距离远一些更好,因此,第三双目模块的基线长度可以设置为与所述第一双目模块相同或者也可以是其他适合的长度,例如,第三双目模块的基线长度大体为400mm。
由于在例如车辆的移动平台行驶的过程中其对于侧面的探测距离要求不高但对于探测范围角度要求较高,因此,设置在侧面的双目模块的基线长度可以小于设置在前侧或者后侧的双目模块的基线长度,例如,所述第四双目模块、所述第五双目模块、第六双目模块和第七双目模块的基线长度相同,例如均大体为200mm,或者,该四个双目模块还可以具有不同的基线长度,具体可以根据实际需要进行合理设定。
上述双目模块所包括的单目相机的视场角可以根据特定需要进行合理的设定和调整,由于视场角越大其探测距离约近,而视场角越小其探测距离越远,因此可以在移动平台前侧和后侧设置的单目相机的视场角大于在两侧设置的单目相机的视场角,例如,第一双目模块包括的单目相机的 视场角大体为83°,所述第二双目模块包括的单目相机的视场角大体为20°,第三双目模块包括的单目相机的视场角大体为83°,所述第四双目模块、所述第五双目模块、所述第六双目模块和所述第七双目模块包括的单目相机的视场角均大体为110°。
在一个示例,所述第一双目模块包括两个单目相机,所述第二双目模块包括两个单目相机,其中,所述第一双目模块包括的单目相机的视场角大于所述第二双目模块包括的单目相机的视场角,例如,第一双目模块包括的单目相机的视场角大体为83°,所述第二双目模块包括的单目相机的视场角大体为20°;这样设置的目的是为了对更远处的障碍物进行检测,以满足在高速环境下的对远距离障碍物进行检测的需要,提高了对远距离环境的感知能力。
在上述将相机模块内嵌在移动平台例如车辆的车身中的方案,其具有以下优点,利用双目模块也称立体(stereo)相机实现了对车辆周围环境的360度感知。使用立体相机,既能提供够用于检测2d的感兴趣目标,如行人、车辆、交通灯与交通标志灯,还能提供这些目标的深度信息,用于指引车辆进行更为准确避障或行驶。此外,利用视场角小的立体相机(例如第二双目模块)可以达到200m的障碍物检测距离,可以满足在高速环境下的对远距离障碍物进行检测的需求。
在本发明的另一个实施例中,所述相机模块还可以外置在所述移动平台的本体外,例如外置在车辆的车身外。可以通过任意适合的方式实现相机模块的外置,例如,如图7所示,所述相机模块设置在与移动平台的顶部大体匹配的支架上,所述支架可拆卸的安装于所述移动平台的顶部,以使所述相机模块外置在所述移动平台的本体外。
如图7所示,在外置的方案中,相机模块包括第一双目模块和第二双目模块,其设置在移动平台的前侧,也即支架的前侧,以对移动平台前方的区域进行探测。可选地,该第一双目模块包括两个单目相机74、76、第二双目模块包括两个单目相机713、714。可选地,第一双目模块包括的单目相机的视场角小于所述第二双目模块包括的单目相机的视场角,例如,两个单目相机74、76的视场角大体为83°,两个单目相机713、714的视场角大体为20度,因此,第二双目模块的探测距离比第一双目模块远。这 样在移动平台的前侧(也即支架的前侧)相当于设置了两组探测距离较远的双目模块以及一组探测距离稍近的模块,利用视场角小的立体相机(例如第二双目模块)可以达到200m的障碍物检测距离,可以满足在高速环境下的对远距离障碍物进行检测的需求。
示例性地,所述相机模块还包括第三双目模块,设置在移动平台后侧,也即架子的后侧,用于探测后方的区域。所述相机模块还包括第四双目模块和第五双目模块分别设置在移动平台的左后侧和右后侧,也即设置在支架的左后侧和右后侧以探测左前方和右前方的区域,还包括第六双目模块和第七双目模块分别设置在移动平台的左前侧和右前侧,也即设置在支架的左前侧和右前侧以探测左后方和右后方的区域,可选地,第四双目模块和第五双目模块对称设置,第六双目模块和第七双目模块对称设置。
在另一个示例中,如图7所示,所述相机模块还包括第四双目模块、第五双目模块、第六双目模块和第七双目模块,所述第四双目模块包括两个单目相机70、71,第五双目模块包括两个单目相机709、710,第六双目模块包括两个单目相机72、73,第七双目模块包括两个单目相机77、78。其中,第四双目模块设置在移动平台的左后方,以探测左后方的区域,第五双目模块设置在移动平台的右后方,以探测右后方的区域,第六双目模块设置在左前方,以探测左前方的区域,第七双目模块设置在右前方,以探测右前方的区域。可选地,第四双目模块和第五双目模块对称设置,第六双目模块和第七双目模块对称设置。
在上述双目模块设置时,任意相邻的两个双目模块的视场角具有重叠部分,该重叠部分的比例根据实际的需要进行合理设定,在此不做具体限定。
在相机模块外置的技术方案中,所述第一双目模块、第三至第七双目模块可以使用具有相同视场角的单目相机,也可以使用不同的视场角的单目相机,示例性地,所述第一双目模块、第三至第七双目模块可以使用具有相同视场角的单目相机,例如均使用视场角大体为83度的单目相机。
示例性地,所述第一双目模块、第三至第七双目模块可以使用具有相同配置的单目相机,首先,前后双目模块对称设置以及左右双目模块对称设置的方式便于摆放,容易找出适合的位置,降低组装的难度,由于对称设置的每一对双目模块的配置都是一致的,更有利于该模块进行批量的准 备以及进行传感器的标定,如果出现传感器出现问题,也可以立即替换该模块,减轻了系统维护的难度。
此外,在本发明实施例中也可以根据特定需求,对相机的位置和双目模块的相机组成进行适当调整。
在一个示例中,如图8所示,所述环境感知系统还包括设置在所述移动平台的前侧和后侧的毫米波雷达模块,以监测移动物体和障碍物,其中,所述毫米波雷达模块的探测距离大于所述激光雷达模块的探测距离。可选地,所述毫米波雷达模块设置在移动平台内例如车辆的车身内。
