JP2015068262A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2015068262A
JP2015068262A JP2013203527A JP2013203527A JP2015068262A JP 2015068262 A JP2015068262 A JP 2015068262A JP 2013203527 A JP2013203527 A JP 2013203527A JP 2013203527 A JP2013203527 A JP 2013203527A JP 2015068262 A JP2015068262 A JP 2015068262A
Authority
JP
Japan
Prior art keywords
hole
diameter
oil
rotary
rotary compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013203527A
Other languages
Japanese (ja)
Inventor
章 松▲ざき▼
Akira Matsuzaki
章 松▲ざき▼
佐藤 孝
Takashi Sato
孝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013203527A priority Critical patent/JP2015068262A/en
Priority to CN201410515395.9A priority patent/CN104514720A/en
Publication of JP2015068262A publication Critical patent/JP2015068262A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary compressor capable of solving a problem that oil is excessively supplied to a second rotary compression element, by a simple structure.SOLUTION: A rotary compressor includes: an intermediate partitioning plate 36 for partitioning rotary compression elements 32 and 34; an oil hole 13 formed on a rotary shaft 16; a through-hole 131 formed on the intermediate partitioning plate 36, and opening to the oil hole 13 side on the inner side and on a sealed container 12 side on the outer side; and a communication hole 133 for communicating the through-hole 131 and a suction side of the second rotary compression element 34. The through-hole 131 is composed of a small diameter hole portion 131A on the oil hole 13 side, and a large diameter hole portion 131B having a diameter larger than that of the small diameter hole portion 131A on the sealed container 12 side. The communication hole 133 communicates with the small diameter hole portion 131A.

Description

本発明は、密閉容器内に駆動要素の回転軸にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを第2の回転圧縮要素で圧縮するロータリコンプレッサに関するものである。   The present invention includes first and second rotary compression elements driven by a rotary shaft of a drive element in a sealed container, and discharges refrigerant gas compressed by the first rotary compression element into the sealed container, Further, the present invention relates to a rotary compressor that compresses the discharged refrigerant gas having an intermediate pressure by a second rotary compression element.

従来のこの種ロータリコンプレッサ、特に、内部中間圧型多段圧縮式のロータリコンプレッサでは、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。そして、この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て外部の放熱器などに流入する構成とされている(例えば、特許文献1参照。)。   In a conventional rotary compressor of this type, particularly an internal intermediate pressure type multistage compression type rotary compressor, refrigerant gas is drawn into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, and is compressed by the operation of the roller and vane. Intermediate pressure is then discharged from the high pressure chamber side of the cylinder through the discharge port and discharge silencer chamber into the sealed container. The intermediate-pressure refrigerant gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second stage compression is performed by the operation of the roller and the vane, so The refrigerant gas is configured to flow from the high-pressure chamber side to the external radiator or the like through the discharge port and the discharge silencer chamber (see, for example, Patent Document 1).

また、回転軸内には軸中心に鉛直方向のオイル孔と、このオイル孔に連通する横方向の給油孔が形成されており、回転軸の下端に取り付けられたオイルポンプ(給油手段)により密閉容器内底部のオイル溜めからオイルが汲み上げられてオイル孔を上昇し、給油孔から回転軸や回転圧縮要素内の摺動部に供給されて潤滑とシールを行っていた。   In addition, a vertical oil hole and a lateral oil supply hole communicating with the oil hole are formed in the center of the rotary shaft, and sealed by an oil pump (oil supply means) attached to the lower end of the rotary shaft. Oil was pumped up from the oil reservoir at the bottom of the container, and the oil hole was raised. The oil was supplied from the oil supply hole to the sliding part in the rotary shaft and the rotary compression element to perform lubrication and sealing.

係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば自然冷媒である二酸化炭素(CO2)を冷媒として用いた場合、冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる。 When a refrigerant having a large high-low pressure difference, such as carbon dioxide (CO 2 ), which is a natural refrigerant, is used as the refrigerant for the rotary compressor, the refrigerant pressure reaches 12 MPaG in the second rotary compression element having a high pressure, The first rotary compression element on the side is 8 MPaG (intermediate pressure).

特開2004−108165号公報JP 2004-108165 A

ここで、このようなロータリコンプレッサにおいては、底部がオイル溜めとなる密閉容器内の圧力(中間圧)よりも第2の回転圧縮要素のシリンダ内の圧力(高圧)の方が高くなるため、回転軸のオイル孔や給油孔から圧力差を利用して第2の回転圧縮要素のシリンダ内にオイルを供給することが極めて困難となり、吸入冷媒に溶け込んだオイルのみによって専ら潤滑されるかたちとなっていた。   Here, in such a rotary compressor, the pressure (high pressure) in the cylinder of the second rotary compression element is higher than the pressure (intermediate pressure) in the sealed container whose bottom is an oil reservoir. It becomes extremely difficult to supply oil into the cylinder of the second rotary compression element using the pressure difference from the oil hole or oil supply hole of the shaft, and it is lubricated exclusively by the oil dissolved in the suction refrigerant. It was.

そこで、従来では各回転圧縮要素を仕切る中間仕切板に回転軸のオイル孔側から外側の密閉容器側まで貫通する貫通孔を形成すると共に、第2の回転圧縮要素を構成するシリンダにはこの貫通孔と第2の回転圧縮要素の吸込側とを連通する連通孔を形成し、吸入工程での吸入圧損を利用してオイル孔から第2の回転圧縮要素の吸込側にオイルを供給していた。   Therefore, conventionally, a through-hole penetrating from the oil hole side of the rotary shaft to the outer sealed container side is formed in the intermediate partition plate that partitions each rotary compression element, and the cylinder constituting the second rotary compression element is penetrated by this through-hole. A communication hole that connects the hole and the suction side of the second rotary compression element is formed, and oil is supplied from the oil hole to the suction side of the second rotary compression element using the suction pressure loss in the suction process. .

しかしながら、従来では加工が容易な比較的大径の貫通孔を形成していたため、オイルが第2の回転圧縮要素に過剰に供給されてしまう問題が発生していた。   However, since a through hole having a relatively large diameter that is easy to process has been conventionally formed, there has been a problem that oil is excessively supplied to the second rotary compression element.

本発明は、係る従来の技術的課題を解決するためになされたものであり、第2の回転圧縮要素にオイルが過剰に供給されてしまう不都合を簡単な構成で解消することができるロータリコンプレッサを提供するものである。   The present invention has been made in order to solve the conventional technical problem, and a rotary compressor capable of eliminating the disadvantage that oil is excessively supplied to the second rotary compression element with a simple configuration. It is to provide.

