WO2018194294A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2018194294A1
WO2018194294A1 PCT/KR2018/003884 KR2018003884W WO2018194294A1 WO 2018194294 A1 WO2018194294 A1 WO 2018194294A1 KR 2018003884 W KR2018003884 W KR 2018003884W WO 2018194294 A1 WO2018194294 A1 WO 2018194294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
refrigerant
discharge port
bypass
compression
Prior art date
Application number
PCT/KR2018/003884
Other languages
French (fr)
Korean (ko)
Inventor
강승민
신진웅
노기율
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880025859.4A priority Critical patent/CN110520624B/en
Publication of WO2018194294A1 publication Critical patent/WO2018194294A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the present invention relates to a rotary compressor for compressing a refrigerant sucked into a compression space of a cylinder and then discharging it.
  • the compressor is applied to a vapor compression refrigeration cycle such as a refrigerator or an air conditioner.
  • the compressor may be classified into an indirect suction method and a direct suction method according to a method of sucking refrigerant into a compression chamber.
  • the indirect suction method is a method in which the refrigerant circulating the refrigeration cycle is sucked into the compression chamber after entering the inner space of the compressor
  • the direct suction method is a method in which the refrigerant is directly sucked into the compression chamber, unlike the indirect suction method.
  • the indirect suction method may be referred to as a low pressure compressor
  • the direct suction method may be referred to as a high pressure compressor.
  • the high pressure compressor In the low pressure compressor, since a refrigerant is first introduced into the internal space of the compressor, liquid refrigerant or oil is filtered out of the internal space of the compressor case, and thus no separate accumulator is provided. In contrast, in order to prevent liquid refrigerant or oil from flowing into the compression chamber, the high pressure compressor is usually provided with an accumulator on the suction side of the compression chamber.
  • the compressor may be classified into a rotary type and a reciprocating type according to a method of compressing a refrigerant.
  • a rotary compressor is a method of changing the volume of the compression space while rotating or turning in a rolling piston (hereinafter referred to as a roller).
  • a reciprocating compressor is used to change the volume of the compression space while the rolling piston reciprocates in a cylinder. That's the way.
  • the rotary compressor there is a rotary compressor that compresses the refrigerant by using the rotational force of the electric drive.
  • the rotary compressor includes a drive motor and a compression unit inside the case forming an exterior, and compresses and discharges the sucked refrigerant.
  • the drive motor is composed of a rotor and a stator in the order of the rotation axis. When power is applied to the stator, the rotor rotates the rotating shaft while rotating inside the stator.
  • the compression unit includes a cylinder forming a compression space, a rolling piston (hereinafter referred to as a roller) coupled to the rotating shaft, and a vane that divides the compression space into a suction chamber and a compression chamber.
  • a rolling piston hereinafter referred to as a roller
  • a roller Inside the cylinder, there is provided a roller that rotates about a rotating shaft and forms a plurality of compression spaces together with the vanes.
  • the roller is in concentric rotation with the axis of rotation.
  • the outer circumferential surface of the roller is provided with a plurality of vane slots radially, each vane is slid from the vane slot to protrude.
  • Each vane protrudes from the vane slot and comes into close contact with the inner circumferential surface of the cylinder by the back pressure of the oil formed at the rear end and the centrifugal force by the rotation of the roller, thereby compressing the refrigerant contained in the inner space of the cylinder. That is, the refrigerant flowing into the suction chamber may be compressed to a predetermined pressure by vanes moving along the inner circumferential surface of the cylinder, and then discharged to the refrigeration cycle apparatus through the discharge pipe.
  • the vane moves along the inner circumferential surface of the cylinder to form a continuous compression mechanism, so that the pressure of the sucked refrigerant quickly reaches the discharge pressure.
  • overcompression loss occurs as the refrigerant is compressed to a pressure greater than the pressure to be compressed. Overcompression of the refrigerant causes unnecessary compression loss, reduces compressor efficiency, and causes mechanical breakage.
  • Conventional rotary compressors use a method of bypassing and discharging a part of the compressed refrigerant through the side of the cylinder, or use a method of increasing the diameter of the discharge port to prevent overcompression of the refrigerant in the compression space.
  • An object of the present invention is to prevent the over-compression of the refrigerant by preventing a rapid rise in pressure due to the compression of the refrigerant in the compression space, thereby to propose a structure of a compressor that can increase the compression efficiency by reducing the compression loss It is for.
  • One object of the present invention is to limit the rise of the refrigerant contained in the compression space to a pressure higher than the desired pressure.
  • An object of the present invention is to limit the pressure formed in the compression chamber to rise above a certain pressure by bypassing a part of the high pressure refrigerant compressed in the compression space.
  • the present invention is to propose a structure of a compressor that can reduce the speed at which the compressed refrigerant is discharged through the discharge port.
  • the rotary compressor according to the present invention includes a drive motor generating a rotational force in the case, a rotation shaft coupled with the driving motor to transmit the rotational force, and a main bearing and a sub-bearing installed along the rotational shaft. And a cylinder fixedly installed between the main bearing and the sub-bearing, the refrigerant being accommodated in the center portion, and having a suction port and a discharge port respectively formed in a radial direction, and extending at one end of the discharge port on an inner circumferential surface of the cylinder. And a discharge port groove is formed to increase the flow rate of the compressed refrigerant. By the discharge port groove, it is possible to obtain the effect that the movement passage of the compressed refrigerant is expanded.
  • the cylinder has a bypass port positioned in front of the discharge port based on the direction in which the refrigerant is compressed so that an end portion of the bypass port is extended so that the flow rate of the moving refrigerant increases.
  • Bypass grooves may be formed. By the bypass groove, it is possible to obtain the effect of expanding the passage through which the compressed refrigerant can move.
  • a bypass hole may be formed in the main bearing and the sub bearing so as to communicate with the inner space of the case at a position overlapping with the compression space.
  • the refrigerant compressed by the discharge port groove formed at the end of the discharge port can be discharged, and the refrigerant contained in the compression chamber can be prevented from being overcompressed, so that the compressor can be instructed.
  • the loss can be reduced.
  • the overcompression of the refrigerant is prevented, the force acting on the side of the vane is reduced, so that the impact or wear of the vane with the vane slot can be reduced.
  • bypass port groove formed at the end of the bypass port a part of the compressed refrigerant can be discharged, thereby preventing overcompression of the refrigerant in the compression chamber. Accordingly, it is possible to reduce the command loss of the compressor and to reduce the force acting on the side of the vane, thereby reducing the impact or wear of the vane with the vane slot.
  • the pressure of the refrigerant can be prevented from rising excessively in the compression chamber, and the loss due to the overcompression of the refrigerant can be reduced.
  • partially discharging the compressed refrigerant it is possible to limit the increase in the discharge speed of the refrigerant at the discharge port, and to reduce the loss due to the discharge.
  • FIG. 1 is a cross-sectional view showing the inside of a rotary compressor.
  • FIG. 2 is an enlarged view of the inside of the rotary compressor of FIG. 1.
  • FIG. 2 is an enlarged view of the inside of the rotary compressor of FIG. 1.
  • 3 is a plan view showing a state of the compression unit.
  • FIG. 4 is a perspective view showing a state of a cylinder installed in a rotary compressor according to the present invention.
  • (A), (b), (c) is an enlarged view which shows the state of a discharge port and a discharge port groove.
  • FIG. 6 is a perspective view showing a state of the cylinder 133.
  • FIG. 7 is a conceptual view showing a state in which reaction force is formed on the vane.
  • FIG. 9 is a plan view of the compression unit viewed from above.
  • FIG. 10 is a view showing a state of a discharge valve formed in the bypass hole.
  • 11 is a graph showing the effect of the bypass hole.
  • FIG. 1 is a cross-sectional view showing the inside of the rotary compressor 100.
  • the rotary compressor 100 includes a case 110, a drive motor 120, and a compression unit 130.
  • the case 110 may form an outer shape, may have a cylindrical shape extending along one direction, and may be formed along an extending direction of the rotation shaft 123.
  • a cylinder 133 is formed to form the compression spaces V1 and V2 such that the sucked refrigerant is compressed and then discharged.
  • the case 110 is composed of an upper shell 110a, an intermediate shell 110b and a lower shell 110c.
  • the drive motor 120 and the compression unit 130 may be fixedly installed on the inner surface of the intermediate shell 110b, and the upper and lower shells 110a and 110c are respectively disposed on the upper and lower portions of the intermediate shell 110b. Positioned to limit the external exposure of components located therein.
  • the compression unit 130 serves to compress and discharge the refrigerant, and includes a roller 134, a vane 135, a cylinder 133, a main bearing 131, and a sub bearing 132.
  • the drive motor 120 is positioned above the compression unit 130 and serves to provide power for compressing the refrigerant.
  • the drive motor 120 includes a stator 121, a rotor 122, and a rotation shaft 123.
  • the stator 121 is installed to be fixed to the inside of the case 110 and may be mounted on the inner circumferential surface of the cylindrical case 110 by shrinking. In addition, the stator 121 may be positioned to be fixed to the inner peripheral surface of the intermediate shell (110b).
  • the rotor 122 may be spaced apart from the stator 121 and may be disposed inside the stator 121.
  • the rotor 122 When power is applied to the stator 121, the rotor 122 is rotated by a force generated according to a magnetic field formed between the stator 121 and the rotor 122, and penetrates the center of the rotor 122. The rotational force is transmitted to the rotating shaft 123.
  • a suction port 133a is installed at one side of the intermediate shell 110b, and a discharge pipe 114 is installed at one side of the upper shell 110a to allow the refrigerant to flow out from the inside of the case 110.
  • the suction port 133a communicates with the suction pipe 113 and the case 110 from an evaporator (not shown) forming a refrigeration cycle, and the discharge port (not shown) is connected with the discharge pipe 114 and the case from a condenser (not shown). It will communicate (110).
  • the compression unit 130 installed inside the case 110 compresses the sucked refrigerant and discharges the compressed refrigerant. Intake and discharge of the refrigerant are performed in the cylinder 133 forming the compression spaces V1 and V2.
  • the rotary compressor 100 has a structure in which an end portion of the discharge port 133b is expanded in the process of compressing and discharging the refrigerant flowing through the suction port 133a formed in the cylinder 133. By having this, the compressed refrigerant can be discharged more smoothly.
  • FIG. 2 is an enlarged view of the inside of the rotary compressor 100 of FIG. 1
  • FIG. 3 is a plan view illustrating the compression unit 130.
  • a roller 134 is formed inside the cylinder 133 to rotate about the rotation shaft 123 and to form the compression spaces V1 and V2 while contacting the inner circumferential surface 133a of the cylinder 133.
  • the roller 134 is installed on an eccentric portion (not shown) formed on the rotation shaft 123, and the roller 134 rotates while forming one contact point P between the inner circumferential surfaces of the cylinder 133.
  • the roller 134 is positioned inside the cylinder 133 so that one side is in contact with the inner circumferential surface of the cylinder 133, and rotates together with the rotation shaft 123 to compress the spaces V1 and V2 inside the cylinder 133. Will form.
  • the vane 135 is installed at one side of the cylinder 133.
  • the vanes 135 protrude into the compression spaces V1 and V2, and contact the outer circumferential surfaces of the roller 134 to form the compression spaces V1 and V2 inside the cylinder 133, respectively, in the suction chamber V1 and the compression chamber V2.
  • Will be partitioned into The vanes 135 may be formed of at least two or more pieces, and each vane 135 may be positioned inside the roller 134 and may be symmetric with each other.
  • each vane 135 moves while being in contact with the inner circumferential surface of the cylinder 133 while rotating together with the roller 134, and the space portion and the roller 134 formed at the center of the cylinder 133. Between the compression space (V) is formed.
  • the vane 135 moves, the refrigerant flowing from the suction port 133a is compressed and then moved along the discharge port 133b, and the discharge holes are formed in the main bearing 131 and the sub bearing 132, respectively. 143, 144 will be discharged along.
  • the present invention discharges in order of the bypass port 133c and the discharge port 133b formed in the cylinder 133 so as to reduce the mechanical loss due to overcompression of the refrigerant.
  • the ends of the discharge port 133b and the bypass port 133c are extended to have a structure capable of increasing the flow rate of the compressed refrigerant.
  • FIG 4 is a perspective view showing a state of the cylinder 133 installed in the rotary compressor 100 according to the present invention.
  • the cylinder 133 has a space portion in the center thereof, and forms compression spaces V1 and V2 between the rollers 134.
  • a suction port 133a Through which the refrigerant is sucked into the compression spaces V1 and V2 is formed, and the discharge for moving the compressed refrigerant along the moving direction of the vanes 135a, 135b, 135c.
  • the port 133b is formed.
  • Two discharge ports 133b may be formed on the inner circumferential surface of the cylinder 133 up and down.
  • the vanes 135a, 135b, and 135c protrude from the roller 134, and the front end portions of the vanes 135a, 135b, and 135c are in contact with the inner circumferential surface of the cylinder 133. It is possible to compress the sucked refrigerant while moving in contact.
  • the pressure of the refrigerant quickly reaches the discharge pressure by the movement of the vanes 135a, 135b, and 135c, and there is a problem in that an indication loss due to overcompression is increased. If the diameter of the discharge port 133b is increased, the discharge area can be enlarged compared to the capacity, and this may be considered. Since there is a problem that leakage between V1 and the compression chamber V2 occurs, the limit exists.
