WO2018216895A1 - 일체형 배압 및 egr 밸브 모듈 - Google Patents

일체형 배압 및 egr 밸브 모듈 Download PDF

Info

Publication number
WO2018216895A1
WO2018216895A1 PCT/KR2018/003968 KR2018003968W WO2018216895A1 WO 2018216895 A1 WO2018216895 A1 WO 2018216895A1 KR 2018003968 W KR2018003968 W KR 2018003968W WO 2018216895 A1 WO2018216895 A1 WO 2018216895A1
Authority
WO
WIPO (PCT)
Prior art keywords
back pressure
valve
egr valve
egr
guide hole
Prior art date
Application number
PCT/KR2018/003968
Other languages
English (en)
French (fr)
Inventor
김창연
김규도
정진복
Original Assignee
이래에이엠에스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이래에이엠에스 주식회사 filed Critical 이래에이엠에스 주식회사
Priority to CN201880034083.2A priority Critical patent/CN110662896B/zh
Publication of WO2018216895A1 publication Critical patent/WO2018216895A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/64Systems for actuating EGR valves the EGR valve being operated together with an intake air throttle

Definitions

  • the present invention relates to an integrated back pressure and EGR valve module, and more particularly to an integrated back pressure and EGR valve module in which the INTEGRATED BACK PRESSURE VALVE is opened and closed dependently by the rotation of the EGR valve.
  • the EGR can be classified into HP EGR (High Pressure EGR) and LP EGR (Low Pressure EGR) according to the position of recycling the exhaust gas.
  • HP EGR uses the high-temperature and high-pressure exhaust gas as the EGR gas using a recirculation passage connected to the intake manifold side at the front end of the turbine of the turbocharger.
  • FIG. 6 is a view showing an EGR valve unit according to the prior art.
  • the low pressure EGR device 1 is an opening degree of a low pressure EGR flow path 3 for inducing an EGR gas into an intake passage 2 through which intake air passes.
  • the linkage device 7 rotates integrally with the low pressure EGR adjustment valve 4 and integrally with the cam plate 12 and the intake tightening valve 5 on which the cam groove 11 is formed. Rotating in the direction of the cam to be configured using a driven arm (14) having a driven pin (13) engaged with the groove (11) There it ignores.
  • the conventional LP EGR has a back pressure valve and an EGR valve in the exhaust stage separately, so that the entire system is large and heavy, so it is difficult to control, and the back pressure valve exposed to high temperature is directly connected with the durability of the product. This is a problem that leads to an increase in the price and weight of the system.
  • the cam (Cam) structure is adopted to link the EGR valve and the back pressure forming valve, which is generally manufactured using SUS, which has a heavy load due to its weight during operation, and the cam is somewhat heavy. Due to the moment of inertia, there is a problem that the quick linkage between the valve and its control becomes difficult.
  • the back pressure valve disposed in the intake flow path for taking in breathing air from the outside;
  • An EGR valve connected to an oblique direction forming a predetermined angle with a length direction of the intake flow path and disposed on an LP EGR flow path for recirculating exhaust gas discharged from an engine and passing through a turbine;
  • a pin guide hole connecting the EGR valve and the back pressure valve to each other and engaging with a pin interlocking with the EGR valve, wherein the pin guide hole has an inflection point at a relatively intermediate position with the centers of curvature radius facing each other. It is configured to have, and the pin is interlocked with the EGR valve is fixed to the shaft of the back pressure valve in the state coupled to the pin guide hole; Cam, including the back pressure valve can be opened and closed dependently by the rotation of the EGR valve have.
  • the pin guide hole may include a first pin guide hole driving only the EGR valve; And a second pin guide hole through which the EGR valve and the back pressure valve are synchronously driven.
  • the second pin guide hole may rotate counterclockwise from the open state to the closed state while the pin moves in the counterclockwise direction.
  • the pin guide hole may further include a third pin guide hole for synchronizing the back pressure valve and the EGR valve when the EGR valve is reversely rotated.
  • the diameter of the LP EGR flow path may be formed smaller than the diameter of the intake flow path.
  • connection herein includes direct connection and indirect connection between one member and another member, and may mean all physical connections such as adhesion, attachment, fastening, bonding, and coupling.
  • an expression such as 'first' and 'second' is used only for distinguishing a plurality of components, and does not limit the order or other features between the components.
  • FIG. 1 is a view showing an overall schematic diagram of an internal combustion engine for explaining the position where the valve module of the present invention is mounted.
  • the exhaust manifold is connected to an exhaust passage for releasing exhaust gas into the atmosphere.
  • a turbine T. of the turbocharger is connected to the exhaust passage, and downstream of the turbine T., a DPF and / or a catalytic device and a muffler are provided as an exhaust aftertreatment device for purifying exhaust gas.
  • an exhaust gas recirculation (EGR) system may be installed in the exhaust passage to recycle a part of the exhaust gas to the intake cylinder.
  • the EGR system is provided with an EGR cooler for reducing the temperature of the exhaust gas at a high temperature and an EGR valve for controlling the flow rate of the exhaust gas introduced into the EGR flow path.
  • the LP EGR system is applied to the internal combustion engine of the present invention as an EGR system.
  • LP EGR has the advantages of good intake air temperature cooling and EGR cylinder distribution, and good fuel efficiency, but it must be followed by the task of forming back pressure for recycling exhaust gas. Therefore, in the present invention, an EGR valve and a 3-way valve can be configured as a valve for generating back pressure for LP EGR. Detailed description thereof will be described later.
  • the LP EGR of the present invention is branched from the exhaust passage in front of the muffler and circulating a part of the exhaust gas into the intake pipe, and also controls the exhaust gas flowing into the EGR cooler and the EGR flow path.
  • An EGR valve is provided.
  • the diesel part filter shown in FIG. 1 may be replaced by a catalytic converter, or when applied to a gasoline vehicle, may be replaced by a GPF, and in some cases, may be installed in combination with a catalytic converter.
  • the mixer has a flow direction facing the compressor (C.) side.
  • valve module of the present invention may be provided at a portion indicated by a dotted line in FIG. 1.
  • FIG. 2 is a view showing the configuration of a valve module according to an embodiment of the present invention
  • Figures 3 to 5 are views showing aspects of the opening of the EGR valve and the back pressure valve.
  • the integrated back pressure and EGR valve module includes an EGR valve 100, a back pressure valve 200, and a cam 300 interconnecting the EGR valve 100 and the back pressure valve 200. It is composed.
  • the back pressure valve 200 is arrange
  • the EGR valve 100 is connected to an oblique direction forming a predetermined angle with the longitudinal direction of the intake flow passage 20 and disposed on the LP EGR flow passage 10 for recirculating exhaust gas discharged from the engine and passing through the turbine. have.
  • the flap valve may correspond to both the EGR valve 100 and the back pressure valve 200.
  • the EGR valve 100 may mean an LP EGR valve
  • the back pressure valve 200 may refer to a back pressure generating valve for forming back pressure at a confluence point of the EGR flow path 10 and the intake flow path 20.
