WO2018216916A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2018216916A1
WO2018216916A1 PCT/KR2018/004995 KR2018004995W WO2018216916A1 WO 2018216916 A1 WO2018216916 A1 WO 2018216916A1 KR 2018004995 W KR2018004995 W KR 2018004995W WO 2018216916 A1 WO2018216916 A1 WO 2018216916A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
oil
rotary compressor
compression
intermediate plate
Prior art date
Application number
PCT/KR2018/004995
Other languages
French (fr)
Korean (ko)
Inventor
조국현
사범동
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880034789.9A priority Critical patent/CN110678655B/en
Publication of WO2018216916A1 publication Critical patent/WO2018216916A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/18Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
    • F04C28/22Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation

Definitions

  • the present invention relates to a hermetic compressor, and to a rotary compressor capable of reducing the temperature of the compression unit.
  • the compressor is applied to a vapor compression refrigeration cycle device such as a refrigerator or an air conditioner.
  • the compressor may be classified into a rotary type and a reciprocating type according to a method of compressing a refrigerant.
  • a rotary compressor is a method in which a rolling piston (hereinafter referred to as a roller) changes the volume of the compression space while rotating or pivoting in a cylinder, and a reciprocating compressor changes the volume of the compression space while the roller reciprocates in the cylinder. That's the way.
  • a rolling piston hereinafter referred to as a roller
  • a reciprocating compressor changes the volume of the compression space while the roller reciprocates in the cylinder. That's the way.
  • a rotary compressor there is a rotary compressor that compresses a refrigerant by using the rotational force of the electric drive.
  • the rotary compressor is a compressor in which a roller and a vane contact each other, and the compression space of the cylinder is divided into a suction chamber and a discharge chamber around the vane.
  • the vane inserted into the cylinder moves linearly while the roller rotates. Accordingly, the suction chamber and the discharge chamber form a compression chamber whose volume (volume) is variable to suck, compress, and discharge the refrigerant. You lose.
  • the rotary compressor has a vane rotary compressor in which the vane is inserted into the roller, and is rotated with the roller to be drawn out by centrifugal force and back pressure to form a compression space.
  • the inner circumferential surface of the cylinder has an ellipse or an ellipse and a circle.
  • a vane rotary compressor with a so-called hybrid cylinder which is formed in a combined shape to reduce friction loss and increases compression efficiency, is also used.
  • the hermetic compressor is provided with a driving motor for generating a driving force in the inner space of the sealed casing and a compression unit for compressing a fluid by receiving the driving force of the driving motor.
  • a driving motor and a compression unit are installed to compress and discharge the sucked refrigerant.
  • the drive motor compresses the refrigerant sucked through the compression unit while rotating the rotating shaft.
  • An object of the present invention is to provide a structure of a compressor that can lower the temperature of the rising compression unit in the compressor driving process.
  • Another object of the present invention is to cool the elevated temperature of the compression unit while exchanging heat with the oil contained in the case.
  • Another object of the present invention is to reduce the temperature of the elevated compression unit more efficiently while moving the oil contained in the case to the inside of the intermediate plate.
  • Another object of the present invention is to increase the efficiency of the compressor by reducing the work required to compress the refrigerant by limiting the temperature rise of the sucked refrigerant.
  • Another object of the present invention is to effectively reduce the temperature around the compression chamber through a simple structural change of the intermediate plate, without affecting the durability of the compression unit or modifying the shape of the cylinder.
  • a rotary compressor includes a drive motor installed inside the case and a rotating shaft coupled to the drive motor to transmit rotational force; A first cylinder and a second cylinder in which a compression space is formed in the center of the opened circle; A first roller and a second roller pivoting the compression space; First and second vanes which divide the compression space of each cylinder into a suction chamber and a compression chamber; A main bearing coupled to an upper portion of the first cylinder, and a sub bearing coupled to a lower portion of the second cylinder; And an intermediate plate disposed between the main bearing and the sub-bearing to separate the first cylinder and the second cylinder, wherein the intermediate plate is formed with an oil flow path formed inwardly from one side thereof and the oil flow path. Heat exchange may be achieved by the oil moving along.
  • the oil passage may be formed to penetrate the side of the intermediate plate, one side of the oil passage is formed to overlap with the compression chamber, it is possible to more efficiently absorb the heat generated by the drive of the compressor. .
  • the oil passage may be formed in plural, and each oil passage may be formed in a direction crossing each other.
  • the oil passage may be formed to have a circular cross section, or an inner surface of the oil passage may be formed with a groove having a predetermined shape, and the oil moves along the oil passage; Can be made to increase the contact area.
  • the rotary compressor having the above structure can be cooled by heat-exchanging the temperature of the compression unit which is raised in the compressor driving process with oil.
  • the oil accommodated in the case can exchange heat with the compression unit while moving along the oil flow path formed inside the intermediate plate, thereby limiting the temperature rise of the refrigerant flowing through the accumulator.
  • the oil channel has a simple structure that penetrates the side of the intermediate plate and is formed to overlap the compression space, thereby effectively lowering the elevated temperature of the compression chamber.
  • FIG. 1 is a cross-sectional view showing an internal view of a rotary compressor according to the present invention.
  • Figure 2 is a perspective view showing the state of the compression unit located inside the rotary compressor.
  • FIG. 3 is an exploded view showing each configuration of the compression unit of FIG.
  • FIG. 4 is a plan view showing a state in which the compression unit is viewed from above.
  • FIG 5 is a view showing a state in which each oil channel is formed on the intermediate plate.
  • 6A, 6B, and 6C are enlarged views of the inside of each oil passage formed in the intermediate plate.
  • FIG. 7A to 7D are views showing various modification examples of the oil flow path formed in the intermediate plate 140.
  • FIG. 1 is a cross-sectional view showing the inside of the rotary compressor 100.
  • the rotary compressor 100 includes a case 110, a drive motor 120, and a compression unit 130.
  • the two cylinders (133a, 133b) are installed inside the case 110, respectively, to form a different compression space (V), the structure of the so-called twin rotary compressor, the object.
  • the case 110 is to form an appearance, made of a cylindrical shape extending in one direction, it may be formed along the extending direction of the rotation shaft 123.
  • the case 110 is composed of an upper shell 110a, an intermediate shell 110b and a lower shell 110c.
  • the drive motor 120 and the compression unit 130 may be fixedly installed on the inner surface of the intermediate shell 110b, and the upper and lower shells 110a and 110c are respectively disposed on the upper and lower portions of the intermediate shell 110b. Installed in combination, it limits the external exposure of the components located inside the case 110.
  • the compression unit 130 is installed inside the case 110.
  • the compression unit 130 serves to compress and discharge the refrigerant, and the rollers 134a and 134b, the vanes 135, the cylinders 133a and 133b, the main bearing 131, the sub bearing 132 and the intermediate plate. 140.
  • the drive motor 120 is installed inside the case 110.
  • the drive motor 120 is positioned above the compression unit 130 and serves to provide power for compressing the refrigerant.
  • the drive motor 120 includes a stator 121, a rotor 122, and a rotation shaft 123.
  • the stator 121 is fixedly installed in the case 110 and may be mounted on the inner circumferential surface of the cylindrical case 110 by shrinking.
  • the stator 121 may be fixedly installed on the inner circumferential surface of the intermediate shell 110b.
  • the rotor 122 may be disposed to be spaced apart from the stator 121 and may be disposed inside the stator 121.
  • the rotor 122 When power is applied to the stator 121, the rotor 122 is rotated by a force generated by a magnetic field formed between the stator 121 and the rotor 122 to penetrate the center of the rotor 122.
  • the rotational force is transmitted to the rotating shaft 123.
  • a suction port 114a is installed at one side of the intermediate shell 110b to allow suction of refrigerant to the cylinders 133a and 133b, and a discharge port 114b is installed at one side of the upper shell 110a to provide a case ( The coolant flows out from the inside of the 110.
  • the compression unit 130 compresses the sucked refrigerant, and the compressed refrigerant is the first discharge space 137 and the second discharge formed by the discharge plates 136a and 136b respectively installed at the upper and lower portions of the compression unit 130. After moving to the space 138, it is collected in the space above the case 110 and then moved along the discharge port 114b.
  • the refrigerant flowing into the cylinder 133a 133b along the suction passage 111 has rollers 134a and 134b coupled to the eccentric portion 123a of the rotation shaft 123 along the inner circumferential surfaces of the cylinders 133a and 133b. As it pivots, the refrigerant is compressed and discharged.
  • the refrigerant sucked into the compression unit 130 via the accumulator 11 is overheated compression unit 130
  • the heat is raised from the temperature rises.
  • the specific volume of the refrigerant to be sucked is lowered, thereby causing a loss of cooling force, thereby lowering the efficiency of the compressor.
  • the rotary compressor 100 forms an oil passage 140a in the intermediate plate 140 which serves to separate the cylinders 133a and 133b, and the oil is along the oil passage 140a. It is accommodated, and has the effect of lowering the temperature of the compression unit 130 is raised in accordance with the operation of the compressor.
  • FIG 2 is a perspective view showing a state of the compression unit 130 located inside the rotary compressor.
  • the compression unit 130 installed inside the case 110 compresses the sucked refrigerant and then moves to the upper portion of the inside of the compressor through the discharge spaces 137 and 138, and then through the discharge port 114b. It is discharged to the outside.
  • Compression unit 130 the main bearing 131, the sub-bearing 132, the first cylinder 133a, the second cylinder 133b, the intermediate plate 140, rollers 134a, 134b and vanes 135a, 135) as a configuration.
  • Each of the cylinders 133a and 133b is provided at different positions along the rotation shaft 123 and includes a first cylinder 133a and a second cylinder (V) having a compression space V in which a refrigerant is accommodated in an open circular center portion. 133b).
  • the first cylinder 133a and the second cylinder 133b are installed inside the case 110 forming the exterior of the rotary compressor 100, and the refrigerant flowing through the suction passage 111 may be accommodated in the center thereof.
  • the compression space V can be formed.
  • An intermediate plate 140 is installed between the first cylinder 133a and the second cylinder 133b to separate the compression spaces V formed in the first cylinder 133a and the second cylinder 133b from each other. do.
  • rollers 134a and 134b which rotate about the rotating shaft 123 and form a compression space V while contacting the inner circumferential surface 133a of the cylinders 133a and 133b are installed. do.
  • the compression space V compresses the compression space V formed in the cylinders 133a and 133b together with the vanes 135a and 135b by the movement of the rollers 134a and 134b, respectively.
  • the compartment V2 can be partitioned.
  • the main bearing 131 is coupled to the upper portion of the first cylinder 133a and the sub bearing 132 is coupled to the lower portion of the second cylinder 133b.
  • the rollers 134a 134b include a first roller 134a installed inside the first cylinder 133a and a second roller 134b installed inside the second cylinder 133b.
  • Each roller 134a 134b is coupled to the eccentric portions 123a and 123b of the rotation shaft 123, and the roller 134 rotates together with the rotation shaft 123 in the compression space V to compress the refrigerant. Will form.
  • the first roller 134a and the second roller 134b move in contact with the inner circumferential surfaces of the first and second cylinders 133a and 133b, respectively, to form a compression of the refrigerant. That is, the first roller 134a and the second roller 134b will move while forming virtual contact lines P that extend up and down along the inner circumferential surfaces of the first and second cylinders 133a and 133b, respectively.
  • the first roller 134a and the second roller 134b have rotation centers different from the center of the rotation shaft 123, the first roller 134a and the second roller 134b are formed of the first and second cylinders ( The refrigerant contained can be compressed while pivoting so as to contact the inner circumferential surfaces of 133a and 133b.
  • Vanes 135a and 135b are installed at one side of each cylinder 133a and 133b, and vanes 135a and 135b are drawn out into the compression space V to be in contact with the outer circumferential surfaces of the rollers 134a and 134b to contact each cylinder 133a. , 133b) divides the compression space V inside the suction chamber V1 and the compression chamber V2, respectively.
  • the vanes 135a and 135b include a first vane 135a accommodated in the first cylinder 133a and a second vane 135b accommodated in the second cylinder 133b.
  • the front end (not shown) of the first vane 135a is in contact with the outer circumferential surface of the first roller 134a accommodated in the compression space V of the first cylinder 133a.
  • the compression space V of the first cylinder 133a can be divided into a suction chamber V1 and a compression chamber V2.
  • the front end portion (not shown) of the second vane 135b is in contact with the outer circumferential surface of the first roller 134a accommodated in the compression space V of the second cylinder 133b, so that the second cylinder 133b Compression space (V) can be partitioned into suction chamber (V1) and compression chamber (V2), respectively.
  • Protrusion of each vane 135a, 135b can be made by the pressure or elastic force of the oil formed in the back pressure space (not shown) in which the rear end of each vane 135a, 135b is located.
  • the refrigerant flowing in from the suction passage 111 is compressed and then discharged.
  • the compressed refrigerant moves along the discharge holes 133b formed on the inner surfaces of the cylinders 133a and 133b.
  • the oil flow path (140a, 140b) is formed in the intermediate plate 140, by reducing the temperature of the overheated compression unit 130, the temperature rise of the refrigerant flowing into each cylinder (133a, 133b) Can be limited.
  • FIG. 3 is an exploded view showing each configuration of the compression unit of FIG.
  • the compression unit 130 is configured such that the first cylinder 133a, the second cylinder 133b, and the intermediate plate 140 are positioned between the main bearing 131 and the sub bearing 132, respectively.
  • the first roller 134a is installed at the first eccentric portion 123a of the rotating shaft 123 to form compression and discharge of the refrigerant while moving along the inner circumferential surface of the first cylinder 133a.
  • a second roller 134b is provided at the second eccentric portion 123b of the rotation shaft 123 to form compression and discharge of the refrigerant while moving along the inner circumferential surface of the second cylinder 133b.
  • oil passages 140a and 140b may be formed in the intermediate plate 140 positioned between the first cylinder 133a and the second cylinder 133b.
  • the oil contained in the case 110 moves along the oil passages 140a and 140b formed in the intermediate plate 140, thereby forming cooling of the first cylinder 133a and the second cylinder 133b. Since the oil surface of the oil accommodated in the case 110 is formed up to the upper surface of the intermediate plate 140, the oil can be moved along the oil passages 140a and 140b, and the rotary shaft 123 of the compressor is driven. By rotation, the oil can move more smoothly to the centers of the oil passages 140a and 140b.
  • each of the oil passages 140a and 140b may be formed to penetrate the side surface of the intermediate plate 140 and may be formed inside the intermediate plate 140.
  • One side of each of the oil passages 140a and 140b passes through a position overlapping with the compression chambers V2 formed in the cylinders 133a and 133b to facilitate absorption of heat generated in the compression chamber V2. .
  • FIG. 4 is a view of the compression unit viewed from above, and shows the state of each of the oil passages 140a and 140b formed in the intermediate plate 140 and the position of the compression unit 130.
  • FIG. 5 shows the intermediate plate 140.
  • Fig. 4 shows the state in which oil passages 140a and 140b are formed.
  • a plurality of oil passages 140a and 140b may be formed inside the intermediate plate 140, and the oil passages 140a and 140b may cross each other. have.
  • each of the oil passages 140a and 140b may be positioned to be spaced apart from the discharge refrigerant movement holes 142 through which the refrigerant is discharged.
  • each of the oil passages 140a and 140b passes through a position overlapping with the compression chambers V2 formed in the cylinders 133a and 133b, and thus, in the compression chamber V2. It is made to absorb the heat generated sufficiently.
  • each of the oil passages (140a, 140b) is formed so as to pass through the position overlapping the compression chamber (V2).
  • the oil moving along each of the oil passages 140a and 140b exchanges heat with the overheated cylinders 133a and 133b to allow cooling.
  • each of the oil passages 140a and 140b may be formed to penetrate the other side from one side of the intermediate plate 140 and may be formed in a direction crossing each other. At this time, each of the oil passages 140a and 140b is formed to be spaced apart from the bolt fastening hole 141 formed in the intermediate plate 140 and the discharge refrigerant movement hole 142 through which the discharged refrigerant moves. It is possible to prevent the phenomenon of leakage to the outside of the.
  • 6A, 6B, and 6C are enlarged views of the inside of each of the oil passages 140a and 140b formed in the intermediate plate 140.
  • each of the oil passages 140a and 140b may pass through the side surface of the intermediate plate 140 and may be formed toward the center portion.
  • each of the oil passages 140a and 140b may have various shapes.
  • the cross section of each oil passage 140a, 140b may be made of a circle having a constant diameter.
  • the diameter of each oil passage (140a, 140b) should be made to have a diameter smaller than the height of the intermediate plate 140, it may be made to have a diameter smaller than approximately 0.4 times the height of the intermediate plate.
  • grooves having a predetermined shape may be formed on the inner surfaces of the oil passages 140a and 140b, for example, on the inner surfaces of the oil passages 140a and 140b, respectively.
  • a straight groove 143 may be formed along the direction in which the oil passages 140a and 140b extend.
  • a spiral groove 144 may be formed on an inner side surface of each of the oil passages 140a and 140b along an inner side surface of each of the oil passages 140a and 140b.
  • the spiral groove 144 may be formed at a set interval along the direction in which the oil passages 140a and 140b extend, and through this, the contact area with the moving oil is enlarged, thereby increasing heat exchange performance and heating the compression unit.
  • the cooling effect of 130 can be further increased.
  • FIG. 7 (a) to 7 (d), which relate to another embodiment of the present invention, are views showing various modifications of the oil flow path formed in the intermediate plate 140.
  • the oil channel is formed to penetrate the side of the intermediate plate 140, and in particular, one side of the oil channel is made to overlap with the compression chamber of the cylinder that generates a relatively high heat during the operation of the compressor. .
  • each of the oil passages 140a and 140b may extend toward the center where the rotation shaft 123 is located at different sides of the intermediate plate 140. .
  • any one oil passage 140a may not extend to the rotation shaft 123 positioned to be inserted into the center of the intermediate plate 140.
  • each oil passage 140a, 140b, 140c, 140d is formed along the direction crossing each other.
  • each oil passage 140a, 140b, 140c should be formed to be spaced apart from the bolt fastening hole 141 formed in the intermediate plate 140 and the discharge refrigerant moving hole 142 for moving the discharged refrigerant. .
  • the plurality of oil passages 140a are formed to overlap each other with the compression chamber V2 that generates high heat during the driving of the compressor, thereby forming heat formed in the compression chamber V2. It can be lowered more effectively, and by reducing the temperature of the overheated compression unit 130, it is possible to obtain the effect of limiting the temperature rise of the refrigerant flowing into each cylinder (133a, 133b).
  • the present invention may be variously applied and applied in the field of producing or using a rotary compressor.