  • the rotary compressor 100 is configured to extend the end of the discharge port 133b through which the refrigerant compressed by the rotation of the vanes 135a, 135b, and 135c is discharged, and may increase the flow rate of the compressed refrigerant. And a discharge port groove 133b '.
  • the discharge port groove 133b ' may be formed to be recessed along the inner circumferential surface of the cylinder. Accordingly, by separately forming a moving flow path of the refrigerant communicating with the hole of the discharge port 133b, discharge of the compressed refrigerant may be performed. It can be done more smoothly.
  • 5A, 5B, and 5C are enlarged views showing the state of the discharge port 133b and the discharge port groove 133b '.
  • the discharge port groove 133b ' has an inner circumferential surface of the cylinder 133 so as to extend the end of the discharge port 133b in order to solve the problem that the diameter of the discharge port 133b is limited by the width of the vane 135.
  • the shape is recessed along, so as to increase the moving flow rate of the refrigerant.
  • the discharge port groove 133b ' is formed to extend the end of the discharge port 133b at the start of the discharge port 133b.
  • the discharge port groove 133b ' may be formed in the shape of a groove having a constant depth along the shape of the inner circumferential surface of the cylinder 133.
  • the discharge port groove 133b ′ may be formed to have a height greater than the height of the discharge port 133b, and may have a width larger than the diameter of the discharge port 133b.
  • the discharge port groove 133b ' may be formed along a direction in which the vane 135 moves in one end of the discharge port 133b, and extends along an inner circumferential surface of the cylinder 133 on one side of the discharge port 133b. Can be.
  • the discharge port groove 133b ' may be formed to overlap some or all of the ends of the discharge port 133b.
  • (A) and (b) of FIG. 5 have a shape in which the end portion of the discharge port 133b and the discharge port groove 133b 'overlap with each other, and (c) the end portion and the discharge port groove of the discharge port 133b. The shape so that all of 133b 'may overlap is shown.
  • the flow rate at which the refrigerant compressed in the compression chamber V2 can move through the discharge port groove 133b ' may be increased, thereby further increasing overcompression of the refrigerant. It can be effectively prevented.
  • the flow rate may be larger than that of the compressed refrigerant being discharged only by the discharge port 133b. It is possible to limit the sudden increase in the internal pressure of the.
  • FIG. 6 is a perspective view illustrating the cylinder 133.
  • the cylinder 133 has a space portion at the center thereof, and forms compression spaces V1 and V2 between the rollers 134.
  • a suction port 133a through which the refrigerant is sucked into the compression space is formed, and a discharge port 133b for moving the compressed refrigerant along the moving direction of the vane 135 is formed.
  • Two discharge ports 133b may be formed on the inner circumferential surface of the cylinder 133 up and down.
  • the cylinder 133 may further include a bypass port 133c positioned forward of the discharge port 133b based on the direction in which the refrigerant is compressed to discharge the compressed refrigerant.
  • the bypass port 133c partially discharges the refrigerant during compression, thereby limiting an increase in the internal pressure of the compression chamber V2.
  • the bypass port 133c is a part of the compressed refrigerant. By discharging, it is possible to prevent overcompression of the refrigerant.
  • the diameter of the bypass port 133c is limited by the width of the vane 135 so that leakage between the compression chamber V2 and the suction chamber V1 is prevented. Accordingly, the bypass port groove 133c 'may be formed on the inner circumferential surface of the cylinder 133 so that the end portion of the bypass port 133c is extended to increase the flow rate of the refrigerant.
  • the bypass port groove 133c ' may be formed to be recessed along the inner circumferential surface of the cylinder 133. Accordingly, by separately forming the moving flow path of the refrigerant communicating with the hole of the bypass port 133c, the compressed refrigerant can be smoothly discharged.
  • the bypass port groove 133c ′ may have a height greater than the height of the bypass port 133c, and may have a width larger than the diameter of the bypass port 133c.
  • the bypass port groove 133c ' may be formed along a direction in which the vane 135 moves in one end of the bypass port 133c, and extends along an inner circumferential surface of the cylinder 133 on one side of the bypass port 133c.
  • FIG. 6 only one bypass port 133c is formed in the cylinder 133, but one or more number of bypass ports 133c may be formed in the cylinder 133.
  • 133c ' may be formed.
  • FIG. 7 is a conceptual diagram illustrating how reaction force is formed in the vane 135.
  • the vane 135 protrudes by the rotation of the roller 134, and the front end of the vane 135 forms a compression of the refrigerant while contacting the inner circumferential surface of the cylinder 133.
  • the compression chamber (V2) is located in the front
  • the suction chamber (V1) is located in the rear. Since the pressure of the compression chamber V2 is higher than the pressure of the suction chamber V1, the force acting on the vane 135 by the pressure of the compression chamber V2 is the vane by the pressure of the suction chamber V1. Greater than the force acting on 135. That is, the side force Fp acts on the side of the vane 135 in the direction of the suction chamber from the compression chamber V2. By the side force Fp, the vanes 135 collide with the vane slots or cause large wear.
  • the side force Fp becomes larger at a position where the pressure in the compression chamber V2 rises sharply, and the force acting on the side of the vane 135 has a large pressure formed in the compression chamber V2. In this case, the side force Fp also becomes large.
  • the rotary compressor 100 includes a discharge port groove 133b 'configured to enlarge the area of the discharge port 133b, and a bypass port groove 133c' configured to enlarge the area of the bypass port 133c.
  • Each of these is formed, thereby preventing the overcompression phenomenon in which the pressure of the refrigerant in the compression chamber V2 rises above the set value. That is, the reaction force increases on the side surface of the vane 135 by preventing the pressure of the refrigerant formed in the compression chamber V2 from increasing more than necessary, thereby limiting the increase in the side force Fp formed on the side surface of the vane 135. You can stop doing so. As a result, the frictional loss of the side surface of the vane 135 can be reduced.
  • the horizontal axis represents the rotation angle of the rotation axis
  • the vertical axis represents the magnitude of reaction force formed on the side of the vane 135.
  • reaction force is formed by the side force Fp formed on the side of the vane 135.
  • the side force Fp formed on the side of the vane 135 increases from the compression start time at which compression is started to the discharge start time at which discharge is started. Specifically, the lateral force Fp increases between about 160 ° of compression start time and about 220 ° of discharge start time, and starts to decrease after 220 ° where bypass port 133c is formed.
  • the compression chamber (133b ') is formed to enlarge the area of the discharge port (133b) and the bypass port groove (133c') to enlarge the area of the bypass port (133c).
  • the overcompression phenomenon in which the pressure of the refrigerant at V2) rises above the set value can be prevented.
  • the side force (Fp) between approximately 220 ° point where the bypass port groove (133c ') is formed from approximately 260 ° point where the discharge port groove (133b') is formed.
  • the force acting on the side of the vane 135 is reduced, thereby reducing the frictional loss generated between the side of the vane 135 and the vane slot, thereby reducing the mechanical loss of the compressor.
  • FIG. 9 is a plan view of the compression unit viewed from above.
  • the compressor according to the present invention includes a bypass hole 140 capable of reducing an indication loss due to overcompression so as to reduce the pressure rise in the compression spaces V1 and V2.
  • the bypass hole 140 is formed at a position overlapping the compression space V of the main bearing 131 and the sub-bearing 132, and the vane 135 moves in contact with the inner circumferential surface of the cylinder 133. It serves to reduce the pressure of the refrigerant contained in the compression space (V1, V2) formed along. The refrigerant flowing out through the bypass hole 140 moves to the inner space of the case 10.
  • the compression unit 130 is formed by stacking the main bearing 131, the cylinder 133, and the sub bearing 132 in order from the top to the bottom.
  • the main bearing 131 and the cylinder 133, the sub-bearing 132 and the cylinder 133 may be screwed into the screw hole 143 and fixed.
  • the roller 134 is located in the inner space formed at the center of the cylinder 133, the vane 135 is in contact with the inner circumferential surface of the cylinder 133, the compression space between the roller 134 and the inner circumferential surface of the cylinder 133 (V) is formed.
  • the compression spaces V1 and V2 communicate with the suction port 133a, the bypass port 133c, and the discharge port 133b into which the refrigerant is introduced.
  • the roller 134 and the cylinder 133 have one contact point P.
  • FIG. An imaginary line connecting the contact point P and the center of the rotation shaft 123 is a reference line, and the angle at this time is referred to as 0 °.
  • the rotation angle means an angle measured in a counterclockwise direction between the reference line and a line connecting a specific position and the center of the rotation axis 123.
  • the position and the rotation axis 123 of the second vane 135b positioned at a predetermined angle apart from the first vane 135a forms an angle between approximately 160 ° and 165 °, which is called the compression start angle ⁇ .
  • the position of the end of the suction port 133a, which is the point at which suction is completed forms an angle between approximately 40 ° and 45 °.
  • bypass port 133c formed on the side surface of the cylinder 133 is formed at the point where the rotation angle is about 270 °, and the angle to the position of the start point of the bypass port 133c is called the discharge start time ⁇ . .
  • the bypass hole 140 may be formed at a position where the main bearing 131, the sub bearing 132, and the compression space V overlap each other.
  • the bypass hole 140 may be formed between the compression start time and the discharge start time.
  • the bypass hole 140 is located in an area between the angle of ⁇ , which is the compression start time, and the angle of ⁇ , which is the discharge start time.
  • the bypass hole 140 may be formed at a position between 160 ° and 270 ° based on the contact point P, and may overlap the compression space V.
  • the roller 134 installed on the rotating shaft 123 rotates counterclockwise, and the roller 134 is counterclockwise.
  • the refrigerant flowing into the compression space (V1, V2) of the cylinder 133 through the suction port 133a is located in the space formed between the inner circumferential surface of the cylinder 133 and each vane 135, the vane According to the movement of the 135, the gap between the outer circumferential surface of the roller 134 and the inner circumferential surface of the cylinder 133 may be narrowed and compression may be performed.
  • the compressed refrigerant partially flows out through the bypass port 133c, and finally moves along the discharge passage 142 by the movement of the vanes 135.
  • the compressed refrigerant may move, and overcompression may be prevented in the compression of the refrigerant due to the movement of the vane 135.
  • the bypass hole 140 is formed upward from the lower surface of the main bearing 131 to communicate the compression space V and the internal space of the case 10.
  • the bypass hole 140 is formed downward from the upper surface of the sub-bearing 132, it may be made to communicate the compression space (V1, V2) and the internal space of the case 10.
  • the bypass hole 140 may be formed at a position where the main bearing 131 and the compression space V, the sub bearing 132 and the compression spaces V1 and V2 overlap each other.
  • the bypass hole 140 may be formed of at least one or more pieces, and may be formed to be spaced apart from each other along an arc of a predetermined length.
  • the bypass hole 140 may be formed as a circular hole, the diameter of the bypass hole 140 should be smaller than the thickness of the vanes 135. This is because when the diameter of the bypass hole 140 is larger than the thickness of the vane 135, a leakage phenomenon occurs between the compression spaces V1 and V2 partitioned by the vanes 135.
  • FIG 10 is a view showing a state of the discharge valve 150 formed in the bypass hole.
  • the discharge valve 150 may be fixed to the upper surface of the main bearing 131 and the lower surface of the sub bearing 132, and may be formed to cover the bypass holes 140.
  • the discharge valve 150 may form the opening and closing of the bypass hole 140 by the pressure formed in the compression space (V).
  • the discharge valve 150 may have a number corresponding to the number of the bypass holes 140.
  • a plurality of discharge valves 150 may be formed to cover each bypass hole 140. In this case, each of the discharge valves 150 may be moved upward based on one end fixed by the pressure formed in each bypass hole 140.
  • 11 and 12 are graphs illustrating the effect of the bypass hole 140.
  • the rotary compressor according to the present invention in addition to the bypass port 133c and the discharge port 133b formed on one side of the inner peripheral surface of the cylinder 133 so as to communicate with the compression space (V1, V2), the main bearing 131 and Bypass holes 140 may be formed in the sub-bearings 132, respectively.
  • the vane 135 rotates in the compression direction, the refrigerant contained in the compression spaces V1 and V2 is compressed, and a portion of the refrigerant compressed in the compression spaces V1 and V2 is discharged through the bypass port 133c.
  • the compressed refrigerant is discharged through the discharge port 133b positioned beyond the bypass port 133c.
  • the flow rate of the compressed refrigerant moved through the discharge port 133b and the bypass port 133c may be increased by the discharge port groove 133b 'and the bypass port groove 133c', as described above. .
  • the bypass hole 140 may be formed in an area overlapping the compression spaces V1 and V2.
  • bypass hole 140 may be formed in plural, it is possible to bring about an effect of increasing the effective discharge area.
  • FIG. 11 is a graph showing the velocity of the mass flow rate of the refrigerant contained in the compression spaces V1 and V2.
  • the horizontal axis represents the rotation angle of the rotation axis
  • the vertical axis represents the velocity of the mass flow rate in the compression spaces V1 and V2.
  • the dotted line shows that the bypass hole 140 is not formed in each bearing
  • the solid line shows the case where the bypass hole 140 is formed in each bearing 131, 132.
  • the dotted line indicates the case where the bypass hole 140 does not exist, and the solid line indicates the case where the bypass hole 140 is formed.
  • the bypass hole 140 is formed in a region between the compression start time ⁇ and the discharge start time ⁇ , and may be formed between approximately 160 ° and 270 °.
  • the pressure in the compression chamber V2 is no longer increased to the maximum of approximately 22.5 kgf / cm ⁇ 2. Can be kept constant.