  • the back pressure valve 200 also serves to adjust the amount of intake air, but mainly serves to facilitate the recycling and mixing of the EGR gas.
  • the front end of the back pressure generating valve may be provided with a separate throttle valve (throttle) for adjusting the amount of intake air.
  • throttle throttle
  • the cam 300 connects the EGR valve 100 and the back pressure valve 200 to each other, and the pin guide hole 310 is coupled to the pin 110 interlocking with the EGR valve 100 inside the body of the cam 300.
  • the pin guide hole 310 may be formed of a curved section divided into at least two or more compartments. The divided curve sections may have centers of different radii of curvature at different points.
  • the center of curvature radius of the two different sections are configured to have an inflection point at a relatively intermediate position opposite to each other, the pin 110 is interlocked with the EGR valve 100 pin It is fastened to the guide hole 310, in this state the cam is fixed to the axis of the back pressure valve 200 to rotate.
  • the shape of the pin guide hole 310 is, as shown in Figure 3, the radius of curvature center on the plane formed by the rotation surface of the cam 300 is opposed to the two directions with respect to the body of the cam 300 A circular arc meets and forms an inflection point.
  • the pin guide hole 310 has a shape of a first pin guide hole 311 for driving only the EGR valve 100 and a second pin guide hole for synchronous driving of the EGR valve 100 and the back pressure valve 200. 312).
  • the first pin guide hole 311 is a section in which the displacement of the back pressure valve 200 does not change while the pin 110 moves in a clockwise or counterclockwise direction about the drive shaft (rotational axis of the EGR valve).
  • the second pin guide hole 312 rotates counterclockwise with the back pressure valve 200 in the closed state while the pin 110 moves counterclockwise about the drive shaft (rotation axis of the EGR valve). It is a section.
  • the pin guide hole 310 has a third pin guide hole in which the EGR valve 100 is reversely rotated, and the EGR valve 100 and the back pressure valve 200 are synchronized with each other. 313 may be further included.
  • the EGR valve 100 and the back pressure valve 200 moves in conjunction with the cam 300, in particular the back pressure valve 200 is opened and closed dependently by the rotation of the EGR valve 100.
  • the EGR gas is supplied to the intake flow path 10.
  • the supplied EGR gas meets and mixes with the fresh air.
  • the cam 300 is a back pressure valve.
  • the back pressure valve 200 rotates counterclockwise like the EGR valve 100 by pulling the 200.
  • the intake air flow rate is increased, and the mixing of the intake air and the EGR gas is facilitated.
  • the cam 300 is interlocked with the back pressure valve 200.
  • the back pressure valve 200 is fully closed, and only the EGR gas is supplied downstream of the intake flow passage 10. At this time, the maximum back pressure is formed on the downstream side of the intake flow path 10 by the back pressure valve 200, so that the supply speed of the EGR gas is further increased.
  • FIG. 7 is a diagram illustrating a process in which a pin drives a first pin guide hole, a second pin guide hole, and a third pin guide hole.
  • a section shown in FIG. 7 is a section in which the pin 110 interlocking with the EGR valve 100 rotates the second pin guide hole 312, and when the pin 110 rotates the section A counterclockwise.
  • EGR valve 100 and the back pressure valve 200 is a section characterized in that the synchronous drive in the counterclockwise direction.
  • section B is a section in which the pin 110 rotates the first pin guide hole 311, and the section in which only the EGR valve 100 is driven (rotated) without the back pressure valve 200 rotating.
  • the section C is a section in which the pin 110 drives the third pin guide hole 313.
  • the EGR valve 100 rotates in the reverse direction and exhausts the EGR valve 100. This is a section where cleaning is performed to remove gas contaminants.
  • the D section is a section of the buffer (Buffer) is a section in which the driving (rotation) of the valve does not occur because the force is not transmitted even if the pin 110 is driven.
  • the E section is a section in which the EGR valve 100 and the back pressure valve 200 are driven synchronously with the rotation of the pin 110, and more specifically, the EGR valve 100 and the back pressure valve 200 are synchronized with each other. It is a section that rotates in the opposite direction to the rotation direction of the pin (110).
  • the back pressure valve 200 depends on which position the pin 110 rotates in the first pin guide hole 311, the second pin guide hole 312, and the third pin guide hole 313. It is also possible to drive only the EGR valve 100 without the drive of, characterized in that the EGR valve 100 and the back pressure valve 200 may be driven synchronously.
  • the EGR flow path 10 may be connected in an oblique direction forming a predetermined angle with the longitudinal direction of the intake flow path 20.
  • the EGR flow path 10 is connected to the intake flow path 20 at a right angle rather than in an oblique direction, foreign matters such as nitrogen oxides accumulate on the back pressure valve 200 located in the intake flow path 20 and cause a valve failure. Therefore, the EGR flow path 10 is connected to the intake flow path 20 in an oblique direction to prevent this.
  • EGR valve 100 the back pressure valve 200 and the cam 300 may be formed as an integrated 3-way valve module.
  • another embodiment of the present invention is to form the diameter of the EGR flow path 10 smaller than the diameter of the intake flow path (20). That is, when comparing the cross-sectional area of the LP EGR flow path and the intake flow path 20, the cross-sectional area of the LP EGR flow path is designed to be small in advance so that the mixer flowing in the turbocharger direction when only the EGR valve 100 is opened and the back pressure valve 200 is closed. The flow rate of can be made small.
  • the present invention corresponds to the inverse cam (INVERSE CAM) structure for the valve structure of the prior art of Figure 6 described above.
  • the inverse cam means that the role of the maneuvering and the follower is opposite, in the present specification may mean that the cam used as the maneuvering in the prior art, the role of the follower in the present invention.
  • the driven arm 14 for connecting the back pressure valve to the EGR valve is essentially provided in the prior art, in the present invention, the driven arm for connecting the back pressure valve and the EGR valve can be omitted. This has the advantage of being able to perform the same function.
  • the cam is positioned on the drive shaft (EGR valve side) in which the motor and the gear unit are installed, so that it is difficult to control by the inertial load of the cam and thus the power consumed accordingly.
  • the cam is positioned on the driven shaft (back pressure valve side) rather than on the drive shaft, so that the inertial load is less than the prior art during valve opening and closing.
  • the integrated back pressure and EGR valve module of the present invention has a simpler structure, easier to manufacture, lower cost, and less inertia moment due to weight reduction of the output gear in the LP EGR section. Therefore, the weight of the product and the motor load can be reduced.
  • the drive section of the back pressure valve and the EGR valve can be easily changed, and the cam design of the reverse rotation and synchronous drive sections can be performed more easily.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