毫米波雷达探测性能稳定,不受物体表面颜色、纹理的影响,有很强的穿透力,测距精度受环境影响较小,并且探测距离较长,可以满足大距离范围内的环境监测需要,是对激光和可见光相机一个很好的补充。毫米波雷达主要选择放置在汽车的前方和后方,从而满足远距离监测移动物体和障碍物的需要。
在另一个示例中,如图9所示,所述环境感知系统还包括超声波传感器,其中,在所述移动平台的前侧、后侧、左侧和右侧各设置2个所述超声波传感器。每侧的两个超声波传感器间隔设置,其中位于左侧的两个超声波分别探测左前方和左后方的区域,而位于右侧的两个超声波分别探测右前方和右后方的区域。
超声波传感器能够在恶劣环境中可靠运行,例如污浊、灰尘或雾气环境,不受目标的颜色、反射性以及纹理等特征的影响,即使是较小的目标也能精确探测。并且其体积较小,方便安装,可以有效的对移动平台(例如车辆)近距离区域进行检测,弥补其他传感器的盲区。可选地,在移动平台(例如车辆)前后左右各放置2个超声波传感器,每个传感器上配有电机,可以控制超声波传感器进行转动,避免出现监测的死角。每一个传感器有效监测距离在10m以内,通过电机控制可以全面覆盖移动平台(例如车辆)近距离区域,对汽车四周的障碍物进行监测,如图9所示。
示例性地,所述环境感知系统还包括GPS卫星定位模块,用于获知所述移动平台的实时方位数据,以对所述移动平台进行路径导航规划。GPS是一个全球范围内的卫星定位系统,可以让移动平台(例如车辆)实时知道其具体的方位,对自动驾驶系统中进行路径导航规划非常重要,在明确 目的地之后,可以通过GPS卫星的数据,引导移动平台(例如车辆)朝着正确的方向和道路前进。
在一个示例中,如图10所示,所述环境感知系统还包括惯性测量单元(IMU)801,用于实时输出测量物体在三维空间中的角速度和加速度;惯性测量单元,可以实时输出测量物体在三维空间中的角速度和加速度。虽然,在长时间定位中,IMU的累积误差会越来越大,但是它可以提供较高频率的、准确的测量结果,特别是在某些极端场合缺乏其他观测的情况下(比如隧道),IMU依然能够提供有效的信息。
在一个示例中,如图10所示,所述环境感知系统还包括RTK天线802,用于将基准站采集的载波相位发送给用户接收机,以进行求差结算坐标。RTK技术是通过将基准站采集的载波相位发给用户接收机,进行求差结算坐标。在存在基站的情况下,RTK天线可以实时得到厘米级定位精度,给定位模块提供准确的位置信息。
在一个示例中,所述IMU和RTK天线既可以内嵌在移动平台内,例如内嵌在车辆的车身内,或者也可以和前述的相机模块、激光探测模块等一起外置在移动平台外,例如外置在车辆的车身外,例如通过安装在车辆顶部的支架外置在车身外。
示例性地,所述环境感知系统还包括车速里程计,用于测量车轮行驶的距离。车速里程计可以测量出车轮行驶的距离,在汽车定位模块中,可以实时定位模块提供比较准确的距离行驶信息。特别是在丢失GPS数据的情况下,可以提供比较好的行驶距离的估计。两个传感器提供的数据,可以应用在汽车定位系统中,实现实时的汽车位置的估计,从而朝着正确的目的地前进。
如图11示出了本发明实施例的环境感知系统的系统框架图,以及环境感知系统包括的各个模块和系统探测覆盖范围。在一个示例中,如图所示,毫米波雷达的探测范围大体在150m以内,而双目视觉系统也即相机模块的探测范围在80m以内,超声波传感器的探测范围大体在10m以内,激光探测模块也即激光雷达的探测范围大体在200m以内,例如在5~100m左右。
在环境感知系统既包括激光探测模块又包括相机模块时,在移动平台 行驶过程中两个模块可以同时对移动平台周围360度的环境进行感知,相机模块和激光模块相互配合,提高探测的覆盖面,一旦其中任意一个模块发生故障,另一个模块可以起到良好的补充作用,仍然能够对车身周围360°的范围进行探测,从而保证了移动平台例如车辆的正常驾驶,也保证了驾驶的安全性。
通过上述各种传感器的数据的融合,设置在移动平台(例如车辆)中的定位模块可以求解出稳定的、可靠的姿态信息。
综上所述,本发明中主要使用的传感器包括扫描式激光雷达、可见光相机、毫米波雷达、超声波传感器、车轮里程计、IMU和GPS等,实现360度无死角感知周围环境,以较少的冗余,提供可靠和稳定的环境感知数据;可以方便、快速的进行传感器标定,以及可满足实时标定结果验证的需求。另外,不同的传感器组成一套独立的传感器模块,从而覆盖特定的检测区域和范围。综合所有传感器的信息,可以实时得到周围环境的数据,检测出可行驶路面,以及其他的行人和车辆,再交由规划(planning)模块引导移动平台(例如车辆)自动驾驶。
上述环境感知系统用于感测外部环境信息,例如,环境目标的距离信息、角度信息、反射强度信息、速度信息等。具体地,本发明实施方式的环境感知系统可应用于移动平台,所述环境感知系统可安装在移动平台的平台本体。具有环境感知系统的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括飞行器(例如无人飞行器)、车辆(例如无人驾驶汽车)、船和遥控车等。当环境感知系统应用于无人飞行器时,平台本体为无人飞行器的机身。当环境感知系统应用于车辆时,平台本体为车辆的车身。该车辆可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。
下面,参考图12和图13对本发明实施例中的一种激光雷达的结构做示例性地描述,该激光雷达仅作为示例,对于其他适合的激光雷达也可以应用于本申请。
本发明各个实施例提供的XXX电路可以应用于测距装置,该测距装置可以是激光雷达、激光测距设备等电子设备。在一种实施方式中,测距装置用于感测外部环境信息,例如,环境目标的距离信息、方位信息、反 射强度信息、速度信息等。一种实现方式中,测距装置可以通过测量测距装置和探测物之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物到测距装置的距离。或者,测距装置也可以通过其他技术来探测探测物到测距装置的距离,例如基于相位移动(phase shift)测量的测距方法,或者基于频率移动(frequency shift)测量的测距方法,在此不做限制。
