WO2018216869A1 - 제상 장치 및 이를 구비하는 냉장고 - Google Patents

제상 장치 및 이를 구비하는 냉장고 Download PDF

Info

Publication number
WO2018216869A1
WO2018216869A1 PCT/KR2017/015268 KR2017015268W WO2018216869A1 WO 2018216869 A1 WO2018216869 A1 WO 2018216869A1 KR 2017015268 W KR2017015268 W KR 2017015268W WO 2018216869 A1 WO2018216869 A1 WO 2018216869A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
heat
case
flow path
heater case
Prior art date
Application number
PCT/KR2017/015268
Other languages
English (en)
French (fr)
Inventor
정민재
강우철
이근형
황언화
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP17910919.4A priority Critical patent/EP3633293A4/en
Priority to US16/616,817 priority patent/US11428455B2/en
Publication of WO2018216869A1 publication Critical patent/WO2018216869A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • G05D23/303Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature using a sensing element having a resistance varying with temperature, e.g. thermistor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to a defrosting apparatus for removing frost on the evaporator provided in the refrigeration cycle, and a refrigerator having the same.
  • a refrigerator is a device for low temperature storage of food stored therein by using cold air generated by a refrigeration cycle in which a process of compression, condensation, expansion and evaporation is performed continuously.
  • the refrigerating cycle in the refrigerating chamber includes a compressor for compressing the refrigerant, a condenser for condensing the refrigerant in a high temperature and high pressure state compressed by the compressor, and a cooling action for absorbing latent heat while the refrigerant provided by the condenser evaporates.
  • An evaporator for cooling the air. Capillary or expansion valves are provided between the condenser and the evaporator to increase the flow rate of the refrigerant and lower the pressure so that evaporation of the refrigerant entering the evaporator can occur easily.
  • the evaporator provided in the refrigerating cycle lowers the ambient temperature by using the cold air generated by the circulation of the refrigerant flowing through the cooling tube.
  • water in the air may condense and freeze on the surface of the cooling tube to generate frost.
  • frost formed on the evaporator acts as a factor to lower the heat exchange efficiency of the evaporator.
  • the company is developing, improving and developing a defrosting device having a new structure in which a working liquid heated by a heater performs defrosting while flowing a heat pipe.
  • the defrosting device is a device that performs defrosting by applying heat, it is most important to prevent overheating of the heater generating high temperature heat in order to secure safety. Overheating of the heater causes shortening of the lifetime of the heater, deterioration of the efficiency of the evaporator, and the like. In some cases, if the heater is excessively overheated, the heater may be damaged and may not be able to be restarted later. Therefore, preventing overheating of the heater can be said to be an important problem related to the operational reliability of the refrigerator.
  • the first object of the present invention is to provide a new heater that can be secured without the use of a fuse as a safety device for overheating the heater.
  • the third object of the present invention is to provide a structure in which the circulation of the working fluid in defrosting can be made better in this new heating unit.
  • a fourth object of the present invention is to provide a structure in which heat generated in the heater is not used to heat the working liquid and is released to the outside of the heater case to reduce heat loss.
  • a fifth object of the present invention is to provide a heating unit having various structures in which a heater can be firmly attached to at least one surface of a heater case.
  • a sixth object of the present invention is to provide a heating unit that can more efficiently remove frost accumulated on a heater case.
  • the defrosting apparatus of the present invention a heater case having an inner flow path formed with an inlet and an outlet at both ends, and a heater mounted on the heater case to heat the working fluid in the inner flow path Heating unit comprising a; And at least a portion of the cooling tube so as to radiate heat into the cooling tube of the evaporator by a high temperature working liquid inserted into the heater case through the inlet and the outlet and in communication with the internal flow path, and heated and transported by the heater. And a heat pipe disposed adjacent to the heater, wherein the heater is configured such that current is suppressed due to a sudden increase in resistance above a preset temperature, thereby preventing heat generation.
  • the heater includes a positive temperature coefficient (PTC) thermistor having a property of increasing resistance as the temperature increases.
  • PTC positive temperature coefficient
  • the heater further includes first and second electrode plates disposed to face each other with the PTC thermistor interposed therebetween.
  • a heater accommodating part is formed in the heater case, which extends in parallel to the inner flow path and is open at both ends, and into which the heater is inserted.
  • the heater further includes an insulating film for accommodating the first and second electrode plates with the PTC thermistor interposed therebetween.
  • a groove is formed along the periphery of the inner passage, the groove is formed along the inner passage.
  • the groove may be continuously formed along the circumference of the inner passage.
  • a hole is formed around the inner flow passage extending in parallel with the inner flow passage to open at both ends of the heater case.
  • the hole may be located between the inner flow path and an edge of the heater case.
  • the heater case is formed with a pressed portion of the form recessed toward the heater receiving portion, the heater is pressed by the pressed portion to the inner surface of the heater receiving portion Close contact.
  • a sealing member is filled in the heater accommodating part to seal the heater.
  • the heater case having an inner flow path formed in the inlet and the outlet at both ends; A heat pipe inserted into the heater case through the inlet and the outlet to communicate with the internal flow path; A heater attached to one surface of the heater case to heat the working liquid in the internal flow path; A holder mounted to the heater case and disposed to cover the heater; And an elastic member interposed in a compressed state between the heater and the holder to closely contact the heater to one surface of the heater case.
  • a sixth object of the present invention may be achieved by arranging the heater receiving portion to be positioned above the inner passage in a structure in which the heating unit is disposed in the left and right directions of the evaporator.
  • the present invention may have a structure as follows.
  • the heat pipe includes a first heat pipe and a second heat pipe disposed at the front and rear surfaces of the evaporator, respectively, and the outlet is formed as a single opening for receiving one end of the first and second heat pipes.
  • the inlet may be formed as a single opening for receiving the other ends of the first and second heat pipes.
  • the heating unit may include a first welding part formed to fill a gap between one end of the heat pipe and the outlet; And a second welding part formed to fill a gap between the other end of the heat pipe and the inlet.
  • the heating unit may include a heater mounting part formed in a form recessed toward an upper part of the heater case; And a sealing member filled in the heater mounting part and disposed to cover the heater attached to the recessed bottom surface of the heater mounting part.
  • the heater provided in the heating unit of the present invention is wrapped in a natural sheet paper, a separate insulating material is unnecessary.
  • a holder for fixing the safety device is also unnecessary. Therefore, the heating unit of the present invention is structurally simple and easy to manufacture, there is an advantage that can reduce the production cost.
  • the heat generating area of the working fluid is increased, thereby increasing the working pressure of the working fluid, thereby improving the circulation of the working fluid and improving the reliability of defrosting. Can be done.
  • a hole is formed around the inner flow path of the heater case to limit the external discharge of heat, so that the heat transferred to the inner flow path is not used to heat the working fluid but is released to the outside of the heater case to lead to heat loss. It can reduce and concentrate more heat into the internal flow path.