본 발명은 일체형 배압 및 EGR 밸브 모듈이 개시되며, 본 발명의 일 실시예에 따른 일체형 배압 및 EGR 밸브 모듈은 외부로부터 신기를 흡기하는 흡기 유로 내 배치되는 배압 밸브; 상기 흡기 유로의 길이 방향과 소정의 각도를 이루는 사선 방향으로 접속되며 엔진에서 배출되어 터빈을 통과한 배기가스를 재순환시키는 LP EGR 유로 상에 배치되는 EGR 밸브; 및 상기 EGR 밸브와 배압 밸브를 상호 연결하되, 본체 내측으로 EGR 밸브와 연동하는 핀과 결합하는 핀가이드홀이 형성되어 있고, 상기 핀가이드홀은 곡률 반경 중심이 서로 대향하여 상대적으로 중간 위치에서 변곡점을 갖도록 구성되고, EGR 밸브와 연동하는 핀이 핀가이드홀에 체결된 상태로 배압 밸브의 축에 고정되어 회전하는 캠; 을 포함하며, 상기 배압 밸브는 EGR 밸브의 회전에 의해 종속적으로 개폐되는 것을 특징으로 한다.

Description

일체형 배압 및 EGR 밸브 모듈
본 발명은 일체형 배압 및 EGR 밸브 모듈에 관한 것으로, 보다 상세하게는 배압 밸브(INTEGRATED BACK PRESSURE VALVE)가 EGR 밸브의 회전에 의해 종속적으로 개폐되는 일체형 배압 및 EGR 밸브 모듈에 관한 것이다.
디젤엔진은 가솔린에 비해 연비가 우수해 승용차, 버스, 트럭 등 상용차량과 산업계 전반에 널리 사용되고 있다. 그런데 디젤엔진 차량의 배기가스에는 일산화탄소(CO), 탄화수소(HC), 질소산화물(NOx) 등의 유해물질이 포함된다. 이 중 질소산화물(NOx)은 고압, 고온 시에 산소와 질소가 결합하여 발생하는 것으로 산성비의 주요 원인이 되어 건물 부식 및 생태계 파괴를 일으키며, 인체에는 기관지염, 폐렴, 천식과 같은 각종 호흡기 질환의 원인으로 지목되고 있다.
일반적으로 배기가스 재순환(EGR; EXHAUST GAS RECIRCULATION)이라 함은 엔진의 배기가스 중 일부를 다시 엔진의 흡기계통으로 순환시켜 배기가스를 외기와 함께 연소에 활용하는 기술을 일컫는다. 배기가스를 재순환시킴으로써 대기로 배출되는 NOx를 줄일 수 있는 장점이 있다.
EGR은 배기가스를 재순환시키는 위치에 따라서, HP EGR(High Pressure EGR), LP EGR(Low Pressure EGR)로 구분할 수 있다. 구체적으로 HP EGR은 터보차져의 터빈 전단에서 흡기 매니폴드 측으로 연결되는 재순환유로를 이용하여 압력강하가 얼마 되지 않은 고온 고압의 배기가스를 EGR 가스로 사용한다.
이와 달리 LP EGR은 터빈 후단에서 컴프레서 전단의 외기 흡입유로 측으로 연결되는 재순환유로를 이용하여 HP EGR에 비해 상대적으로 압력강하가 더 이루어진 배기가스를 EGR 가스로 사용한다는 HP EGR과 차이점을 갖는다.
특히, LP EGR은 DOC(Diesel Oxidation Catalyst), DPF(Diesel Particulate Filter) 및/또는 SCR(Selective Catalytic Reduction)의 후단에 위치하는 구성으로서, 재순환되는 가스 내 오염물질이 HP EGR에 비해 상대적으로 더 작다는 장점을 가진다. 또한, LP EGR은 흡기온 냉각 및 EGR 기통 분배성 측면에서도 HP EGR에 비해 상대적으로 유리하다는 장점을 가진다. 최근에는 LP EGR이 실연비 개선에도 유리한 효과를 가져온다는 측면에 주목하여, 디젤 엔진이 장착된 자동차뿐만 아니라 가솔린 엔진이 장착된 자동차에도 LP EGR을 적용시키려 하는 등 그에 대한 관심이 날로 높아지고 있다.
도 6은 종래 기술에 의한 EGR 밸브 유닛을 나타내는 도면인데, 도 6을 참조하면 저압 EGR 장치(1)은 흡기가 통과하는 흡기 통로(2)에 EGR 가스를 유도하는 저압 EGR 유로(3)의 개도 조정을 하는 저압 EGR 조정 밸브(4)와 흡기 통로(2)와 저압 EGR 유로(3)의 합류부에 흡기 음압을 발생시키는 흡기 조임 밸브(5)와 저압 EGR 조정 밸브(4)를 구동하는 하나의 전동 액추에이터(6)과 이 전동 액추에이터(6)의 출력 특성을 변화시켜 흡기 조임 밸브(5)를 구동하는 링크 장치(7)와 전동 액추에이터(6)의 작동을 제어하는 ECU(8)(엔진 컨트롤 유닛의 제어 장치에 상당하고, 링크 장치(7)는 저압 EGR 조정 밸브(4)와 일체로 회동해, 캠 홈(11)이 형성되는 캠 플레이트(12)와 흡기 조임 밸브(5)와 일체로 회동해, 캠 홈(11)에 걸어맞추는 종동 핀(13)을 구비하는 종동 암(14)을 이용해 구성되는 것을 개시하고 있다.
상기 종래기술에 따르면, 종래의 LP EGR은 배기 단에 배압 밸브와 EGR 밸브가 따로 존재하여 전체 시스템이 크고 무거우므로 제어에 어려움이 있으며, 고온에 노출되는 배압 밸브는 제품의 내구도와 직관되어 제품의 가격 상승 및 시스템의 무게 증가를 초래하는 문제가 된다.
또한, EGR 밸브와 배압 형성 밸브의 연동을 위해 캠(Cam) 구조를 채택하는데, 이 캠은 일반적으로 SUS를 사용하여 제조되는 바, 구동 중에 그 무게로 인한 부하가 많이 걸려 움직임이 다소 무겁고, 캠의 관성모멘트에 의해 밸브 간의 신속한 연동 및 그 제어가 어려워지는 문제가 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 극복하기 위하여 일 실시예로 캠 방식의 밸브 유닛의 단점을 해소할 수 있는 일체형 배압 및 EGR 밸브에 관한 발명을 제공하고자 한다.
본 발명의 일 측면에 따르면, 외부로부터 신기를 흡기하는 흡기 유로 내 배치되는 배압 밸브; 상기 흡기 유로의 길이 방향과 소정의 각도를 이루는 사선 방향으로 접속되며 엔진에서 배출되어 터빈을 통과한 배기가스를 재순환시키는 LP EGR 유로 상에 배치되는 EGR 밸브; 및 상기 EGR 밸브와 배압 밸브를 상호 연결하되, 본체 내측으로 EGR 밸브와 연동하는 핀과 결합하는 핀가이드홀이 형성되어 있고, 상기 핀가이드홀은 곡률 반경 중심이 서로 대향하여 상대적으로 중간 위치에서 변곡점을 갖도록 구성되고, EGR 밸브와 연동하는 핀이 핀가이드홀에 체결된 상태로 배압 밸브의 축에 고정되어 회전하는 캠;을 포함하며, 상기 배압 밸브는 EGR 밸브의 회전에 의해 종속적으로 개폐될 수 있다.
상기 핀가이드홀은, 상기 EGR 밸브만 구동하는 제1 핀가이드홀; 및 상기 EGR 밸브와 배압 밸브가 동기 구동하는 제2 핀가이드홀;을 포함할 수 있다.