Abstract

The present invention relates to a rotary compressor comprising: a drive motor provided inside a case and a rotation shaft coupled to the drive motor, for delivering rotational force; a first cylinder and a second cylinder each having an open circular center part where a compression area is formed; a first roller and a second roller which rotate in the compression space; a first vane and a second vane for partitioning the compression space of each of the cylinders into a suction chamber and a compression chamber; a main bearing coupled to the top part of the first cylinder and a sub bearing coupled to the bottom part of the second cylinder; and a middle plate provided between the main bearing and the sub bearing, for separating the first cylinder and the second cylinder, wherein the middle plate may have an oil channel formed from a side surface towards the interior and have heat exchange occur due to oil moving along the oil channel.

Description

로터리 압축기Rotary compressor
본 발명은 밀폐형 압축기에 관한 것으로, 압축유닛의 온도 저감시킬 수 있는 로터리 압축기에 관한 것이다.The present invention relates to a hermetic compressor, and to a rotary compressor capable of reducing the temperature of the compression unit.
압축기는 냉장고나 에어컨과 같은 증기압축식 냉동사이클 장치에 적용되는 것으로, 압축기는 냉매를 압축하는 방식에 따라 회전식과 왕복동식으로 구분할 수 있다.The compressor is applied to a vapor compression refrigeration cycle device such as a refrigerator or an air conditioner. The compressor may be classified into a rotary type and a reciprocating type according to a method of compressing a refrigerant.
회전식 압축기는 롤링피스톤(이하 롤러라 한다.)이 실린더에서 회전이나 선회운동을 하면서 압축공간의 체적을 가변시키는 방식이고, 왕복동식 압축기는 롤러가 실린더에서 왕복 운동을 하면서 압축공간의 체적을 가변시키는 방식이다.A rotary compressor is a method in which a rolling piston (hereinafter referred to as a roller) changes the volume of the compression space while rotating or pivoting in a cylinder, and a reciprocating compressor changes the volume of the compression space while the roller reciprocates in the cylinder. That's the way.
회전식 압축기로는, 전동부의 회전력을 이용하여 냉매를 압축하는 로터리 압축기가 있다.As a rotary compressor, there is a rotary compressor that compresses a refrigerant by using the rotational force of the electric drive.
최근에는 로터리 압축기를 점차 소형화하면서, 그 효율을 높이는 것이 주된 기술 개발의 목표이다. 또한, 소형화된 로터리 압축기의 운전속도의 가변 범위를 증대시킴으로써 더 큰 냉방 능력(Cooling Capacity)을 얻기 위한 연구가 지속적으로 이루어지고 있다.In recent years, the rotary compressor is gradually miniaturized and the efficiency thereof is the main goal of technology development. In addition, research has been continuously made to obtain a larger cooling capacity by increasing the variable range of the operating speed of the miniaturized rotary compressor.
로터리 압축기는 롤러와 베인이 접촉되어, 그 베인을 중심으로 실린더의 압축공간을 흡입실과 토출실로 구분되는 압축기이다. 일반적인 로터리 압축기는 롤러가 선회운동을 하면서 실린더에 삽입 장착된 베인이 직선운동을 하게 되고, 이에 따라 흡입실과 토출실은 체적(용적)이 가변되는 압축실을 형성하여 냉매를 흡입, 압축 및 토출이 이루어지게 된다.The rotary compressor is a compressor in which a roller and a vane contact each other, and the compression space of the cylinder is divided into a suction chamber and a discharge chamber around the vane. In the general rotary compressor, the vane inserted into the cylinder moves linearly while the roller rotates. Accordingly, the suction chamber and the discharge chamber form a compression chamber whose volume (volume) is variable to suck, compress, and discharge the refrigerant. You lose.
로터리 압축기는 베인이 롤러에 삽입되어, 그 롤러와 함께 회전운동을 하면서 원심력과 배압력에 의해 인출되면서 압축공간을 형성하는 베인 로터리 압축기가 있으며, 최근에는, 실린더의 내주면이 타원 또는 타원과 원이 조합된 형상으로 형성되어 마찰손실을 줄이면서도 압축효율을 높이는 소위 하이브리드 실린더를 구비한 베인 로터리 압축기도 사용되고 있다.The rotary compressor has a vane rotary compressor in which the vane is inserted into the roller, and is rotated with the roller to be drawn out by centrifugal force and back pressure to form a compression space. Recently, the inner circumferential surface of the cylinder has an ellipse or an ellipse and a circle. A vane rotary compressor with a so-called hybrid cylinder, which is formed in a combined shape to reduce friction loss and increases compression efficiency, is also used.
일반적으로 밀폐형 압축기는 밀폐된 케이싱의 내부 공간에 구동력을 발생시키는 구동모터 및 그 구동모터의 구동력을 전달받아 유체를 압축하는 압축유닛이 함께 구비되어 있다.In general, the hermetic compressor is provided with a driving motor for generating a driving force in the inner space of the sealed casing and a compression unit for compressing a fluid by receiving the driving force of the driving motor.
케이스의 내부에는 구동모터와 압축유닛이 설치되어 흡입된 냉매를 압축한 후 토출하게 된다. 구동모터는 회전축을 회전시키게 시키면서 압축유닛을 통해 흡입된 냉매를 압축하게 된다.Inside the case, a driving motor and a compression unit are installed to compress and discharge the sucked refrigerant. The drive motor compresses the refrigerant sucked through the compression unit while rotating the rotating shaft.
이러한 압축과정에서 열이 발생하게 되므로 압축유닛의 온도는 상승하게 된다. 이 경우, 어큐뮬레이터를 통해 압축유닛으로 흡입되는 냉매는 과열된 기구부로부터 열을 전달받아 온도가 상승하게 되므로, 비체적이 낮아져 냉력 손실이 발생하게 되어 압축기의 효율이 낮아지는 문제점이 있다. Since heat is generated during the compression process, the temperature of the compression unit is increased. In this case, since the refrigerant sucked into the compression unit through the accumulator receives heat from the overheated mechanism part and the temperature rises, the specific volume is lowered, resulting in a loss of cold power, resulting in a lower efficiency of the compressor.
종래에는 압축기의 구동에 따라 압축유닛의 온도 상승을 제한하기 위하여, 특허문헌 1에서와 같이, 서브베어링에 오일저장공간과 냉매토출공간을 서로 분리시키며, 기구부의 내부 공간에 오일을 별도로 저장하면서 열교환시키는 방식을 이용하였다. 다만, 이 경우, 토출실과 오일저장공간 사이에 냉매의 누설이 발생할 가능성이 높으며, 토출실을 통해 냉매가 누설될 가능성이 높은 문제점이 있다.Conventionally, in order to limit the temperature rise of the compression unit according to the operation of the compressor, as in Patent Document 1, the oil storage space and the refrigerant discharge space is separated from each other in the sub-bearing, heat exchange while storing oil separately in the internal space of the mechanism part Was used. In this case, however, there is a high possibility that the leakage of the refrigerant occurs between the discharge chamber and the oil storage space, and there is a high possibility that the refrigerant leaks through the discharge chamber.
이에 따라, 압축기의 구동에 따른 압축유닛의 온도를 보다 효과적으로 낮추면서, 냉매의 누설되지 않는 압축기의 구조의 구체화가 필요하다.Accordingly, it is necessary to specify the structure of the compressor that does not leak refrigerant while lowering the temperature of the compression unit according to the driving of the compressor more effectively.
본 발명의 일 목적은, 압축기 구동과정에서, 상승하는 압축유닛의 온도를 낮출 수 있는 압축기의 구조를 제공하기 위한 것이다.An object of the present invention is to provide a structure of a compressor that can lower the temperature of the rising compression unit in the compressor driving process.
본 발명의 다른 일 목적은, 압축유닛의 상승된 온도를 케이스 내부에 수용된 오일과 열교환시키면서 냉각하기 위한 것이다.Another object of the present invention is to cool the elevated temperature of the compression unit while exchanging heat with the oil contained in the case.
본 발명의 다른 일 목적은, 케이스 내부에 수용된 오일을 중간플레이트의 내부로 이동시키면서, 상승된 압축유닛의 온도를 더욱 효율적으로 저감시키기 위한 것이다.Another object of the present invention is to reduce the temperature of the elevated compression unit more efficiently while moving the oil contained in the case to the inside of the intermediate plate.
본 발명의 다른 일 목적은, 흡입된 냉매의 온도 상승을 제한함으로써, 냉매의 압축시 요구되는 일을 줄여 압축기의 효율을 증가시키기 위한 것이다.Another object of the present invention is to increase the efficiency of the compressor by reducing the work required to compress the refrigerant by limiting the temperature rise of the sucked refrigerant.
본 발명의 다른 일 목적은, 압축유닛의 내구성에 영향을 미치거나 실린더의 형상을 변형하지 않고, 중간플레이트의 간단한 구조적 변경을 통해 압축실 주위의 온도를 효과적으로 저감시키기 위한 것이다.Another object of the present invention is to effectively reduce the temperature around the compression chamber through a simple structural change of the intermediate plate, without affecting the durability of the compression unit or modifying the shape of the cylinder.