  • the heater has a structure in which the heater is fixed by the filling of the sealing member after being pressed in the state accommodated in the heater accommodating portion formed in the heater case, or the elastic member is interposed between the heater and the holder is in close contact with the heater case Through a structure that is fixed in a state, the heater can be firmly attached to at least one surface of the heater case, and as a result, more heat generated from the heater can be transferred to the internal flow path and used to heat the working liquid. .
  • the heat generated from the heater not only heats the working liquid, but also the heat accumulated on the heater case. Also used to remove the, the thermal efficiency of the heater can be improved.
  • FIG. 1 is a longitudinal sectional view schematically showing the configuration of a refrigerator according to one embodiment of the present invention
  • FIG. 2 and 3 are a front view and a perspective view showing an example of a defrost apparatus applied to the refrigerator of FIG.
  • FIG. 4 is an exploded perspective view showing a first embodiment of the heating unit shown in FIG.
  • FIG. 5 is a view showing a structure in which a heater is tightly fixed to a heater accommodating portion of a heater case by a press.
  • FIG. 6 is a sectional view taken along the line A-A of the heater case shown in FIG. 5; FIG.
  • FIG. 7 is a conceptual view illustrating a connection structure between a heater case and a heat pipe shown in FIG. 1.
  • FIG. 8 is a cross-sectional view taken along the line B-B of the heating unit shown in FIG.
  • FIG. 9 is an exploded perspective view showing an example of the heater shown in FIG.
  • FIG. 10 is a graph showing the resistance-temperature characteristics of the PTC thermistor shown in FIG.
  • FIG. 11 is a graph showing current-voltage characteristics of the PTC thermistor shown in FIG. 9;
  • 12 and 13 are conceptual diagrams for explaining the circulation of the working liquid in the state before and after the operation of the heater.
  • FIG. 14 is a conceptual view illustrating a second embodiment of the heating unit shown in FIG. 3.
  • FIG. 15 is a conceptual view illustrating a third embodiment of the heating unit shown in FIG. 3.
  • FIG. 16 is a cross-sectional view of the heater case shown in FIG. 15 taken along the line C-C.
  • FIG. 17 is a conceptual view illustrating a fourth embodiment of the heating unit shown in FIG. 3.
  • FIG. 18 is a conceptual diagram illustrating a fifth embodiment of the heating unit shown in FIG. 3.
  • FIG. 19 is a cross-sectional view taken along the line D-D of the heating unit shown in FIG. 18.
  • FIG. 19 is a cross-sectional view taken along the line D-D of the heating unit shown in FIG. 18.
  • FIG. 20 is a conceptual diagram illustrating a sixth embodiment of the heating unit shown in FIG. 3.
  • FIG. 21 is a cross-sectional view of the heating unit shown in FIG. 20 along line E-E.
  • FIG. 21 is a cross-sectional view of the heating unit shown in FIG. 20 along line E-E.
  • 22 and 23 are front and perspective views illustrating another example of the defrosting device applied to the refrigerator of FIG. 4.
  • FIG. 1 is a longitudinal sectional view schematically showing a configuration of a refrigerator 300 according to an embodiment of the present invention.
  • the refrigerator 300 is a device for low temperature storage of food stored therein by using cold air generated by a refrigeration cycle in which compression, condensation, expansion, and evaporation processes are continuously performed.
  • the refrigerator body 310 has a storage space for storing food therein.
  • the storage space may be separated by the partition 311 and may be divided into a refrigerating chamber 312 and a freezing chamber 313 according to a set temperature.
  • the freezer compartment 313 shows a top mount type refrigerator in which the freezer compartment 312 is disposed, but the present invention is not limited thereto.
  • the present invention is also applied to a side by side type refrigerator in which the refrigerating compartment and the freezing compartment are arranged left and right, a bottom freezer type refrigerator in which a refrigerating compartment is provided at an upper portion and a freezing compartment is provided at a lower portion thereof. Can be.
  • a door is connected to the refrigerator main body 310 to open and close the front opening of the refrigerator main body 310.
  • the refrigerator compartment door 314 and the freezer compartment door 315 are configured to open and close front sides of the refrigerator compartment 312 and the freezer compartment 313, respectively.
  • the door may be variously configured as a rotatable door rotatably connected to the refrigerator main body 310, a drawer-type door connected to the refrigerator main body 310 to be slidably movable.
  • the refrigerator body 310 includes at least one storage unit 180 (eg, a shelf 381, a tray 382, a basket 383, etc.) for efficient use of the internal storage space.
  • the shelf 381 and the tray 382 may be installed inside the refrigerator body 310
  • the basket 383 may be installed inside the door 314 connected to the refrigerator body 310.
  • a cooling chamber 316 provided with an evaporator 330 and a blowing fan 340 is provided at the rear side of the freezing chamber 313.
  • the partition 311 is provided with a refrigerating compartment return duct 311a and a freezing compartment return duct 311b for allowing the air in the refrigerating compartment 312 and the freezing compartment 313 to be sucked and returned to the cooling compartment 316.
  • a cold air duct 350 is provided at the rear side of the refrigerating chamber 312 and communicates with the freezing chamber 313 and has a plurality of cold air discharge ports 350a at the front side thereof.
  • a machine room 317 is provided at the lower rear side of the refrigerator main body 310, and a compressor 360 and a condenser (not shown) are provided inside the machine room 317.
  • the air in the refrigerating chamber 312 and the freezing chamber 313 is cooled by the blowing fan 340 of the cooling chamber 316 through the refrigerating chamber return duct 311a and the freezing chamber return duct 311b of the partition 311. 316 is sucked into the evaporator 330 to perform heat exchange, and the process of repeatedly discharging the cold air duct 350 into the refrigerating chamber 312 and the freezing chamber 313 through the cold air discharge port 350a of the cold air duct 350.
  • the frost is formed on the surface of the evaporator 330 by the temperature difference between the recirculation air re-introduced through the refrigerating chamber return duct 311a and the freezing chamber return duct 311b.
  • the evaporator 330 is provided with a defrosting device 370, and the water removed by the defrosting device 370, that is, the defrosting water is lowered from the refrigerator main body 310 through the defrosting water discharge pipe 318. It will be collected in the side water receiver (not shown).
  • FIG. 2 and 3 are front and perspective views showing an example of the defrosting apparatus 370 applied to the refrigerator 300 of FIG. 1.
  • the evaporator 330 includes a cooling tube 331 (cooling pipe), a plurality of cooling fins 332, and a support 333.
  • the cooling tube 331 is repeatedly bent in a zigzag form to form a plurality of steps (steps, columns), the refrigerant is filled therein.
  • the cooling tube 331 may be formed of aluminum.