상기 구조에서, 상기 제1 핀가이드홀은 핀이 시계 방향 또는 시계 반대방향으로 움직이는 동안에 배압 밸브의 변위가 변화되지 않는 것을 특징으로 할 수 있다.
또한, 상기 제2 핀가이드홀은 핀이 시계 반대 방향으로 움직이는 동안에는 배압 밸브가 열림 상태에서 닫힘 상태로 시계 반대 방향으로 회전할 수 있다.
이 때, 상기 핀가이드홀은 EGR 밸브가 역회전할 때, 배압 밸브와 EGR 밸브가 동기되도록 하는 제3 핀가이드홀을 더 포함할 수 있다.
이러한 구조에서, 상기 제3 핀가이드홀은 핀이 시계 방향으로 움직이는 동안에 배압 밸브가 열림 상태에서 닫힘 상태로 시계 방향으로 회전할 수 있다.
본 발명에 따르면, 상기 EGR 밸브, 배압 밸브 및 캠은 일체형의 3-way valve 모듈로 형성될 수 있다.
바람직하게, 상기 LP EGR 유로의 직경이 흡기 유로의 직경에 비해 작게 형성될 수 있다.
본 발명의 하나의 실시 예에 따르면, 일체형 배압 및 EGR 밸브 모듈은, 종래 기술에 비해, 구조가 간단하여 제작이 쉽고, 원가 절감이 가능하며, LP EGR 구간에서 출력 기어의 무게 감소로 인한 관성 모멘트가 감소하여 제품 무게의 감소 및 모터 부하의 감소를 꾀할 수 있다.
또한, 모터 부하의 감소로 인해 모터의 내구성이 증대되고 빠른 제어가 가능하여 제품 전체의 내구성이 증대되며, 기존에 요구되는 모터의 성능 요구를 낮출 수 있어, 보다 컴팩트(compact)한 밸브 모듈을 제공할 수 있다.
필요에 따라, 배압 밸브와 EGR 밸브의 구동 구간은 변경이 용이하고 역회전 및 동기 구동 구간의 캠 설계가 보다 용이하게 수행될 수 있다.
도 1은 본 발명 밸브 모듈이 장착되는 위치를 설명하기 위한 내연기관의 전체 개략도를 나타내는 도면이다.
도 2는 본 발명의 하나의 실시 예에 따른 밸브 모듈의 구성을 도시한 도면이다.
도 3 내지 도 5는 EGR 밸브와 배압 밸브의 개도의 양상을 나타내는 도면이다.
도 6은 종래 기술에 의한 EGR 밸브 유닛을 나타내는 도면이다.
도 7은 핀이 제1 핀가이드홀, 제2 핀가이드홀, 제3 핀가이드홀을 구동하는 과정을 나타낸 도면이다.
이하 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로 이에 의해 본 발명이 한정되지는 않는다. 또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있다.
어떤 구성요소가 다른 구성요소에 연결되어 있거나 접속되어 있다고 언급될 때에는, 그 다른 구성요소에 직접적으로 연결 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다.
그리고 여기서의 "연결"이란 일 부재와 타 부재의 직접적인 연결, 간접적인 연결을 포함하며, 접착, 부착, 체결, 접합, 결합 등 모든 물리적인 연결을 의미할 수 있다.
또한 '제1, 제2' 등과 같은 표현은 복수의 구성들을 구분하기 위한 용도로만 사용된 표현으로써, 구성들 사이의 순서나 기타 특징들을 한정하지 않는다.
단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. "포함한다" 또는 "가진다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 의미하기 위한 것으로, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들이 부가될 수 있는 것으로 해석될 수 있다.
이하, 도면을 참조로 본 발명의 EGR 밸브 모듈에 대하여 상세히 설명한다.
먼저, 도 1을 참조하여 본 발명 내연기관에 대한 전체 구성에 대해 간략히 설명한다. 도 1은 본 발명 밸브 모듈이 장착되는 위치를 설명하기 위한 내연기관의 전체 개략도를 나타내는 도면이다.
본 발명의 엔진의 연소실은 흡기 매니폴드와 배기 매니폴드를 구비한다. 흡기 매니폴드 측으로 흡기를 공급하는 유로 상에는 터보차저의 컴프레서가 구비된다. 컴프레서의 하류에는 인터쿨러가 설치되고, 흡기 매니폴드 내 유입되는 흡기량을 제어하는 흡기 스로틀(throttle)이 설치된다.
배기 매니폴드에는 배기가스를 대기 중에 방출하기 위한 배기유로가 접속되어 있다. 배기유로에는 터보차저의 터빈(T.)이 연결되며 터빈(T.)의 하류에는 배기가스를 정화하기 위한 배기 후처리 장치로서 DPF 및/또는 촉매 장치와 머플러(Muffler)가 설치되어 있다.
아울러 배기유로에서는 배기가스의 일부를 흡기계통으로 재순환시키기 위한 EGR(Exhaust Gas Recirculation) 시스템이 설치될 수 있다. 통상적으로 EGR 시스템에는 고온상태인 배기가스의 온도를 저감시키기 위한 EGR 쿨러와 EGR 유로로 유입된 배기가스의 유량을 제어하기 위한 EGR 밸브가 설치된다.
본 발명의 내연기관에는 EGR 시스템으로서, LP EGR 시스템을 적용한다. LP EGR은 배경기술에서 전술한 바와 같이 흡기온 냉각 및 EGR 기통 분배성이 좋으며, 실연비 개선에 좋다는 장점을 갖지만, 배기가스를 재순환시키기 위한 배압을 형성해주어야 하는 과제가 반드시 뒤따른다. 따라서, 본 발명에서는 LP EGR을 위해 배압을 생성하기 위한 밸브로서 EGR 밸브와 3-way valve를 구성할 수 있다. 이에 대한 구체적인 설명은 후술하기로 한다.
보다 구체적으로 본 발명의 LP EGR은 머플러 전단의 배기유로에서 분기되어 배기가스의 일부를 흡기계통으로 순환시키는 것으로서, 여기에도 역시 EGR 쿨러(Exhaust Gas Recirculation Cooler), 그리고 EGR 유로로 유입되는 배기가스를 제어하기 위한 EGR 밸브가 구비된다. 참고로, 도 1에 도시된 DPF(Diesel Particulate Filter)는 촉매컨버터로 대체하거나, 가솔린차에 적용되는 경우는 GPF로 대체될 수도 있으며, 경우에 따라서는 촉매컨버터와의 조합으로 설치될 수도 있다.
에어 클리너(A.C.)에서 받아들여진 신기(fresh air)는 흡기 유로(20)를 거쳐 터보차저의 컴프레서(C.) 측으로 흐르는데, 컴프레서(C.)로 유입되기 전에 EGR 유로를 통해 재순환된 배기가스와 혼합된다. 혼합기는 유동방향이 컴프레서(C.) 측을 대향하게 된다.
참고로, 내연기관의 크랭크축의 회전을 검출하는 크랭크각 센서나 엑셀 페달의 개도에 따른 신호를 출력하는 엑셀 센서(위치 센서 또는 개도 각 센서 등)가 설치될 수 있다. 크랭크각 센서와 엑셀 센서를 이용하여 차량의 목표 출력과 그에 따른 엔진 연소실의 연료분사량, 흡기 매니폴드에 유입되어야 할 목표 공기량 및 본 발명의 EGR 밸브 개도에 있어 가장 중요한 EGR 률(EGR Rate) 등이 결정될 수 있다.