上記課題を解決するために、本発明のロータリコンプレッサは、密閉容器内に駆動要素の回転軸にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを第2の回転圧縮要素で圧縮するものであって、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ内に設けられ、回転軸の偏心部に嵌合されて偏心回転するローラと、各シリンダ及び各ローラの間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板に形成され、内側のオイル孔側と、外側の密閉容器側とに開口する貫通孔と、中間仕切板に形成され、貫通孔と第2の回転圧縮要素の吸込側とを連通するための連通孔とを備え、貫通孔は、オイル孔側の小径孔部と、密閉容器側で小径孔部より径が大きい大径孔部とから成り、連通孔は、小径孔部に連通していることを特徴とする。   In order to solve the above-described problems, a rotary compressor according to the present invention includes first and second rotary compression elements driven by a rotary shaft of a drive element in a sealed container, and is compressed by the first rotary compression element. The refrigerant gas discharged into the sealed container, and further, the discharged intermediate-pressure refrigerant gas is compressed by the second rotary compression element, each of which constitutes each rotary compression element, A roller provided in the cylinder and fitted in the eccentric part of the rotary shaft to rotate eccentrically, an intermediate partition plate that is interposed between each cylinder and each roller and partitions each rotary compression element, and an opening surface of each cylinder A support member that is respectively closed and has a bearing for the rotary shaft, an oil hole formed in the rotary shaft, a through hole formed in the intermediate partition plate and opened to the inner oil hole side and the outer sealed container side; Formed on the intermediate partition plate A through hole for communicating the through hole with the suction side of the second rotary compression element, the through hole having a small diameter hole portion on the oil hole side and a large diameter larger in diameter than the small diameter hole portion on the sealed container side The communication hole is characterized in that it communicates with the small-diameter hole.

請求項2の発明のロータリコンプレッサは、小径部の径を、大径部の径に対して10%以上80%以下としたことを特徴とする。   The rotary compressor according to a second aspect of the invention is characterized in that the diameter of the small diameter portion is 10% or more and 80% or less with respect to the diameter of the large diameter portion.

請求項3の発明のロータリコンプレッサは、上記各発明において小径部の長さを、貫通孔の全長に対して10%以上90%以下としたことを特徴とする。   A rotary compressor according to a third aspect of the present invention is characterized in that, in each of the above inventions, the length of the small diameter portion is 10% or more and 90% or less with respect to the entire length of the through hole.

本発明によれば、所謂内部中間圧型多段圧縮式のロータリコンプレッサにおいて、各回転圧縮要素をそれぞれ構成するためのシリンダと、各シリンダ内に設けられ、回転軸の偏心部に嵌合されて偏心回転するローラと、各シリンダ及び各ローラの間に介在して各回転圧縮要素を仕切る中間仕切板と、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを有する支持部材と、回転軸に形成されたオイル孔と、中間仕切板に形成され、内側のオイル孔側と、外側の密閉容器側とに開口する貫通孔と、中間仕切板に形成され、貫通孔と第2の回転圧縮要素の吸込側とを連通するための連通孔とを備え、貫通孔を、オイル孔側の小径孔部と、密閉容器側で小径孔部より径が大きい大径孔部とから構成し、連通孔を、小径孔部に連通させたので、回転軸のオイル孔と第2の回転圧縮要素の吸込側とが貫通孔の小径孔部と連通孔とで連通されることになり、第2の回転圧縮要素の吸込側に流入するオイル量を制限して、第2の回転圧縮要素への過剰なオイル供給を解消することができるようになる。   According to the present invention, in a so-called internal intermediate pressure type multi-stage compression type rotary compressor, a cylinder for constituting each rotary compression element, and a rotational rotation element provided in each cylinder and fitted to an eccentric part of a rotary shaft are rotated eccentrically. Formed on the rotating shaft, a support member having a bearing for the rotating shaft, and an intermediate partition plate that is interposed between each cylinder and each roller to partition each rotating compression element, closes the opening surface of each cylinder, and The oil hole formed in the intermediate partition plate, the through hole opening to the inner oil hole side and the outer sealed container side, the intermediate partition plate, the through hole and the second rotary compression element A through hole for communicating with the suction side, and the through hole is composed of a small-diameter hole portion on the oil hole side and a large-diameter hole portion having a diameter larger than the small-diameter hole portion on the sealed container side. Because it is connected to the small-diameter hole, The oil hole of the shaft and the suction side of the second rotary compression element are communicated with each other through the small-diameter hole portion of the through hole and the communication hole, and the amount of oil flowing into the suction side of the second rotary compression element is limited. Thus, excessive oil supply to the second rotary compression element can be eliminated.

また、密閉容器内には大径孔部が開口するかたちとなり、この大径孔部より密閉容器内の冷媒が円滑に貫通孔に流入し、連通孔に入ることになるので、この密閉容器内からの冷媒によっても、第2の回転圧縮要素へのオイルの量が効果的に制限されることになる。   In addition, a large-diameter hole is opened in the sealed container, and the refrigerant in the sealed container smoothly flows into the through-hole from the large-diameter hole and enters the communication hole. Also, the amount of oil to the second rotary compression element is effectively limited by the refrigerant from.

この場合、請求項2並びに請求項3の発明の如く、小径部の径を大径部の径に対して10%以上80%以下とすること、並びに、小径部の長さを貫通孔の全長に対して10%以上90%以下とすることで、第2の回転圧縮要素への過剰なオイル供給の解消と大径部にかかる密閉容器内の冷媒の適切な制御を実現することが可能となる。   In this case, as in the inventions of claim 2 and claim 3, the diameter of the small diameter portion is set to 10% or more and 80% or less with respect to the diameter of the large diameter portion, and the length of the small diameter portion is set to the entire length of the through hole. With respect to 10% or more and 90% or less, it is possible to eliminate excessive oil supply to the second rotary compression element and to appropriately control the refrigerant in the sealed container over the large diameter portion. Become.

本発明を適用した実施例の内部中間圧型多段圧縮式ロータリコンプレッサの縦断側面図である。It is a vertical side view of the internal intermediate pressure type multistage compression rotary compressor of the embodiment to which the present invention is applied. 図1のロータリコンプレッサの中間仕切板の平面図である。It is a top view of the intermediate partition plate of the rotary compressor of FIG. 図1のロータリコンプレッサの中間仕切板の縦断側面図である。It is a vertical side view of the intermediate partition plate of the rotary compressor of FIG.