  • the cooling pipe 331 may be configured by a combination of the horizontal pipe portion and the bending pipe portion.
  • the horizontal pipes are vertically arranged horizontally with each other to form a plurality of stages, and the horizontal pipes of each stage are configured to pass through the cooling fins 332.
  • the bending pipe part is configured to connect the ends of the upper horizontal pipe part and the end of the lower horizontal pipe part, respectively, to communicate with each other.
  • the cooling tube 331 is supported by penetrating the support 333 provided on each of the left and right sides of the evaporator 330. At this time, the bending pipe portion of the cooling pipe 331 is configured to connect the end of the upper horizontal pipe portion and the end of the lower horizontal pipe portion from the outside of the support 333.
  • the first cooling tube 331 ′ and the second cooling tube 331 ′′ are disposed at the front and rear portions of the evaporator 330 to form two rows.
  • the first cooling tube 331 ′ in the front and the second cooling tube 331 ′′ in the rear are formed in the same shape, and the second cooling tube 331 ′′ is formed in the first cooling tube. It is obscured by 331 '.
  • the present invention is not limited thereto.
  • the first cooling tube 331 'at the front and the second cooling tube 331 "at the rear may be formed in different shapes.
  • the cooling tubes 331 may be formed in a single row.
  • a plurality of cooling fins 332 are spaced apart from each other at predetermined intervals along the extending direction of the cooling tube 331.
  • the cooling fin 332 may be formed of a flat plate made of aluminum, and the cooling pipe 331 may be expanded in the state of being inserted into the insertion hole of the cooling fin 332 to be firmly fitted into the insertion hole.
  • a plurality of support 333 is provided on both the left and right sides of the evaporator 330, each is configured to support the cooling tube 331 penetrated vertically extending in the vertical direction.
  • the support 333 is formed with an insertion groove or an insertion hole into which the heat pipe 372, which will be described later, is fitted.
  • the defroster 370 is installed in the evaporator 330 to remove frost generated in the evaporator 330.
  • the defrost apparatus 370 includes a heating unit 371 and a heat pipe 372 (heat transfer tube).
  • the heating unit 371 is disposed below the evaporator 330, and is electrically connected to a controller (not shown) and is configured to generate heat when a driving signal is received from the controller.
  • the controller may be configured to apply a driving signal to the heating unit 371 at predetermined time intervals.
  • the control unit stops (OFF) the operation of the compressor 360 and operates a power supply unit (not shown) after a predetermined time after the compressor 360 constituting the refrigeration cycle is operated. Power may be supplied to the heater 371b (see FIG. 4).
  • Control of the controller is not limited to time control.
  • the controller may be configured to apply a driving signal to the heating unit 371 when the detected temperature of the cooling chamber 316 is lowered below a preset temperature.
  • the heat pipe 372 is connected to the heating unit 371 to form a closed loop flow path through which the working fluid F can circulate with the heating unit 371.
  • the heat pipe 372 may be formed of aluminum.
  • At least a portion of the bottom pipe 372 is adjacent to the cooling pipe 331 so as to radiate heat to the cooling pipe 331 of the evaporator 330 by the high temperature working liquid F heated and transferred from the heating unit 371. Is placed.
  • the working liquid (F) the refrigerant is present in the liquid phase under the refrigeration conditions of the refrigerator 300, and when heated, the refrigerant (for example, R-134a, R-600a, etc.) to change the phase to the gas phase to transport heat ) May be used.
  • the heat pipe 372 may be composed of a first heat pipe 372 ′ and a second heat pipe 372 ′′ disposed respectively at the front and rear portions of the evaporator 330.
  • the heat pipe 372 may be configured to be accommodated between the plurality of cooling fins 332 fixed to each end of the cooling tube 331. According to the above structure, the heat pipe 372 is arranged between the respective stages of the cooling pipe 331. In this case, the heat pipe 372 may be configured to contact the cooling fin 332.
  • the heat pipe 372 may be installed to pass through the plurality of cooling fins 332. That is, the heat pipe 372 may be expanded in the state of being inserted into the insertion hole of the cooling fin 332 to be firmly fitted into the insertion hole. According to the above structure, the heat pipe 372 is disposed to correspond to the cooling tube 331.
  • FIG. 4 is an exploded perspective view showing a first embodiment of the heating unit 371 shown in FIG. 3, and FIG. 5 is a heater 371b closely fixed to the heater accommodating portion 371a2 of the heater case 371a by pressing.
  • FIG. 6 is a cross-sectional view of the heater case 371a shown in FIG. 5 taken along the line AA.
  • the heating unit 371 is described in detail with reference to the drawings.
  • the heating unit 371 includes a heater case 371a and a heater 371b.
  • the heater case 371a is formed of a single body having an outlet 371a1 'and an inlet 371a1 "formed at both ends in the longitudinal direction.
  • An inside of the heater case 371a has an outlet 371a1' at the inlet 371a1".
  • An inner flow path 371a1 is formed extending toward. That is, the inner flow path 371a1 extends along the longitudinal direction of the heater case 371a, and is open at both ends of the heater case 371a to form an outlet 371a1 'and an inlet 371a1 ", respectively.
  • the heater case 371a is connected to both ends of the heat pipe 372 to form a closed loop circulation flow path through which the working liquid F can circulate with the heat pipe 372. That is, both ends of the heat pipe 372 are inserted into the heater case 371a through the outlet 371a1 ′ and the inlet 371a1 ′′ so as to communicate with the internal flow path 371a1.
  • one end of the heater case 371a (for example, the front end of the heater case 371a) has an outlet 371a1 'into which one end 372c', 372c "of the heat pipe 372 is inserted.
  • the working fluid F in the internal flow path 371a1 heated by the heater 371b is discharged to one ends 372c 'and 372c "of the heat pipe 372 inserted into the outlet 371a1'.
  • an inlet 371a1 "into which the other ends 372d 'and 372d" of the heat pipe 372 are inserted is formed at the other end of the heater case 371a (for example, the rear end of the heater case 371a).
  • the working fluid F condensed while passing through the heat pipe 372 is recovered to the internal flow path 371 a 1 through the other ends 372 d ′ and 372 d ′′ of the heat pipe inserted into the inlet 371 a 1 ′′.
  • the heater case 371a is formed with a heater accommodating portion 371a2 into which the heater 371b is inserted.
  • the heater accommodating part 371a2 extends in parallel to the internal flow path 371a and has an open shape at both ends of the heater case 371a. That is, the heater accommodating part 371a2 is formed to penetrate the heater case 371a. In this figure, the heater accommodating part 371a2 is shown below the internal flow path 371a.
  • the structure in which the heater accommodating part 371a2 of the insertion hole form is formed in the heater case 371a is easy to attach the heater 371b, and a separate adhesive for attaching the heater to the heater case 371a is unnecessary. There is an advantage in that.