참고로 본 발명의 밸브 모듈은 도 1에 점선으로 표시된 부분에 구비될 수 있다.
위에서 살펴본 내연기관의 구성을 토대로, 도 2 내지 도 5를 참조하여 본 발명의 밸브 모듈의 특징에 대해 보다 구체적으로 설명한다.
도 2에는 본 발명의 하나의 실시 예에 따른 밸브 모듈의 구성을 도시한 도면이 도시되어 있고, 도 3 내지 도 5에는 EGR 밸브와 배압 밸브의 개도의 양상을 나타내는 도면이 도시되어 있다.
도 2 내지 도 5를 함께 참조하면, 일체형 배압 및 EGR 밸브 모듈은 EGR 밸브(100), 배압 밸브(200) 및 EGR 밸브(100)와 배압 밸브(200)를 상호 연결하는 캠(300)을 포함하여 구성되어 있다.
배압 밸브(200)는 외부로부터 신기를 흡기하는 흡기 유로(20) 내 배치되어 있다. 그리고, EGR 밸브(100)는 흡기 유로(20)의 길이 방향과 소정의 각도를 이루는 사선 방향으로 접속되며 엔진에서 배출되어 터빈을 통과한 배기가스를 재순환시키는 LP EGR 유로(10) 상에 배치되어 있다.
여기서, EGR 밸브(100)와 배압 밸브(200) 모두 플랩(flap)형 밸브가 해당될 수 있다.
또한, 여기서 EGR 밸브(100)는 LP EGR 밸브를 의미하고, 배압 밸브(200)는 EGR 유로(10)와 흡기 유로(20)의 합류지점에 배압을 형성하기 위한 배압 생성 밸브를 의미할 수 있다. 배압 밸브(200)는 흡기되는 신기의 양을 조절하는 역할도 하지만 주로 EGR 가스의 재순환 및 혼합이 용이하도록 보조하는 역할을 한다.
한편, 도 1에서와 같이 배압 생성 밸브의 전단에는 흡기되는 신기의 양을 조절하는 별도의 스로틀 밸브(throttle)가 구비될 수 있다.
캠(300)은 EGR 밸브(100)와 배압 밸브(200)를 상호 연결하되, 캠(300)의 본체 내측으로 EGR 밸브(100)와 연동하는 핀(110)이 결합하는 핀가이드홀(310)이 형성되어 있고, 핀가이드홀(310)은 적어도 2개 이상의 구획으로 구분된 곡선 구간으로 이루어질 수 있다. 여기서 구분된 곡선 구간은 서로 다른 지점에서 서로 다른 곡률 반경의 중심을 가질 수 있다.
나아가 핀가이드홀(310)의 곡선 구간에 대하여, 서로 다른 두 구간의 곡률 반경 중심은 서로 대향하여 상대적으로 중간 위치에서 변곡점을 갖도록 구성되며, EGR 밸브(100)와 연동하는 핀(110)이 핀가이드홀(310)에 체결되고, 이 상태로 캠은 배압 밸브(200)의 축에 고정되어 회전한다.
즉, 핀가이드홀(310)의 형상은, 도 3에서와 같이, 캠(300)의 회전면이 형성하는 평면 상에서 곡률 반경 중심이 캠(300)의 몸체를 기준으로 서로 다른 방향을 대향하는 2개의 원호가 만나 변곡점을 이루는 것을 특징으로 한다.
바람직하게, 핀가이드홀(310)의 형상은 EGR 밸브(100)만 구동하는 제1 핀가이드홀(311) 및 EGR 밸브(100)와 배압 밸브(200)가 동기 구동하는 제2 핀가이드홀(312)을 포함하여 구성되어 있다.
여기서, 제1 핀가이드홀(311)은 핀(110)이 구동축(EGR 밸브의 회전 축)을 중심으로 시계 방향 또는 시계 반대 방향으로 움직이는 동안에 배압 밸브(200)의 변위가 변화되지 않는 구간이다.
또한, 제2 핀가이드홀(312)은 핀(110)이 구동축(EGR 밸브의 회전 축)을 중심으로 시계 반대 방향으로 움직이는 동안에 배압 밸브(200)가 열림 상태에서 닫힘 상태로 시계 반대 방향으로 회전하는 구간이다.
이러한 캠 구성에서, 본 발명의 일 실시예에 따른 핀가이드홀(310)은 EGR 밸브(100)가 역회전 하되, EGR 밸브(100)와 배압 밸브(200)가 동기하는 제3 핀가이드홀(313)을 더 포함하여 구성될 수 있다.
제3 핀가이드홀(313)은 핀(110)이 시계 방향으로 움직이는 동안에 배압 밸브(200)가 열림 상태에서 닫힘 상태로 시계 방향으로 회전하는 구간이다.
본 발명의 일 실시예에 따른 배압 밸브(200)는 EGR 밸브(100)에 의해 종속적으로 개폐되는 것을 특징으로 한다. 종래기술에 따른 EGR 밸브와 배압 밸브가 개별적으로 제어되는 밸브 유닛들이 개시된 바 있으나, 이는 원가 상승 및 제어의 복잡성을 증가시키는 원인이 된다. 본 발명에서는 EGR 밸브(100)와 배압 밸브(200)를 연동하는 밸브 모듈에 대한 구조만을 제안한다.
본 발명의 주요 특징에 따르면 EGR 밸브(100)와 배압 밸브(200)는 캠(300)에 의해 연동하여 움직이고, 특히 배압 밸브(200)는 EGR 밸브(100)의 회전에 의해 종속적으로 개폐된다.
이러한 구조에서, EGR 밸브(100)와 연동하는 핀(110)이 제1 핀가이드홀(311)에서 시계 방향 또는 반대 방향으로 회전하면, 이 동안 캠(300)에 연결된 배압 밸브(200)는 회전하지 않는다.
그리고 EGR 밸브(100)와 연동하는 핀(110)이 제2 핀가이드홀(312)에서 시계 반대 방향으로 회전하면, 캠(300)에 연결된 배압 밸브(200) 또한 시계 반대 방향으로 회전한다.
도 2 내지 도 5를 참조하여 그 매커니즘에 대해서 보다 구체적으로 설명한다. 참고로 여기서 기어부의 구성은 생략하기로 한다.
도 2 내지 도 5를 다시 참조하면, EGR 밸브(100)와 연동하는 핀(110)이 제1 핀가이드홀(311)에서 이동하고 EGR 밸브(100)의 개도가 0일 때, 흡기 유로(20) 상에는 신기만 흐른다. 최초 배압 밸브(200)는 전체 열림 상태(full open) 상태로 개방되어 있다.
EGR 밸브(100)와 연동하는 핀(110)이 제2 핀가이드홀(312)에서 이동하고 EGR 밸브(100)가 소정의 개도각 이상으로 개방되면 EGR 가스가 흡기 유로(10) 측으로 공급되고, 공급된 EGR 가스는 신기와 만나 혼합된다.
EGR 밸브(100)와 연동하는 핀(110)이 제2 핀가이드홀(312)에서 이동하여 EGR 밸브(100)가 시계 반대 방향으로 소정의 개도각 이상으로 개방되면, 캠(300)이 배압 밸브(200)를 잡아당겨 배압 밸브(200)가 EGR 밸브(100)와 마찬가지로 시계 반대 방향으로 회전한다. 이 때, 흡기 유로(20)와 EGR 유로(10)의 접점 측의 밸브가 닫힘으로써 흡기 유속이 빨라져, 흡기와 EGR 가스의 혼합이 활발해진다.