  • the bypass hole 140 some of the refrigerant whose pressure is increased may flow out, and thus the pressure of the compression chamber V2 may continuously increase to prevent the refrigerant from being overcompressed.
  • the present invention may be applied and applied in various industries for producing and using a compressor for compressing a refrigerant and then discharging it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The present invention relates to a compressor comprising: a driving motor; a rotary shaft; a main bearing and a sub bearing fixed to a case, and provided along the rotary shaft; a cylinder fixedly provided between the main bearing and the sub bearing, accommodating a refrigerant in the center portion thereof, and having a suction port and a discharge port respectively formed in the radial direction; a roller of which one side is positioned inside the cylinder so as to come in contact with the inner peripheral surface of the cylinder, and which rotates together with the rotary shaft so as to form a compression space inside the cylinder; and at least two vanes insertively provided in the roller, and protruding by the rotation of the roller so as to divide the compression space into a suction chamber and a compression chamber while coming in contact with the inner peripheral surface of the cylinder, wherein a discharge port groove, which is formed to expand the end portion of the discharge port and increases the flow rate of the compressed refrigerant, is formed at one side of the inner peripheral surface of the cylinder.

Description

로터리 압축기Rotary compressor
본 발명은 실린더의 압축공간에 흡입되는 냉매를 압축시킨 후 이를 토출하는 로터리 압축기에 관한 것이다.The present invention relates to a rotary compressor for compressing a refrigerant sucked into a compression space of a cylinder and then discharging it.
압축기는 냉장고나 에어컨과 같은 증기압축식 냉동사이클에 적용되는 것으로, 압축기는 냉매를 압축실로 흡입하는 방식에 따라 간접 흡입 방식과 직접 흡입 방식으로 구분될 수 있다.The compressor is applied to a vapor compression refrigeration cycle such as a refrigerator or an air conditioner. The compressor may be classified into an indirect suction method and a direct suction method according to a method of sucking refrigerant into a compression chamber.
간접 흡입 방식은 냉동사이클을 순환하는 냉매가 압축기의 케이스 내부공간으로 유입된 후 압축실로 흡입되는 방식이고, 직접 흡입 방식은 간접 흡입 방식과 달리 냉매가 직접 압축실로 흡입되는 방식이다. 간접 흡입 방식은 저압식 압축기로, 직접 흡입 방식은 고압식 압축기로 지칭될 수 있다.The indirect suction method is a method in which the refrigerant circulating the refrigeration cycle is sucked into the compression chamber after entering the inner space of the compressor, and the direct suction method is a method in which the refrigerant is directly sucked into the compression chamber, unlike the indirect suction method. The indirect suction method may be referred to as a low pressure compressor, and the direct suction method may be referred to as a high pressure compressor.
저압식 압축기는 냉매가 압축기의 케이스 내부공간으로 먼저 유입됨에 따라 액냉매나 오일이 압축기 케이스의 내부공간에서 걸러지므로 별도의 어큐뮬레이터가 구비되지 않는다. 이에 반해, 고압식 압축기는 압축실로 액냉매나 오일이 유입되는 것을 방지하기 위해 통상적으로 어큐뮬레이터가 압축실보다 흡입측에 구비되어 있게 된다.In the low pressure compressor, since a refrigerant is first introduced into the internal space of the compressor, liquid refrigerant or oil is filtered out of the internal space of the compressor case, and thus no separate accumulator is provided. In contrast, in order to prevent liquid refrigerant or oil from flowing into the compression chamber, the high pressure compressor is usually provided with an accumulator on the suction side of the compression chamber.
압축기는 냉매를 압축하는 방식에 따라 회전식과 왕복동식으로 구분할 수 있다.The compressor may be classified into a rotary type and a reciprocating type according to a method of compressing a refrigerant.
회전식 압축기는 롤링피스톤(이하 롤러라 한다.) 실린더에서 회전이나 선회운동을 하면서 압축공간의 체적을 가변시키는 방식이고, 왕복동식 압축기는 롤링피스톤이 실린더에서 왕복 운동을 하면서 압축공간의 체적을 가변시키는 방식이다.A rotary compressor is a method of changing the volume of the compression space while rotating or turning in a rolling piston (hereinafter referred to as a roller). A reciprocating compressor is used to change the volume of the compression space while the rolling piston reciprocates in a cylinder. That's the way.
*회전식 압축기로는, 전동부의 회전력을 이용하여 냉매를 압축하는 로터리 압축기가 있다.As the rotary compressor, there is a rotary compressor that compresses the refrigerant by using the rotational force of the electric drive.
최근에는 로터리 압축기를 점차 소형화하면서, 그 효율을 높이는 것이 주된 기술 개발의 목표가 되고 있다. 또한, 소형화된 로터리 압축기의 운전속도 가변 범위를 증대시킴으로써 더 큰 냉방 능력(Cooling Capacity)을 얻기 위한 연구가 지속적으로 이루어지고 있다.In recent years, increasing the efficiency while gradually reducing the size of the rotary compressor has been the goal of the main technology development. In addition, research has been continuously made to obtain a larger cooling capacity by increasing the operating speed variable range of a miniaturized rotary compressor.
로터리 압축기는 외관을 형성하는 케이스의 내부에 구동모터 및 압축유닛이 포함하며 흡입된 냉매를 압축한 후 토출하게 된다. 구동모터는 회전축을 중심으로 회전자와 고정자 순으로 이루어지며, 고정자에 전원이 인가되면 회전자는 고정자의 내부에서 회전하면서 회전축을 회전시키게 된다.The rotary compressor includes a drive motor and a compression unit inside the case forming an exterior, and compresses and discharges the sucked refrigerant. The drive motor is composed of a rotor and a stator in the order of the rotation axis. When power is applied to the stator, the rotor rotates the rotating shaft while rotating inside the stator.
압축유닛은 압축공간을 형성하는 실린더, 회전축에 결합되는 롤링피스톤(이하, 롤러) 및 압축공간을 흡입실과 압축실로 구획하는 베인으로 이루어진다.The compression unit includes a cylinder forming a compression space, a rolling piston (hereinafter referred to as a roller) coupled to the rotating shaft, and a vane that divides the compression space into a suction chamber and a compression chamber.
실린더의 내부에는, 회전축을 중심으로 회전하며 베인과 함께 복수개의 압축 공간을 형성하는 롤러가 설치된다. 롤러는 회전축과 동심 회전운동을 하게 된다.Inside the cylinder, there is provided a roller that rotates about a rotating shaft and forms a plurality of compression spaces together with the vanes. The roller is in concentric rotation with the axis of rotation.
롤러의 외주면에는 방사상으로 다수의 베인슬롯이 설치되고, 각 베인은 베인슬롯으로부터 슬라이딩되어 돌출된다. 각 베인은, 후단부에 형성되는 오일의 배압력과 롤러의 회전에 의한 원심력에 의해, 베인슬롯으로부터 돌출되어 실린더의 내주면과 밀착됨으로써 실린더의 내부 공간에서 수용된 냉매를 압축할 수 있게 된다. 즉, 흡입실로 유입되는 냉매는 실린더의 내주면을 따라 이동하는 베인에 의해 일정한 압력까지 압축된 후, 토출배관을 거쳐 냉동사이클 장치로 배출될 수 있다.The outer circumferential surface of the roller is provided with a plurality of vane slots radially, each vane is slid from the vane slot to protrude. Each vane protrudes from the vane slot and comes into close contact with the inner circumferential surface of the cylinder by the back pressure of the oil formed at the rear end and the centrifugal force by the rotation of the roller, thereby compressing the refrigerant contained in the inner space of the cylinder. That is, the refrigerant flowing into the suction chamber may be compressed to a predetermined pressure by vanes moving along the inner circumferential surface of the cylinder, and then discharged to the refrigeration cycle apparatus through the discharge pipe.
종래의 로터리 압축기는, 베인이 실린더의 내주면을 따라 이동하면서 연속적인 압축 메커니즘을 형성하므로 흡입된 냉매의 압력이 빠르게 토출 압력까지 도달하게 된다. 이 경우, 냉매는 압축하려는 압력보다 더 큰 압력으로 압축되면서 과압축손실이 발생하게 된다. 냉매의 과압축은 불필요한 압축 손실을 발생시키고 압축기의 효율을 저감시키며, 기계적 파손을 야기하는 문제점이 발생하게 된다.In the conventional rotary compressor, the vane moves along the inner circumferential surface of the cylinder to form a continuous compression mechanism, so that the pressure of the sucked refrigerant quickly reaches the discharge pressure. In this case, as the refrigerant is compressed to a pressure greater than the pressure to be compressed, overcompression loss occurs. Overcompression of the refrigerant causes unnecessary compression loss, reduces compressor efficiency, and causes mechanical breakage.
종래의 로터리 압축기는 실린더의 측면을 통해 압축된 냉매의 일부를 바이패스시켜 토출시키는 방법을 사용하거나, 압축공간에서 냉매의 과압축이 형성되는 것을 방지하도록 토출포트의 직경을 키우는 방법을 사용하였다.Conventional rotary compressors use a method of bypassing and discharging a part of the compressed refrigerant through the side of the cylinder, or use a method of increasing the diameter of the discharge port to prevent overcompression of the refrigerant in the compression space.
다만, 바이패스에 의하더라도 냉매의 과압축을 방지하는데 한계가 있으며, 토출포트의 직경을 키우더라도 베인의 두께보다는 작아야하므로 과압축에 따른 지시손실을 방지하는데 한계가 있다.However, there is a limit in preventing overcompression of the refrigerant even by bypass, and even though the diameter of the discharge port is increased, it must be smaller than the thickness of the vane.
본 발명의 일 목적은, 압축공간에서 냉매의 압축으로 인한 압력이 빠르게 상승하는 것을 막아 냉매의 과압축이 방지하며, 이로 인해 압축 손실을 저감시킴으로써 압축 효율을 상승시킬 수 있는 압축기의 구조를 제안하기 위한 것이다.An object of the present invention is to prevent the over-compression of the refrigerant by preventing a rapid rise in pressure due to the compression of the refrigerant in the compression space, thereby to propose a structure of a compressor that can increase the compression efficiency by reducing the compression loss It is for.
본 발명의 일 목적은, 압축 공간에 수용된 냉매가 원하는 압력보다 더 높은 압력으로 상승되는 것을 제한하기 위한 것이다.One object of the present invention is to limit the rise of the refrigerant contained in the compression space to a pressure higher than the desired pressure.
본 발명의 일 목적은, 압축공간의 내부에서 압축된 고압의 냉매 일부를 바이패스시킴으로써, 압축실에 형성되는 압력이 일정한 압력 이상으로까지 상승하는 것을 제한하기 위한 것이다.An object of the present invention is to limit the pressure formed in the compression chamber to rise above a certain pressure by bypassing a part of the high pressure refrigerant compressed in the compression space.
본 발명은, 압축된 냉매가 토출구를 통해 토출되는 속도를 저감시킬 수 있는 압축기의 구조를 제안하기 위한 것이다.The present invention is to propose a structure of a compressor that can reduce the speed at which the compressed refrigerant is discharged through the discharge port.
이와 같은 본 발명의 과제를 달성하기 위하여 본 발명에 따른 로터리 압축기는, 케이스의 내부에서 회전력을 발생시키는 구동모터, 구동모터와 결합되어 회전력을 전달하는 회전축, 회전축을 따라 설치되는 메인베어링과 서브베어링, 메인베어링과 서브베어링의 사이에 고정 설치되고, 중심부에 냉매가 수용되며, 반경 방향으로 흡입포트와 토출포트가 각각 형성되는 실린더를 포함하며, 실린더의 내주면 일측에는, 상기 토출포트의 단부를 확장하도록 이루어지고 압축된 냉매의 유량을 증가시키도록 토출포트홈이 형성되는 특징을 가진다. 토출포트홈에 의해, 압축된 냉매의 이동 통로가 확장되는 효과를 얻을 수 있게 된다.In order to achieve the object of the present invention, the rotary compressor according to the present invention includes a drive motor generating a rotational force in the case, a rotation shaft coupled with the driving motor to transmit the rotational force, and a main bearing and a sub-bearing installed along the rotational shaft. And a cylinder fixedly installed between the main bearing and the sub-bearing, the refrigerant being accommodated in the center portion, and having a suction port and a discharge port respectively formed in a radial direction, and extending at one end of the discharge port on an inner circumferential surface of the cylinder. And a discharge port groove is formed to increase the flow rate of the compressed refrigerant. By the discharge port groove, it is possible to obtain the effect that the movement passage of the compressed refrigerant is expanded.
본 발명과 관련한 일 예에 따르면, 상기 실린더에는, 상기 냉매가 압축되는 방향을 기준으로 토출포트보다 전방에 위치된 바이패스포트에는 바이패스포트의 단부가 확장되어 이동하는 냉매의 유량이 증가되도록, 일측에 바이패스홈이 형성될 수 있다. 바이패스홈에 의해, 압축된 냉매가 이동할 수 있는 통로가 확장되는 효과를 얻을 수 있을 것이다.According to an example related to the present invention, the cylinder has a bypass port positioned in front of the discharge port based on the direction in which the refrigerant is compressed so that an end portion of the bypass port is extended so that the flow rate of the moving refrigerant increases. Bypass grooves may be formed. By the bypass groove, it is possible to obtain the effect of expanding the passage through which the compressed refrigerant can move.