以下、図面に基づき本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された駆動要素としての電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。尚、本実施例のロータリコンプレッサ10の第1の回転圧縮要素32の容積は、2段目となる第2の回転圧縮要素34の容積よりも大きい。 In FIG. 1, reference numeral 10 denotes an internal intermediate pressure multistage compression rotary compressor that uses carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an interior of the sealed container 12. The electric element 14 as a driving element arranged and housed on the upper side of the space, and a first rotary compression element 32 (first stage) arranged below the electric element 14 and driven by the rotating shaft 16 of the electric element 14 And a rotary compression mechanism section 18 including a second rotary compression element 34 (second stage). In addition, the volume of the 1st rotary compression element 32 of the rotary compressor 10 of a present Example is larger than the volume of the 2nd rotary compression element 34 used as the 2nd stage.

密閉容器12は、底部をオイル溜めOLとし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。   The sealed container 12 has an oil sump OL at the bottom, a container main body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid) 12B that closes the upper opening of the container main body 12A. A circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying power to the electric element 14 is formed in the mounting hole 12D. Is attached.

電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とから構成された直巻き式のDCモータであり、インバータにより回転数及びトルク制御が行われる。また、この電動要素14はインバータにより、ロータリコンプレッサ始動時は低速にて起動され、その後所望の回転数に増速されるように回転数が制御される。また、前記ロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。   The electric element 14 includes a stator 22 that is annularly attached along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 that is inserted and arranged with a slight gap inside the stator 22. This is a direct-winding DC motor, and the rotation speed and torque control are performed by an inverter. The electric element 14 is started by the inverter at a low speed when the rotary compressor is started, and then the rotational speed is controlled so as to be increased to a desired rotational speed. The rotor 24 is fixed to a rotary shaft 16 that passes through the center and extends in the vertical direction.

ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して構成されている。   The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is also formed by a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is inserted into the laminated body 30.

また、回転軸16の下端部には給油手段としてのオイルポンプ102が形成されている。このオイルポンプ102により、密閉容器12内の底部に構成されたオイル溜めOLから潤滑用のオイルが吸い上げられて、回転軸16内の軸中心に鉛直方向に形成されたオイル孔13を経て、このオイル孔13に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)から上下偏心部42、44や第1及び第2の回転圧縮要素32、34の摺動部等にオイルが供給される。これにより、第1及び第2の回転圧縮要素32、34の摩耗の防止やシールが行われる。   Further, an oil pump 102 as an oil supply means is formed at the lower end portion of the rotating shaft 16. The oil pump 102 sucks up lubricating oil from an oil reservoir OL formed at the bottom of the sealed container 12, and passes through an oil hole 13 formed in the vertical direction at the center of the shaft in the rotary shaft 16. Sliding between the vertical oil supply holes 82 and 84 communicating with the oil hole 13 (also formed in the upper and lower eccentric parts 42 and 44) and the upper and lower eccentric parts 42 and 44 and the first and second rotary compression elements 32 and 34. Oil is supplied to the moving part. As a result, the first and second rotary compression elements 32 and 34 are prevented from being worn and sealed.

前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上下シリンダ38、40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する後述する図示しないベーンと、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成される。   An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, upper and lower cylinders 38 and 40 disposed above and below the intermediate partition plate 36, and the upper and lower cylinders 38 and 40. The upper and lower rollers 46 and 48 are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders 38 are in contact with the upper and lower rollers 46 and 48. , 40, which are divided into a low pressure chamber side and a high pressure chamber side, respectively, and an opening surface on the upper side of the upper cylinder 38 and an opening surface on the lower side of the lower cylinder 40 to close the bearing of the rotary shaft 16. An upper support member 54 and a lower support member 56 are used as supporting members.

上部支持部材54および下部支持部材56には、吸込ポート161、162にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路58、60と、凹陥した吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の各シリンダ38、40とは反対側の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。   The upper support member 54 and the lower support member 56 are formed with suction passages 58 and 60 that communicate with the inside of the upper and lower cylinders 38 and 40 through suction ports 161 and 162, and recessed discharge silencer chambers 62 and 64, respectively. The openings on the side opposite to the cylinders 38 and 40 of both the discharge silencing chambers 62 and 64 are respectively closed by covers. That is, the discharge silence chamber 62 is closed by an upper cover 66 as a cover, and the discharge silence chamber 64 is closed by a lower cover 68 as a cover.

この場合、上部支持部材54の中央には軸受け54Aが起立形成されている。また、下部支持部材56の中央には軸受け56Aが貫通形成されている。そして、回転軸16は上部支持部材54の軸受け54Aと下部支持部材56の軸受け56Aに保持される。   In this case, a bearing 54 </ b> A is formed upright at the center of the upper support member 54. A bearing 56 </ b> A is formed through the center of the lower support member 56. The rotating shaft 16 is held by a bearing 54A of the upper support member 54 and a bearing 56A of the lower support member 56.

下部カバー68はドーナッツ状の円形鋼板から構成されており、周辺部の4カ所を主ボルト129によって下から下部支持部材56に固定されている。この主ボルト129の先端は上部支持部材54に螺合する。   The lower cover 68 is composed of a donut-shaped circular steel plate, and is fixed to the lower support member 56 from below by main bolts 129 at four peripheral portions. The tip of the main bolt 129 is screwed into the upper support member 54.

そして、第1の回転圧縮要素32の吐出消音室64と密閉容器12内とは連通路にて連通されており、この連通路は下部支持部材56、上部支持部材54、上部カバー66、上下シリンダ38、40、中間仕切板36を貫通する図示しない孔である。この場合、連通路の上端には中間吐出管121が立設されており、この中間吐出管121から密閉容器12内に中間圧の冷媒が吐出される。   The discharge silencer chamber 64 of the first rotary compression element 32 and the inside of the sealed container 12 are communicated with each other through a communication path. The communication path includes a lower support member 56, an upper support member 54, an upper cover 66, and upper and lower cylinders. 38 and 40 are holes (not shown) penetrating the intermediate partition plate 36. In this case, an intermediate discharge pipe 121 is erected at the upper end of the communication path, and an intermediate pressure refrigerant is discharged from the intermediate discharge pipe 121 into the sealed container 12.