게다가, EGR 밸브(100)와 연동하는 핀(110)이 제2 핀가이드홀(312)에서 EGR 밸브(100)가 최대 개도각으로 개방되면 캠(300)은 배압 밸브(200)와 함께 연동되어 배압 밸브(200)를 완전히 폐쇄(full close)하고, 흡기 유로(10)의 하류에는 EGR 가스만이 공급된다. 이때, 배압 밸브(200)에 의해 흡기 유로(10)의 하류측에는 최대 배압이 형성되어 EGR 가스의 공급 속도 또한 더욱 빨라진다.
한편, EGR 밸브(100)와 연동하는 핀(110)이 제3 핀가이드홀(313)에서 시계 방향으로 이동하면 배압 밸브(200)가 열림 상태에서 닫힘 상태로 시계 반대 방향으로 회전하게 된다. 엔진이 정지되거나 정지 후에 EGR 밸브(100)가 닫힌 위치를 지나 EGR 밸브(100)가 역방향으로 회전하는 경우에는 EGR 밸브(100) 측의 배기 가스 내의 오염물질을 제거할 수 있다.
도 7을 참조하여, 핀(110)의 구동에 따른 상기 EGR 밸브(100), 배압 밸브(200)의 구동 과정을 정리하면 다음과 같다.
도 7은 핀이 제1 핀가이드홀, 제2 핀가이드홀, 제3 핀가이드홀을 구동하는 과정을 나타낸 도면이다.
도 7 상에 도시된 A 구간은 EGR 밸브(100)와 연동하는 핀(110)이 제2 핀가이드홀(312)을 회전하는 구간으로, 핀(110)이 A 구간을 시계 반대 방향으로 회전하면 EGR 밸브(100)와 배압 밸브(200)가 시계 반대 방향으로 동기 구동하는 것이 특징으로 하는 구간이다.
이어서, B 구간은 핀(110)이 제1 핀가이드홀(311)을 회전하는 구간으로, 배압 밸브(200)의 회전 없이 EGR 밸브(100)만 구동(회전)하게 되는 구간이다.
다음으로, C 구간은 핀(110)이 제3 핀가이드홀(313)을 구동하는 구간으로, 엔진이 정지되거나 정지된 후 EGR 밸브(100)가 역방향으로 회전하면서 EGR 밸브(100) 측의 배기 가스 오염물질을 제거하는 클리닝(Cleaning)이 진행되는 구간이다.
또한, D 구간은 일종의 버퍼(Buffer) 구간으로 핀(110)이 구동하더라도 힘이 전달되지 않아 밸브의 구동(회전)이 일어나지 않는 구간이다.
마지막으로, E 구간은 핀(110)의 회전에 따라 EGR 밸브(100)와 배압 밸브(200)가 동기 구동하는 구간으로, 보다 구체적으로는 EGR 밸브(100)와 배압 밸브(200)가 동기하여 핀(110)의 회전 방향과 역방향으로 회전하게 되는 구간이다.
이와 같이, 본 발명은 핀(110)이 제1 핀가이드홀(311), 제2 핀가이드홀(312), 제3 핀가이드홀(313) 중 어떤 위치에서 회전하는지에 따라 배압 밸브(200)의 구동 없이 EGR 밸브(100)만을 구동시킬 수도 있고, EGR 밸브(100)와 배압 밸브(200)를 동기 구동시킬 수도 있는 것을 특징으로 한다.
다음으로, 본 발명의 일 실시예에 따르면 EGR 유로(10)를 상기 흡기 유로(20)의 길이방향과 소정의 각도를 이루는 사선방향으로 접속되도록 할 수 있다. EGR 유로(10)를 흡기 유로(20)에 사선방향이 아닌 직각으로 접속되도록 하면, 흡기 유로(20)에 위치한 배압 밸브(200)에 질소산화물 등 이물이 쌓여 밸브 고장의 원인이 된다. 따라서, EGR 유로(10)를 흡기 유로(20)에 사선방향으로 접속하도록 하여 이를 방지한다.
또한, 상기 EGR 밸브(100), 배압 밸브(200) 및 캠(300)은 일체형의 3-way valve 모듈로서 형성할 수 있다.
한편, 본 발명의 또 다른 실시예는 EGR 유로(10)의 직경을 흡기 유로(20)의 직경에 비해 작게 형성하는 것이다. 즉, LP EGR 유로의 단면적과 흡기 유로(20)의 단면적 비교시 LP EGR 유로의 단면적을 미리 작게 설계하여 EGR 밸브(100)만 개방되고 배압 밸브(200)가 닫혔을 때 터보 차져 방향으로 흐르는 혼합기의 유량이 작도록 할 수 있다.
도 2 내지 도 5, 도 7을 참조하여, 전술한 도 6의 종래기술과 비교하면, 본 발명은 도 6의 종래기술의 밸브구조에 대하여 인버스 캠(INVERSE CAM) 구조에 해당한다. 인버스 캠이란 원동절과 종동절의 역할이 반대인 것을 의미하며, 본 명세서에서는 종래기술의 경우 원동절의 역할을 하던 캠이, 본 발명에서는 종동절의 역할을 함을 의미할 수 있다.
종래기술에서 배압 밸브를 EGR 밸브와 연결하기 위한 종동아암(14)이 필수적으로 구비되었다면, 본 발명에서는 배압 밸브와 EGR 밸브를 연결하기 위한 종동아암의 생략이 가능하므로 적은수의 부품으로도 동일한 기능을 수행할 수 있는 장점이 있다.
무엇보다도 도 6에 도시된 종래기술에 따른 밸브에서는 캠이 모터(motor)와 기어유닛이 설치된 구동축 상(EGR 밸브 측)에 위치하게 되어, 캠의 관성 부하에 의해 제어가 어렵고 이에 따라 소비되는 전력이 많았다면, 본 발명에서는 캠이 구동축 상이 아닌 종동축 상(배압 밸브 측)에 위치하게 되어 밸브 개폐구동 중에 관성 부하가 종래기술보다 적게 걸린다. 구체적으로, EGR 밸브만 회전하는 구간이더라도 도 6에 도시된 종래기술에서는 캠 전체가 회전하여야 하였다면, 본 발명에서는 EGR 밸브에서 핀을 포함한 부분만 회전하면 족하므로 모터에 걸리는 부하가 상대적으로 적어지게 되는 것이다.
이상의 내용을 종합하면 본 발명의 일체형 배압 및 EGR 밸브 모듈은, 종래 기술에 비해, 구조가 간단하여 제작이 쉽고, 원가 절감이 가능하며, LP EGR 구간에서 출력 기어의 무게 감소로 인한 관성 모멘트가 감소하여 제품 무게의 감소 및 모터 부하의 감소를 꾀할 수 있다.
또한, 모터 부하의 감소로 인해 모터의 내구성이 증대되고 빠른 제어가 가능하여 제품 전체의 내구성이 증대되며, 기존에 요구되는 모터의 성능 요구를 낮출 수 있어, 보다 컴팩트(compact)한 밸브 모듈을 제공할 수 있다.
필요에 따라, 배압 밸브와 EGR 밸브의 구동 구간은 변경이 용이하고 역회전 및 동기 구동 구간의 캠 설계가 보다 용이하게 수행될 수 있다.
본 명세서는 그 제시된 구체적인 용어에 의해 본 발명을 제한하려는 의도가 아니다. 따라서, 이상에서 기술한 실시예를 참조하여 본 발명을 상세하게 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범위를 벗어나지 않으면서도 본 발명의 일 실시예들에 대한 개조, 변경 및 변형을 가할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.