본 발명과 관련한 일 예에 따르면, 상기 메인베어링과 서브베어링에는, 상기 압축공간과 오버랩되는 위치에 상기 케이스의 내부 공간과 연통되도록 바이패스홀이 형성될 수 있다. 바이패스홀에 의해, 압축된 냉매의 일부가 토출됨으로써 냉매가 과압축되는 것을 제한할 수 있게 된다.According to an example related to the present disclosure, a bypass hole may be formed in the main bearing and the sub bearing so as to communicate with the inner space of the case at a position overlapping with the compression space. By the bypass hole, a part of the compressed refrigerant is discharged, thereby limiting overcompression of the refrigerant.
상기와 같은 구성에 따른 로터리 압축기는, 토출포트의 단부에 형성되는 토출포트홈에 의해 압축된 냉매가 토출될 수 있게되어, 압축실에 수용된 냉매가 과압축되는 것을 방지할 수 있어, 압축기의 지시손실을 줄일 수 있게 된다. 냉매의 과압축이 방지되면, 베인의 측면으로 작용하는 힘을 줄어들게 되어, 베인의 베인슬롯과의 충돌이나 마모가 줄어들 수 있게 된다.In the rotary compressor according to the above configuration, the refrigerant compressed by the discharge port groove formed at the end of the discharge port can be discharged, and the refrigerant contained in the compression chamber can be prevented from being overcompressed, so that the compressor can be instructed. The loss can be reduced. When the overcompression of the refrigerant is prevented, the force acting on the side of the vane is reduced, so that the impact or wear of the vane with the vane slot can be reduced.
또한, 바이패스포트의 단부에 형성되는 바이패스포트홈에 의해, 압축된 냉매가 일부 토출될 수 있어, 압축실의 내부에서 냉매가 과압축되는 것이 방지되게 된다. 이에 따라, 압축기의 지시손실을 저감시킬 수 있게 되며, 베인의 측면으로 작용하는 힘을 줄어들게 되어, 베인의 베인슬롯과의 충돌이나 마모가 줄어들 수 있는 효과가 있게 된다.In addition, by the bypass port groove formed at the end of the bypass port, a part of the compressed refrigerant can be discharged, thereby preventing overcompression of the refrigerant in the compression chamber. Accordingly, it is possible to reduce the command loss of the compressor and to reduce the force acting on the side of the vane, thereby reducing the impact or wear of the vane with the vane slot.
또한, 압력이 상승하는 냉매를 바이패스홀을 통해 일부 배출시킴으로써 압축실 내부에서 냉매의 압력이 과다하게 상승하는 것을 방지하고, 냉매의 과압축에 따른 손실을 저감시킬 수 있으며, 바이패스홀을 통해, 압축된 냉매를 일부 배출시킴으로써, 토출구에서의 냉매의 토출 속도의 상승을 제한할 수 있으며, 토출에 의한 손실도 저감시킬 수 있게 된다.In addition, by partially discharging the refrigerant having a rise in pressure through the bypass hole, the pressure of the refrigerant can be prevented from rising excessively in the compression chamber, and the loss due to the overcompression of the refrigerant can be reduced. By partially discharging the compressed refrigerant, it is possible to limit the increase in the discharge speed of the refrigerant at the discharge port, and to reduce the loss due to the discharge.
도 1은, 로터리 압축기의 내부의 모습을 나타내는 단면도.1 is a cross-sectional view showing the inside of a rotary compressor.
도 2는, 도 1의 로터리 압축기의 내부 모습을 확대도.FIG. 2 is an enlarged view of the inside of the rotary compressor of FIG. 1. FIG.
도 3은, 압축유닛의 모습을 나타내는 평면도.3 is a plan view showing a state of the compression unit.
도 4는, 본 발명에 따르는 로터리 압축기에 설치되는 실린더의 모습을 나타내는 사시도.4 is a perspective view showing a state of a cylinder installed in a rotary compressor according to the present invention.
도 5의 (a), (b), (c)는, 토출포트와 토출포트홈의 모습을 나타내는 확대도.(A), (b), (c) is an enlarged view which shows the state of a discharge port and a discharge port groove.
도 6은, 실린더(133)의 모습을 나타내는 사시도.6 is a perspective view showing a state of the cylinder 133.
도 7은, 베인에 반력이 형성되는 모습을 나타내는 개념도.7 is a conceptual view showing a state in which reaction force is formed on the vane.
도 8은, 베인 측면에 형성되는 반력을 회전축의 회전 각도에 따라 나타낸 그래프.8 is a graph showing reaction forces formed on the side of the vanes according to the rotation angle of the rotation shaft.
도 9는, 압축유닛을 위에서 바라본 평면도.9 is a plan view of the compression unit viewed from above.
도 10는, 바이패스홀에 형성되는 토출밸브의 모습을 나타내는 도면.10 is a view showing a state of a discharge valve formed in the bypass hole.
도 11은, 바이패스홀의 효과를 나타내는 그래프.11 is a graph showing the effect of the bypass hole.
도 12는, 바이패스홀 효과를 나타내는 그래프.12 is a graph showing the bypass hole effect.
이하, 본 발명에 관련된 로터리 압축기에 대해, 도면을 참조하여 보다 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the rotary compressor which concerns on this invention is demonstrated in detail with reference to drawings.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the embodiments disclosed herein, if it is determined that the detailed description of the related known technology may obscure the gist of the embodiments disclosed herein, the detailed description thereof will be omitted.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The accompanying drawings are only for easily understanding the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the accompanying drawings, and all changes and equivalents included in the spirit and technical scope of the present invention are included. It should be understood to include water or substitutes.
도 1은, 로터리 압축기(100)의 내부의 모습을 나타내는 단면도이다.1 is a cross-sectional view showing the inside of the rotary compressor 100.
로터리 압축기(100)는, 케이스(110), 구동모터(120) 및 압축유닛(130)을 포함한다.The rotary compressor 100 includes a case 110, a drive motor 120, and a compression unit 130.
케이스(110)는 외관을 형성하는 것으로, 일 방향을 따라 연장되는 원통형의 형상으로 이루어질 수 있으며, 회전축(123)의 연장 방향을 따라 형성될 수 있다.The case 110 may form an outer shape, may have a cylindrical shape extending along one direction, and may be formed along an extending direction of the rotation shaft 123.
케이스(110)의 내부에는 흡입된 냉매가 압축된 후 토출되도록, 압축공간(V1, V2)을 형성하는 실린더(133)가 설치된다.Inside the case 110, a cylinder 133 is formed to form the compression spaces V1 and V2 such that the sucked refrigerant is compressed and then discharged.
케이스(110)는 상부쉘(110a), 중간쉘(110b) 및 하부쉘(110c)로 이루어진다. 중간쉘(110b)의 내측면에는 구동모터(120)와 압축유닛(130)이 고정 설치될 수 있으며, 중간쉘(110b)의 상부와 하부에는 각각 상부쉘(110a) 및 하부쉘(110c)이 위치되어 내부에 위치되는 구성 요소들의 외부 노출을 제한하게 된다.The case 110 is composed of an upper shell 110a, an intermediate shell 110b and a lower shell 110c. The drive motor 120 and the compression unit 130 may be fixedly installed on the inner surface of the intermediate shell 110b, and the upper and lower shells 110a and 110c are respectively disposed on the upper and lower portions of the intermediate shell 110b. Positioned to limit the external exposure of components located therein.
압축유닛(130)은 냉매를 압축하여 토출시키는 역할을 하는 것으로, 롤러(134), 베인(135), 실린더(133), 메인베어링(131) 및 서브베어링(132)을 포함한다.The compression unit 130 serves to compress and discharge the refrigerant, and includes a roller 134, a vane 135, a cylinder 133, a main bearing 131, and a sub bearing 132.
구동모터(120)는 압축유닛(130)의 상부에 위치되고, 냉매를 압축하기 위한 동력을 제공 역할을 한다. 구동모터(120)는 고정자(121), 회전자(122) 및 회전축(123)을 포함한다.The drive motor 120 is positioned above the compression unit 130 and serves to provide power for compressing the refrigerant. The drive motor 120 includes a stator 121, a rotor 122, and a rotation shaft 123.
고정자(121)는 케이스(110)의 내부에 고정되도록 설치되며, 원통형의 케이스(110)의 내주면에 열박음의 방법으로 장착될 수 있을 것이다. 또한, 고정자(121)는 중간쉘(110b)의 내주면에 고정 설치되도록 위치될 수 있다.The stator 121 is installed to be fixed to the inside of the case 110 and may be mounted on the inner circumferential surface of the cylindrical case 110 by shrinking. In addition, the stator 121 may be positioned to be fixed to the inner peripheral surface of the intermediate shell (110b).
회전자(122)는 고정자(121)와 이격 배치되며, 고정자(121)의 내측에 배치될 수 있다. 고정자(121)에 전원이 인가되면, 고정자(121)와 회전자(122)의 사이에 형성된 자기장에 따라 발생하는 힘에 의해 회전자(122)가 회전되며, 회전자(122)의 중심을 관통하는 회전축(123)에 회전력을 전달하게 된다.The rotor 122 may be spaced apart from the stator 121 and may be disposed inside the stator 121. When power is applied to the stator 121, the rotor 122 is rotated by a force generated according to a magnetic field formed between the stator 121 and the rotor 122, and penetrates the center of the rotor 122. The rotational force is transmitted to the rotating shaft 123.
중간쉘(110b)의 일 측에는 흡입포트(133a)가 설치되고, 상부쉘(110a)의 일 측에는 토출배관(114)이 설치되어, 케이스(110)의 내부로부터 냉매의 유출이 가능하게 된다.A suction port 133a is installed at one side of the intermediate shell 110b, and a discharge pipe 114 is installed at one side of the upper shell 110a to allow the refrigerant to flow out from the inside of the case 110.
흡입포트(133a)는 냉동사이클을 형성하는 증발기(미도시)로부터 흡입배관(113)과 케이스(110)를 연통시키고, 토출구(미도시)는 응축기(미도시)로부터 토출배관(114)과 케이스(110)를 연통시키게 된다.The suction port 133a communicates with the suction pipe 113 and the case 110 from an evaporator (not shown) forming a refrigeration cycle, and the discharge port (not shown) is connected with the discharge pipe 114 and the case from a condenser (not shown). It will communicate (110).
케이스(110)의 내부에 설치되는 압축유닛(130)은, 흡입된 냉매를 압축시킨 후 토출하게 된다. 냉매의 흡입과 토출은 압축공간(V1, V2)을 형성하는 실린더(133)의 내부에서 이루어지게 된다.The compression unit 130 installed inside the case 110 compresses the sucked refrigerant and discharges the compressed refrigerant. Intake and discharge of the refrigerant are performed in the cylinder 133 forming the compression spaces V1 and V2.
본 발명에 따르는 로터리 압축기(100)는, 실린더(133)에 형성되는 흡입포트(133a)를 통해 유입되는 냉매가 압축된 후 토출되는 과정에 있어서, 토출포트(133b)의 단부가 확장되는 구조를 가짐으로써, 압축된 냉매가 보다 원활하게 토출될 수 있다.The rotary compressor 100 according to the present invention has a structure in which an end portion of the discharge port 133b is expanded in the process of compressing and discharging the refrigerant flowing through the suction port 133a formed in the cylinder 133. By having this, the compressed refrigerant can be discharged more smoothly.
도 2는, 도 1의 로터리 압축기(100)의 내부 모습을 확대한 도면이고, 도 3은, 압축유닛(130)의 모습을 나타내는 평면도이다.FIG. 2 is an enlarged view of the inside of the rotary compressor 100 of FIG. 1, and FIG. 3 is a plan view illustrating the compression unit 130.
실린더(133)의 내부에는 회전축(123)을 중심으로 회전하며, 실린더(133)의 내주면(133a)과 접하면서 압축공간(V1, V2)을 형성하는 롤러(134)가 설치된다. 롤러(134)는 회전축(123)에 형성되는 편심부(미도시)에 설치되며, 롤러(134)는 실린더(133)의 내주면 사이에 하나의 접촉점(P)을 형성하며 회전하게 된다.A roller 134 is formed inside the cylinder 133 to rotate about the rotation shaft 123 and to form the compression spaces V1 and V2 while contacting the inner circumferential surface 133a of the cylinder 133. The roller 134 is installed on an eccentric portion (not shown) formed on the rotation shaft 123, and the roller 134 rotates while forming one contact point P between the inner circumferential surfaces of the cylinder 133.
롤러(134)는 일 측이 실린더(133)의 내주면에 접하도록, 실린더(133)의 내부에 위치되고, 회전축(123)과 함께 회전하여 실린더(133)의 내부에 압축공간(V1, V2)을 형성하게 된다.The roller 134 is positioned inside the cylinder 133 so that one side is in contact with the inner circumferential surface of the cylinder 133, and rotates together with the rotation shaft 123 to compress the spaces V1 and V2 inside the cylinder 133. Will form.
실린더(133)의 일 측에는 베인(135)이 설치된다. 베인(135)은 압축공간(V1, V2)으로 돌출되며, 롤러(134)의 외주면과 접해 실린더(133) 내부의 압축공간(V1, V2)을 각각 흡입실(V1)과 압축실(V2)로 구획하게 된다. 베인(135)은 적어도 두 개 이상의 복수개로 이루어질 수 있고, 각 베인(135)은 롤러(134)의 내부에 위치되며 서로 대칭되도록 위치될 수 있다.The vane 135 is installed at one side of the cylinder 133. The vanes 135 protrude into the compression spaces V1 and V2, and contact the outer circumferential surfaces of the roller 134 to form the compression spaces V1 and V2 inside the cylinder 133, respectively, in the suction chamber V1 and the compression chamber V2. Will be partitioned into The vanes 135 may be formed of at least two or more pieces, and each vane 135 may be positioned inside the roller 134 and may be symmetric with each other.