이와 같은 본 발명의 과제를 달성하기 위하여 본 발명에 따른 로터리 압축기는, 케이스의 내부에 설치되는 구동모터와, 상기 구동모터에 결합되어 회전력을 전달하는 회전축; 개구된 원형의 중심부에 압축공간이 형성되는 제1 실린더와 제2 실린더; 상기 압축공간을 선회하는 제1 롤러와 제2 롤러; 상기 각 실린더의 압축공간을 흡입실과 압축실로 구획하는 제1 베인과 제2 베인; 상기 제1 실린더의 상부에 결합되는 메인베어링과, 상기 제2 실린더의 하부에 결합되는 서브베어링; 및 상기 메인베어링과 서브베어링 사이에 설치되어 상기 제1 실린더와 제2 실린더를 분리시키는 중간플레이트를 포함하고, 상기 중간플레이트에는, 일측면에서 내부를 향해 형성되는 오일유로가 형성되고, 상기 오일유로를 따라 이동하는 오일에 의해 열교환이 이루어질 수 있다.In order to achieve the object of the present invention, a rotary compressor according to the present invention includes a drive motor installed inside the case and a rotating shaft coupled to the drive motor to transmit rotational force; A first cylinder and a second cylinder in which a compression space is formed in the center of the opened circle; A first roller and a second roller pivoting the compression space; First and second vanes which divide the compression space of each cylinder into a suction chamber and a compression chamber; A main bearing coupled to an upper portion of the first cylinder, and a sub bearing coupled to a lower portion of the second cylinder; And an intermediate plate disposed between the main bearing and the sub-bearing to separate the first cylinder and the second cylinder, wherein the intermediate plate is formed with an oil flow path formed inwardly from one side thereof and the oil flow path. Heat exchange may be achieved by the oil moving along.
이때, 상기 오일유로는, 상기 중간플레이트의 측면을 관통하도록 형성될 수 있으며, 상기 오일유로의 일 측은, 상기 압축실과 오버랩되도록 형성되어, 압축기의 구동으로 발생한 열을 보다 효율적으로 흡수할 수 있게 된다.In this case, the oil passage may be formed to penetrate the side of the intermediate plate, one side of the oil passage is formed to overlap with the compression chamber, it is possible to more efficiently absorb the heat generated by the drive of the compressor. .
본 발명과 관련한 다른 일 예에 따르면, 상기 오일유로는 복수개로 이루어지고, 상기 각 오일유로는 서로 교차되는 방향으로 형성될 수 있다.According to another example related to the present invention, the oil passage may be formed in plural, and each oil passage may be formed in a direction crossing each other.
본 발명과 관련한 다른 일 예에 따르면, 상기 오일유로는, 원형의 단면을 가지도록 이루어지거나, 상기 오일유로의 내측면에는, 일정한 형상의 홈이 형성될 수 있어, 오일유로를 따라 이동하는 오일과의 접촉 면적이 증가되도록 이루어질 수 있게 된다.According to another example related to the present invention, the oil passage may be formed to have a circular cross section, or an inner surface of the oil passage may be formed with a groove having a predetermined shape, and the oil moves along the oil passage; Can be made to increase the contact area.
상기와 같은 구조의 로터리 압축기는, 압축기 구동과정에서 상승되는 압축유닛의 온도를 오일과 열교환시킴으로써 냉각시킬 수 있게 된다.The rotary compressor having the above structure can be cooled by heat-exchanging the temperature of the compression unit which is raised in the compressor driving process with oil.
또한, 케이스 내부에 수용된 오일은, 중간플레이트의 내부에 형성된 오일유로를 따라 이동하면서 압축유닛과 열교환할 수 있어, 어큐뮬레이터를 통해 유입되는 냉매의 온도 상승을 제한할 수 있다.In addition, the oil accommodated in the case can exchange heat with the compression unit while moving along the oil flow path formed inside the intermediate plate, thereby limiting the temperature rise of the refrigerant flowing through the accumulator.
또한, 흡입된 냉매의 온도 상승을 제한함으로써, 냉매의 압축시 요구되는 일을 줄여 압축기의 효율을 증가시킬 수 있다.In addition, by limiting the temperature rise of the sucked refrigerant, it is possible to reduce the work required during the compression of the refrigerant to increase the efficiency of the compressor.
또한, 오일유로는 중간플레이트의 측면을 관통하는 간단한 구조를 가지며, 압축공간과 오버랩되도록 형성되어 압축실의 높아진 온도를 효과적으로 낮출 수 있다. In addition, the oil channel has a simple structure that penetrates the side of the intermediate plate and is formed to overlap the compression space, thereby effectively lowering the elevated temperature of the compression chamber.
도 1은, 본 발명에 따른 로터리 압축기의 내부 모습을 나타내는 단면도.1 is a cross-sectional view showing an internal view of a rotary compressor according to the present invention.
도 2는, 로터리 압축기의 내부에 위치되는 압축유닛의 모습을 나타내는 사시도.Figure 2 is a perspective view showing the state of the compression unit located inside the rotary compressor.
도 3은, 도 2의 압축유닛의 각 구성을 나타내는 분해도.3 is an exploded view showing each configuration of the compression unit of FIG.
도 4는, 압축유닛을 위에서 바라본 모습을 나타내는 평면도.4 is a plan view showing a state in which the compression unit is viewed from above.
도 5는, 중간플레이트에 각 오일유로가 형성되는 모습을 나타내는 도면.5 is a view showing a state in which each oil channel is formed on the intermediate plate.
도 6a, 도 6b, 도 6c는, 중간플레이트에 형성되는 각 오일유로의 내부 모습을 확대한 도면.6A, 6B, and 6C are enlarged views of the inside of each oil passage formed in the intermediate plate.
도 7a 내지 7d는, 중간플레이트(140)에 형성되는 오일유로의 다양한 변형예를 나타내는 도면.7A to 7D are views showing various modification examples of the oil flow path formed in the intermediate plate 140.
이하, 본 발명에 관련된 밀폐형 압축기에 대해, 도면을 참조하여 보다 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the hermetic compressor which concerns on this invention is demonstrated in detail with reference to drawings.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the embodiments disclosed herein, if it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The accompanying drawings are only for easily understanding the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the accompanying drawings, and all changes and equivalents included in the spirit and technical scope of the present invention are included. It should be understood to include water or substitutes.
도 1은, 로터리 압축기(100)의 내부 모습을 나타내는 단면도이다.1 is a cross-sectional view showing the inside of the rotary compressor 100.
본 발명에 따르는 로터리 압축기(100)는, 케이스(110), 구동모터(120) 및 압축유닛(130)을 포함하도록 이루어진다. 또한, 본 발명은, 케이스(110)의 내부에 두 개의 실린더(133a, 133b)가 각각 설치되어 서로 다른 압축공간(V)을 각각 형성하게 되는 일명 트윈 로터리 압축기의 구조를 그 대상으로 한다.The rotary compressor 100 according to the present invention includes a case 110, a drive motor 120, and a compression unit 130. In addition, the present invention, the two cylinders (133a, 133b) are installed inside the case 110, respectively, to form a different compression space (V), the structure of the so-called twin rotary compressor, the object.
이하 본 발명을 이루는 각 구성에 대해 설명하면, 케이스(110)는 외관을 형성하는 것으로, 일방향을 따라 연장되는 원통형의 형상으로 이루어지며, 회전축(123)의 연장 방향을 따라 형성될 수 있다.Hereinafter, each configuration constituting the present invention, the case 110 is to form an appearance, made of a cylindrical shape extending in one direction, it may be formed along the extending direction of the rotation shaft 123.
케이스(110)는 상부쉘(110a), 중간쉘(110b) 및 하부쉘(110c)로 이루어진다. 중간쉘(110b)의 내측면에는 구동모터(120)와 압축유닛(130)이 고정 설치될 수 있으며, 중간쉘(110b)의 상부와 하부에는 각각 상부쉘(110a) 및 하부쉘(110c)이 결합 설치되어, 케이스(110)의 내부에 위치되는 구성 요소들의 외부 노출을 제한하게 된다.The case 110 is composed of an upper shell 110a, an intermediate shell 110b and a lower shell 110c. The drive motor 120 and the compression unit 130 may be fixedly installed on the inner surface of the intermediate shell 110b, and the upper and lower shells 110a and 110c are respectively disposed on the upper and lower portions of the intermediate shell 110b. Installed in combination, it limits the external exposure of the components located inside the case 110.
케이스(110)의 내부에는 압축유닛(130)이 설치된다. 압축유닛(130)은 냉매를 압축하여 토출시키는 역할을 하는 것으로, 롤러(134a, 134b), 베인(135), 실린더(133a, 133b), 메인베어링(131), 서브베어링(132) 및 중간플레이트(140)를 포함한다.The compression unit 130 is installed inside the case 110. The compression unit 130 serves to compress and discharge the refrigerant, and the rollers 134a and 134b, the vanes 135, the cylinders 133a and 133b, the main bearing 131, the sub bearing 132 and the intermediate plate. 140.
또한, 케이스(110)의 내부에는 구동모터(120)가 설치된다. 구동모터(120)는 압축유닛(130)의 상부에 위치되고, 냉매를 압축하기 위한 동력을 제공하는 역할을 한다. 구동모터(120)는 고정자(121), 회전자(122) 및 회전축(123)을 포함한다.In addition, the drive motor 120 is installed inside the case 110. The drive motor 120 is positioned above the compression unit 130 and serves to provide power for compressing the refrigerant. The drive motor 120 includes a stator 121, a rotor 122, and a rotation shaft 123.
고정자(121)는 케이스(110)의 내부에 고정 설치되며, 원통형의 케이스(110)의 내주면에 열박음의 방법으로 장착될 수 있다. 예를 들어, 고정자(121)는 중간쉘(110b)의 내주면에 고정 설치되어 위치될 수 있다.The stator 121 is fixedly installed in the case 110 and may be mounted on the inner circumferential surface of the cylindrical case 110 by shrinking. For example, the stator 121 may be fixedly installed on the inner circumferential surface of the intermediate shell 110b.