为了便于理解,以下将结合图12所示的测距装置100对测距的工作流程进行举例描述。
如图12所示,测距装置100可以包括发射电路110、接收电路120、采样电路130和运算电路140。
发射电路110可以发射光脉冲序列(例如激光脉冲序列)。接收电路120可以接收经过被探测物反射的光脉冲序列,并对该光脉冲序列进行光电转换,以得到电信号,再对电信号进行处理之后可以输出给采样电路130。采样电路130可以对电信号进行采样,以获取采样结果。运算电路140可以基于采样电路130的采样结果,以确定测距装置100与被探测物之间的距离。
可选地,该测距装置100还可以包括控制电路150,该控制电路150可以实现对其他电路的控制,例如,可以控制各个电路的工作时间和/或对各个电路进行参数设置等。
应理解,虽然图12示出的测距装置中包括一个发射电路、一个接收电路、一个采样电路和一个运算电路,用于出射一路光束进行探测,但是本申请实施例并不限于此,发射电路、接收电路、采样电路、运算电路中的任一种电路的数量也可以是至少两个,用于沿相同方向或分别沿不同方向出射至少两路光束;其中,该至少两束光路可以是同时出射,也可以是分别在不同时刻出射。
一些实现方式中,除了图12所示的电路,测距装置100还可以包括扫描模块160,用于将发射电路出射的至少一路激光脉冲序列改变传播方向出射。
其中,可以将包括发射电路110、接收电路120、采样电路130和运算电路140的模块,或者,包括发射电路110、接收电路120、采样电路130、运算电路140和控制电路150的模块称为测距模块,该测距模块150可以独立于其他模块,例如,扫描模块160。
测距装置中可以采用同轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内共用至少部分光路。或者,测距装置也可以采用异轴光路,也即测距装置出射的光束和经反射回来的光束在测距装置内分别沿不同的光路传输。图13示出了本发明的测距装置采用同轴光路的一种实施例的示意图。
测距装置100包括光收发装置110,光收发装置110包括光源103(包括上述的发射电路)、准直元件104、探测器105(可以包括上述的接收电路、采样电路和运算电路)和光路改变元件106。光收发装置110用于发射光束,且接收回光,将回光转换为电信号。光源103用于发射光束。在一个实施例中,光源103可发射激光束。可选的,光源103发射出的激光束为波长在可见光范围之外的窄带宽光束。准直元件104设置于光源的出射光路上,用于准直从光源103发出的光束,将光源103发出的光束准直为平行光。准直元件还用于会聚经探测物反射的回光的至少一部分。该准直元件104可以是准直透镜或者是其他能够准直光束的元件。
在图13所示实施例中,通过光路改变元件106来将测距装置内的发射光路和接收光路在准直元件104之前合并,使得发射光路和接收光路可以共用同一个准直元件,使得光路更加紧凑。在其他的一些实现方式中,也可以光源103和探测器105分别使用各自的准直元件,将光路改变元件106设置在准直元件之后。
在图13所示实施例中,由于光源103出射的光束的光束发散角较小,测距装置所接收到的回光的光束发散角较大,所以光路改变元件可以采用小面积的反射镜来将发射光路和接收光路合并。在其他的一些实现方式中,光路改变元件也可以采用带通孔的反射镜,其中该通孔用于透射光源103的出射光,反射镜用于将回光反射至探测器105。这样可以减小采用小反射镜的情况中小反射镜的支架会对回光的遮挡的情况。
在图13所示实施例中,光路改变元件偏离了准直元件104的光轴。在其他的一些实现方式中,光路改变元件也可以位于准直元件104的光轴上。
测距装置100还包括扫描模块102。扫描模块102放置于光收发装置110的出射光路上,扫描模块102用于改变经准直元件104出射的准直光束119的传输方向并投射至外界环境,并将回光投射至准直元件104。回光经准直元件104汇聚到探测器105上。
在一个实施例中,扫描模块102可以包括一个或多个光学元件,例如,透镜、反射镜、棱镜、光栅、光学相控阵(Optical Phased Array)或上述光学元件的任意组合。在一些实施例中,扫描模块102的多个光学元件可以绕共同的轴109旋转,每个旋转的光学元件用于不断改变入射光束的传播方向。在一个实施例中,扫描模块102的多个光学元件可以以不同的转速旋转。在另一个实施例中,扫描模块102的多个光学元件可以以基本相同的转速旋转。
在一些实施例中,扫描模块的多个光学元件也可以是绕不同的轴旋转。在一些实施例中,扫描模块的多个光学元件也可以是以相同的方向旋转,或以不同的方向旋转;或者沿相同的方向振动,或者沿不同的方向振动,在此不作限制。
在一个实施例中,扫描模块102包括第一光学元件114和与第一光学元件114连接的驱动器116,驱动器116用于驱动第一光学元件114绕转动轴109转动,使第一光学元件114改变准直光束119的方向。第一光学元件114将准直光束119投射至不同的方向。在一个实施例中,准直光束119经第一光学元件改变后的方向与转动轴109的夹角随着第一光学元件114的转动而变化。在一个实施例中,第一光学元件114包括相对的非平行的一对表面,准直光束119穿过该对表面。在一个实施例中,第一光学元件114包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第一光学元件114包括楔角棱镜,对准直光束119进行折射。在一个实施例中,第一光学元件114上镀有增透膜,增透膜的厚度与光源103发射出的光束的波长相等,能够增加透射光束的强度。