회전축(123)이 회전함에 따라, 각 베인(135)은 롤러(134)와 함께 회전하면서 실린더(133)의 내주면에 접하면서 이동하며, 실린더(133) 중심부에 형성되는 공간부와 롤러(134)의 사이에는 압축공간(V)이 형성되게 된다.As the rotation shaft 123 rotates, each vane 135 moves while being in contact with the inner circumferential surface of the cylinder 133 while rotating together with the roller 134, and the space portion and the roller 134 formed at the center of the cylinder 133. Between the compression space (V) is formed.
베인(135)의 이동에 의해 흡입포트(133a)로부터 유입되는 냉매는 압축된 후, 토출포트(133b)를 따라 이동하며, 메인베어링(131)과 서브베어링(132)에 각각 형성되는 토출홀(143, 144) 따라 토출되게 된다.After the vane 135 moves, the refrigerant flowing from the suction port 133a is compressed and then moved along the discharge port 133b, and the discharge holes are formed in the main bearing 131 and the sub bearing 132, respectively. 143, 144 will be discharged along.
다만, 실린더(133)와 롤러(134)간의 접촉점은 동일한 위치로 유지되고, 베인(135)의 전단부는 실린더(133)의 내주면을 따라 이동하므로, 압축공간(V1, V2)에 형성되는 압력은 베인(135)의 이동에 따라 연속된 압축되는 메커니즘을 가지며, 압축실(V2)의 압력이 빠르게 토출압력에 도달하게 되므로, 과압축에 따른 손실이 발생하여 효율의 저하를 가져오게 된다.However, since the contact point between the cylinder 133 and the roller 134 is maintained at the same position, and the front end of the vane 135 moves along the inner circumferential surface of the cylinder 133, the pressure formed in the compression space (V1, V2) Since the vane 135 has a continuous compression mechanism and the pressure of the compression chamber V2 reaches the discharge pressure quickly, a loss due to overcompression occurs, resulting in a decrease in efficiency.
종래의 로터리 압축기의 경우, 실린더(133)의 압축공간(V1, V2)과 연통되는 각 토출홀(143, 144)을 통해, 압축된 냉매가 한번에 토출되는 구조를 가지므로, 토출되지 못한 냉매가 과압축되는 현상이 발생하는 문제점이 있었다.In the conventional rotary compressor, since the compressed refrigerant is discharged at one time through the discharge holes 143 and 144 communicating with the compression spaces V1 and V2 of the cylinder 133, the refrigerant that has not been discharged is There was a problem that overcompression occurs.
압축공간(V1, V2)에 수용되는 냉매의 과압축이 발생하는 경우, 불필요한 압축 손실이 발생시켜 압축기의 효율을 저감시키며, 기계적 파손을 야기하는 문제점이 있다.When overcompression of the refrigerant contained in the compression space (V1, V2) occurs, unnecessary compression loss occurs to reduce the efficiency of the compressor, there is a problem that causes mechanical damage.
이에, 본 발명은 냉매의 과압축에 따른 기계적 손실을 저감시킬 수 있도록, 실린더(133)의 내부에 형성되는 바이패스포트(133c), 토출포트(133b)의 순으로 토출하게 된다. 또한, 토출포트(133b)와 바이패스포트(133c)의 단부를 확장하도록 이루어져, 압축된 냉매의 유량을 증가시킬 수 있는 구조를 가진다.Accordingly, the present invention discharges in order of the bypass port 133c and the discharge port 133b formed in the cylinder 133 so as to reduce the mechanical loss due to overcompression of the refrigerant. In addition, the ends of the discharge port 133b and the bypass port 133c are extended to have a structure capable of increasing the flow rate of the compressed refrigerant.
도 4는, 본 발명에 따르는 로터리 압축기(100)에 설치되는 실린더(133)의 모습을 나타내는 사시도이다.4 is a perspective view showing a state of the cylinder 133 installed in the rotary compressor 100 according to the present invention.
실린더(133)는 중심부에 공간부를 구비하며, 롤러(134)와의 사이에 압축공간(V1, V2)을 형성하게 된다.The cylinder 133 has a space portion in the center thereof, and forms compression spaces V1 and V2 between the rollers 134.
실린더(133)의 내주면에는, 냉매가 압축공간(V1, V2)으로 흡입되는 흡입포트(133a)가 형성되며, 베인(135a, 135b, 135c)의 이동 방향을 따라 압축된 냉매가 이동하기 위한 토출포트(133b)가 형성된다. 실린더(133)의 내주면에는 상하로 두 개의 토출포트(133b)가 형성될 수 있다. On the inner circumferential surface of the cylinder 133, a suction port 133a through which the refrigerant is sucked into the compression spaces V1 and V2 is formed, and the discharge for moving the compressed refrigerant along the moving direction of the vanes 135a, 135b, 135c. The port 133b is formed. Two discharge ports 133b may be formed on the inner circumferential surface of the cylinder 133 up and down.
로터리 압축기(100)는, 롤러(134)가 회전함에 따라 베인(135a, 135b, 135c)은 롤러(134)로부터 돌출되며, 베인(135a, 135b, 135c)의 전단부는 실린더(133)의 내주면과 접해 이동하면서 흡입된 냉매를 압축할 수 있게 된다.In the rotary compressor 100, as the roller 134 rotates, the vanes 135a, 135b, and 135c protrude from the roller 134, and the front end portions of the vanes 135a, 135b, and 135c are in contact with the inner circumferential surface of the cylinder 133. It is possible to compress the sucked refrigerant while moving in contact.
종래의 발명의 경우, 베인(135a, 135b, 135c)의 움직임에 의해 냉매의 압력이 빠르게 토출 압력에까지 도달하게 되었으며, 과압축에 따른 지시손실이 증가되는 문제점이 있었다. 토출포트(133b)의 직경을 키우면 용량 대비 토출 면적의 확대를 꾀할 수 있으므로 이를 고려할 수 있겠으나, 베인(135a, 135b, 135c)의 폭 보다 토출포트(133b)의 직경이 커지게 되면, 흡입실(V1)과 압축실(V2) 간의 누설이 발생하게 되는 문제점이 있으므로 그 한계가 존재한다.In the conventional invention, the pressure of the refrigerant quickly reaches the discharge pressure by the movement of the vanes 135a, 135b, and 135c, and there is a problem in that an indication loss due to overcompression is increased. If the diameter of the discharge port 133b is increased, the discharge area can be enlarged compared to the capacity, and this may be considered. Since there is a problem that leakage between V1 and the compression chamber V2 occurs, the limit exists.
본 발명에 따르는 로터리 압축기(100)는, 베인(135a, 135b, 135c)의 회전에 의해 압축되는 냉매가 토출되는 토출포트(133b)의 단부를 확장하도록 이루어지며 압축된 냉매의 유량을 증가시킬수 있는 토출포트홈(133b')을 구비하는 특징을 가진다.The rotary compressor 100 according to the present invention is configured to extend the end of the discharge port 133b through which the refrigerant compressed by the rotation of the vanes 135a, 135b, and 135c is discharged, and may increase the flow rate of the compressed refrigerant. And a discharge port groove 133b '.
토출포트홈(133b')은 실린더의 내주면을 따라 리세스되는 형상으로 이루어질 수 있으며, 이에 따라, 토출포트(133b)의 구멍과 연통되는 냉매의 이동 유로를 별도로 형성함으로써, 압축된 냉매의 토출이 보다 원활하게 이루어지도록 할 수 있다.The discharge port groove 133b 'may be formed to be recessed along the inner circumferential surface of the cylinder. Accordingly, by separately forming a moving flow path of the refrigerant communicating with the hole of the discharge port 133b, discharge of the compressed refrigerant may be performed. It can be done more smoothly.
도 5의 (a), (b), (c)는 토출포트(133b)와 토출포트홈(133b')의 모습을 나타내는 확대도이다.5A, 5B, and 5C are enlarged views showing the state of the discharge port 133b and the discharge port groove 133b '.
토출포트홈(133b')은, 토출포트(133b)의 직경이 베인(135)의 폭에 의해 제한되는 문제점을 해소하기 위해, 토출포트(133b)의 단부를 확장하도록 실린더(133)의 내주면을 따라 리세스되는 형상으로 이루어져, 냉매의 이동하는 유량을 증가시키도록 이루어진다.The discharge port groove 133b 'has an inner circumferential surface of the cylinder 133 so as to extend the end of the discharge port 133b in order to solve the problem that the diameter of the discharge port 133b is limited by the width of the vane 135. The shape is recessed along, so as to increase the moving flow rate of the refrigerant.
토출포트홈(133b')은 토출포트(133b)의 시작 부분에 토출포트(133b)의 단부를 확장하도록 이루어진다. 토출포트홈(133b')은, 실린더(133)의 내주면의 형상을 따라 일정한 깊이를 가지는 홈의 형상으로 이루어질 수 있다.The discharge port groove 133b 'is formed to extend the end of the discharge port 133b at the start of the discharge port 133b. The discharge port groove 133b 'may be formed in the shape of a groove having a constant depth along the shape of the inner circumferential surface of the cylinder 133.
도 5에서 보듯이, 토출포트홈(133b')은 토출포트(133b)의 높이보다 큰 높이를 가지도록 이루어질 수 있으며, 토출포트(133b)의 직경보다 큰 가로폭을 가지도록 이루어질 수 있을 것이다. 토출포트홈(133b')은 토출포트(133b)의 일단에서 베인(135)이 이동하는 방향을 따라 형성될 수 있으며, 토출포트(133b)의 일 측에서 실린더(133)의 내주면을 따라 연장 형성될 수 있다.As shown in FIG. 5, the discharge port groove 133b ′ may be formed to have a height greater than the height of the discharge port 133b, and may have a width larger than the diameter of the discharge port 133b. The discharge port groove 133b 'may be formed along a direction in which the vane 135 moves in one end of the discharge port 133b, and extends along an inner circumferential surface of the cylinder 133 on one side of the discharge port 133b. Can be.
토출포트홈(133b')은, 토출포트(133b)의 단부와 일부 혹은 전부가 겹쳐지도록 이루어질 수 있다. 도 5의 (a)와 (b)는 토출포트(133b)의 단부와 토출포트홈(133b')이 일부가 겹쳐지도록 이루어지는 형상을, (c)는 토출포트(133b)의 단부와 토출포트홈(133b')의 전부가 겹쳐지도록 이루어지는 형상을 나타낸다.The discharge port groove 133b 'may be formed to overlap some or all of the ends of the discharge port 133b. (A) and (b) of FIG. 5 have a shape in which the end portion of the discharge port 133b and the discharge port groove 133b 'overlap with each other, and (c) the end portion and the discharge port groove of the discharge port 133b. The shape so that all of 133b 'may overlap is shown.
토출포트(133b)의 단부와 겹쳐지는 면적이 넓어질수록, 토출포트홈(133b')을 통해 압축실(V2)에서 압축된 냉매가 이동할 수 있는 유량은 더 커질 수 있어, 냉매의 과압축을 더욱 효과적으로 방지할 수 있게 된다.As the area overlapping with the end of the discharge port 133b is wider, the flow rate at which the refrigerant compressed in the compression chamber V2 can move through the discharge port groove 133b 'may be increased, thereby further increasing overcompression of the refrigerant. It can be effectively prevented.
압축실(V2)에서 압축된 냉매는 토출포트홈(133b')을 통해 토출될 수 있으므로, 압축된 냉매가 토출포트(133b)에 의해서만 토출되는 것에 비해 유량이 더 커질 수 있으므로, 압축실(V2)의 내부 압력이 급격하게 상승하는 것을 제한할 수 있게 된다.Since the refrigerant compressed in the compression chamber V2 may be discharged through the discharge port groove 133b ', the flow rate may be larger than that of the compressed refrigerant being discharged only by the discharge port 133b. It is possible to limit the sudden increase in the internal pressure of the.
도 6은, 실린더(133)의 모습을 나타내는 사시도이다.6 is a perspective view illustrating the cylinder 133.
실린더(133)는 중심부에 공간부를 구비하며, 롤러(134)와의 사이에 압축공간(V1, V2)을 형성한다.The cylinder 133 has a space portion at the center thereof, and forms compression spaces V1 and V2 between the rollers 134.
실린더(133)의 내주면에는, 냉매가 압축공간으로 흡입되는 흡입포트(133a)가 형성되며, 베인(135)의 이동 방향을 따라 압축된 냉매가 이동하기 위한 토출포트(133b)가 형성된다. 실린더(133)의 내주면에는 상하로 두 개의 토출포트(133b)가 형성될 수 있다. On the inner circumferential surface of the cylinder 133, a suction port 133a through which the refrigerant is sucked into the compression space is formed, and a discharge port 133b for moving the compressed refrigerant along the moving direction of the vane 135 is formed. Two discharge ports 133b may be formed on the inner circumferential surface of the cylinder 133 up and down.
또한, 실린더(133)에는 냉매가 압축되는 방향을 기준으로 토출포트(133b)보다 전방에 위치되어 압축된 냉매의 토출이 이루어지는 바이패스포트(133c)가 추가로 형성될 수 있다.The cylinder 133 may further include a bypass port 133c positioned forward of the discharge port 133b based on the direction in which the refrigerant is compressed to discharge the compressed refrigerant.