회전자(122)는 고정자(121)와 서로 이격되게 배치되며, 고정자(121)의 내측에 배치될 수 있다. 고정자(121)에 전원이 인가되면, 고정자(121)와 회전자(122)의 사이에 형성된 자기장에 의해 발생하는 힘에 의해 회전자(122)가 회전되며, 회전자(122)의 중심을 관통하는 회전축(123)에 회전력을 전달하게 된다.The rotor 122 may be disposed to be spaced apart from the stator 121 and may be disposed inside the stator 121. When power is applied to the stator 121, the rotor 122 is rotated by a force generated by a magnetic field formed between the stator 121 and the rotor 122 to penetrate the center of the rotor 122. The rotational force is transmitted to the rotating shaft 123.
중간쉘(110b)의 일 측에는 흡입포트(114a)가 설치되어, 실린더(133a, 133b)로 냉매의 흡입이 가능하게 되며, 상부쉘(110a)의 일 측에는 토출포트(114b)가 설치되어 케이스(110)의 내부로부터 냉매의 유출이 이루어지게 된다.A suction port 114a is installed at one side of the intermediate shell 110b to allow suction of refrigerant to the cylinders 133a and 133b, and a discharge port 114b is installed at one side of the upper shell 110a to provide a case ( The coolant flows out from the inside of the 110.
압축유닛(130)은 흡입된 냉매를 압축하며, 압축된 냉매는 압축유닛(130)의 상하부에 각각 설치되는 토출플레이트(136a, 136b)에 의해 형성되는 제1 토출공간(137) 및 제2 토출공간(138)으로 이동한 후, 케이스(110) 상측 공간에 모인 후 토출포트(114b)을 따라 이동하게 된다.The compression unit 130 compresses the sucked refrigerant, and the compressed refrigerant is the first discharge space 137 and the second discharge formed by the discharge plates 136a and 136b respectively installed at the upper and lower portions of the compression unit 130. After moving to the space 138, it is collected in the space above the case 110 and then moved along the discharge port 114b.
흡입유로(111)를 따라 실린더(133a 133b)의 내부로 유입되는 냉매는, 회전축(123)의 편심부(123a)에 결합되는 롤러(134a, 134b)가 실린더(133a, 133b)의 내주면을 따라 선회 운동 하면서 냉매의 압축 및 토출을 형성하게 된다.The refrigerant flowing into the cylinder 133a 133b along the suction passage 111 has rollers 134a and 134b coupled to the eccentric portion 123a of the rotation shaft 123 along the inner circumferential surfaces of the cylinders 133a and 133b. As it pivots, the refrigerant is compressed and discharged.
이러한 압축과정 및 토출과정에서 각 구성간에 발생하는 마찰은, 압축유닛(130)의 온도를 상승시키게 되므로, 어큐뮬레이터(11)를 거쳐 압축유닛(130)으로 흡입되는 냉매는 과열된 압축유닛(130)으로부터 열을 전달받아 온도가 상승된다. 이 경우, 흡입되는 냉매의 비체적이 낮아지며 이에 따른 냉력 손실이 발생하여 압축기의 효율이 낮아지는 문제점이 발생하게 된다.Since the friction generated between the components in the compression process and the discharge process increases the temperature of the compression unit 130, the refrigerant sucked into the compression unit 130 via the accumulator 11 is overheated compression unit 130 The heat is raised from the temperature rises. In this case, the specific volume of the refrigerant to be sucked is lowered, thereby causing a loss of cooling force, thereby lowering the efficiency of the compressor.
이에, 본 발명에 따르는 로터리 압축기(100)는, 각 실린더(133a, 133b)를 분리시키는 역할을 하는 중간플레이트(140)에 오일유로(140a)를 형성하고, 오일이 오일유로(140a)를 따라 수용되어, 압축기의 구동에 따라 상승된 압축유닛(130)의 온도를 낮출 수 있는 효과를 가진다.Accordingly, the rotary compressor 100 according to the present invention forms an oil passage 140a in the intermediate plate 140 which serves to separate the cylinders 133a and 133b, and the oil is along the oil passage 140a. It is accommodated, and has the effect of lowering the temperature of the compression unit 130 is raised in accordance with the operation of the compressor.
도 2는, 로터리 압축기의 내부에 위치되는 압축유닛(130)의 모습을 나타내는 사시도이다.2 is a perspective view showing a state of the compression unit 130 located inside the rotary compressor.
케이스(110)의 내부에 설치되는 압축유닛(130)은, 흡입된 냉매를 압축한 후 각 토출공간(137, 138)을 거쳐 압축기의 내부의 상부로 이동된 후, 토출포트(114b)를 통해 외부로 토출되게 된다.The compression unit 130 installed inside the case 110 compresses the sucked refrigerant and then moves to the upper portion of the inside of the compressor through the discharge spaces 137 and 138, and then through the discharge port 114b. It is discharged to the outside.
압축유닛(130)은, 메인베어링(131), 서브베어링(132), 제1 실린더(133a), 제2 실린더(133b), 중간플레이트(140), 롤러(134a, 134b) 및 베인(135a, 135)을 구성으로 포함한다. Compression unit 130, the main bearing 131, the sub-bearing 132, the first cylinder 133a, the second cylinder 133b, the intermediate plate 140, rollers 134a, 134b and vanes 135a, 135) as a configuration.
각 실린더(133a, 133b)는 회전축(123)을 따라 서로 다른 위치에 설치되고, 개구된 원형의 중심부에 냉매가 수용되는 압축공간(V)을 구비하는 제1 실린더(133a)와 제2 실린더(133b)를 포함한다. 제1 실린더(133a)와 제2 실린더(133b)는, 로터리 압축기(100)의 외관을 형성하는 케이스(110)의 내부에 설치되며, 중심부에는 흡입유로(111)를 통해 유입되는 냉매가 수용될 수 있는 압축공간(V)이 형성된다. Each of the cylinders 133a and 133b is provided at different positions along the rotation shaft 123 and includes a first cylinder 133a and a second cylinder (V) having a compression space V in which a refrigerant is accommodated in an open circular center portion. 133b). The first cylinder 133a and the second cylinder 133b are installed inside the case 110 forming the exterior of the rotary compressor 100, and the refrigerant flowing through the suction passage 111 may be accommodated in the center thereof. The compression space V can be formed.
제1 실린더(133a)와 제2 실린더(133b) 사이에는 중간플레이트(140)가 설치되어, 제1 실린더(133a)와 제2 실린더(133b)에 형성되는 각 압축공간(V)을 서로 분리시키게 된다. An intermediate plate 140 is installed between the first cylinder 133a and the second cylinder 133b to separate the compression spaces V formed in the first cylinder 133a and the second cylinder 133b from each other. do.
각 실린더(133a, 133b)의 내부에는 회전축(123)을 중심으로 회전하며, 실린더(133a, 133b)의 내주면(133a)과 접하면서 압축공간(V)을 형성하는 롤러(134a, 134b)가 설치된다. 압축공간(V)은 롤러(134a, 134b)의 움직임에 의해, 각 베인(135a, 135b)와 함께 각 실린더(133a, 133b) 에 형성되는 압축공간(V)을 각각 흡입실(V1)과 압축실(V2)로 구획할 수 있게 된다.Inside the cylinders 133a and 133b, rollers 134a and 134b which rotate about the rotating shaft 123 and form a compression space V while contacting the inner circumferential surface 133a of the cylinders 133a and 133b are installed. do. The compression space V compresses the compression space V formed in the cylinders 133a and 133b together with the vanes 135a and 135b by the movement of the rollers 134a and 134b, respectively. The compartment V2 can be partitioned.
메인베어링(131)은 제1 실린더(133a)의 상부에 결합되어 위치되고, 서브베어링(132)은 제2 실린더(133b)의 하부에 결합되어 위치된다. The main bearing 131 is coupled to the upper portion of the first cylinder 133a and the sub bearing 132 is coupled to the lower portion of the second cylinder 133b.
롤러(134a 134b)는 제1 실린더(133a)의 내부에 설치되는 제1 롤러(134a)와 제2 실린더(133b)의 내부에 설치되는 제2 롤러(134b)를 포함한다.The rollers 134a 134b include a first roller 134a installed inside the first cylinder 133a and a second roller 134b installed inside the second cylinder 133b.
각 롤러(134a 134b)는, 회전축(123)의 편심부(123a, 123b)에 각각 결합되고, 롤러(134)는 압축공간(V)의 내부에서 회전축(123)과 함께 회전하며, 냉매의 압축을 형성하게 된다.Each roller 134a 134b is coupled to the eccentric portions 123a and 123b of the rotation shaft 123, and the roller 134 rotates together with the rotation shaft 123 in the compression space V to compress the refrigerant. Will form.
제1 롤러(134a)와 제2 롤러(134b)는, 각각 제1, 2 실린더(133a, 133b)의 내주면에 접촉한 상태로 이동하면서 냉매를 압축을 형성하게 된다. 즉, 제1 롤러(134a)와 제2 롤러(134b)는 각각 제1, 2 실린더(133a, 133b)의 내주면을 따라 상하로 연장되는 가상의 접촉선(P)을 형성하면서 이동하게 될 것이다.The first roller 134a and the second roller 134b move in contact with the inner circumferential surfaces of the first and second cylinders 133a and 133b, respectively, to form a compression of the refrigerant. That is, the first roller 134a and the second roller 134b will move while forming virtual contact lines P that extend up and down along the inner circumferential surfaces of the first and second cylinders 133a and 133b, respectively.
제1 롤러(134a)와 제2 롤러(134b)는, 회전축(123)의 중심과 서로 다른 회전 중심을 가지므로, 제1 롤러(134a)와 제2 롤러(134b)는 제1, 2 실린더(133a, 133b)의 내주면을 접하도록 선회 운동하면서 수용된 냉매를 압축할 수 있게 된다.Since the first roller 134a and the second roller 134b have rotation centers different from the center of the rotation shaft 123, the first roller 134a and the second roller 134b are formed of the first and second cylinders ( The refrigerant contained can be compressed while pivoting so as to contact the inner circumferential surfaces of 133a and 133b.
각 실린더(133a, 133b)의 일 측에는 베인(135a, 135b)이 설치되며, 베인(135a, 135b)은 압축공간(V)으로 인출되어 각 롤러(134a, 134b)의 외주면과 접해 각 실린더(133a, 133b) 내부의 압축공간(V)을 각각 흡입실(V1)과 압축실(V2)로 구획하는 역할을 하게 된다. Vanes 135a and 135b are installed at one side of each cylinder 133a and 133b, and vanes 135a and 135b are drawn out into the compression space V to be in contact with the outer circumferential surfaces of the rollers 134a and 134b to contact each cylinder 133a. , 133b) divides the compression space V inside the suction chamber V1 and the compression chamber V2, respectively.