在一个实施例中,扫描模块102还包括第二光学元件115,第二光学元件115绕转动轴109转动,第二光学元件115的转动速度与第一光学元件114的转动速度不同。第二光学元件115用于改变第一光学元件114投射的光束的方向。在一个实施例中,第二光学元件115与另一驱动器117连接,驱动器117驱动第二光学元件115转动。第一光学元件114和第二光学元件115可以由不同的驱动器驱动,使第一光学元件114和第二光学元件115的转速不同,从而将准直光束119投射至外界空间不同的方向,可以扫描较大的空间范围。在一个实施例中,控制器118控制驱动器116和117,分别驱动第一光学元件114和第二光学元件115。第一光学元件114和第二光学元件115的转速可以根据实际应用中预期扫描的区域和样 式确定。驱动器116和117可以包括电机或其他驱动装置。
在一个实施例中,第二光学元件115包括相对的非平行的一对表面,光束穿过该对表面。在一个实施例中,第二光学元件115包括厚度沿至少一个径向变化的棱镜。在一个实施例中,第二光学元件115包括楔角棱镜。在一个实施例中,第二光学元件115上镀有增透膜,能够增加透射光束的强度。
扫描模块102旋转可以将光投射至不同的方向,例如方向111和113,如此对测距装置100周围的空间进行扫描。当扫描模块102投射出的光111打到探测物101时,一部分光被探测物101沿与投射的光111相反的方向反射至测距装置100。扫描模块102接收探测物101反射的回光112,将回光112投射至准直元件104。
准直元件104会聚探测物101反射的回光112的至少一部分。在一个实施例中,准直元件104上镀有增透膜,能够增加透射光束的强度。探测器105与光源103放置于准直元件104的同一侧,探测器105用于将穿过准直元件104的至少部分回光转换为电信号。
在一些实施例中,光源103可以包括激光二极管,通过激光二极管发射纳秒级别的激光。例如,光源103发射的激光脉冲持续10ns。进一步地,可以确定激光脉冲接收时间,例如,通过探测电信号脉冲的上升沿时间和/或下降沿时间确定激光脉冲接收时间。如此,测距装置100可以利用脉冲接收时间信息和脉冲发出时间信息计算TOF,从而确定探测物101到测距装置100的距离。
测距装置100探测到的距离和方位可以用于遥感、避障、测绘、建模、导航等。
在一种实施方式中,本发明实施方式的测距装置可应用于移动平台,测距装置可安装在移动平台的平台本体。具有测距装置的移动平台可对外部环境进行测量,例如,测量移动平台与障碍物的距离用于避障等用途,和对外部环境进行二维或三维的测绘。在某些实施方式中,移动平台包括无人飞行器、汽车、遥控车、机器人、相机中的至少一种。当测距装置应用于无人飞行器时,平台本体为无人飞行器的机身。当测距装置应用于汽车时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车,在此不做限制。当测距装置应用于遥控车时,平台本体为遥控车的车身。当测距装置应用于机器人时,平台本体为机器人。当测距装置应 用于相机时,平台本体为相机本身。
上述例如激光雷达的测距装置仅可以作为应用于前述环境感知系统中的一种示例类型,对于其他类型的激光雷达也同样适用于本发明,在此不做一一赘述。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本发明的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本发明的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本发明的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本发明的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本发明并帮助理解各个发明方面中的一个或多个,在对本发明的示例性实施例的描述中,本发明的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本发明的方法解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本发明的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用 任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本发明实施例的一些模块的一些或者全部功能。本发明还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本发明的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (45)

  1. 一种环境感知系统,其特征在于,所述环境感知系统用于移动平台的周围环境感知,包括激光探测模块,所述激光探测模块包括第一激光模组、第二激光模组、第三激光模组和第四激光模组,每个激光模组的视场角小于或等于120°,其中,
    所述第一激光模组和所述第二激光模组,设置在所述移动平台的前侧,以探测所述移动平台前方的区域,所述第一激光模组和所述第二激光模组的视场部分重叠;
    所述第三激光模组和所述第四激光模组,分别设置在所述移动平台的两侧,以探测所述移动平台左前方和右前方的区域。
  2. 如权利要求1所述的环境感知系统,其特征在于,所述第三激光模组具体地设置在所述移动平台左前侧,所述第四激光模组具体地设置在所述移动平台右前侧。