  • the heater case 371a may be formed to have an outer shape of a square pillar shape.
  • the heater case 371a may be formed of a metal material (for example, aluminum material).
  • the heater case 371a may be formed by extrusion molding.
  • the inner flow path 371a1 and the heater accommodating portion 371a2 extend in the extrusion direction, that is, in the longitudinal direction of the heater case 371a.
  • the inlet 371a1 "and the outlet 371a1 ' have the same size. Accordingly, the inlet 371a1" and the outlet 371a1' of the heater case 371a are disposed to face each other, and the inlet Inlets 372c 'and 372c "and return parts 372d' and 372d" of the heat pipe 372 respectively inserted into the 371a1 "and the outlet 371a1 'are also disposed to face each other.
  • the heater case 371a may be disposed at one side of the evaporator 330 in which the accumulator 334 is located, the other side opposite thereto, or any position between the one side and the other side.
  • the heater case 371a may be disposed adjacent to the lowest end of the cooling tube 331.
  • the heater case 371a may be disposed at the same height as the lowest end of the cooling tube 331 or at a position lower than the lowest end of the cooling tube 331.
  • the heater case 371a is located at a position lower than the lowest end of the cooling tube 331 at one side of the evaporator 330 in which the accumulator 334 is located, in parallel with the cooling tube 331. It is shown that it is arranged in the horizontal direction (that is, the left and right directions).
  • the heater 371a2 is equipped with a heater 371b for heating the working liquid F in the internal flow path 371a1.
  • the heater 371b is formed to generate heat when power is supplied, and the working liquid F in the internal flow path 371a1 is heated to a high temperature by receiving heat by the heater 371b which generates heat.
  • the heater 371b may have a shape extending in the extending direction of the heater accommodating part 371a2.
  • the heater 371b may have a flat plate shape having a predetermined thickness.
  • the heater accommodating portion 371a2 is formed below the internal flow path 371a.
  • the structure in which the heater 371b is disposed below the heater case 371a is advantageous for making the heated working liquid F have a propulsion force upward.
  • the heater 371b is pressurized by the pressed part 371a 'and is in close contact with the inner surface of the heater accommodating part 371a2.
  • the press part 371a ' is formed in the bottom surface of the heater case 371a.
  • the pressed part 371a ′ has a recessed shape in a direction from the heater accommodating part 371a2 toward the inner flow path 371a1. Therefore, the heater 371b is pressurized by the pressed portion 371a ', and is in close contact with the upper inner surface and the lower inner surface of the heater accommodating portion 371a2.
  • the heater 371b can be firmly fixed in the heater accommodating portion 371a2.
  • the heater 371b is in close contact with the upper inner surface of the heater accommodating portion 371a2 that divides the internal passage 371a1 and the heater accommodating portion 371a2, so that heat generated by the heater 371b is transferred to the internal passage 371a1. It can be used to heat the working fluid (F) as it is delivered more.
  • the sealing member 371a4 may be filled to seal the heater 371b in the heater accommodating portion 371a2.
  • the sealing member 371a4 is filled in an empty space in which the heater 371b is not disposed.
  • the sealing member 371a4 may be filled in a gap between the left and right inner surfaces of the heater accommodating part 371a2 and the left and right sides of the heater 371b.
  • the sealing member 371a4 may be disposed to cover the front and rear surfaces of the heater 371b.
  • Silicone, urethane, epoxy, or the like may be used as the sealing member 371a4.
  • the sealing structure of the heater 371b may be completed.
  • the operation and shutdown of the heater 371b can be controlled by time, temperature conditions, and the like.
  • the operation of the heater 371b may be controlled by a time condition
  • the operation of the heater 371b may be controlled by a temperature condition.
  • the controller may stop the operation of the compressor 360 and supply power to the heater 371b after a predetermined time after the compressor 360 constituting the evaporator 330 is operated. . Therefore, the heater 371b receives power and generates heat.
  • the controller may cut off power supplied to the heater 371b when the temperature sensed by the defrost sensor 335 described later reaches a preset defrost end temperature. Since no power is supplied to the heater 371b, active heat generation of the heater 371b is stopped, and the temperature gradually decreases.
  • the defrosting apparatus in the previous invention used a fuse to prevent overheating of the heater.
  • a heater 371b having a characteristic of suppressing current generation due to a sudden increase in resistance above a predetermined temperature and generating no heat is used. That is, the heater 371b itself has a function of preventing overheating. This will be described in detail later.
  • the cooling chamber 316 in which the evaporator 330 or the evaporator 330 is disposed is provided with a defrost sensor 335 for detecting a temperature for defrosting.
  • the defrost sensor 335 is installed at a position suitable to represent the temperature of the evaporator 330, and for this purpose, the defrost sensor 335 is preferably located at a portion less affected by the temperature rise by the defrost apparatus 370. Do.
  • the defrost sensor 335 is mounted on the upper end of the support 333.
  • the defrost sensor 335 may be mounted on the other support 333 farther from the heating unit 371.
  • the defrost sensor 335 may be mounted at the inlet side of the cooling tube 331.
  • the inlet side of the cooling tube 331 is a portion where the temperature is lowest in the evaporator 330 and is less affected by the temperature rise by the defrosting apparatus 370, and is another position that represents the temperature of the evaporator 330. Is suitable as.
  • the controller may cut off the power supplied to the heater 371b. Since no power is supplied to the heater 371b, active heat generation of the heater 371b is stopped, and the temperature gradually decreases.
  • the working fluid F filled in the internal flow path 371a1 by the heater 371b is heated to a high temperature, the working fluid F flows directionally by the pressure difference.
  • the working fluid F gradually cools and flows into the inlet 371a1 "through this heat exchange process.
  • the cooled working fluid F is reheated by the heater 371b and then discharged to the outlet 371a1 '. The above process is repeated.
  • the defrosting of the cooling tube 331 is performed by this circulation method.
  • At least a part of the heat pipe 372 is disposed adjacent to the cooling tube 331 of the evaporator 330, and is heated at a high temperature by the heating unit 371. F) to transfer heat to the cooling tube 331 of the evaporator 330 to remove the frost.
  • the heat pipe 372 may have a form (zigzag form) that is repeatedly bent like the cooling tube 331. To this end, the heat pipe 372 includes an extension 372a and a heat dissipation 372b.
  • the extension part 372a forms a flow path for transferring the working liquid F heated by the heating unit 371 to the upper side of the evaporator 330.
  • the extension part 372a is connected to the outlet 371a1 ′ of the heater case 371a provided at the lower part of the evaporator 330 and the heat dissipation part 372b provided at the upper part of the evaporator 330.
  • the extension part 372a includes a vertical extension part extending upward of the evaporator 330.
  • the vertical extension portion extends to an upper portion of the evaporator 330 in a state spaced apart from the support 333 on the outside of the support 333 provided on one side of the evaporator 330.