베인(135a, 135b)은 제1 실린더(133a)에 수용되는 제1 베인(135a)과 제2 실린더(133b)에 수용되는 제2 베인(135b)으로 이루어진다.The vanes 135a and 135b include a first vane 135a accommodated in the first cylinder 133a and a second vane 135b accommodated in the second cylinder 133b.
예를 들어, 도 2에서 보는 바와 같이, 제1 베인(135a)의 전단부(미도시)는 제1 실린더(133a)의 압축공간(V)에 수용되는 제1 롤러(134a)의 외주면에 접해, 상기 제1 실린더(133a)의 압축공간(V)을 흡입실(V1)과 압축실(V2)로 구획할 수 있게 된다.For example, as shown in FIG. 2, the front end (not shown) of the first vane 135a is in contact with the outer circumferential surface of the first roller 134a accommodated in the compression space V of the first cylinder 133a. In addition, the compression space V of the first cylinder 133a can be divided into a suction chamber V1 and a compression chamber V2.
마찬가지로, 제2 베인(135b)의 전단부(미도시)는 제2 실린더(133b)의 압축공간(V)에 수용되는 제1 롤러(134a)의 외주면에 접해, 상기 제2 실린더(133b)의 압축공간(V)을 각각 흡입실(V1)과 압축실(V2)로 구획할 수 있게 된다.Similarly, the front end portion (not shown) of the second vane 135b is in contact with the outer circumferential surface of the first roller 134a accommodated in the compression space V of the second cylinder 133b, so that the second cylinder 133b Compression space (V) can be partitioned into suction chamber (V1) and compression chamber (V2), respectively.
각 베인(135a, 135b)의 돌출은, 각 베인(135a, 135b)의 후단부가 위치되는 배압 공간(미도시)에 형성되는 오일의 압력이나 탄성력에 의해 이루어질 수 있다.Protrusion of each vane 135a, 135b can be made by the pressure or elastic force of the oil formed in the back pressure space (not shown) in which the rear end of each vane 135a, 135b is located.
흡입유로(111)로부터 유입되는 냉매는, 압축된 후 토출된다. 압축된 냉매는, 각 실린더(133a, 133b)의 내측면에 형성되는 토출홀(133b)을 따라 이동하게 된다.The refrigerant flowing in from the suction passage 111 is compressed and then discharged. The compressed refrigerant moves along the discharge holes 133b formed on the inner surfaces of the cylinders 133a and 133b.
압축기의 구동과정에서 각 롤러(134a, 134b)와 각 실린더(133a, 133b) 사이의 운동에 의해, 압축실(V2)에 수용된 냉매의 압력은 증가하게 될 것이다. 이러한 압축과정에서 압축유닛(130)의 온도는 상승하므로, 과열된 각 실린더(133a, 133b)의 내부로 유입되는 냉매의 온도는 상승하므로, 비체적이 낮아져 냉력손실이 발생하게 될 것이다.By the movement between the rollers 134a and 134b and the cylinders 133a and 133b in the driving process of the compressor, the pressure of the refrigerant contained in the compression chamber V2 will increase. In this compression process, since the temperature of the compression unit 130 is increased, the temperature of the refrigerant flowing into the overheated cylinders 133a and 133b is increased, so that the specific volume is lowered, thereby causing a loss of cold power.
이에, 본 발명은, 중간플레이트(140)에 오일유로(140a, 140b)가 형성되어, 과열된 압축유닛(130)의 온도를 저감시킴으로써, 각 실린더(133a, 133b)로 유입되는 냉매의 온도 상승을 제한할 수 있게 된다.Thus, the present invention, the oil flow path (140a, 140b) is formed in the intermediate plate 140, by reducing the temperature of the overheated compression unit 130, the temperature rise of the refrigerant flowing into each cylinder (133a, 133b) Can be limited.
도 3은, 도 2의 압축유닛의 각 구성을 나타내는 분해도이다.3 is an exploded view showing each configuration of the compression unit of FIG.
압축유닛(130)은, 메인베어링(131)과 서브베어링(132)의 사이에, 제1 실린더(133a), 제2 실린더(133b) 및 중간플레이트(140)가 각각 위치되도록 이루어진다.The compression unit 130 is configured such that the first cylinder 133a, the second cylinder 133b, and the intermediate plate 140 are positioned between the main bearing 131 and the sub bearing 132, respectively.
회전축(123)의 제1 편심부(123a)에는 제1 롤러(134a)가 설치되어, 제1 실린더(133a)의 내주면을 따라 이동하면서 냉매의 압축 및 토출을 형성하게 된다. 마찬가지로, 회전축(123)의 제2 편심부(123b)에는, 제2 롤러(134b)가 설치되어, 제2 실린더(133b)의 내주면을 따라 이동하면서 냉매의 압축 및 토출을 형성하게 된다.The first roller 134a is installed at the first eccentric portion 123a of the rotating shaft 123 to form compression and discharge of the refrigerant while moving along the inner circumferential surface of the first cylinder 133a. Similarly, a second roller 134b is provided at the second eccentric portion 123b of the rotation shaft 123 to form compression and discharge of the refrigerant while moving along the inner circumferential surface of the second cylinder 133b.
본 발명에 따르는 밀폐형 압축기는, 제1 실린더(133a)와 제2 실린더(133b) 사이에 위치되는 중간플레이트(140)에 오일유로(140a, 140b)가 형성될 수 있다. In the hermetic compressor according to the present invention, oil passages 140a and 140b may be formed in the intermediate plate 140 positioned between the first cylinder 133a and the second cylinder 133b.
중간플레이트(140)에 형성되는 오일유로(140a, 140b)를 따라 케이스(110)에 수용된 오일은 이동하면서, 제1 실린더(133a)와 제2 실린더(133b)의 냉각을 형성할 수 있게 된다. 케이스(110)의 내부에 수용된 오일의 유면은 중간플레이트(140)의 상부면까지 형성되므로, 오일유로(140a, 140b)를 따라 오일의 이동이 가능하며, 압축기의 구동에 따른 회전축(123)의 회전에 의해, 오일은 오일유로(140a, 140b)의 중심부까지 보다 원활하게 이동할 수 있게 된다.The oil contained in the case 110 moves along the oil passages 140a and 140b formed in the intermediate plate 140, thereby forming cooling of the first cylinder 133a and the second cylinder 133b. Since the oil surface of the oil accommodated in the case 110 is formed up to the upper surface of the intermediate plate 140, the oil can be moved along the oil passages 140a and 140b, and the rotary shaft 123 of the compressor is driven. By rotation, the oil can move more smoothly to the centers of the oil passages 140a and 140b.
또한, 각 오일유로(140a, 140b)는 중간플레이트(140)의 측면을 관통하도록 형성되어 상기 중간플레이트(140)의 내부에 형성될 수 있다. 각 오일유로(140a, 140b)의 어느 일 측은 각 실린더(133a, 133b)에 형성되는 압축실(V2)과 오버랩되는 위치를 지나도록 이루어져, 압축실(V2)에서 발생하는 열의 흡수가 용이하도록 이루어진다.In addition, each of the oil passages 140a and 140b may be formed to penetrate the side surface of the intermediate plate 140 and may be formed inside the intermediate plate 140. One side of each of the oil passages 140a and 140b passes through a position overlapping with the compression chambers V2 formed in the cylinders 133a and 133b to facilitate absorption of heat generated in the compression chamber V2. .
즉, 중간플레이트(140)의 측면을 관통하도록 각 오일유로(140a, 140b)를 형성시키는 간단한 구조적인 변경을 통해, 압축유닛(130)의 내구성에 영향을 미치지 않으면서도, 실린더의 구조적인 변경 없이도, 압축실 주위의 온도를 효과적으로 저감시킬 수 있게 된다.That is, through a simple structural change to form the respective oil flow paths (140a, 140b) to penetrate the side of the intermediate plate 140, without affecting the durability of the compression unit 130, even without a structural change of the cylinder Therefore, the temperature around the compression chamber can be effectively reduced.
도 4는, 압축유닛을 위에서 바라본 도면으로, 중간플레이트(140)에 형성되는 각 오일유로(140a, 140b)의 모습과 압축유닛(130)의 위치를 나타내며, 도 5는, 중간플레이트(140)에 각 오일유로(140a, 140b)가 형성되는 모습을 나타내는 도면이다.FIG. 4 is a view of the compression unit viewed from above, and shows the state of each of the oil passages 140a and 140b formed in the intermediate plate 140 and the position of the compression unit 130. FIG. 5 shows the intermediate plate 140. Fig. 4 shows the state in which oil passages 140a and 140b are formed.
앞서 살펴본 바와 같이, 중간플레이트(140)의 내부에는 측면을 관통하도록 이루어지는 복수개의 오일유로(140a, 140b)가 형성될 수 있으며, 상기 각 오일유로(140a, 140b)는 서로 교차되는 방향으로 이루어질 수 있다.As described above, a plurality of oil passages 140a and 140b may be formed inside the intermediate plate 140, and the oil passages 140a and 140b may cross each other. have.
이때, 각 오일유로(140a, 140b)는, 냉매가 토출되는 토출냉매이동홀(142)과 서로 이격되도록 위치되는 것이 바람직할 것이다.In this case, each of the oil passages 140a and 140b may be positioned to be spaced apart from the discharge refrigerant movement holes 142 through which the refrigerant is discharged.
도 4에서 보는 바와 같이, 각 오일유로(140a, 140b)의 어느 일 측은, 각 실린더(133a, 133b)에 형성되는 압축실(V2)과 오버랩되는 위치를 지나도록 이루어져, 압축실(V2)에서 발생하는 열의 흡수가 충분히 이루어지도록 이루어진다.As shown in FIG. 4, one side of each of the oil passages 140a and 140b passes through a position overlapping with the compression chambers V2 formed in the cylinders 133a and 133b, and thus, in the compression chamber V2. It is made to absorb the heat generated sufficiently.