  3. 如权利要求1所述的环境感知系统,其特征在于,所述移动平台包括车辆,第三激光模组和第四激光模组分别大体设置在所述车辆两侧的后视镜处。
  4. 如权利要求1所述的环境感知系统,其特征在于,所述第一激光模组和所述第二激光模组分别设置在所述移动平台的前侧的两端部。
  5. 如权利要求1所述的环境感知系统,其特征在于,所述第三激光模组和所述第一激光模组的视场部分重叠,所述第四激光模组和所述第二激光模组的视场部分重叠。
  6. 如权利要求1所述的环境感知系统,其特征在于,
    所述第一激光模组和所述第二激光模组的视场重叠的百分比大于所述第一激光模组或所述第二激光模组视场的30%;
    所述第三激光模组和所述第一激光模组的视场重叠的百分比大于所述第三激光模组或所述第一激光模组视场的10%;
    所述第四激光模组和所述第二激光模组的视场重叠的百分比大于所述第四激光模组或所述第二激光模组视场的10%。
  7. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块还包括设置在所述移动平台的前侧的第五激光模组,以探测所述移动 平台前方的区域。
  8. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块还包括第六激光模组和第七激光模组,分别设置在所述移动平台左侧和右侧,以探测所述移动平台左后方和右后方的区域。
  9. 如权利要求8所述的环境感知系统,其特征在于,所述第六激光模组设置在所述移动平台的左后侧,所述第七激光模组设置在所述移动平台的右后侧。
  10. 如权利要求8所述的环境感知系统,其特征在于,所述第六激光模组和所述第七激光模组的视场在所述移动平台的后方部分重叠,其中,所述第六激光模组和所述第七激光模组的视场重叠百分比大于所述第六激光模组或所述第七激光模组视场的10%。
  11. 如权利要求1至10任一项所述的环境感知系统,其特征在于,每个激光模组的水平视场角范围为40°~120°。
  12. 如权利要求1至10任一项所述的环境感知系统,其特征在于,每个激光模组的视场角小于或等于100°。
  13. 如权利要求1至10任一项所述的环境感知系统,其特征在于,每个激光模组包括至少两个激光雷达,所述至少两个激光雷达的光轴呈预定角度的夹角,以使相邻两个激光雷达的视场有重叠部分。
  14. 如权利要求13所述的环境感知系统,其特征在于,所述重叠部分占任意一个激光雷达的视场的百分比范围为5%~90%。
  15. 如权利要求1至10任一项所述的环境感知系统,其特征在于,每个激光模组均包括3个激光雷达,所述3个激光雷达的光轴呈预定角度的夹角,以使相邻两个激光雷达的视场有重叠部分。
  16. 如权利要求15所述的环境感知系统,其特征在于,所述3个激光雷达中相邻的激光雷达的光轴之间的夹角大体为30°。
  17. 如权利要求1所述的环境感知系统,其特征在于,在所述移动平台的前侧放置一个激光雷达,所述激光雷达的探测距离大于第一激光模组和所述第二激光模组的探测距离。
  18. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块还包括:
    设置在所述移动平台的后侧的第一激光雷达,以探测所述移动平台后方的区域。
  19. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块还包括第二激光雷达和第三激光雷达,分别设置在所述移动平台的两侧,以探测所述移动平台左后方和右后方的区域。
  20. 如权利要求19所述的环境感知系统,其特征在于,
    所述第二激光雷达设置在所述第三激光模组的上方或下方,以使所述第二激光雷达和所述第三激光模组的视场部分重叠;
    所述第三激光雷达设置在所述第四激光模组的上方或下方,以使所述第三激光雷达和所述第四激光模组的视场部分重叠。
  21. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块包括的任意一个激光雷达的光轴朝下,所述光轴与水平方向的夹角位于0°~10°之间。
  22. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块内嵌在所述移动平台的本体中,或者,所述激光探测模块外置在所述移动平台的本体外。
  23. 如权利要求1所述的环境感知系统,其特征在于,所述激光探测模块设置在与移动平台的顶部大体匹配的支架上,所述支架可拆卸的安装于所述移动平台的顶部,以使所述激光探测模块外置在所述移动平台的本体外。
  24. 如权利要求1所述的环境感知系统,其特征在于,环境感知系统还包括相机模块,所述相机模块还包括:
    第一双目模块,设置在所述移动平台的前侧,以探测所述移动平台前方的区域。
  25. 如权利要求24所述的环境感知系统,其特征在于,所述相机模块还包括:
    第二双目模块,设置在所述移动平台的前侧,以探测所述移动平台的前方的区域,其中,所述第一双目模块的基线长度小于所述第二双目模块的基线长度。
  26. 如权利要求24所述的环境感知系统,其特征在于,所述相机模 块还包括:
    第三双目模块,设置在所述移动平台的后侧,以探测所述移动平台后方的区域。
  27. 如权利要求1所述的环境感知系统,其特征在于,环境感知系统还包括相机模块,所述相机模块包括:
    第四双目模块和第五双目模块,分别设置在所述移动平台的左后侧和右后侧,以探测移动平台左前方和右前方的区域;
    第六双目模块和第七双目模块,分别设置在所述移动平台的左前侧和右前侧,以探测所述移动平台左后方和右后方的区域。