また、上部カバー66は第2の回転圧縮要素34の上シリンダ38内部と図示しない吐出ポートにて連通する吐出消音室62を画成し、この上部カバー66の上側には、上部カバー66と所定間隔を存して、電動要素14が設けられている。この上部カバー66は前記上部支持部材54の軸受け54Aが貫通する孔が形成された略ドーナッツ状の円形鋼板から構成されており、周辺部が4本の主ボルト78により、上から上部支持部材54に固定されている。この主ボルト78の先端は下部支持部材56に螺合する。   The upper cover 66 defines a discharge silencing chamber 62 that communicates with the inside of the upper cylinder 38 of the second rotary compression element 34 through a discharge port (not shown). The electric element 14 is provided with a space. The upper cover 66 is formed of a substantially donut-shaped circular steel plate in which a hole through which the bearing 54A of the upper support member 54 passes is formed, and the upper support member 54 is surrounded by four main bolts 78 from above. It is fixed to. The tip of the main bolt 78 is screwed into the lower support member 56.

ここで、中間仕切板36には、図2、図3に示す如く内側のオイル孔13側となるローラ46内側と、外側の密閉容器12側(密閉容器12内)とを連通する貫通孔131がドリルによる切削加工で穿設されている。ここで、中間仕切板36と回転軸16との間には若干の隙間が形成されており、この隙間は、上側がローラ46内側(ローラ46内側の偏心部42周辺の空間。オイル孔13に連通する給油孔82が位置する)と連通している。更に、中間仕切板36と回転軸16との間の隙間は、下側がローラ48内側(ローラ48内側の偏心部44周辺の空間)と連通している。   Here, as shown in FIGS. 2 and 3, the intermediate partition plate 36 has a through hole 131 that communicates the inside of the roller 46 on the inner oil hole 13 side and the outer sealed container 12 side (inside the sealed container 12). Are drilled by drilling. Here, a slight gap is formed between the intermediate partition plate 36 and the rotary shaft 16, and the upper side is the space inside the roller 46 (the space around the eccentric portion 42 inside the roller 46. The communication oil supply hole 82 is located). Further, the gap between the intermediate partition plate 36 and the rotary shaft 16 communicates with the inner side of the roller 48 (the space around the eccentric portion 44 inside the roller 48).

即ち、貫通孔131は内側の回転軸16のオイル孔13側から外側の密閉容器12内側に渡って中間仕切板36を貫通し、回転軸16のオイル孔13側と密閉容器内側が開口している。また、貫通孔131はオイル孔13側(内側)の小径孔部131A(実施例では2.2mm)と、その密閉容器12側(外側)で当該小径孔部131Aよりも径が大きい大径孔部131B(実施例では3.0mm)とから構成され、小径孔部131Aが回転軸16側に開口し、大径孔部131Bが密閉容器12内に開口している。尚、この大径孔部131Bの径は従来の貫通孔と同一である。   That is, the through-hole 131 passes through the intermediate partition plate 36 from the oil hole 13 side of the inner rotary shaft 16 to the inner side of the outer sealed container 12, and the oil hole 13 side of the rotary shaft 16 and the inner side of the sealed container are opened. Yes. The through-hole 131 has a small-diameter hole portion 131A (2.2 mm in the embodiment) on the oil hole 13 side (inner side) and a large-diameter hole whose diameter is larger than that of the small-diameter hole portion 131A on the sealed container 12 side (outer side). The portion 131B (3.0 mm in the embodiment) is configured such that the small diameter hole portion 131A opens on the rotating shaft 16 side, and the large diameter hole portion 131B opens in the sealed container 12. The diameter of the large diameter hole 131B is the same as that of the conventional through hole.

係る貫通孔131を穿設する際には、例えば、二種類の径のドリルを用意しておき、先ず、中間仕切板36の外側から径の大きいドリルにて中間仕切板36の径方向における中途部まで切削する。これにより、大径孔部131Bを穿設する。次に、ドリルを径の小さいものに変えて大径孔部131Bに挿入し、その終端から回転軸16側まで切削して小径孔部131Aを穿設する。   When drilling such a through-hole 131, for example, drills of two types of diameters are prepared, and first, the middle of the intermediate partition plate 36 in the radial direction is drilled from the outside of the intermediate partition plate 36 with a large diameter drill. Cut to part. Thereby, the large-diameter hole 131B is drilled. Next, the drill is changed into one having a small diameter and inserted into the large-diameter hole portion 131B, and the small-diameter hole portion 131A is formed by cutting from the terminal end to the rotating shaft 16 side.

また、貫通孔131の小径孔部131Aに対応する部分には上側に延在する連通孔(縦孔)133が穿設されている。この連通孔133は、小径孔部131Aに対応する部分の中間仕切板36に上から極めて細径のドリルにより切削加工する。また、その径は小径孔部131Aよりも更に小さい径(実施例では1.0mm)とされている。   In addition, a communication hole (vertical hole) 133 extending upward is formed in a portion of the through hole 131 corresponding to the small diameter hole portion 131A. The communication hole 133 is cut from the upper portion of the intermediate partition plate 36 corresponding to the small-diameter hole portion 131A with a very small-diameter drill. Moreover, the diameter is made into a still smaller diameter (1.0 mm in an Example) than the small diameter hole part 131A.

一方、上シリンダ38には中間仕切板36の連通孔133と吸込ポート161(第2の回転圧縮要素34の吸込側)とを連通するインジェクション用の連通孔134が穿設されている。   On the other hand, the upper cylinder 38 is formed with an injection communication hole 134 that allows communication between the communication hole 133 of the intermediate partition plate 36 and the suction port 161 (the suction side of the second rotary compression element 34).

尚、上述したように中間仕切板36の貫通孔131の小径孔部131Aの回転軸16側の開口は、給油孔82、84を介してオイル孔13に連通している。後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めOLから汲み上げられてオイル孔13を上昇し、給油孔82、84から出たオイルは、中間仕切板36の貫通孔131の小径孔部131Aに入り、連通孔133、134を経て上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。 As described above, the opening on the rotating shaft 16 side of the small diameter hole portion 131A of the through hole 131 of the intermediate partition plate 36 communicates with the oil hole 13 via the oil supply holes 82 and 84. As will be described later, since the inside of the sealed container 12 is at an intermediate pressure, it is difficult to supply oil into the upper cylinder 38, which is at a high pressure in the second stage. The oil that has been pumped up from the oil sump OL at the inner bottom 12 of the oil tank 12 rises through the oil holes 13 and exits from the oil supply holes 82 and 84 enters the small-diameter hole 131A of the through hole 131 of the intermediate partition plate 36, and the communication holes 133 and 134 Then, the oil is supplied to the suction side (suction port 161) of the upper cylinder 38.