회전축(123)의 회전에 의해 각 롤러(134a, 134b)와 실린더(133a, 133b)의 내주면의 사이의 상대 운동에 의해, 실린더(133a, 133b)의 압축실(V2)에 수용되는 냉매의 압축이 이루어지므로, 이때 발생하는 열에 의한 압축유닛(130)의 온도 저감을 위해, 각 오일유로(140a, 140b)는, 압축실(V2)과 오버랩되는 위치를 지나도록 형성되게 된다. 이에, 각 오일유로(140a, 140b)를 따라 이동하는 오일은, 과열된 실린더(133a, 133b)와 열교환하여 냉각이 이루어지도록 한다.Compression of the refrigerant contained in the compression chamber V2 of the cylinders 133a and 133b by the relative motion between the rollers 134a and 134b and the inner circumferential surfaces of the cylinders 133a and 133b by the rotation of the rotation shaft 123. Since it is made, in order to reduce the temperature of the compression unit 130 by the heat generated at this time, each of the oil passages (140a, 140b) is formed so as to pass through the position overlapping the compression chamber (V2). Thus, the oil moving along each of the oil passages 140a and 140b exchanges heat with the overheated cylinders 133a and 133b to allow cooling.
도 5에서 보는 바와 같이, 각 오일유로(140a, 140b)는, 중간플레이트(140)의 일 측면에서 다른 일 측면을 관통하도록 이루어질 수 있으며, 서로 교차되는 방향으로 형성될 수 있다. 이때, 각 오일유로(140a, 140b)는 중간플레이트(140)에 형성되는 볼트체결홀(141) 및 토출되는 냉매가 이동하는 토출냉매이동홀(142)과 이격되게 형성되므로 압축된 냉매가 압축유닛의 외부로 누설되는 현상을 방지될 수 있게 된다.As shown in FIG. 5, each of the oil passages 140a and 140b may be formed to penetrate the other side from one side of the intermediate plate 140 and may be formed in a direction crossing each other. At this time, each of the oil passages 140a and 140b is formed to be spaced apart from the bolt fastening hole 141 formed in the intermediate plate 140 and the discharge refrigerant movement hole 142 through which the discharged refrigerant moves. It is possible to prevent the phenomenon of leakage to the outside of the.
도 6a, 도 6b, 도 6c는, 중간플레이트(140)에 형성되는 각 오일유로(140a, 140b)의 내부의 내부모습을 확대한 도면이다.6A, 6B, and 6C are enlarged views of the inside of each of the oil passages 140a and 140b formed in the intermediate plate 140.
앞서 살펴본 바와 같이, 각 오일유로(140a, 140b)는 중간플레이트(140)의 측면을 관통하여, 중심부를 향해 형성될 수 있다.As described above, each of the oil passages 140a and 140b may pass through the side surface of the intermediate plate 140 and may be formed toward the center portion.
이때, 각 오일유로(140a, 140b)은 다양한 형상으로 이루어질 수 있다. 도 6a에서 보는 바와 같이, 각 오일유로(140a, 140b)의 단면은 일정한 직경을 가지는 원으로 이루어질 수 있다. 이때, 각 오일유로(140a, 140b)의 직경은, 중간플레이트(140)의 높이보다는 작은 직경을 가지도록 이루어져야 할 것이며, 중간플레이트의 높이의 대략 0.4배보다 작은 직경을 가지도록 이루어질 수 있다.In this case, each of the oil passages 140a and 140b may have various shapes. As shown in Figure 6a, the cross section of each oil passage 140a, 140b may be made of a circle having a constant diameter. At this time, the diameter of each oil passage (140a, 140b), should be made to have a diameter smaller than the height of the intermediate plate 140, it may be made to have a diameter smaller than approximately 0.4 times the height of the intermediate plate.
또한, 각 오일유로(140a, 140b)의 내측면에는, 도 6b에서 보는 바와 같이, 일정한 형상의 홈이 형성될 수 있으며, 예를 들어, 각 오일유로(140a, 140b)의 내측면에는, 각 오일유로(140a, 140b)가 연장 형성되는 방향을 따라 직선홈(143)이 형성될 수 있다. 이를 통해, 각 오일유로(140a, 140b)를 따라 이동하는 오일과 각 오일유로(140a, 140b)의 내측면 사이의 접촉면적이 확대되어, 가열된 압축유닛(130)의 냉각 효과가 더욱 증가될 수 있게 된다.In addition, grooves having a predetermined shape may be formed on the inner surfaces of the oil passages 140a and 140b, for example, on the inner surfaces of the oil passages 140a and 140b, respectively. A straight groove 143 may be formed along the direction in which the oil passages 140a and 140b extend. Through this, the contact area between the oil moving along each of the oil passages 140a and 140b and the inner surface of each of the oil passages 140a and 140b is enlarged, so that the cooling effect of the heated compression unit 130 is further increased. It becomes possible.
또한, 각 오일유로(140a, 140b)의 내측면에는, 도 6c에서 보는 바와 같이, 각 오일유로(140a, 140b)의 내측면을 따라 나선형의 홈(144)이 형성될 수 있다.In addition, a spiral groove 144 may be formed on an inner side surface of each of the oil passages 140a and 140b along an inner side surface of each of the oil passages 140a and 140b.
나선형의 홈(144)은 각 오일유로(140a, 140b)가 연장되는 방향을 따라 설정된 간격으로 형성될 수 있으며, 이를 통해, 이동하는 오일과의 접촉면적이 확대되어 열교환 성능이 높아져 가열된 압축유닛(130)의 냉각 효과가 더욱 증가될 수 있게 된다.The spiral groove 144 may be formed at a set interval along the direction in which the oil passages 140a and 140b extend, and through this, the contact area with the moving oil is enlarged, thereby increasing heat exchange performance and heating the compression unit. The cooling effect of 130 can be further increased.
도 7의 (a) 내지 (d)는, 본 발명의 다른 실시예에 관한 것으로, 중간플레이트(140)에 형성되는 오일유로의 다양한 변형례를 보여주는 도면이다. 7 (a) to 7 (d), which relate to another embodiment of the present invention, are views showing various modifications of the oil flow path formed in the intermediate plate 140.
앞서 살펴본 바와 같이, 오일유로는 중간플레이트(140)의 측면을 관통하도록 형성되며, 특히, 오일유로의 일 측이 압축기의 구동과정에서 상대적으로 높은 열이 발생하는 실린더의 압축실과 오버랩되도록 이루어지게 된다.As described above, the oil channel is formed to penetrate the side of the intermediate plate 140, and in particular, one side of the oil channel is made to overlap with the compression chamber of the cylinder that generates a relatively high heat during the operation of the compressor. .
도 7의 (a)와 (b)에서 보는 바와 같이, 각 오일유로(140a, 140b)는 중간플레이트(140)의 서로 다른 측면에서 회전축(123)이 위치되는 중심부를 향해 연장 형성될 수 있을 것이다.As shown in (a) and (b) of FIG. 7, each of the oil passages 140a and 140b may extend toward the center where the rotation shaft 123 is located at different sides of the intermediate plate 140. .
이때, 어느 하나의 오일유로는(140a)는, 중간플레이트(140)의 중심부에 삽입되도록 위치되는 회전축(123)까지 연장되지 않는 것도 가능하다.At this time, any one oil passage 140a may not extend to the rotation shaft 123 positioned to be inserted into the center of the intermediate plate 140.
또한, 도 7의 (c)에서 보는 바와 같이, 도 7의 (c)의 중간플레이트(140)에는 세 개의 서로 다른 오일유로(140a, 140b, 140c)가 형성될 수 있으며, 도 7의 (d)에서 보는 바와 같이, 도 7의 (d)의 중간플레이트(140)에는, 서로 다른 네 개의 오일유로(140a, 140b, 140c, 140d)가 형성되는 것도 가능하다. 이때, 각 오일유로(140a, 140b, 140c, 140d)는 서로 교차되는 방향을 따라 형성된다.In addition, as shown in (c) of FIG. 7, three different oil passages 140a, 140b and 140c may be formed in the intermediate plate 140 of FIG. 7c, and FIG. 7d. As shown in FIG. 7, four different oil passages 140a, 140b, 140c, and 140d may be formed in the intermediate plate 140 of FIG. 7 (d). At this time, each oil passage 140a, 140b, 140c, 140d is formed along the direction crossing each other.
다만, 각 오일유로(140a, 140b, 140c)는 중간플레이트(140)에 형성되는 볼트체결홀(141)과 토출되는 냉매가 이동하기 위한 토출냉매이동홀(142)과는 이격되게 형성되어야 할 것이다.However, each oil passage 140a, 140b, 140c should be formed to be spaced apart from the bolt fastening hole 141 formed in the intermediate plate 140 and the discharge refrigerant moving hole 142 for moving the discharged refrigerant. .
도 7 (d)에서 보는 바와 같이, 복수개의 오일유로(140a)는 압축기의 구동과정에서 높은 열이 발생하는 압축실(V2)과 서로 오버랩되도록 형성됨으로써, 압축실(V2)에 형성되는 열을 보다 효과적으로 낮출 수 있으며, 과열된 압축유닛(130)의 온도를 저감시킴으로써, 각 실린더(133a, 133b)로 유입되는 냉매의 온도 상승을 제한할 수 있는 효과를 얻을 수 있을 것이다.As shown in FIG. 7 (d), the plurality of oil passages 140a are formed to overlap each other with the compression chamber V2 that generates high heat during the driving of the compressor, thereby forming heat formed in the compression chamber V2. It can be lowered more effectively, and by reducing the temperature of the overheated compression unit 130, it is possible to obtain the effect of limiting the temperature rise of the refrigerant flowing into each cylinder (133a, 133b).
이상에서 설명한 것은 본 발명에 따른 로터리 압축기를 실시하기 위한 실시예들에 불과한 것으로서, 본 발명은 이상의 실시예들에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어나지 않는 범위 내에서 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상이 있다고 할 것이다.What has been described above is only embodiments for implementing a rotary compressor according to the present invention, the present invention is not limited to the above embodiments, and do not depart from the gist of the present invention as claimed in the claims below. Anyone skilled in the art to which the present invention pertains within the scope will have the technical idea of the present invention to the extent that various modifications can be made.
본 발명은, 로터리 압축기를 생산하거나 사용하는 분야에서 다양하게 적용 및 응용될 수 있을 것이다.The present invention may be variously applied and applied in the field of producing or using a rotary compressor.