바이패스포트(133c)는 냉매가 압축되는 과정에서 일부 토출시킴으로써, 압축실(V2)의 내부 압력이 상승하는 것을 제한하는 역할을 한다. 압축된 냉매가 토출포트(133b)에서만 토출되도록 이루어지는 경우, 베인(135)의 운동에 의한 압축실(V2)의 내부 압력이 계속 상승하는 문제점이 있으므로, 바이패스포트(133c)는 압축된 냉매의 일부를 토출시킴으로써, 냉매의 과압축을 방지할 수 있게 된다.The bypass port 133c partially discharges the refrigerant during compression, thereby limiting an increase in the internal pressure of the compression chamber V2. When the compressed refrigerant is discharged only in the discharge port 133b, since the internal pressure of the compression chamber V2 is continuously increased due to the movement of the vane 135, the bypass port 133c is a part of the compressed refrigerant. By discharging, it is possible to prevent overcompression of the refrigerant.
바이패스포트(133c)의 직경은 압축실(V2)과 흡입실(V1) 간의 누설이 방지되도록, 베인(135)의 폭에 의해 제한되는 문제점이 있다. 이에, 실린더(133)의 내주면에는 바이패스포트(133c)의 단부가 확장되어 냉매의 유량이 증가될 수 있도록 바이패스포트홈(133c')이 형성될 수 있다. 바이패스포트홈(133c')은 실린더(133)의 내주면을 따라 리세스되는 형상으로 이루어질 수 있다. 이에, 바이패스포트(133c)의 구멍과 연통되는 냉매의 이동 유로를 별도로 형성함으로써, 압축된 냉매가 원활하게 토출되도록 하게 된다.The diameter of the bypass port 133c is limited by the width of the vane 135 so that leakage between the compression chamber V2 and the suction chamber V1 is prevented. Accordingly, the bypass port groove 133c 'may be formed on the inner circumferential surface of the cylinder 133 so that the end portion of the bypass port 133c is extended to increase the flow rate of the refrigerant. The bypass port groove 133c 'may be formed to be recessed along the inner circumferential surface of the cylinder 133. Accordingly, by separately forming the moving flow path of the refrigerant communicating with the hole of the bypass port 133c, the compressed refrigerant can be smoothly discharged.
바이패스포트홈(133c')은 바이패스포트(133c)의 높이보다 큰 높이를 가지도록 이루어질 수 있으며, 바이패스포트(133c)의 직경보다 큰 가로폭을 가지도록 이루어질 수 있을 것이다. 바이패스포트홈(133c')은 바이패스포트(133c)의 일단에서 베인(135)이 이동하는 방향을 따라 형성될 수 있으며, 바이패스포트(133c)의 일 측에서 실린더(133)의 내주면을 따라 연장 형성될 수 있을 것이다. 도 6에서는, 실린더(133)에 바이패스포트(133c)가 하나 형성된 모습만을 나타내었으나, 바이패스포트(133c)는 하나 혹은 그 이상의 개수가 실린더(133)에 형성될 수 있으며, 이에 대응하도록 바이패스포트홈(133c')이 형성될 수 있다.The bypass port groove 133c ′ may have a height greater than the height of the bypass port 133c, and may have a width larger than the diameter of the bypass port 133c. The bypass port groove 133c 'may be formed along a direction in which the vane 135 moves in one end of the bypass port 133c, and extends along an inner circumferential surface of the cylinder 133 on one side of the bypass port 133c. Could be. In FIG. 6, only one bypass port 133c is formed in the cylinder 133, but one or more number of bypass ports 133c may be formed in the cylinder 133. 133c 'may be formed.
도 7은, 베인(135)에 반력이 형성되는 모습을 나타내는 개념도이다.FIG. 7 is a conceptual diagram illustrating how reaction force is formed in the vane 135.
베인(135)은 롤러(134)의 회전에 의해 돌출되며, 베인(135)의 전단부는 실린더(133)의 내주면에 접하면서 냉매의 압축을 형성하게 된다. 베인(135)의 이동 방향을 따라, 앞쪽에는 압축실(V2)이, 뒤쪽에는 흡입실(V1)이 위치된다. 압축실(V2)의 압력은 흡입실(V1)의 압력보다 높은 압력이 형성되므로, 압축실(V2)의 압력에 의해 베인(135)에 작용하는 힘은 흡입실(V1)의 압력에 의해 베인(135)에 작용하는 힘보다 더 크게 된다. 즉, 베인(135)의 측면에는 압축실(V2)로부터 흡입실의 방향으로 측면힘(Fp)이 작용하게 된다. 측면힘(Fp)에 의해, 베인(135)은 베인슬롯과 충돌되거나 큰 마모를 발생시키게 된다.The vane 135 protrudes by the rotation of the roller 134, and the front end of the vane 135 forms a compression of the refrigerant while contacting the inner circumferential surface of the cylinder 133. Along the moving direction of the vane 135, the compression chamber (V2) is located in the front, the suction chamber (V1) is located in the rear. Since the pressure of the compression chamber V2 is higher than the pressure of the suction chamber V1, the force acting on the vane 135 by the pressure of the compression chamber V2 is the vane by the pressure of the suction chamber V1. Greater than the force acting on 135. That is, the side force Fp acts on the side of the vane 135 in the direction of the suction chamber from the compression chamber V2. By the side force Fp, the vanes 135 collide with the vane slots or cause large wear.
특히, 측면힘(Fp)은, 압축실(V2)의 압력이 급격히 상승하게 되는 위치에서 더욱 커지게 되는데, 베인(135)의 측면에 작용하는 힘은 압축실(V2)에 형성되는 압력이 큰 경우, 측면힘(Fp) 또한 커지게 된다.In particular, the side force Fp becomes larger at a position where the pressure in the compression chamber V2 rises sharply, and the force acting on the side of the vane 135 has a large pressure formed in the compression chamber V2. In this case, the side force Fp also becomes large.
*본 발명에 따르는 로터리 압축기(100)는, 토출포트(133b)의 면적이 확대하도록 이루어지는 토출포트홈(133b')과, 바이패스포트(133c)의 면적을 확대하도록 이루어지는 바이패스포트홈(133c')이 각각 형성됨으로써, 압축실(V2)에서의 냉매의 압력이 설정된 값 이상으로 상승되는 과압축현상을 방지할 수 있다. 즉, 압축실(V2)에 형성되는 냉매의 압력이 필요 이상으로 증가되는 것을 막아 베인(135)의 측면에 형성되는 측면힘(Fp)이 커지는 것을 제한함으로써 베인(135)의 측면에 반력이 상승하는 것을 막을 수 있게 된다. 이에, 베인(135) 측면의 마찰 손실을 저감시킬 수 있게 된다.The rotary compressor 100 according to the present invention includes a discharge port groove 133b 'configured to enlarge the area of the discharge port 133b, and a bypass port groove 133c' configured to enlarge the area of the bypass port 133c. Each of these is formed, thereby preventing the overcompression phenomenon in which the pressure of the refrigerant in the compression chamber V2 rises above the set value. That is, the reaction force increases on the side surface of the vane 135 by preventing the pressure of the refrigerant formed in the compression chamber V2 from increasing more than necessary, thereby limiting the increase in the side force Fp formed on the side surface of the vane 135. You can stop doing so. As a result, the frictional loss of the side surface of the vane 135 can be reduced.
도 8은, 베인 측면에 형성되는 반력을 회전축의 회전 각도에 따라 나타낸 그래프이다.8 is a graph showing the reaction force formed on the side of the vane according to the rotation angle of the rotation shaft.
그래프에서 가로축은 회전축의 회전 각도를 나타내며, 세로축은 베인(135)의 측면에 형성되는 반력의 크기를 나타낸다.In the graph, the horizontal axis represents the rotation angle of the rotation axis, and the vertical axis represents the magnitude of reaction force formed on the side of the vane 135.
여기서, 반력은 베인(135)의 측면에 형성되는 측면힘(Fp)에 의해 형성된다.Here, the reaction force is formed by the side force Fp formed on the side of the vane 135.
베인(135)의 측면에 형성되는 측면힘(Fp)은, 압축이 개시되는 압축개시각으로부터 토출이 시작되는 토출개시각 사이에서 증가하게 된다. 구체적으로, 압축개시각인 대략 160° 지점에서부터 토출개시각인 대략 220° 지점 사이에서 측면힘(Fp)이 증가하다, 바이패스포트(133c)가 형성되는 220° 지점 이후부터 감소하기 시작한다.The side force Fp formed on the side of the vane 135 increases from the compression start time at which compression is started to the discharge start time at which discharge is started. Specifically, the lateral force Fp increases between about 160 ° of compression start time and about 220 ° of discharge start time, and starts to decrease after 220 ° where bypass port 133c is formed.
본 발명은, 토출포트(133b)의 면적이 확대하도록 이루어지는 토출포트홈(133b')과, 바이패스포트(133c)의 면적을 확대하도록 이루어지는 바이패스포트홈(133c')이 각각 형성됨으로써, 압축실(V2)에서의 냉매의 압력이 설정된 값 이상으로 상승되는 과압축현상을 방지할 수 있게 된다. 특히, 바이패스포트홈(133c')이 형성되는 대략 220° 지점에서부터 토출포트홈(133b')이 형성되는 대략 260° 지점 사이에서 측면힘(Fp)을 저감시킬 수 있는 효과가 있음을 알 수 있다. 이에 따라, 베인(135)의 측면에 작용하는 힘이 감소됨으로써, 베인(135)의 측면과 베인슬롯 사이에서 발생하는 마찰 손실을 저감시킴으로써, 압축기의 기계적인 손실을 줄일 수 있는 효과가 있게 된다.According to the present invention, the compression chamber (133b ') is formed to enlarge the area of the discharge port (133b) and the bypass port groove (133c') to enlarge the area of the bypass port (133c). The overcompression phenomenon in which the pressure of the refrigerant at V2) rises above the set value can be prevented. In particular, it can be seen that there is an effect that can reduce the side force (Fp) between approximately 220 ° point where the bypass port groove (133c ') is formed from approximately 260 ° point where the discharge port groove (133b') is formed. . Accordingly, the force acting on the side of the vane 135 is reduced, thereby reducing the frictional loss generated between the side of the vane 135 and the vane slot, thereby reducing the mechanical loss of the compressor.
도 9는, 압축유닛을 위에서 바라본 평면도이다.9 is a plan view of the compression unit viewed from above.
본 발명에 따르는 압축기는, 압축공간(V1, V2)의 압력 상승을 저감시키도록, 과압축에 의한 지시손실을 줄일 수 있는 바이패스홀(140)을 포함한다.The compressor according to the present invention includes a bypass hole 140 capable of reducing an indication loss due to overcompression so as to reduce the pressure rise in the compression spaces V1 and V2.
바이패스홀(140)은, 메인베어링(131)과 서브베어링(132)의 압축공간(V)과 오버랩되는 위치에 형성되는 것으로, 베인(135)이 실린더(133) 내주면에 접한 상태에서 이동함에 따라 형성되는 압축공간(V1, V2)에 수용된 냉매의 압력을 저감시키는 역할을 한다. 바이패스홀(140)을 통해 유출되는 냉매는, 케이스(10)의 내부 공간으로 이동하게 된다.The bypass hole 140 is formed at a position overlapping the compression space V of the main bearing 131 and the sub-bearing 132, and the vane 135 moves in contact with the inner circumferential surface of the cylinder 133. It serves to reduce the pressure of the refrigerant contained in the compression space (V1, V2) formed along. The refrigerant flowing out through the bypass hole 140 moves to the inner space of the case 10.
압축유닛(130)은, 위에서부터 아래 방향으로 메인베어링(131), 실린더(133) 및 서브베어링(132)이 순서대로 적층되어 형성된다.The compression unit 130 is formed by stacking the main bearing 131, the cylinder 133, and the sub bearing 132 in order from the top to the bottom.
메인베어링(131)과 실린더(133), 서브베어링(132)과 실린더(133)는 각각 나사홀(143)에 나사체결되어 고정될 수 있다. 실린더(133)의 중심부에 형성되는 내부공간에는 롤러(134)가 위치되고, 베인(135)은 실린더(133)의 내주면에 접하며, 롤러(134)와 실린더(133)의 내주면의 사이에는 압축공간(V)이 형성된다.The main bearing 131 and the cylinder 133, the sub-bearing 132 and the cylinder 133 may be screwed into the screw hole 143 and fixed. The roller 134 is located in the inner space formed at the center of the cylinder 133, the vane 135 is in contact with the inner circumferential surface of the cylinder 133, the compression space between the roller 134 and the inner circumferential surface of the cylinder 133 (V) is formed.
압축공간(V1, V2)은, 냉매가 유입되는 흡입포트(133a)와 바이패스포트(133c) 및 토출포트(133b)와 연통되도록 이루어진다.The compression spaces V1 and V2 communicate with the suction port 133a, the bypass port 133c, and the discharge port 133b into which the refrigerant is introduced.
롤러(134)와 실린더(133)는 하나의 접촉점(P)을 가진다. 접촉점(P)과 회전축(123)의 중심을 연결하는 가상의 선을 기준선으로 하며, 이때의 각도를 0°라 한다. 회전각도는 상기 기준선과 특정한 위치와 회전축(123)의 중심을 연결하는 선 사이의 각도를 반시계방향으로 측정한 각도를 의미한다.The roller 134 and the cylinder 133 have one contact point P. FIG. An imaginary line connecting the contact point P and the center of the rotation shaft 123 is a reference line, and the angle at this time is referred to as 0 °. The rotation angle means an angle measured in a counterclockwise direction between the reference line and a line connecting a specific position and the center of the rotation axis 123.