  • the extension part 372a may further include a horizontal extension part according to the installation position of the heating unit 371.
  • a horizontal extension part for connecting the heating unit 371 and the vertical extension part may be further provided.
  • the heat dissipation part 372b is connected to the extension part 372a extending to the upper part of the evaporator 330 and extends in a zigzag form along the cooling tube 331 of the evaporator 330.
  • the heat dissipation part 372b is composed of a combination of a plurality of horizontal pipes 372b 'forming the upper and lower ends and a connection pipe 372b "formed in a U-shaped pipe bent to connect them in a zigzag shape.
  • the extension portion 372a or the heat dissipation portion 372b may extend to a position adjacent to the accumulator 334 to remove frost accumulated on the accumulator 334.
  • the vertical extension portion when the vertical extension portion is disposed on one side of the evaporator 330 where the accumulator 334 is located, the vertical extension portion extends upward to a position adjacent to the accumulator 334, and then the cooling tube 331 is opened. It may be configured to be bent and extended downwards to be connected to the heat dissipation unit 372b.
  • the heat dissipation portion 372b is connected to the vertical extension portion and extended horizontally, and then extended upward toward the accumulator 334, and then again the cooling tube ( It may extend downward to correspond to 331.
  • the working fluid F heated by the heater 371b flows into the inflow portions 372c 'and 372c "and is transferred to the upper portion of the evaporator 330 through the extension portion 372a, and then radiates heat.
  • the defrost After performing the defrost by transferring heat to the cooling tube 331 while flowing along the portion 372b, it is returned to the heater case 371a through the return portions 372d 'and 372d ", and again by the heater 371b. It is reheated to form a circulation passage through which the heat pipe 372 flows.
  • the first and second heat pipes 372' and 372" are connected to the internal flow path 371a1. Are connected to the outlet 371a1 'and the inlet 371a1 ", respectively.
  • the inner flow path 371a1 may be formed to receive the first and second heat pipes 372 'and 372 "at one time.
  • the inner flow path 371a1 may be the first and second heat pipes 372' and 372.
  • the outlet 371a1 'and the inlet 371a1 may have a long hole shape.
  • the outlet 371a1' and the inlet 371a1" may have first and second heat pipes 372 ', 372 ". It may have a shape corresponding to a part of the appearance.
  • the working liquid F heated in the gas state by the heating unit 371 is discharged to the first and second heat pipes 372 'and 372 "through the outlet 371a1', respectively.
  • One end of the first and second heat pipes 372 ', 372 "inserted into the heater case 371a through the outlet 371a1' is functionally operated at a high temperature (heated by the heater 371b).
  • Part where the liquid F flows] may be understood as the first and second inflow portions 372c 'and 372c ".
  • the first and second inflow portions 372c' and 372c" are disposed in parallel to each other. Respectively inserted into a single outlet 371a1 'having a shape.
  • the working liquid F in the liquid state cooled while moving the first and second heat pipes 372 'and 372 flows into the heater case 371a through the inlet 371a1".
  • the other ends of the first and second heat pipes 372 ', 372 "inserted into the heater case 371a through the inlet 371a1" are functionally cooled (moving the respective heat pipes 372).
  • first and second return portions 372d 'and 372d are parallel to each other. And inserted into a single inlet 371a1 "having a long hole shape.
  • the heat pipe 372 is composed of the first and second heat pipes 372 ', 372 "forming two rows, but the present invention is not limited thereto. 372 may be formed in a single row.
  • the heater case 371a is provided with a hydraulic fluid injection port 371a3 for injecting the hydraulic fluid F into the internal flow path 371a1.
  • the hydraulic fluid F injected through the hydraulic fluid injection port 371a3 is filled in the internal flow path 371a1 of the heater case 371a, and then filled in a predetermined amount in the heat pipe 372.
  • the working fluid injection port 371a3 is formed to communicate with the internal flow path 371a1 through one surface of the heater case 371a. In this figure, it is shown that the hydraulic fluid injection port 371a3 is formed to penetrate inward from one side of the heater case 371a to communicate with the internal flow path 371a1.
  • the hydraulic fluid injection pipe 371a3 is connected to the hydraulic fluid injection pipe 373.
  • the hydraulic fluid injection pipe 373 may be inserted into the hydraulic fluid injection port 371a3 and then fixed to the heater case 371a by welding to fill a gap between the hydraulic fluid injection port 371a3 and the hydraulic fluid injection pipe 373. . After the hydraulic fluid F is filled through the hydraulic fluid injection pipe 373, the hydraulic fluid injection pipe 373 is sealed.
  • FIG. 7 is a conceptual diagram illustrating a connection structure between the heater case 371a and the heat pipe 372 illustrated in FIG. 1.
  • the inlets 372c ′ and 372c ′′ of the heat pipe 372 are inserted into the inner flow path 371a1 formed inside the heater case 371a through the outlet 371a1 ′, and the heat pipe ( The return portions 372d 'and 372d "of the 372 are inserted into the inner flow path 371a1 through the inlet 371a1".
  • the inlets 372c' and 372c "and the return portion 372d of the heat pipe 372. ', 372d may be disposed to face each other with the internal flow path 371a1 interposed therebetween.
  • the gap between the heat pipe 372 and the heater case 371a may be filled by welding.
  • the first weld portion 371m is formed to fill the gap between the inflow portions 372c 'and 372c "and the outlet 371a1', and the second weld portion 371n and the return portions 372d 'and 372d". It is formed to fill the gap between the inlet (371a1 ").
  • the first and second inflow portions 372c 'and 372c can be fixed to the heater case 371a through one welding.
  • the second welding portion 371n is connected to the first return portion 372d' and the inlet. And a gap between the third return portion 372d " and the inlet 371a1 " together.
  • the first and second return portions 372d ', 372d " ) Can be fixed to the heater case 371a.
  • the gaps between the first and second inlet portions 372c 'and 372c "formed in parallel and the outlet 371a1' are welded at a time, and the first and second return portions 372d 'and 372d" formed in parallel. Welding the gap between the and the inlet 371a1 "at one time can further reduce the welding point, thereby reducing the production cost.
  • the working fluid inlet 371a3 is formed to communicate with the internal flow path 371a1 between the first and second inlet portions 372c ', 372c "and the first and second return portions 372d', 372d". . Further, in a state where the hydraulic fluid injection pipe 373 is inserted into the hydraulic fluid injection port 371a3, the third welding part 371p is formed to fill a gap between the hydraulic fluid injection port 371a3 and the hydraulic fluid injection pipe 373. .
  • FIG. 8 is a cross-sectional view of the heating unit 371 shown in FIG. 7 taken along the line B-B.
  • the heater case 371a has passive heating corresponding to an active heating part (AHP) corresponding to a portion where the heater 371b is disposed and a portion where the heater 371b is not disposed. It is divided into a passive heating part (PHP).