Claims (10)

  1. 케이스의 내부에 설치되는 구동모터와, 상기 구동모터에 결합되어 회전력을 전달하는 회전축;A drive motor installed inside the case and a rotating shaft coupled to the drive motor to transmit rotational force;
    상기 회전축을 따라 서로 다른 위치에 설치되고, 개구된 원형의 중심부에 압축공간이 형성되는 제1 실린더와 제2 실린더;A first cylinder and a second cylinder installed at different positions along the rotation axis and having a compression space formed at a central portion of the opened circle;
    상기 회전축에 결합되어 상기 각 실린더에 형성되는 상기 압축공간을 선회하는 제1 롤러와 제2 롤러;First and second rollers coupled to the rotating shaft to pivot the compression spaces formed in the respective cylinders;
    상기 각 실린더의 압축공간을 흡입실과 압축실로 구획하는 제1 베인과 제2 베인;First and second vanes which divide the compression space of each cylinder into a suction chamber and a compression chamber;
    상기 제1 실린더의 상부에 결합되는 메인베어링과, 상기 제2 실린더의 하부에 결합되는 서브베어링; 및A main bearing coupled to an upper portion of the first cylinder, and a sub bearing coupled to a lower portion of the second cylinder; And
    상기 메인베어링과 서브베어링 사이에 설치되어 상기 제1 실린더와 제2 실린더를 분리시키는 중간플레이트를 포함하고,An intermediate plate installed between the main bearing and the sub bearing to separate the first cylinder and the second cylinder;
    상기 중간플레이트에는, 일측면에서 내부를 향해 형성되는 오일유로가 형성되고, 상기 오일유로를 따라 이동하는 오일에 의해 열교환이 이루어지는 것을 특징으로 하는 로터리 압축기.The intermediate plate, the oil flow path is formed toward the inside from one side, the rotary compressor, characterized in that the heat exchange by the oil moving along the oil flow path.
  2. 제1항에 있어서,The method of claim 1,
    상기 오일유로는, 상기 중간플레이트의 측면을 관통하도록 형성되는 것을 특징으로 하는 로터리 압축기.The oil flow path, the rotary compressor, characterized in that formed to penetrate the side of the intermediate plate.
  3. 제1항에 있어서,The method of claim 1,
    상기 오일유로의 일 측은, 상기 압축실과 오버랩되도록 형성되는 것을 특징으로 하는 로터리 압축기.One side of the oil passage, it is formed so as to overlap with the compression chamber.
  4. 제1항에 있어서,The method of claim 1,
    상기 오일유로는 복수개로 이루어지고,The oil channel is composed of a plurality,
    상기 각 오일유로는 서로 교차되는 방향으로 형성되는 것을 특징으로 하는 로터리 압축기.Each of the oil passages are formed in a direction crossing each other.
  5. 제1항에 있어서,The method of claim 1,
    상기 오일유로는, 냉매가 이동하는 토출홀과 서로 이격되게 형성되는 것을 특징으로 하는 로터리 압축기.The oil flow path is a rotary compressor, characterized in that the refrigerant is formed to be spaced apart from the discharge hole.
  6. 제1항에 있어서,The method of claim 1,
    상기 오일유로는, 원형의 단면을 가지도록 이루어지는 것을 특징으로 하는 로터리 압축기.The said oil flow path is a rotary compressor characterized by having a circular cross section.
  7. 제1항에 있어서,The method of claim 1,
    상기 오일유로의 내측면에는, 일정한 형상의 홈이 형성되는 것을 특징으로 하는 로터리 압축기.The inner side of the oil passage, the rotary compressor characterized in that a groove of a predetermined shape is formed.
  8. 제1항에 있어서,The method of claim 1,
    상기 오일유로의 내측면에는, 나선형의 홈이 형성되는 것을 특징으로 하는 로터리 압축기.The inner side of the oil flow path, the rotary compressor, characterized in that a spiral groove is formed.
  9. 제1항에 있어서,The method of claim 1,
    상기 오일유로의 내측면에는, 상기 오일유로가 연장되는 방향을 따라 형성되는 연장홈이 형성되는 것을 특징으로 하는 로터리 압축기.The inner side of the oil passage, the rotary compressor characterized in that the extending groove is formed along the direction in which the oil passage extends.
  10. 제1항에 있어서,The method of claim 1,
    상기 오일유로는, 상기 중간플레이트의 높이보다 작은 직경을 가지도록 형성되는 것을 특징으로 하는 로터리 압축기.The oil flow path, the rotary compressor, characterized in that formed to have a diameter smaller than the height of the intermediate plate.
PCT/KR2018/004995 2017-05-26 2018-04-30 Rotary compressor WO2018216916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880034789.9A CN110678655B (en) 2017-05-26 2018-04-30 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170065456A KR102339600B1 (en) 2017-05-26 2017-05-26 Rotary compressor
KR10-2017-0065456 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216916A1 true WO2018216916A1 (en) 2018-11-29