この場合、上シリンダ38の吸込側の圧力(吸入圧力)は、吸入過程においては吸入圧損により中間仕切板36の回転軸16側の圧力よりも低下する。この期間に回転軸16のオイル孔13を経て給油孔82、84から中間仕切板36の貫通孔131の小径孔部131A、連通孔133を経て、上シリンダ38の連通孔134より上シリンダ38内にオイルがインジェクションされ、給油が成されることになる。   In this case, the pressure (suction pressure) on the suction side of the upper cylinder 38 is lower than the pressure on the rotary shaft 16 side of the intermediate partition plate 36 due to suction pressure loss in the suction process. During this period, through the oil hole 13 of the rotating shaft 16, the oil supply holes 82, 84, the small diameter hole portion 131 A of the through hole 131 of the intermediate partition plate 36, the communication hole 133, and the upper cylinder 38 through the communication hole 134. Oil is injected into the tank and refueling is performed.

しかしながら、小径孔部131Aは従来(大径孔部131Bと同径)よりも小径とされており、連通孔133はこの小径孔部131Aよりも更に小径とされているので、第2の回転圧縮要素34の上シリンダ38内に供給されるオイル量は従来よりも制限されることになる。   However, since the small diameter hole portion 131A has a smaller diameter than the conventional one (the same diameter as the large diameter hole portion 131B), and the communication hole 133 has a smaller diameter than the small diameter hole portion 131A, the second rotational compression is performed. The amount of oil supplied into the upper cylinder 38 of the element 34 will be more limited than before.

一方、中間仕切板36の大径孔部131Bは密閉容器12内に開口しているため、密閉容器12内の中間圧の冷媒は、この大径孔部131Bの開口から貫通孔131内に流入し、その後、連通孔133より外側の小径孔部131Aの一部(短い距離)を経た後、連通孔133から上シリンダ38の吸込側(吸込ポート161)に流入することになる。即ち、密閉容器12内の冷媒は、小径孔部131Aよりも大径の大径孔部131Bを経て円滑に連通孔133に至るので、これによっても上シリンダ38内へのオイル量は制限されるかたちとなる。   On the other hand, since the large-diameter hole portion 131B of the intermediate partition plate 36 opens into the sealed container 12, the intermediate-pressure refrigerant in the sealed container 12 flows into the through-hole 131 from the opening of the large-diameter hole portion 131B. Then, after passing through a part (short distance) of the small-diameter hole 131A outside the communication hole 133, it flows from the communication hole 133 to the suction side (suction port 161) of the upper cylinder 38. That is, the refrigerant in the sealed container 12 smoothly reaches the communication hole 133 through the large-diameter hole portion 131B having a larger diameter than the small-diameter hole portion 131A, so that the oil amount into the upper cylinder 38 is also limited by this. It becomes a shape.

尚、前述したように電動要素14をインバータにより制御する場合、コンプレッサ始動時には低速にて起動されるように回転数を制御されるので、ロータリコンプレッサ10の始動時には、貫通孔131から密閉容器12内底部のオイル溜めOLからオイルを吸い込んでも、液圧縮による悪影響は抑制される。   As described above, when the electric element 14 is controlled by the inverter, the rotation speed is controlled so that it is started at a low speed when the compressor is started. Even if oil is sucked in from the oil reservoir OL at the bottom, adverse effects due to liquid compression are suppressed.

そして、この場合冷媒としては地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である前記二酸化炭素(CO2)を使用し、密閉容器12内に封入される潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等既存のオイルが使用される。 In this case, the refrigerant is environmentally friendly, uses the carbon dioxide (CO 2 ) which is a natural refrigerant in consideration of flammability and toxicity, and the oil as the lubricating oil enclosed in the sealed container 12 is For example, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.

密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路58、60、吐出消音室62及び上部カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。スリーブ141と142は上下に隣接すると共に、スリーブ143はスリーブ141の略対角線上にある。また、スリーブ144はスリーブ141と略90度ずれた位置にある。   On the side surface of the container main body 12A of the sealed container 12, the suction passages 58, 60 of the upper support member 54 and the lower support member 56, the upper side of the discharge silencer chamber 62, and the upper cover 66 (position substantially corresponding to the lower end of the electric element 14). The sleeves 141, 142, 143, and 144 are fixed by welding at positions corresponding to. The sleeves 141 and 142 are adjacent to each other vertically, and the sleeve 143 is substantially diagonal to the sleeve 141. Further, the sleeve 144 is located at a position shifted by approximately 90 degrees from the sleeve 141.

そして、スリーブ141内には上シリンダ38に冷媒ガスを導入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端は上シリンダ38の吸込通路58に連通される。この冷媒導入管92は密閉容器12の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて密閉容器12内に連通する。   One end of a refrigerant introduction pipe 92 for introducing refrigerant gas into the upper cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 is communicated with the suction passage 58 of the upper cylinder 38. The refrigerant introduction pipe 92 passes through the upper side of the sealed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to communicate with the sealed container 12.

また、スリーブ142内には下シリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端は下シリンダ40の吸込通路60に連通される。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62に連通される。   Also, one end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the lower cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 is communicated with the suction passage 60 of the lower cylinder 40. A refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 is communicated with the discharge silencer chamber 62.

以上の構成で次に動作を説明する。ターミナル20および図示されない配線を介して前記インバータより電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この場合の起動は前述した如く低速にて行われ、その後増速されていく。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。   Next, the operation of the above configuration will be described. When the stator coil 28 of the electric element 14 is energized from the inverter via the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. The start-up in this case is performed at a low speed as described above, and then the speed is increased. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.

これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して吸込ポート162から下シリンダ40の低圧室側に吸入された低圧(4MPaG)の冷媒ガスは、ローラ48と図示しないベーンの動作により圧縮されて中間圧(8MPaG)となり下シリンダ40の高圧室側より吐出ポート41、下部支持部材56に形成された吐出消音室64から連通路63を経て中間吐出管121から密閉容器12内に吐出される。   As a result, the low-pressure (4 MPaG) refrigerant gas sucked from the suction port 162 to the low-pressure chamber side of the lower cylinder 40 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the lower support member 56 is The intermediate pressure (8 MPaG) is compressed by the operation of a vane (not shown) from the high pressure chamber side of the lower cylinder 40 to the discharge port 41, from the discharge silencer chamber 64 formed in the lower support member 56, through the communication passage 63, and from the intermediate discharge pipe 121. It is discharged into the sealed container 12.