  • AHP active heating part
  • PPP passive heating part
  • a portion of the heater accommodating portion 371a2 corresponding to the active heat generating portion AHP (lower side of the active heat generating portion AHP on the drawing) is disposed with the heater 371b, and a portion corresponding to the passive heat generating portion PHP (the drawing A sealing member 371a4 is disposed below the upper passive heating portion PHP.
  • the active heating portion AHP is a portion directly heated by the heater 371b, and the working fluid F in the liquid state is heated in the active heating portion AHP and phase-changed to a high temperature gas state.
  • the inlets 372c ′ and 372c ′′ of the heat pipe 372 may be located in the active heating unit AHP, or in front of the active heating unit AHP (based on the flow direction of the working fluid F).
  • the heater 371b exemplifies that the heater 371b is formed to extend forwardly below the inflow portions 372c 'and 372c ". That is, in this embodiment, the inlets 372c 'and 372c "of the heat pipe 372 are located in the active heat generation unit AHP.
  • a passive heat generating portion PHP is formed behind the active heat generating portion AHP (the direction opposite to the flow of the working fluid F).
  • the passive heat generating unit (PHP) is not directly heated by the heater 371b like the active heat generating unit (AHP), but indirectly receives heat and is heated to a predetermined temperature level.
  • the passive heating unit PHP may cause a predetermined temperature rise in the working liquid F in a liquid state, and does not have a high temperature enough to phase change the working liquid F into a gaseous state. That is, in terms of temperature, the active heat generating portion (AHP) forms a relatively high temperature portion, and the passive heat generating portion (PHP) forms a relatively low temperature portion.
  • the recovered working fluid F is heated again to flow back into the heater case 371a without being smoothly returned. May occur. This may interfere with the circulating flow of the working fluid F in the heat pipe 372, which may cause a problem that the heater 371b overheats.
  • the return parts 372d 'and 372d "of the heat pipe 372 inserted into the inlet 371a1" communicate with the passive heat generating part PHP, and after moving the heat pipe 372,
  • the working fluid F returned is configured not to directly flow into the active heating unit AHP.
  • FIG. 9 is an exploded perspective view illustrating an example of the heater 371b illustrated in FIG. 4.
  • the heater 371b is configured such that current is suppressed due to a sudden increase in resistance at or above a preset temperature, so that the heater does not generate any more heat.
  • the heater 371b may be configured to no longer generate heat when the defrosting apparatus 370 is secured to reach 280 ° C.
  • the heater 371b has a limited heat generation temperature by its own characteristics. Therefore, there is an advantage in that the safety of the heater 371b can be secured without using a fuse as a safety device provided in the existing heating unit.
  • the heater 371b may include first and second electrode plates 371b1 and 371b2 and a PTC thermistor (Positive Temperature Coefficient Thermistor) 371b3.
  • PTC thermistor Positive Temperature Coefficient Thermistor
  • the first and second electrode plates 371b1 and 371b2 are disposed to face each other at predetermined intervals.
  • the first and second electrode plates 371b1 and 371b2 are formed of a metal material (for example, aluminum material).
  • Each of the first and second electrode plates 371b1 and 371b2 is electrically connected to a power supply unit (not shown) through a lead wire 371b5.
  • a power supply unit not shown
  • each of the first and second electrode plates 371b1 and 371b2 wraps and fixes the lead wires 371b5 to each other.
  • ', 371b2' may be formed.
  • a PTC thermistor 371b3 is interposed between the first electrode plate 371b1 and the second electrode plate 371b2.
  • the PTC thermistor 371b3 has a characteristic that the resistance increases with increasing temperature.
  • the PTC thermistor 371b3 is formed of barium titanate-based ceramics calcined by mixing a small amount (0.1 to 1.5%) of oxides such as lanthanum, yttrium, bismuth, and thorium with barium titanate.
  • the PTC thermistor 371b3 has a relatively small resistance value at low temperatures, but has a characteristic of sudden increase in resistance when a certain temperature is reached. Therefore, the current is suppressed above the specific temperature.
  • the temperature at which the temperature-resistance characteristic of the PTC thermistor 371b3 changes rapidly is called Curie Point or Curie Temperature.
  • the Curie point may be moved to a high temperature side or a low temperature side by controlling a component of the PTC thermistor 371b3. Therefore, by adjusting the components of the PTC thermistor 371b3, a heater 371b that generates sufficient heat in the defrost but is limited in heat generation above a specific temperature can be manufactured.
  • the method to adjust the Curie point is as follows. When part of the barium is replaced with lead, the Curie point moves toward the higher temperature. If barium is replaced with strontium, or part of titanium is replaced with tin or zirconium, the Curie point moves toward the lower temperature. In this manner, a PTC thermistor 371b3 having a heat generation characteristic suitable for use as the defrost heater 371b can be made.
  • the PTC thermistor 371b3 may be provided in plural numbers. For example, as shown, two PTC thermistors 371b3 of xW (watts) may be disposed along one direction to form a 2xW (watts) heater 371b.
  • the PTC thermistor 371b3 is in close contact with the first and second electrode plates 371b1 and 371b2, respectively.
  • a resist paste (for example, Ag Paste) may be applied to both surfaces of the PTC thermistor 371b3 contacting the first and second electrode plates 371b1 and 371b2, respectively.
  • the heater 371b may further include an insulating film 371b4 formed to surround the first and second electrode plates 371b1 and 371b2. As illustrated, the insulating film 371b4 may be configured to accommodate the first and second electrode plates 371b1 and 371b2 having the PTC thermistor 371b3 interposed therebetween.
  • FIG. 10 is a graph showing resistance-temperature characteristics of the PTC thermistor 371b3 shown in FIG. 9.
  • the Curie point at which the temperature-resistance characteristic of the PTC thermistor 371b3 changes abruptly is generally determined by the resistance value Rn at a temperature or reference temperature (Tn, room temperature, 25 ° C.) corresponding to twice the minimum resistance value Rmin. It is defined as the temperature corresponding to two times.
  • Tmin is the temperature for the minimum resistance value Rmin
  • Ts is the switching temperature at which the resistance value increases rapidly
  • Rs is the resistance value at the Curie point.
  • FIG. 11 is a graph showing current-voltage characteristics of the PTC thermistor 371b3 shown in FIG. 9.
  • the PTC thermistor 371b3 When the voltage is gradually increased by applying a voltage to the PTC thermistor 371b3, the temperature increases due to self-heating as shown in FIG. When the temperature rises and exceeds the Curie point, the resistance increases due to the resistance-temperature characteristics described above, and the current decreases.
  • the PTC thermistor 371b3 can be used as a heater 371b having a constant temperature heating function and an overcurrent protection function.