  28. 如权利要求27所述的环境感知系统,其特征在于,所述第四双目模块和所述第六双目模块的探测区域部分重叠,以探测所述移动平台左侧大体180度的区域,所述第五双目模块和所述第七双目模块的探测区域部分重叠,以探测所述移动平台右侧大体180度的区域。
  29. 如权利要求25所述的环境感知系统,其特征在于,
    所述第一双目模块的探测距离小于所述第二双目模块的探测距离。
  30. 如权利要求25所述的环境感知系统,其特征在于,
    所述第一双目模块包括两个单目相机,所述第二双目模块包括两个单目相机,其中,所述第一双目模块包括的单目相机的视场角大于所述第二双目模块包括的单目相机的视场角。
  31. 如权利要求27所述的环境感知系统,其特征在于,所述第四双目模块、所述第五双目模块、所述第六双目模块和所述第七双目模块均包括沿竖直方向间隔排列的两个单目相机。
  32. 如权利要求25所述的环境感知系统,其特征在于,
    第一双目模块包括的单目相机的视场角大体为83°,所述第二双目模块包括的单目相机的视场角大体为20°;和/或
    所述第一双目模块的基线长度大体为400mm,所述第二双目模块的基线长度大体为1000mm。
  33. 如权利要求26所述的环境感知系统,其特征在于,第三双目模块包括的单目相机的视场角大体为83°;和/或
    第三双目模块的基线长度大体为400mm。
  34. 如权利要求27所述的环境感知系统,其特征在于,所述第四双目模块、所述第五双目模块、所述第六双目模块和所述第七双目模块包括的单目相机的视场角均大体为83°或者110°;和/或
    所述第四双目模块、所述第五双目模块、第六双目模块和第七双目模块的基线长度均大体为200mm。
  35. 如权利要求25所述的环境感知系统,其特征在于,所述第一双目模块包括的两个单目相机在水平方向间隔排列,所述第二双目模块包括的两个单目相机在水平方向间隔排列。
  36. 如权利要求25所述的环境感知系统,其特征在于,所述第一双目模块包括的两个单目相机设置在所述第二双目模块包括的两个单目相机之间。
  37. 如权利要求24至36任一项所述的环境感知系统,其特征在于,所述相机模块内嵌于所述移动平台的本体内,或者,所述相机模块外置在所述移动平台的本体外。
  38. 如权利要求24至36任一项所述的环境感知系统,其特征在于,所述相机模块设置在与移动平台的顶部大体匹配的支架上,所述支架可拆卸的安装于所述移动平台的顶部,以使所述相机模块外置在所述移动平台的本体外。
  39. 如权利要求1所述的环境感知系统,其特征在于,所述环境感知系统还包括设置在所述移动平台的前侧和后侧的毫米波雷达模块,以监测移动物体和障碍物,其中,所述毫米波雷达模块的探测距离大于所述激光雷达模块的探测距离。
  40. 如权利要求1所述的环境感知系统,其特征在于,所述环境感知系统还包括超声波传感器,其中,在所述移动平台的前侧、后侧、左侧和右侧各设置2个所述超声波传感器。
  41. 如权利要求1所述的环境感知系统,其特征在于,所述环境感知系统还包括GPS卫星定位模块,用于获知所述移动平台的实时方位数据,以对所述移动平台进行路径导航规划。
  42. 如权利要求1所述的环境感知系统,其特征在于,所述环境感知系统还包括RTK天线,用于将基准站采集的载波相位发送给用户接收机, 以进行求差结算坐标。
  43. 如权利要求1所述的环境感知系统,其特征在于,所述环境感知系统还包括:
    惯性测量单元,用于实时输出测量物体在三维空间中的角速度和加速度;
    车速里程计,用于测量车轮行驶的距离。
  44. 一种移动平台,其特征在于,包括权利要求1至43之一所述的环境感知系统。
  45. 如权利要求44所述的移动平台,其特征在于,所述移动平台包括车辆、无人机或船。
PCT/CN2018/112200 2018-10-26 2018-10-26 一种环境感知系统及移动平台 WO2020082363A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880038548.1A CN110799853B (zh) 2018-10-26 一种环境感知系统及移动平台
PCT/CN2018/112200 WO2020082363A1 (zh) 2018-10-26 2018-10-26 一种环境感知系统及移动平台
US17/239,522 US20210255329A1 (en) 2018-10-26 2021-04-23 Environment sensing system and movable platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112200 WO2020082363A1 (zh) 2018-10-26 2018-10-26 一种环境感知系统及移动平台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/239,522 Continuation US20210255329A1 (en) 2018-10-26 2021-04-23 Environment sensing system and movable platform

Publications (1)

Publication Number Publication Date
WO2020082363A1 true WO2020082363A1 (zh) 2020-04-30

Family

ID=69425409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112200 WO2020082363A1 (zh) 2018-10-26 2018-10-26 一种环境感知系统及移动平台

Country Status (2)