제1 베인(135a)이 흡입이 완료되는 시점인 흡입포트(133a)의 끝단에 위치될 때, 제1 베인(135a)과 일정한 각도 이격되게 위치되는 제2 베인(135b)의 위치와 회전축(123)의 중심을 연결하는 선이 형성하는 각도는 대략 160°에서 165° 사이의 각도를 형성하며, 이를 압축개시각(β)이라 칭한다. 여기서, 흡입이 완료되는 시점인 흡입포트(133a)의 끝단의 위치는 대략 40°에서 45° 사이의 각도를 이룬다. 또한, 실린더(133)의 측면에 형성되는 바이패스포트(133c)는 회전각이 대락 270°인 지점에 형성되며, 바이패스포트(133c)의 시작점의 위치까지의 각도를 토출개시각(γ)이라고 한다.When the first vane 135a is positioned at the end of the suction port 133a, which is the point at which suction is completed, the position and the rotation axis 123 of the second vane 135b positioned at a predetermined angle apart from the first vane 135a. The angle formed by the line connecting the centers of h) forms an angle between approximately 160 ° and 165 °, which is called the compression start angle β. Here, the position of the end of the suction port 133a, which is the point at which suction is completed, forms an angle between approximately 40 ° and 45 °. In addition, the bypass port 133c formed on the side surface of the cylinder 133 is formed at the point where the rotation angle is about 270 °, and the angle to the position of the start point of the bypass port 133c is called the discharge start time γ. .
바이패스홀(140)은, 메인베어링(131), 서브베어링(132) 및 압축공간(V)이 서로 중첩되는 위치에 형성될 수 있다. 바이패스홀(140)은, 압축개시각에서부터 토출개시각 사이에 형성되도록 이루어질 수 있다. 구체적으로, 바이패스홀(140)은, 회전각이 압축개시각인 β의 각도부터 토출개시각인 γ의 각도 사이의 영역에 위치하게 된다. 예를 들어, 바이패스홀(140)은, 접촉점(P)를 기준으로 할 때, 160°에서 270°의 사이에 위치에 형성되며, 압축공간(V)과 오버랩되도록 이루어질 수 있다.The bypass hole 140 may be formed at a position where the main bearing 131, the sub bearing 132, and the compression space V overlap each other. The bypass hole 140 may be formed between the compression start time and the discharge start time. Specifically, the bypass hole 140 is located in an area between the angle of β, which is the compression start time, and the angle of γ, which is the discharge start time. For example, the bypass hole 140 may be formed at a position between 160 ° and 270 ° based on the contact point P, and may overlap the compression space V. FIG.
구동모터(20)가 회전함에 따라, 회전축(123)이 반시계방향으로 회전하면, 회전축(123)에 설치되는 롤러(134)는 반시계방향으로 회전하게 되는데, 롤러(134)가 반시계방향으로 회전함에 따라 흡입포트(133a)를 통해 실린더(133)의 압축공간(V1, V2)으로 유입되는 냉매는 실린더(133)의 내주면과 각 베인(135) 사이에 형성되는 공간에 위치되며, 베인(135)의 이동에 따라 롤러(134)의 외주면과 실린더(133) 내주면 사이의 간격이 좁아지면서 압축이 이루어질 수 있다. 압축된 냉매는 바이패스포트(133c)를 통해 일부 유출되며, 최종적으로는 베인(135)의 움직임에 의해 토출유로(142)를 따라 이동하게 된다.As the driving motor 20 rotates, when the rotating shaft 123 rotates counterclockwise, the roller 134 installed on the rotating shaft 123 rotates counterclockwise, and the roller 134 is counterclockwise. The refrigerant flowing into the compression space (V1, V2) of the cylinder 133 through the suction port 133a is located in the space formed between the inner circumferential surface of the cylinder 133 and each vane 135, the vane According to the movement of the 135, the gap between the outer circumferential surface of the roller 134 and the inner circumferential surface of the cylinder 133 may be narrowed and compression may be performed. The compressed refrigerant partially flows out through the bypass port 133c, and finally moves along the discharge passage 142 by the movement of the vanes 135.
바이패스홀(140)을 통해, 압축된 냉매가 이동할 수 있으며, 베인(135)의 움직임에 따른 냉매의 압축에서 과압축을 방지할 수 있게 되는 것이다.Through the bypass hole 140, the compressed refrigerant may move, and overcompression may be prevented in the compression of the refrigerant due to the movement of the vane 135.
바이패스홀(140)은, 메인베어링(131)의 하면으로부터 상방향으로 형성되어 압축공간(V)과 케이스(10)의 내부 공간을 연통시키도록 이루어진다. 또한, 바이패스홀(140)은, 서브베어링(132)의 상면으로부터 하방향으로 형성되어, 압축공간(V1, V2)과 케이스(10)의 내부 공간을 연통하도록 이루어질 수 있다.The bypass hole 140 is formed upward from the lower surface of the main bearing 131 to communicate the compression space V and the internal space of the case 10. In addition, the bypass hole 140 is formed downward from the upper surface of the sub-bearing 132, it may be made to communicate the compression space (V1, V2) and the internal space of the case 10.
바이패스홀(140)은, 메인베어링(131)과 압축공간(V), 서브베어링(132)과 압축공간(V1, V2)이 서로 오버랩되는 위치에 형성될 수 있다. 바이패스홀(140)은, 적어도 하나 이상의 복수개로 이루어질 수 있으며, 일정한 길이의 원호를 따라 서로 이격되게 형성될 수 있다. 바이패스홀(140)은 원형의 홀로 이루어질 수 있으며, 바이패스홀(140)의 직경은, 베인(135)의 두께보다는 작아야 할 것이다. 베인(135)의 두께보다 바이패스홀(140)의 직경이 큰 경우, 베인(135)에 의해 구획되는 압축공간(V1, V2)간의 누설 현상이 발생하기 때문이다.The bypass hole 140 may be formed at a position where the main bearing 131 and the compression space V, the sub bearing 132 and the compression spaces V1 and V2 overlap each other. The bypass hole 140 may be formed of at least one or more pieces, and may be formed to be spaced apart from each other along an arc of a predetermined length. The bypass hole 140 may be formed as a circular hole, the diameter of the bypass hole 140 should be smaller than the thickness of the vanes 135. This is because when the diameter of the bypass hole 140 is larger than the thickness of the vane 135, a leakage phenomenon occurs between the compression spaces V1 and V2 partitioned by the vanes 135.
도 10는, 바이패스홀에 형성되는 토출밸브(150)의 모습을 나타내는 도면이다.10 is a view showing a state of the discharge valve 150 formed in the bypass hole.
토출밸브(150)는 메인베어링(131)의 상부면과 서브베어링(132)의 하부면에 각각 고정 설치될 수 있으며, 상기 각 바이패스홀(140)을 덮도록 이루어질 수 있다. 토출밸브(150)는 압축공간(V)에 형성되는 압력에 의해 바이패스홀(140)의 개폐를 형성할 수 있게 된다.The discharge valve 150 may be fixed to the upper surface of the main bearing 131 and the lower surface of the sub bearing 132, and may be formed to cover the bypass holes 140. The discharge valve 150 may form the opening and closing of the bypass hole 140 by the pressure formed in the compression space (V).
토출밸브(150)는 바이패스홀(140)의 갯수에 대응되는 갯수로 이루어질 수 있다. 토출밸브(150)는 복수개로 이루어져 각 바이패스홀(140)을 덮도록 이루어질 수 있다. 이 경우, 각 토출밸브(150)는, 각 바이패스홀(140)에 형성되는 압력에 의해 고정된 일 단을 기준으로 상측으로의 움직임이 형성될 수 있다.The discharge valve 150 may have a number corresponding to the number of the bypass holes 140. A plurality of discharge valves 150 may be formed to cover each bypass hole 140. In this case, each of the discharge valves 150 may be moved upward based on one end fixed by the pressure formed in each bypass hole 140.
도 11과 도 12는, 바이패스홀(140)의 효과를 나타내는 그래프이다.11 and 12 are graphs illustrating the effect of the bypass hole 140.
본 발명에 따르는 로터리 압축기는, 실린더(133)의 내주면의 일 측에 형성되어 압축공간(V1, V2)과 연통되도록 이루어지는 바이패스포트(133c)와 토출포트(133b) 외에 추가적으로 메인베어링(131) 및 서브베어링(132)에 각각 바이패스홀(140)이 형성될 수 있다.The rotary compressor according to the present invention, in addition to the bypass port 133c and the discharge port 133b formed on one side of the inner peripheral surface of the cylinder 133 so as to communicate with the compression space (V1, V2), the main bearing 131 and Bypass holes 140 may be formed in the sub-bearings 132, respectively.
베인(135)이 압축방향으로 회전함에 따라, 압축공간(V1, V2)에 수용되는 냉매는 압축되고, 바이패스포트(133c)를 통해 압축공간(V1, V2)에서 압축되는 냉매의 일부가 유출되며, 바이패스포트(133c)를 지나 위치되는 토출포트(133b)를 통해 압축된 냉매의 토출이 이루어지게 된다. 이때, 토출포트홈(133b') 및 바이패스포트홈(133c')에 의해 각각 토출포트(133b)와 바이패스포트(133c)를 통해 이동되는 압축 냉매의 유량이 증가할 수 있음은 앞서 살펴본 바와 동일하다.As the vane 135 rotates in the compression direction, the refrigerant contained in the compression spaces V1 and V2 is compressed, and a portion of the refrigerant compressed in the compression spaces V1 and V2 is discharged through the bypass port 133c. The compressed refrigerant is discharged through the discharge port 133b positioned beyond the bypass port 133c. In this case, the flow rate of the compressed refrigerant moved through the discharge port 133b and the bypass port 133c may be increased by the discharge port groove 133b 'and the bypass port groove 133c', as described above. .
로터리 압축기(100)에서 구동모터가 40Hz이상의 고속으로 회전하게 되면, 베인(135)을 통해 압축되는 냉매의 양도 더 많아지기 때문에, 압축된 냉매를 원활한 토출을 위해, 메인베어링(131)과 서브베어링(132)에는 압축공간(V1, V2)과 중첩되는 영역에 바이패스홀(140)이 형성할 수 있다.When the driving motor rotates at a high speed of 40 Hz or more in the rotary compressor 100, the amount of the refrigerant compressed through the vanes 135 also increases, so that the compressed refrigerant may be smoothly discharged from the main bearing 131 and the sub bearing. In 132, the bypass hole 140 may be formed in an area overlapping the compression spaces V1 and V2.
바이패스홀(140)은 복수개로 이루어질 수 있으므로, 유효한 토출 면적의 증가 효과를 가져올 수 있게 된다.Since the bypass hole 140 may be formed in plural, it is possible to bring about an effect of increasing the effective discharge area.
도 11은, 압축공간(V1, V2) 내에 수용된 냉매의 질량 유량의 속도를 나타내는 그래프이다. 그래프에서 가로축은 회전축의 회전각도를 나타내며, 세로축은 압축공간(V1, V2) 내의 질량유량의 속도를 나타낸다.11 is a graph showing the velocity of the mass flow rate of the refrigerant contained in the compression spaces V1 and V2. In the graph, the horizontal axis represents the rotation angle of the rotation axis, and the vertical axis represents the velocity of the mass flow rate in the compression spaces V1 and V2.
여기서, 점선은 각 베어링에 바이패스홀(140)이 형성되지 않은 것을 도시하며, 실선은 각 베어링(131, 132)에 바이패스홀(140)이 형성된 경우를 도시한다. 그래프에서 보는 바와 같이, 60Hz로 회전하는 로터리 압축기에서 로터리 압축기(100)에 바이패스홀(140)이 형성되는 경우, 압축공간(V) 내에 수용된 냉매의 유속이 전체적으로 감소함을 알 수 있다. 즉, 바이패스홀(140)을 형성시키게 되면 냉매의 유속이 전체적으로 줄어듬을 확인할 수 있게 된다. 또한, 토출시의 냉매의 유속이 감소하여 압축기의 손실을 줄일 수 있게 된다.Here, the dotted line shows that the bypass hole 140 is not formed in each bearing, and the solid line shows the case where the bypass hole 140 is formed in each bearing 131, 132. As shown in the graph, when the bypass hole 140 is formed in the rotary compressor 100 in the rotary compressor rotating at 60 Hz, it can be seen that the flow rate of the refrigerant contained in the compression space V decreases as a whole. That is, when the bypass hole 140 is formed, it is possible to confirm that the flow rate of the refrigerant is reduced overall. In addition, the flow rate of the refrigerant at the time of discharge is reduced to reduce the loss of the compressor.
도 12는, 회전각에 따른 압축실의 압력 변화를 나타내는 그래프이다.12 is a graph showing a change in pressure in the compression chamber according to the rotation angle.
*여기서, 점선은 바이패스홀(140)이 부존재하는 경우를, 실선은 바이패스홀(140)이 형성된 경우를 나타낸다.Here, the dotted line indicates the case where the bypass hole 140 does not exist, and the solid line indicates the case where the bypass hole 140 is formed.