Family

ID=64396703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004995 WO2018216916A1 (en) 2017-05-26 2018-04-30 Rotary compressor

Country Status (3)

Country Link
KR (1) KR102339600B1 (en)
CN (1) CN110678655B (en)
WO (1) WO2018216916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255714A1 (en) * 2021-06-01 2022-12-08 Hanon Systems Device for cooling a fluid to be compressed in a compressor and compressor with the device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102414968B1 (en) 2020-12-03 2022-07-07 유진기공산업주식회사 The rotary air compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054975A (en) * 1998-08-07 2000-02-22 Daikin Ind Ltd Two-stage compressor
US20100319394A1 (en) * 2008-02-04 2010-12-23 Daikin Industries, Ltd. Compressor and refrigeration apparatus
KR101094561B1 (en) * 2003-10-03 2011-12-19 산요덴키가부시키가이샤 Compressor and Method of Manufacturing the Same
JP2012159008A (en) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd Machining hole structure of metal member, and refrigerating cycle device formed by using the machining hole structure
KR20130093365A (en) * 2012-02-14 2013-08-22 엘지전자 주식회사 Twin rotary compressor and heat pump having the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187587A (en) * 1985-02-14 1986-08-21 Sanyo Electric Co Ltd Multi-cylinder rotary compressor
JPH0826865B2 (en) * 1986-12-25 1996-03-21 株式会社東芝 2-cylinder rotary compressor
JP3728227B2 (en) * 2001-09-27 2005-12-21 三洋電機株式会社 Rotary compressor
JP4039921B2 (en) * 2002-09-11 2008-01-30 三洋電機株式会社 Transcritical refrigerant cycle equipment
CN101173664A (en) * 2007-11-14 2008-05-07 美的集团有限公司 Second-order compression rotary compressor and control method and application thereof
JP5494138B2 (en) * 2010-03-31 2014-05-14 ダイキン工業株式会社 Rotary compressor
CN202182009U (en) * 2011-07-28 2012-04-04 上海日立电器有限公司 Intermediate plate for increasing oil amount for compressor
WO2014002456A1 (en) 2012-06-26 2014-01-03 パナソニック株式会社 Rotary compressor
JP2015068262A (en) * 2013-09-30 2015-04-13 パナソニックIpマネジメント株式会社 Rotary compressor
CN104989644B (en) * 2015-07-03 2017-05-31 广东美芝制冷设备有限公司 Compressor
CN204783652U (en) * 2015-07-15 2015-11-18 广东美芝制冷设备有限公司 Compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000054975A (en) * 1998-08-07 2000-02-22 Daikin Ind Ltd Two-stage compressor
KR101094561B1 (en) * 2003-10-03 2011-12-19 산요덴키가부시키가이샤 Compressor and Method of Manufacturing the Same
US20100319394A1 (en) * 2008-02-04 2010-12-23 Daikin Industries, Ltd. Compressor and refrigeration apparatus
JP2012159008A (en) * 2011-01-31 2012-08-23 Sanyo Electric Co Ltd Machining hole structure of metal member, and refrigerating cycle device formed by using the machining hole structure
KR20130093365A (en) * 2012-02-14 2013-08-22 엘지전자 주식회사 Twin rotary compressor and heat pump having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255714A1 (en) * 2021-06-01 2022-12-08 Hanon Systems Device for cooling a fluid to be compressed in a compressor and compressor with the device

Also Published As

Publication number Publication date
CN110678655A (en) 2020-01-10
CN110678655B (en) 2022-03-15
KR102339600B1 (en) 2021-12-15
KR20180129430A (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2018194294A1 (en) Rotary compressor
WO2016190490A1 (en) Compressor having oil recovery means
WO2010056002A1 (en) Frequency- variable compressor and control method thereof
WO2011019116A1 (en) Compressor
WO2018216916A1 (en) Rotary compressor
WO2011019113A1 (en) Compressor
WO2018151428A1 (en) Rotary compressor
WO2013122363A1 (en) Twin rotary compressor and heat pump having the same
WO2009108007A9 (en) Scroll compressor comprising oil separating driving shaft
WO2009108006A9 (en) Inverter type scroll compressor
CN209414173U (en) Pump assembly, compressor and air conditioner
WO2018151538A1 (en) Electric compressor
WO2011019114A1 (en) Compressor
WO2024080466A1 (en) Electric compressor
WO2023080489A1 (en) Vane rotary compressor
WO2022097917A1 (en) Rotary compressor and home appliance comprising same
WO2010058998A2 (en) Swash plate compressor with rotary valve
WO2022119048A1 (en) Rotary piston air compressor
WO2009139559A1 (en) Swash plate compressor
WO2018151512A1 (en) Scroll compressor
WO2018221902A1 (en) Control valve and variable-capacity compressor
WO2023286942A1 (en) Rotary compressor and home appliance comprising same
WO2024063236A1 (en) Electric compressor
WO2020059996A1 (en) Compressor and electronic device using same
WO2023106648A1 (en) Electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805475

Country of ref document: EP

Kind code of ref document: A1