Claims (8)

  1. 외부로부터 신기를 흡기하는 흡기 유로 내 배치되는 배압 밸브;
    상기 흡기 유로의 길이 방향과 소정의 각도를 이루는 사선 방향으로 접속되며 엔진에서 배출되어 터빈을 통과한 배기가스를 재순환시키는 LP EGR 유로 상에 배치되는 EGR 밸브; 및
    상기 EGR 밸브와 배압 밸브를 상호 연결하되, 본체 내측으로 EGR 밸브와 연동하는 핀과 결합하는 핀가이드홀이 형성되어 있고, 상기 핀가이드홀은 곡률 반경 중심이 서로 대향하여 상대적으로 중간 위치에서 변곡점을 갖도록 구성되고, EGR 밸브와 연동하는 핀이 핀가이드홀에 체결된 상태로 배압 밸브의 축에 고정되어 회전하는 캠;을 포함하며,
    상기 배압 밸브는 EGR 밸브의 회전에 의해 종속적으로 개폐되는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  2. 제1항에 있어서,
    상기 핀가이드홀은,
    상기 EGR 밸브만 구동하는 제1 핀가이드홀; 및
    상기 EGR 밸브와 배압 밸브가 동기 구동하는 제2 핀가이드홀;
    를 포함하는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  3. 제2항에 있어서,
    상기 제1 핀가이드홀은 핀이 시계 방향 또는 시계 반대방향으로 움직이는 동안에 배압 밸브의 변위가 변화되지 않는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  4. 제2항에 있어서,
    상기 제2 핀가이드홀은 핀이 시계 반대 방향으로 움직이는 동안에는 배압 밸브가 열림 상태에서 닫힘 상태로 시계 반대 방향으로 회전하는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  5. 제2항에 있어서,
    상기 핀가이드홀은 EGR 밸브가 역회전할 때, 배압 밸브와 EGR 밸브가 동기되도록 하는 제3 핀가이드홀을 더 포함하는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  6. 제5항에 있어서,
    상기 제3 핀가이드홀은 핀이 시계 방향으로 움직이는 동안에 배압 밸브가 열림 상태에서 닫힘 상태로 시계 반대 방향으로 회전하는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  7. 제 1 항에 있어서,
    상기 EGR 밸브, 배압 밸브 및 캠은 일체형의 3-way valve 모듈로 형성되는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
  8. 제 1 항에 있어서,
    상기 LP EGR 유로의 직경이 흡기 유로의 직경에 비해 작게 형성되는 것을 특징으로 하는 일체형 배압 및 EGR 밸브 모듈.
PCT/KR2018/003968 2017-05-23 2018-04-04 일체형 배압 및 egr 밸브 모듈 WO2018216895A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880034083.2A CN110662896B (zh) 2017-05-23 2018-04-04 一体型背压及egr阀模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170063700A KR102000758B1 (ko) 2017-05-23 2017-05-23 일체형 배압 및 egr 밸브 모듈
KR10-2017-0063700 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018216895A1 true WO2018216895A1 (ko) 2018-11-29