Country Link
US (1) US20210255329A1 (zh)
WO (1) WO2020082363A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901601B2 (en) 2020-12-18 2024-02-13 Aptiv Technologies Limited Waveguide with a zigzag for suppressing grating lobes
US11949145B2 (en) 2021-08-03 2024-04-02 Aptiv Technologies AG Transition formed of LTCC material and having stubs that match input impedances between a single-ended port and differential ports
US11962085B2 (en) 2021-05-13 2024-04-16 Aptiv Technologies AG Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391649B2 (en) * 2019-05-29 2022-07-19 Pony Ai Inc. Driving emulation system for an autonomous vehicle
CN115407330A (zh) * 2021-05-28 2022-11-29 北京图森智途科技有限公司 车辆的传感器布局
US20220404459A1 (en) * 2021-06-21 2022-12-22 Tdk Corporation Method and System for Self-Calibrating a Scanning System Using Inertial Measurement Spatial and Temporal Data
CN114180085B (zh) * 2021-12-29 2023-12-26 上海机器人产业技术研究院有限公司 一种用于三维真彩环境建模的无人机吊舱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944224A (zh) * 2012-11-09 2013-02-27 大连理工大学 一种无人驾驶车的自动环境感知系统及其工作方法
CN205836663U (zh) * 2016-08-03 2016-12-28 安徽工程大学 车辆周围环境感知系统
CN106909152A (zh) * 2017-03-17 2017-06-30 奇瑞汽车股份有限公司 一种车用环境感知系统及汽车
CN107351785A (zh) * 2017-07-12 2017-11-17 奇瑞汽车股份有限公司 车辆周围环境感知系统
CN107650908A (zh) * 2017-10-18 2018-02-02 长沙冰眼电子科技有限公司 无人车环境感知系统
DE102016215301A1 (de) * 2016-08-17 2018-02-22 Robert Bosch Gmbh Verfahren zum Unterstützen eines Parkvorgangs eines Fahrzeugs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10203399B2 (en) * 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US20150192677A1 (en) * 2014-01-03 2015-07-09 Quanergy Systems, Inc. Distributed lidar sensing system for wide field of view three dimensional mapping and method of using same
DE102015213694A1 (de) * 2015-07-21 2017-01-26 Robert Bosch Gmbh Sensorsystem zum Erkennen überstehender oder freiliegender Objekte in der Umgebung eines Fahrzeugs
US10289113B2 (en) * 2016-02-25 2019-05-14 Ford Global Technologies, Llc Autonomous occupant attention-based control
WO2018052087A1 (ja) * 2016-09-15 2018-03-22 株式会社小糸製作所 センサシステム
US10969475B2 (en) * 2017-01-05 2021-04-06 Innovusion Ireland Limited Method and system for encoding and decoding LiDAR
US11187802B2 (en) * 2017-07-05 2021-11-30 Ouster, Inc. Electronically scanned light ranging device with multiplexed photosensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944224A (zh) * 2012-11-09 2013-02-27 大连理工大学 一种无人驾驶车的自动环境感知系统及其工作方法