점선과 같이, 로터리 압축기에 바이패스홀(140)이 형성되지 않은 경우, 회전각이 약 240°일 때, 압축공간(V1, V2)의 압력이 계속해서 증가하여 냉매가 과압축되는 현상이 발생하게 된다. 이는 냉매를 불필요하게 압축함에 따라 압축기의 효율의 저하를 야기하게 된다. 그래프에서 빗금친 부분은 회전각이 대략 240°에서부터 압축실(V2)의 압력이 상승하면서 발생하는 과압축에 따른 손실을 보여준다.As shown by the dotted line, when the bypass hole 140 is not formed in the rotary compressor, when the rotation angle is about 240 °, the pressure in the compression spaces V1 and V2 continues to increase, causing the refrigerant to overcompress. Done. This unnecessarily compresses the refrigerant, causing a decrease in the efficiency of the compressor. The hatched portion in the graph shows the loss due to overcompression that occurs as the pressure in the compression chamber V2 rises from approximately 240 °.
바이패스홀(140)은 압축개시각(β)으로부터 토출개시각(γ) 사이의 영역에 형성되며, 대략 160°에서 270° 사이에 형성될 것이다. 예를 들어, 바이패스홀(140, 240, 340)이 회전각이 240° 부근에서부터 형성되어 있는 경우, 압축실(V2)의 압력은 대략 22.5 kgf/cm^2을 최고치로 더이상 증가하지 않으면서 일정하게 유지될 수 있다. 바이패스홀(140)을 통해, 압력이 상승된 냉매는 일부 유출될 수 있어, 압축실(V2)의 압력이 계속해서 상승하여 냉매가 과압축되는 현상을 막을 수 있다.The bypass hole 140 is formed in a region between the compression start time β and the discharge start time γ, and may be formed between approximately 160 ° and 270 °. For example, when the bypass holes 140, 240, and 340 are formed from around 240 ° of rotation angle, the pressure in the compression chamber V2 is no longer increased to the maximum of approximately 22.5 kgf / cm ^ 2. Can be kept constant. Through the bypass hole 140, some of the refrigerant whose pressure is increased may flow out, and thus the pressure of the compression chamber V2 may continuously increase to prevent the refrigerant from being overcompressed.
또한, 바이패스홀(140)을 통해, 압축공간(V1, V2)에서 압축되는 냉매의 일부가 토출되게 되므로, 최종적으로 토출구를 통해 토출되는 냉매의 유속도 감소할 수 있게 된다. 이에, 압축기의 효율은 더욱 상승될 수 있게 된다.In addition, since the portion of the refrigerant compressed in the compression spaces V1 and V2 is discharged through the bypass hole 140, the flow rate of the refrigerant discharged through the discharge port can be finally reduced. Thus, the efficiency of the compressor can be further increased.
이상에서 설명한 것은 본 발명에 따른 로터리 압축기를 실시하기 위한 실시예들에 불과한 것으로서, 본 발명은 이상의 실시예들에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어나지 않는 범위 내에서 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 사상이 있다고 할 것이다.What has been described above is only embodiments for implementing a rotary compressor according to the present invention, the present invention is not limited to the above embodiments, and do not depart from the gist of the present invention as claimed in the claims below. Anyone skilled in the art to which the present invention pertains within the scope will have the technical idea of the present invention to the extent that various modifications can be made.
본 발명은, 냉매를 압축시킨 후 이를 토출하기 위한 압축기를 생산 및 사용하기 위한 다양한 산업분야에서 적용 및 응용될 수 있을 것이다.The present invention may be applied and applied in various industries for producing and using a compressor for compressing a refrigerant and then discharging it.

Claims (9)

  1. 케이스의 내부에서 회전력을 발생시키는 구동모터;A drive motor generating a rotational force inside the case;
    상기 구동모터와 결합되어 회전력을 전달하는 회전축;A rotating shaft coupled to the driving motor to transmit a rotating force;
    상기 케이스에 고정되고, 상기 회전축을 따라 설치되는 메인베어링과 서브베어링;A main bearing and a sub bearing fixed to the case and installed along the rotating shaft;
    상기 메인베어링과 서브베어링의 사이에 고정 설치되고, 중심부에 냉매가 수용되며, 반경 방향으로 흡입포트와 토출포트가 각각 형성되는 실린더;A cylinder fixedly installed between the main bearing and the sub-bearing, the refrigerant being accommodated in the center, and the suction port and the discharge port respectively formed in the radial direction;
    일 측이 상기 실린더의 내주면에 접하도록 상기 실린더의 내부에 위치하고, 상기 회전축과 함께 회전하여 상기 실린더의 내부에 압축공간을 형성하는 롤러; 및A roller positioned at one side of the cylinder to be in contact with the inner circumferential surface of the cylinder and rotating together with the rotating shaft to form a compression space in the cylinder; And
    상기 롤러에 삽입 설치되고, 상기 롤러의 회전에 의해 돌출되어 상기 실린더의 내주면과 접하면서 상기 압축공간을 흡입실과 압축실로 구획하는 적어도 두 개 이상의 베인을 포함하며,It is inserted into the roller and includes at least two vanes protruding by the rotation of the roller to contact the inner peripheral surface of the cylinder and partition the compression space into a suction chamber and a compression chamber,
    상기 실린더의 내주면 일측에는, 상기 토출포트의 단부를 확장하도록 이루어지고 압축된 냉매의 유량을 증가시키는 토출포트홈이 형성되는 것을 특징으로 하는 압축기.Compressor, characterized in that the discharge port groove is formed on one side of the inner peripheral surface of the cylinder to extend the end of the discharge port and to increase the flow rate of the compressed refrigerant.
  2. 제1항에 있어서,The method of claim 1,
    상기 토출포트홈은, 상기 실린더의 내주면을 따라 리세스되는 형상으로 이루어지는 것을 특징으로 하는 압축기.The discharge port groove, characterized in that the compressor is formed along the inner peripheral surface of the cylinder.
  3. 제1항에 있어서,The method of claim 1,
    상기 토출포트홈은, 상기 토출포트의 일단에서 상기 베인의 이동 방향을 따라 형성되는 것을 특징으로 하는 압축기.The discharge port groove, characterized in that formed in the direction of movement of the vane at one end of the discharge port.
  4. 제1항에 있어서,The method of claim 1,
    상기 토출포트홈은, 상기 토출포트의 일 측에서 상기 실린더의 내주면을 따라 연장되는 것을 특징으로 하는 압축기.The discharge port groove, the compressor characterized in that extending along the inner peripheral surface of the cylinder on one side of the discharge port.
  5. 제1항에 있어서,The method of claim 1,
    상기 메인베어링과 서브베어링에는, 상기 압축공간과 오버랩되는 위치에 상기 케이스의 내부 공간과 연통되도록 바이패스홀이 형성되는 것을 특징으로 하는 압축기.And the bypass hole is formed in the main bearing and the sub-bearing so as to communicate with the inner space of the case at a position overlapping with the compression space.
  6. 제5항에 있어서,The method of claim 5,
    상기 바이패스홀은, 적어도 하나 이상의 복수개로 이루어지는 것을 특징으로 하는 압축기.Compressor, characterized in that consisting of at least one or more of the bypass hole.
  7. 제5항에 있어서,The method of claim 5,
    상기 메인베어링의 상부면과 상기 서브베어링의 하부면에 각각 고정 설치되고, 상기 바이패스홀을 덮도록 이루어지며, 상기 바이패스홀의 개폐를 형성하는 토출밸브를 더 포함하는 것을 특징으로 하는 압축기.And a discharge valve fixedly installed at an upper surface of the main bearing and a lower surface of the sub-bearing, respectively, to cover the bypass hole and to open and close the bypass hole.
  8. 제1항에 있어서,The method of claim 1,
    상기 실린더에는, 상기 냉매가 압축되는 방향을 기준으로 상기 토출포트보다 전방에 위치되어 상기 압축된 냉매의 토출이 이루어지는 바이패스포트를 구비하고,The cylinder is provided with a bypass port positioned forward of the discharge port on the basis of the direction in which the refrigerant is compressed to discharge the compressed refrigerant,
    상기 바이패스포트는,The bypass port,
    상기 바이패스포트의 단부가 확장되어 이동하는 냉매의 유량이 증가되도록, 일측에 바이패스포트홈이 형성되는 것을 특징으로 하는 압축기.Compressor, characterized in that the bypass port groove is formed on one side so that the flow rate of the moving refrigerant is extended by the end of the bypass port is increased.
  9. 제8항에 있어서,The method of claim 8,
    상기 바이패스포트홈은, 상기 실린더의 내주면을 따라 리세스되는 형상으로 이루어지는 것을 특징으로 하는 압축기.And the bypass port groove has a shape that is recessed along an inner circumferential surface of the cylinder.
PCT/KR2018/003884 2017-04-18 2018-04-03 Rotary compressor WO2018194294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880025859.4A CN110520624B (en) 2017-04-18 2018-04-03 Rotary compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0049994 2017-04-18
KR1020170049994A KR102338127B1 (en) 2017-04-18 2017-04-18 Rotary compressor

Publications (1)

Publication Number Publication Date
WO2018194294A1 true WO2018194294A1 (en) 2018-10-25

Family

ID=63856736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003884 WO2018194294A1 (en) 2017-04-18 2018-04-03 Rotary compressor

Country Status (3)

Country Link
KR (1) KR102338127B1 (en)
CN (1) CN110520624B (en)
WO (1) WO2018194294A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583128A (en) * 2019-04-18 2020-10-21 Changan Uk R&D Centre Ltd A hydraulic pump
EP4036413A1 (en) * 2021-02-01 2022-08-03 LG Electronics Inc. Rotary compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102227090B1 (en) * 2019-02-22 2021-03-12 엘지전자 주식회사 Vain rotary compressor
KR102191124B1 (en) 2019-02-28 2020-12-15 엘지전자 주식회사 Vain rotary compressor
KR102150374B1 (en) * 2019-08-27 2020-09-01 (주)대주기계 Performance improvement structure of a large-capacity air compressor with a slit browing on suction duct
CN112483394B (en) * 2020-11-13 2021-11-23 珠海格力电器股份有限公司 Expander and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531279B1 (en) * 2003-05-13 2005-11-28 엘지전자 주식회사 rotary type compressor
KR100531288B1 (en) * 2003-05-13 2005-11-28 엘지전자 주식회사 Rotary compressor
KR100575809B1 (en) * 2004-04-06 2006-05-03 엘지전자 주식회사 Capacity variable device for rotary compressor
JP2013072429A (en) * 2011-09-29 2013-04-22 Mitsubishi Electric Corp Vane rotary compressor
JP2015206337A (en) * 2014-04-23 2015-11-19 カルソニックカンセイ株式会社 gas compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1611782A (en) * 2003-10-31 2005-05-04 乐金电子(天津)电器有限公司 Rotary compressor
CN102062094B (en) * 2010-12-20 2012-07-11 天津商业大学 Rolling rotor refrigeration compressor with function of preventing liquid impact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531279B1 (en) * 2003-05-13 2005-11-28 엘지전자 주식회사 rotary type compressor
KR100531288B1 (en) * 2003-05-13 2005-11-28 엘지전자 주식회사 Rotary compressor
KR100575809B1 (en) * 2004-04-06 2006-05-03 엘지전자 주식회사 Capacity variable device for rotary compressor
JP2013072429A (en) * 2011-09-29 2013-04-22 Mitsubishi Electric Corp Vane rotary compressor
JP2015206337A (en) * 2014-04-23 2015-11-19 カルソニックカンセイ株式会社 gas compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2583128A (en) * 2019-04-18 2020-10-21 Changan Uk R&D Centre Ltd A hydraulic pump
EP4036413A1 (en) * 2021-02-01 2022-08-03 LG Electronics Inc. Rotary compressor
US11732712B2 (en) 2021-02-01 2023-08-22 Lg Electronics Inc. Rotary compressor

Also Published As

Publication number Publication date
CN110520624A (en) 2019-11-29
KR20180116984A (en) 2018-10-26
KR102338127B1 (en) 2021-12-10
CN110520624B (en) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2018194294A1 (en) Rotary compressor
WO2016108444A1 (en) Scroll compressor and air conditioner having the same
WO2017188558A1 (en) Scroll compressor
WO2018131827A1 (en) Turbo compressor
WO2018151428A1 (en) Rotary compressor
WO2019045454A1 (en) Scroll compressor
WO2014014182A1 (en) Vane rotary compressor
WO2017188557A1 (en) Scroll compressor
WO2020116781A1 (en) High-pressure scroll compressor
WO2018147562A1 (en) Hermetic compressor
WO2014196774A1 (en) Scroll compressor
WO2021045361A1 (en) Rotary compressor and home appliance including same
WO2018216916A1 (en) Rotary compressor
WO2016143951A1 (en) Electric compressor
WO2017164539A1 (en) Compressor
WO2010011082A2 (en) Variable capacity type rotary compressor
WO2018151538A1 (en) Electric compressor
WO2018174449A1 (en) Hermetic compressor
WO2009108006A9 (en) Inverter type scroll compressor
WO2021040360A1 (en) Scroll compressor
WO2021010721A1 (en) Scroll compressor
WO2020036241A1 (en) Rotary compressor
WO2020153705A1 (en) Swash plate type compressor
WO2019004730A1 (en) Rotary compressor having two-stage compression structure
WO2018221902A1 (en) Control valve and variable-capacity compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788338

Country of ref document: EP

Kind code of ref document: A1