そして、密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て冷媒導入管92及び上部支持部材54に形成された吸込通路58を経由して吸込ポート161から上シリンダ38の低圧室側に吸入される。   The intermediate-pressure refrigerant gas in the sealed container 12 exits from the sleeve 144, passes through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54, and passes from the suction port 161 to the low pressure chamber side of the upper cylinder 38. Inhaled.

一方、ロータリコンプレッサ10が起動すると貫通孔131の大径孔部131Bの密閉容器12側の開口から侵入したオイルが連通孔133、連通孔134を経て第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入される。そして、上シリンダ38の低圧室側に吸入された中間圧の冷媒ガスとオイルは、ローラ46と図示しないベーンの動作により2段目の圧縮が行なわれる。そこで、冷媒ガスは高温高圧となる(12MPaG)。   On the other hand, when the rotary compressor 10 is activated, oil that has entered from the opening on the closed container 12 side of the large-diameter hole 131B of the through hole 131 passes through the communication hole 133 and the communication hole 134, and the upper cylinder 38 of the second rotary compression element 34 is Inhaled into the low-pressure chamber. The intermediate pressure refrigerant gas and oil sucked into the low pressure chamber side of the upper cylinder 38 are compressed in the second stage by the operation of the roller 46 and a vane (not shown). Therefore, the refrigerant gas becomes a high temperature and a high pressure (12 MPaG).

この場合、中間圧の冷媒ガスと共に、貫通孔131の大径孔部131Bの密閉容器12側の開口から侵入したオイルも圧縮されるが、ロータリコンプレッサ10はインバータにより起動時は低速にて運転されるように回転数が制御されているため、トルクも小さいので、オイル圧縮してもロータリコンプレッサ10に与える影響は殆ど無く、通常の運転が行われる。   In this case, the oil that has entered through the opening on the closed container 12 side of the large-diameter hole 131B of the through-hole 131 is also compressed together with the refrigerant gas at the intermediate pressure, but the rotary compressor 10 is operated at a low speed when activated by the inverter. Since the rotational speed is controlled so that the torque is small, there is almost no influence on the rotary compressor 10 even if oil compression is performed, and normal operation is performed.

そして、所定の制御パターンにて回転数が上昇されていき、最終的に電動要素14は所望の回転数にて運転される。運転中の油面は貫通孔131より下側となるが、前記貫通孔131の小径孔部131Aから連通孔133及び連通孔134を経て第2の回転圧縮要素34の吸込側への給油が行われるため、第2の回転圧縮要素34の摺動部のオイル不足を回避することができる。   Then, the rotational speed is increased in a predetermined control pattern, and finally the electric element 14 is operated at a desired rotational speed. The oil level during operation is below the through hole 131, but oil is supplied from the small diameter hole 131 </ b> A of the through hole 131 to the suction side of the second rotary compression element 34 through the communication hole 133 and the communication hole 134. Therefore, the shortage of oil in the sliding portion of the second rotary compression element 34 can be avoided.

以上の如く、各回転圧縮要素32、34をそれぞれ構成するためのシリンダ38、40と、各シリンダ38、40内に設けられ、回転軸16の偏心部42、44に嵌合されて偏心回転するローラ46、48と、各シリンダ38、40及び各ローラ46、48の間に介在して各回転圧縮要素32、34を仕切る中間仕切板36と、回転軸16に形成されたオイル孔13と、中間仕切板36に形成され、内側のオイル孔13側と、外側の密閉容器12側とに開口する貫通孔131と、中間仕切板36に形成され、貫通孔131と第2の回転圧縮要素34の吸込側とを連通するための連通孔133とを備えた内部中間圧型多段圧縮式のロータリコンプレッサ10において、貫通孔131を、オイル孔13側の小径孔部131Aと、密閉容器12側で小径孔部131Aより径が大きい大径孔部131Bとから構成し、連通孔133を、小径孔部131Aに連通させたので、回転軸16のオイル孔13と第2の回転圧縮要素34の吸込側とが貫通孔131の小径孔部131Aと連通孔133とで連通されることになり、第2の回転圧縮要素34の吸込側に流入するオイル量を制限して、第2の回転圧縮要素34への過剰なオイル供給を解消することができるようになる。   As described above, the cylinders 38 and 40 for configuring the rotary compression elements 32 and 34 and the cylinders 38 and 40, respectively, are fitted into the eccentric portions 42 and 44 of the rotary shaft 16 and rotate eccentrically. Rollers 46, 48, intermediate partition plates 36 that partition between the rotary compression elements 32, 34 interposed between the cylinders 38, 40 and the rollers 46, 48, and the oil holes 13 formed in the rotary shaft 16, A through hole 131 formed in the intermediate partition plate 36 and opened to the inner oil hole 13 side and the outer sealed container 12 side, and formed in the intermediate partition plate 36, the through hole 131 and the second rotary compression element 34. In the internal intermediate pressure type multi-stage compression rotary compressor 10 having a communication hole 133 for communicating with the suction side, the through hole 131 is connected to the small diameter hole part 131A on the oil hole 13 side and the closed container 12 side. The large-diameter hole portion 131B having a larger diameter than the radial hole portion 131A and the communication hole 133 communicated with the small-diameter hole portion 131A, so that the oil hole 13 of the rotary shaft 16 and the second rotary compression element 34 are sucked in. Side is communicated with the small-diameter hole portion 131A of the through-hole 131 and the communication hole 133, the amount of oil flowing into the suction side of the second rotary compression element 34 is limited, and the second rotary compression element The excessive oil supply to 34 can be eliminated.

また、密閉容器12内には大径孔部131Bが開口するかたちとなり、この大径孔部131Bより密閉容器12内の冷媒が円滑に貫通孔131に流入し、連通孔133に入ることになるので、この密閉容器12内からの冷媒によっても、第2の回転圧縮要素34へのオイルの量が効果的に制限されることになる。   In addition, a large-diameter hole 131B is opened in the sealed container 12, and the refrigerant in the sealed container 12 smoothly flows into the through-hole 131 from this large-diameter hole 131B and enters the communication hole 133. Therefore, the amount of oil to the second rotary compression element 34 is also effectively limited by the refrigerant from the inside of the sealed container 12.