  • the PTC thermistor 371b3 Due to the characteristics of the PTC thermistor 371b3 described above, the PTC thermistor 371b3 stays in the low resistance region during normal operation and serves as a general fixed resistance. Overheating is prevented. Therefore, problems such as shortening of the life of the heater due to overheating and deterioration of the efficiency of the evaporator can be solved.
  • the heater 371b using the PTC thermistor 371b has a property of preventing overheating itself. There is an advantage in terms of maintenance.
  • 12 and 13 are conceptual diagrams for explaining the circulation of the working liquid F in the state before and after the operation of the heater 371b.
  • the working liquid F is placed in a liquid state, and is filled up to a predetermined end of the upper part based on the lowermost end of the heat pipe 372.
  • the working fluid F may be filled to the lower two stages of the heat pipe 372.
  • the working liquid F in the heater case 371a is heated by the heater 371b.
  • the working fluid F heated to a high temperature gas state F1 flows into the inlets 372c ′ and 372c ′′ of the heat pipe 372 and flows through the heat pipe 372.
  • the heat dissipation is performed at 331.
  • the working fluid F flows to the state F2 where liquid and gas coexist while losing heat during the heat dissipation process, and finally, the heat flow of the heat pipe 372 to the liquid state F3.
  • the heating unit 371 is introduced into the heating unit 371.
  • the working fluid F introduced into the heating unit 371 is reheated by the heater 371b to repeat (circulate) the flow as described above, and in this process, the heat is transferred to the evaporator 330, whereby the evaporator ( The frost accumulated on 330 is removed.
  • the working fluid F flows due to the pressure difference generated by the heating unit 371 to rapidly circulate the heat pipe 372, so that the entire section of the heat pipe 372 reaches a stable operating temperature within a short time. This can be done, so that defrosting can be done quickly.
  • the working fluid F flowing into the inlet portions 372c 'and 372c "has the highest temperature during the circulation of the heat pipe 372 in the hot gas state F1.
  • the frost accumulated on the evaporator 330 can be removed more efficiently.
  • the inlets 372c ′ and 372c ′′ may be disposed at a position relatively lower than or at a lower end of the cooling tube 331 provided in the evaporator 330.
  • the high temperature working fluid F flowing through not only not only transfers heat near the lowest end of the cooling tube 331 but also this heat is raised to the cooling tube 331 adjacent to the lowest end. ) Can be delivered.
  • the working fluid F in order for the working fluid F to circulate the heat pipe 372 with this phase change, the working fluid F must be filled in the heat pipe 372 in an appropriate amount.
  • the temperature of some stages of the heat pipe 372 becomes a stable operating temperature [40 ° C]. ⁇ 50 °C (-21 °C refrigeration condition)] was confirmed that it can not be reached. This temperature drop is more pronounced as the heat pipe 372 gets closer to the return portions 372d ', 372d ". This is because the working fluid F is too large relative to the total volume of the heat pipe 372 and the heater case 371a. It can be seen that it means that the section in which the working liquid (F) flows into the liquid state increases.
  • the temperature of the heating unit 371 and the respective stages of the heat pipe 372 are The temperature was found to reach a stable operating temperature over time.
  • each stage of the heat pipe 372 shows a higher temperature as it is closer to the inflow parts 372c 'and 372c ", and shows a lower temperature as it is closer to the return parts 372d' and 372d".
  • the difference between the temperature at the inlets 372c 'and 372c "(highest temperature) and the temperature at the return parts 372d' and 372d" also decreases. It was.
  • the working fluid F is filled at 30% or more and 40% or less with respect to the total internal volume of the heat pipe 372 and the heater case 371a, and the defrosting device 370 is each defrosted according to the heat transfer structure, stability, and the like.
  • the filling amount of the working fluid F optimized for each device 370 may be selected.
  • the description of the heater 371b of the first embodiment may be equally applicable to the heaters 471b, 571b, 671b, 771b, 871b, and 971b of other embodiments described later.
  • FIG. 14 is a conceptual diagram illustrating a second embodiment of the heating unit 371 shown in FIG. 3.
  • frost may accumulate on the upper surface of the heater case 371a.
  • the inner flow path 371a1 is formed just below the upper surface of the heater case 371a, the temperature of the working fluid F in the inner flow path 371a1 is lowered in the castle accumulated on the upper surface of the heater case 371a. Therefore, it may be a factor to reduce the thermal efficiency of the heater 371b.
  • the heating unit 471 in which the positions of the inner passage 471a1 and the heater accommodating part 471a2 are reversed may be considered. That is, in the structure in which the heater case 471a is disposed in the horizontal direction (ie, the left and right directions) of the evaporator 430, the heater accommodating part 471a2 is formed on the inner flow path 471a. By this arrangement, a heater accommodating portion 471a2 is formed just below the upper surface of the heater case 471a. That is, the upper surface of the heater case 471a defines the heater accommodating portion 471a2.
  • the heat generated in the heater 471b is used not only to heat the working liquid F but also to remove frost accumulated on the heater case 471a. Therefore, the thermal efficiency of the heater 471b can be improved.
  • FIG. 15 is a conceptual view illustrating a third embodiment of the heating unit 371 illustrated in FIG. 3, and FIG. 16 is a cross-sectional view of the heater case 571a illustrated in FIG. 15 along a line C-C.
  • grooves 571a1a are repeatedly formed along the circumference of the internal flow path 571a1 formed in the heater case 571a. Since the heater case 371a is formed by extrusion molding, the groove 571a1a is formed along the extrusion direction, that is, along the longitudinal direction of the heater case 571a, similarly to the internal flow path 571a1 and the heater accommodating portion 571a2. .
  • the heat generating area of the internal flow path 571a1 may be increased. Therefore, the amount of heat transfer delivered to the working fluid F can be increased, and the circulation stability of the working fluid F and the improvement of the defrosting reliability can be achieved due to the increase in the working pressure.
  • the radius of the groove 571a1a is preferably set as small as possible at a level that can be formed by extrusion molding.
  • the radius of the groove 571a1a may be set to 0.45 mm.
  • the grooves 571a1a are shown to be formed continuously along the circumference of the internal flow path 571a1.
  • the continuous means that the other groove 571a1a starts immediately when one groove 571a1a ends.
  • the grooves 571a1a may be repeatedly formed at regular intervals along the circumference of the internal flow path 571a1.
  • FIG. 17 is a conceptual diagram illustrating a fourth embodiment of the heating unit 371 illustrated in FIG. 3.
  • a hole 671a1b may be formed around the inner flow path 671a1 to extend in parallel to the inner flow path 671a1 and open at both ends of the heater case 671a.
  • the hole 671a1b may be located between the inner flow path 671a1 and the edge of the heater case 671a.
  • the hole 671a1b is formed to extend along the extrusion direction, that is, the length direction of the heater case 671a, similarly to the internal flow path 671a1 and the heater accommodating portion 671a2. .