CN205836663U (zh) * 2016-08-03 2016-12-28 安徽工程大学 车辆周围环境感知系统
DE102016215301A1 (de) * 2016-08-17 2018-02-22 Robert Bosch Gmbh Verfahren zum Unterstützen eines Parkvorgangs eines Fahrzeugs
CN106909152A (zh) * 2017-03-17 2017-06-30 奇瑞汽车股份有限公司 一种车用环境感知系统及汽车
CN107351785A (zh) * 2017-07-12 2017-11-17 奇瑞汽车股份有限公司 车辆周围环境感知系统
CN107650908A (zh) * 2017-10-18 2018-02-02 长沙冰眼电子科技有限公司 无人车环境感知系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11901601B2 (en) 2020-12-18 2024-02-13 Aptiv Technologies Limited Waveguide with a zigzag for suppressing grating lobes
US11962085B2 (en) 2021-05-13 2024-04-16 Aptiv Technologies AG Two-part folded waveguide having a sinusoidal shape channel including horn shape radiating slots formed therein which are spaced apart by one-half wavelength
US11949145B2 (en) 2021-08-03 2024-04-02 Aptiv Technologies AG Transition formed of LTCC material and having stubs that match input impedances between a single-ended port and differential ports

Also Published As

Publication number Publication date
CN110799853A (zh) 2020-02-14
US20210255329A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2020082363A1 (zh) 一种环境感知系统及移动平台
Liu et al. TOF lidar development in autonomous vehicle
US11346926B2 (en) Detection device and method for adjusting parameter thereof
US10739441B2 (en) System and method for adjusting a LiDAR system
KR20220043191A (ko) 프리즘 및 멀티라인 레이저 레이더
WO2020124318A1 (zh) 调整扫描元件运动速度的方法及测距装置、移动平台
JP2019128350A (ja) 画像処理方法、画像処理装置、車載装置、移動体、システム
US20210333401A1 (en) Distance measuring device, point cloud data application method, sensing system, and movable platform
CN108061902A (zh) 一种探测物体的方法及装置
WO2020154980A1 (zh) 一种探测装置外参数标定方法、数据处理装置和探测系统
CN113820721B (zh) 一种收发分离的激光雷达系统
CN110799853B (zh) 一种环境感知系统及移动平台
US8830484B2 (en) Device and method for object detection and location
WO2020142909A1 (zh) 数据同步方法、分布式雷达系统及可移动平台
CN113567954A (zh) 一种激光发射方法、装置、探测装置及移动平台
CN112313531A (zh) 一种测距装置及其扫描视场的控制方法
US20210333369A1 (en) Ranging system and mobile platform
CN112654893A (zh) 扫描模块的电机转速控制方法、装置和测距装置
WO2022252057A1 (zh) 一种检测方法及装置
WO2023040788A1 (zh) 激光雷达、探测设备和车辆
US20230184890A1 (en) Intensity-based lidar-radar target
WO2022040937A1 (zh) 激光扫描装置和激光扫描系统
US20230358893A1 (en) Optical illumination for road obstacle detection
US20230366984A1 (en) Dual emitting co-axial lidar system with zero blind zone
WO2021138765A1 (zh) 测绘方法、测绘装置、存储介质及可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938120

Country of ref document: EP

Kind code of ref document: A1