この場合、貫通孔の全ての径を縮小するのでは無く、密閉容器12側は大径孔部131Bとされているので、中間仕切板36に貫通孔131を穿設する加工性の悪化も最小限に抑えられる。特に、中間仕切板36の外側から当該中間仕切板36の径方向における中途部まで大径孔部131Bを穿設した後、当該大径孔部131Bの終端より小径孔部131Aを穿設しているので、切削加工のための径の異なるドリルを二種類用意しておき、大径のドリルにて先ず中間仕切板36の外側から大径孔部131Bを切削した後、小径のドリルをこの大径孔部131B内に挿入し、その終端から小径孔部131Aを切削加工すればよくなり、加工性が著しく向上する。   In this case, not all the diameters of the through-holes are reduced, but the closed container 12 side has a large-diameter hole portion 131B. Therefore, the deterioration of workability for forming the through-hole 131 in the intermediate partition plate 36 is also minimized. It can be suppressed to the limit. In particular, after the large-diameter hole 131B is drilled from the outside of the intermediate partition plate 36 to the midway portion in the radial direction of the intermediate partition plate 36, the small-diameter hole 131A is drilled from the end of the large-diameter hole 131B. Therefore, two types of drills with different diameters for cutting work are prepared, and after cutting the large-diameter hole 131B from the outside of the intermediate partition plate 36 with a large-diameter drill, the small-diameter drill is It is only necessary to insert into the diameter hole portion 131B and to cut the small diameter hole portion 131A from the end, and the workability is remarkably improved.

この加工性の向上、並びに、小径部131Aから連通孔133を介しての上シリンダ38へのオイルの過剰な供給の解消や大径部131Bにかかる中間圧の冷媒の適切な制御を鑑みれば、小径部131Aにおける連通部133の位置にもよるが、貫通孔131の全長L1と、小径部131Aの長さL2及び径D1と、大径部131Bの径D2との関係は、小径部131Aの径D1は、大径部131Bの径D2に対して10%以上80%以下、また、小径部131Aの長さL2は、小径部131Aの径D1に対して圧力損失が一定となるように、貫通孔131の全長L1に対して10%以上90%以下、が良いと考えられる。   In view of this workability improvement, elimination of excessive supply of oil from the small diameter part 131A to the upper cylinder 38 through the communication hole 133, and appropriate control of the intermediate pressure refrigerant applied to the large diameter part 131B, Depending on the position of the communication part 133 in the small diameter part 131A, the relationship between the total length L1 of the through hole 131, the length L2 and the diameter D1 of the small diameter part 131A, and the diameter D2 of the large diameter part 131B is the same as that of the small diameter part 131A. The diameter D1 is 10% to 80% with respect to the diameter D2 of the large diameter portion 131B, and the length L2 of the small diameter portion 131A is such that the pressure loss is constant with respect to the diameter D1 of the small diameter portion 131A. It is considered that 10% or more and 90% or less with respect to the total length L1 of the through hole 131 is good.

即ち、貫通孔131の小径部131Aの径D1を、大径部131Bの径D2に対して10%以上80%以下とすること、並びに小径部131Aの長さL2を貫通孔131の全長L1に対して10%以上90%以下とすることで、第2の回転圧縮要素34への過剰なオイル供給の解消と大径部131Bにかかる中間圧の冷媒(密閉容器12内)の適切な制御を実現することが可能となる。   That is, the diameter D1 of the small diameter part 131A of the through hole 131 is set to 10% or more and 80% or less with respect to the diameter D2 of the large diameter part 131B, and the length L2 of the small diameter part 131A is set to the full length L1 of the through hole 131. On the other hand, by setting it to 10% or more and 90% or less, it is possible to eliminate excessive oil supply to the second rotary compression element 34 and to appropriately control the intermediate pressure refrigerant (in the sealed container 12) applied to the large diameter portion 131B. It can be realized.

尚、本実施例では中間仕切板36と回転軸16との間に形成された隙間の上側がローラ46内側と連通しており、下側がローラ48内側と連通しているものとしたが、これに限らず、中間仕切板36と回転軸16との間に形成された隙間の上側のみがローラ46内側と連通している場合(下側がローラ48内側と連通していない場合)であっても良い。また、ローラ46内側及びローラ48内側が中間仕切板36によって仕切られている場合であっても構わない。この場合であっても、中間仕切板の貫通孔131の小径孔部131Aの中途部にローラ46内側と連通する軸心方向の孔を形成することにより、給油孔82から第2の回転圧縮要素32の吸込側にオイルを供給することができる。   In the present embodiment, the upper side of the gap formed between the intermediate partition plate 36 and the rotating shaft 16 communicates with the inside of the roller 46, and the lower side communicates with the inside of the roller 48. Not only, but only when the upper side of the gap formed between the intermediate partition plate 36 and the rotary shaft 16 communicates with the inside of the roller 46 (when the lower side does not communicate with the inside of the roller 48). good. The inner side of the roller 46 and the inner side of the roller 48 may be partitioned by the intermediate partition plate 36. Even in this case, by forming a hole in the axial direction communicating with the inside of the roller 46 in the middle portion of the small diameter hole portion 131A of the through hole 131 of the intermediate partition plate, the second rotational compression element is formed from the oil supply hole 82. Oil can be supplied to the 32 suction side.

また、本実施例ではロータリコンプレッサを第1及び第2の回転圧縮要素を備えた2段圧縮式ロータリコンプレッサで説明したが、これに限らず、回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。   In this embodiment, the rotary compressor has been described as a two-stage compression rotary compressor including the first and second rotary compression elements. However, the rotary compressor is not limited to this, and the rotary compression elements may be three stages, four stages or more. The present invention can be applied to a multistage compression rotary compressor having a rotary compression element.

OL オイル溜め
10 ロータリコンプレッサ
12 密閉容器
13 オイル孔
14 電動要素
16 回転軸
18 回転圧縮機構部
22 ステータ
24 ロータ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
54 上部支持部材
56 下部支持部材
82、84 給油孔
131 貫通孔
131A 小径孔部
131B 大径孔部
133 連通孔
134 連通孔
OL Oil sump 10 Rotary compressor 12 Sealed container 13 Oil hole 14 Electric element 16 Rotating shaft 18 Rotation compression mechanism 22 Stator 24 Rotor 32 First rotation compression element 34 Second rotation compression element 36 Intermediate partition plates 38 and 40 Cylinder 54 Upper support member 56 Lower support member 82, 84 Oil supply hole 131 Through hole 131A Small diameter hole part 131B Large diameter hole part 133 Communication hole 134 Communication hole

Claims (3)