Family

ID=64396698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003968 WO2018216895A1 (ko) 2017-05-23 2018-04-04 일체형 배압 및 egr 밸브 모듈

Country Status (3)

Country Link
KR (1) KR102000758B1 (ko)
CN (1) CN110662896B (ko)
WO (1) WO2018216895A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640484B2 (ja) * 2008-10-10 2011-03-02 株式会社デンソー 排気ガス還流装置
JP2012159116A (ja) * 2011-01-31 2012-08-23 Denso Corp リンク装置
JP5146484B2 (ja) * 2010-04-14 2013-02-20 株式会社デンソー 低圧egr装置
JP2013096286A (ja) * 2011-10-31 2013-05-20 Denso Corp 低圧egr装置
JP2013142430A (ja) * 2012-01-10 2013-07-22 Denso Corp リンク装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2975549B2 (ja) * 1995-06-16 1999-11-10 株式会社巴技術研究所 三方口バタフライ弁
LU90480B1 (en) * 1999-11-29 2001-05-30 Delphi Tech Inc Exhaust gas re-circulation device for an internal combustion engine
EP1270924A3 (en) * 2001-06-28 2004-01-07 Delphi Technologies, Inc. Integrated intake manifold assembly for an internal combustion engine
GB0419060D0 (en) * 2004-08-27 2004-09-29 Delphi Tech Inc Valve actuating mechanism
JP2010163996A (ja) * 2009-01-16 2010-07-29 Denso Corp 低圧egr装置
DE102009053428A1 (de) * 2009-11-19 2011-06-09 Pierburg Gmbh Stellvorrichtung zur Umwandlung einer rotatorischen Bewegung in eine lineare Bewegung
FR2954407B1 (fr) * 2009-12-22 2018-11-23 Valeo Systemes De Controle Moteur Procede de commande d'un circuit egr d'un moteur de vehicule automobile, vanne pour la mise en oeuvre du procede et moteur avec la vanne.
DE102012205691A1 (de) * 2012-04-05 2013-10-10 Continental Automotive Gmbh Mischventil einer Brennkraftmaschine eines Kraftfahrzeuges
DE102013220721A1 (de) * 2013-10-14 2015-04-16 Continental Automotive Gmbh Linearaktuator
CN103835841B (zh) * 2014-02-25 2016-12-07 长城汽车股份有限公司 Egr阀控制装置及具有其的车辆
JP6384286B2 (ja) 2014-11-20 2018-09-05 株式会社デンソー バルブユニット
CN205592039U (zh) * 2016-02-01 2016-09-21 浙江银轮机械股份有限公司 一种用于电动egr阀的齿轮结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4640484B2 (ja) * 2008-10-10 2011-03-02 株式会社デンソー 排気ガス還流装置
JP5146484B2 (ja) * 2010-04-14 2013-02-20 株式会社デンソー 低圧egr装置
JP2012159116A (ja) * 2011-01-31 2012-08-23 Denso Corp リンク装置
JP2013096286A (ja) * 2011-10-31 2013-05-20 Denso Corp 低圧egr装置
JP2013142430A (ja) * 2012-01-10 2013-07-22 Denso Corp リンク装置

Also Published As

Publication number Publication date
KR20180128301A (ko) 2018-12-03
KR102000758B1 (ko) 2019-07-17
CN110662896B (zh) 2021-03-16
CN110662896A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
US8448626B2 (en) Exhaust system for engine braking
EP2295769A1 (en) Exhaust system for engine braking
JP2002508472A (ja) 燃焼機関のための装置
WO2012102467A1 (ko) 건설중장비의 배기가스 재순환장치 제어방법
GB2352272A (en) Forced exhaust gas recirculation (EGR) system for i.c. engines
SE506515C2 (sv) Överladdad förbränningsmotor, förträdesvis av dieseltyp, försedd med en anordning för avgasåterföring
KR20190120864A (ko) 이차 공기 분사 시스템
CN106703978A (zh) 一种车辆发动机的高压egr系统
WO2018216895A1 (ko) 일체형 배압 및 egr 밸브 모듈
WO2018230821A1 (ko) 일체형 배압 및 egr 밸브 모듈
JP4737151B2 (ja) 内燃機関の排気システム
JP4438521B2 (ja) 複数のターボチャージャを備えた多気筒内燃機関
KR20180129471A (ko) 고장 검출 수단을 구비한 일체형 배압 및 egr 밸브 모듈
KR101920921B1 (ko) 일체형 배압 및 egr 밸브 모듈
WO2019022453A1 (ko) 엔진의 배기가스 재순환 시스템
JP2010116894A (ja) 内燃機関の制御装置
JP2007285265A (ja) 排気系の排気構造
EP0574181A1 (en) Internal combustion engine with secondary air circuit and exhaust gas recirculation circuit
US6293102B1 (en) Integral air brake compressor supply fitting
JPS6060218A (ja) タ−ボ過給機付エンジンの排気装置
KR20180077445A (ko) Egr 밸브 모듈
JP2002332879A (ja) Egr装置
JP2013002377A (ja) 内燃機関
JPS6034749Y2 (ja) タ−ボ過給機付エンジンの吸気装置
CN117345480A (zh) 一种热效率控制系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805596

Country of ref document: EP

Kind code of ref document: A1