密閉容器内に駆動要素の回転軸にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、
前記各回転圧縮要素をそれぞれ構成するためのシリンダと、
各シリンダ内に設けられ、前記回転軸の偏心部に嵌合されて偏心回転するローラと、
前記各シリンダ及び前記各ローラの間に介在して前記各回転圧縮要素を仕切る中間仕切板と、
前記各シリンダの開口面をそれぞれ閉塞し、前記回転軸の軸受けを有する支持部材と、
前記回転軸に形成されたオイル孔と、
前記中間仕切板に形成され、内側の前記オイル孔側と、外側の前記密閉容器側とに開口する貫通孔と、
前記中間仕切板に形成され、前記貫通孔と前記第2の回転圧縮要素の吸込側とを連通するための連通孔とを備え、
前記貫通孔は、前記オイル孔側の小径孔部と、前記密閉容器側で前記小径孔部より径が大きい大径孔部とから成り、
前記連通孔は、前記小径孔部に連通していることを特徴とするロータリコンプレッサ。
First and second rotary compression elements driven by the rotary shaft of the drive element are provided in the sealed container, and the refrigerant gas compressed by the first rotary compression element is discharged into the sealed container. In the rotary compressor for compressing the discharged intermediate-pressure refrigerant gas by the second rotary compression element,
A cylinder for constituting each of the rotary compression elements;
A roller provided in each cylinder and fitted in an eccentric portion of the rotary shaft to rotate eccentrically;
An intermediate partition plate that is interposed between the cylinders and the rollers and partitions the rotary compression elements;
A support member that closes the opening surface of each cylinder and has a bearing for the rotating shaft;
An oil hole formed in the rotating shaft;
A through hole formed in the intermediate partition plate and opened to the inner oil hole side and the outer sealed container side;
Formed in the intermediate partition plate, and provided with a communication hole for communicating the through hole and the suction side of the second rotary compression element,
The through-hole is composed of a small-diameter hole portion on the oil hole side and a large-diameter hole portion having a diameter larger than that of the small-diameter hole portion on the closed container side,
The rotary compressor is characterized in that the communication hole communicates with the small diameter hole portion.
前記小径部の径は、前記大径部の径に対して10%以上80%以下であることを特徴とする請求項1に記載のロータリコンプレッサ。   2. The rotary compressor according to claim 1, wherein a diameter of the small diameter portion is 10% or more and 80% or less with respect to a diameter of the large diameter portion. 前記小径部の長さは、前記貫通孔の全長に対して10%以上90%以下であることを特徴とする請求項1又は請求項2に記載のロータリコンプレッサ。   3. The rotary compressor according to claim 1, wherein a length of the small diameter portion is 10% or more and 90% or less with respect to a total length of the through hole.
JP2013203527A 2013-09-30 2013-09-30 Rotary compressor Pending JP2015068262A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013203527A JP2015068262A (en) 2013-09-30 2013-09-30 Rotary compressor
CN201410515395.9A CN104514720A (en) 2013-09-30 2014-09-29 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203527A JP2015068262A (en) 2013-09-30 2013-09-30 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2015068262A true JP2015068262A (en) 2015-04-13

Family

ID=52790478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203527A Pending JP2015068262A (en) 2013-09-30 2013-09-30 Rotary compressor

Country Status (2)

Country Link
JP (1) JP2015068262A (en)
CN (1) CN104514720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190029726A (en) * 2016-09-18 2019-03-20 그린 레프리저레이션 이큅먼트 엔지니어링 리서치 센터 오브 주하이 그리 씨오., 엘티디. Crankshaft, pump body component, and compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105386979A (en) * 2015-12-07 2016-03-09 珠海凌达压缩机有限公司 Compressor pump body and compressor with same
CN108626127B (en) * 2017-03-24 2019-11-19 上海海立电器有限公司 A kind of compressor
KR102339600B1 (en) * 2017-05-26 2021-12-15 엘지전자 주식회사 Rotary compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108165A (en) * 2002-09-13 2004-04-08 Sanyo Electric Co Ltd Rotary compressor
JP2004337997A (en) * 2003-05-13 2004-12-02 Mitsubishi Materials Corp Stepped deep hole machining method and stepped drill
JP2006257960A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Hermetic compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176796A (en) * 2001-12-11 2003-06-27 Sanyo Electric Co Ltd Rotary compressor
US7223082B2 (en) * 2003-03-25 2007-05-29 Sanyo Electric Co., Ltd. Rotary compressor
JP3935854B2 (en) * 2003-03-25 2007-06-27 三洋電機株式会社 Rotary compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004108165A (en) * 2002-09-13 2004-04-08 Sanyo Electric Co Ltd Rotary compressor
JP2004337997A (en) * 2003-05-13 2004-12-02 Mitsubishi Materials Corp Stepped deep hole machining method and stepped drill
JP2006257960A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Hermetic compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190029726A (en) * 2016-09-18 2019-03-20 그린 레프리저레이션 이큅먼트 엔지니어링 리서치 센터 오브 주하이 그리 씨오., 엘티디. Crankshaft, pump body component, and compressor
KR102253538B1 (en) * 2016-09-18 2021-05-17 그린 레프리저레이션 이큅먼트 엔지니어링 리서치 센터 오브 주하이 그리 씨오., 엘티디. Crankshaft, pump body component, and compressor
US11280337B2 (en) 2016-09-18 2022-03-22 Green Refrigeration Equipment Engineering Research Center Of Zhuhai Gree Co., Ltd. Pump body assembly and compressor having crank shaft with eccentric components, disc partition plate, and annular partition plate

Also Published As

Publication number Publication date
CN104514720A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP4780971B2 (en) Rotary compressor
JP2009127614A (en) Scroll fluid machine and method of manufacturing the same
JP2015068262A (en) Rotary compressor
JP2007064045A (en) Hermetic electric compressor
EP1462656B1 (en) Rotary piston compressor
JP5199863B2 (en) Rotary compressor
JP4307945B2 (en) Horizontal rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP3935855B2 (en) Rotary compressor
JP2005105986A (en) Vertical rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP4136747B2 (en) Rotary compressor
JP4118109B2 (en) Rotary compressor
JP3935854B2 (en) Rotary compressor
JP5598917B2 (en) Rotary compressor
JP2007270638A (en) Compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP4225793B2 (en) Horizontal type compressor
CN113250962B (en) Rotary compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP2005256709A (en) Lateral rotary compressor and air conditioner for vehicle
JP2013124616A (en) Fluid machine
JP2004092469A (en) Rotary compressor
WO2021193275A1 (en) Horizontal rotary compressor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171121