  • the holes 671a1b are formed on the path where heat is released around the inner flow path 671a1, so as to limit the external emission of heat in such a way that the emitted heat can be concentrated again in the hole 671a1b.
  • the hole 671a1b may be formed in a sharp shape toward the inner flow path 671a1 so that heat concentrated in the hole 671a1b may be discharged toward the inner flow path 671a1 again.
  • the hole 671a1b since the hole 671a1b is formed, the heat transferred to the internal flow path 671a1 can be reduced from being released to the outside of the heater case 671a without being used to heat the working liquid and leading to heat loss. As a result, since the hole 671a1b is formed, more heat can be concentrated in the internal flow path 671a1.
  • the hole 671a1b is additionally formed in the heater case 671a in which the grooves 671a1a are repeatedly formed along the circumference of the inner flow path 671a1 as in the third embodiment.
  • the present invention is not necessarily limited thereto.
  • holes 671a1b may be further formed in the heater cases of other embodiments described later.
  • FIG. 18 is a conceptual view illustrating a fifth embodiment of the heating unit 371 illustrated in FIG. 3, and FIG. 19 is a cross-sectional view of the heating unit 771 illustrated in FIG. 18 along a line D-D.
  • first and second extension fins 771a 'and 771a are formed on both sides of the heater case 771a to protrude downward from the bottom.
  • First and second extension fins 771a, respectively. ', 771a may be extended along the longitudinal direction of the heater case 771a.
  • the heater mounting portion 771a2 is formed of the heater case 771a. Since the heater case 771a is formed by extrusion molding, the heater mounting portion 771a2 is formed in the extrusion molding direction, that is, the length of the heater case 771a, like the inner flow path 771a1. It extends along the direction.
  • a heater 771b is attached to the bottom of the heater case 771a defining the heater mounting portion 771a2. Both sides of the heater 771b attached to the bottom of the heater case 771a are covered and covered by the first and second extension pins 771a 'and 771a ". Even if it falls on the heater case 771a and flows down the side of the heater case 771a, defrost water does not penetrate into the heater 771b accommodated in the inner space between the first and second extension pins 771a 'and 771a ". Do not.
  • the sealing member 771e may be filled in.
  • the sealing member 771e may be silicon, urethane, epoxy, etc.
  • the recessed space such that a liquid epoxy covers the heater 771b may be used.
  • the sealing structure of the heater 771b may be completed through the curing process, wherein the first and second extension pins 771a 'and 771a "are recessed to which the sealing member 771e is filled. It functions as a side wall defining a space.
  • the heater 771b itself includes an insulating film, there is an advantage that a separate insulating material for restricting heat transfer to the sealing member 771e is not required between the heater 771b and the sealing member 771e. have.
  • FIG. 20 is a conceptual view illustrating a sixth embodiment of the heating unit 371 shown in FIG. 3, and FIG. 21 is a cross-sectional view of the heating unit 871 illustrated in FIG. 20 taken along a line E-E.
  • the heating unit 871 includes a heater case 871a, a heater 871b, a holder 871c, and an elastic member 871d.
  • the heater casing 871a is formed with an internal flow path 871a1 having inlets 871a1 " and an outlet 871a1 'formed at both ends.
  • the heater casing 871a is also provided with an internal flow path for injecting the working fluid F.
  • a working fluid inlet 871a3 is formed in communication with the 871a1.
  • the heater 871b is attached to the heater case 871a so as to heat the working liquid F in the internal flow path 871a1.
  • the heater 871b is attached to the bottom of the heater case 871a.
  • the heater 871b may be attached to the top or side surface of the heater case 871a.
  • the holder 871c is attached to the heater case 871a and is disposed to cover the heater 871b.
  • the holder 871c may be formed of a synthetic resin material or a metal material capable of predetermined elastic deformation.
  • the holder 871c may be fixed to the heater case 871a through a hook coupling.
  • first and second hooks 871c1 'and 871c1 may be formed at both sides of the holder 871c.
  • the first and second hooks 871c1' and 871c1" are caught in the heater case 871a.
  • the locking protrusions 871a 'and 871a may be formed.
  • the holder 871c is disposed to cover the bottom and both side surfaces of the heater case 871a, and the first and second hooks 871c1 'and 871c1 "of the holder 871c are upper surfaces of the heater case 871a.
  • the structures shown in the figure are shown in the locking projections 871a 'and 871a "formed in the upper and lower surfaces.
  • the elastic member 871d is interposed in a compressed state between the heater 871b and the holder 871c, and is configured to bring the heater 871b into close contact with the heater case 871a. At least one elastic member 871d may be provided along the length direction of the heater 871b. A spring may be used as the elastic member 871d.
  • a fixing protrusion 871c2 for fixing the elastic member 871d may protrude from the holder 871c.
  • the elastic member 871d may be mounted on the fixing protrusion 871c2 and fixed at a specific position. As shown, the fixing protrusion (871c2) may be fitted to the elastic member (871d). That is, the elastic member 871d may be formed to surround the fixing protrusion 871c2.
  • the heater 871b can be firmly attached to the heater case 871a. As a result, more heat generated in the heater 871b can be transferred to the heater case 871a to be used to heat the working fluid F.
  • 22 and 23 are front and perspective views illustrating another example of the defrost apparatus 370 applied to the refrigerator 300 of FIG. 1.
  • the heating unit 971 may be disposed outside one side of the defrosting device 970.
  • the heater case 971a may be located outside the support 933 provided at one side of the evaporator 930, and may be formed to extend in a vertical direction from the lower side of the evaporator 930 to the upper side.
  • at least a part of the heater case 971a may be disposed between the first cooling tube 931 ′ and the second cooling tube 931 ′′.
  • the heater case 971a is connected to the heat pipes 972, respectively, to form a circulation flow path through which the working liquid F can circulate.
  • an outlet 971a1 'and an inlet 971a1 are formed at an upper side and a lower side of the heater case 971a.
  • the outlet 971a1' is connected to an extension 972a of the heat pipe 972.
  • the inlet 971a1 ′′ is connected to the bottom end of the heat dissipating portion 972b of the heat pipe 972.
  • the heater 971b is mounted to the heater case 871a and disposed vertically in the vertical direction of the evaporator 930. As described in the above embodiments, the heater 971b may be mounted in the heater case 971a in various ways. For example, the heater 971b may be accommodated in the heater accommodating part 971a2 formed to penetrate the heater case 971a, or may be attached to one surface of the heater case 971a.
  • the internal flow path 971a1 and the heater accommodating part 971a2 are formed to penetrate the heater case 971a, and the heater 971b is accommodated in the heater accommodating part 971a2.
  • the heater accommodating part 971a2 is disposed outside the inner passage 971a1, but the present invention is not necessarily limited thereto.
  • the heater accommodating part 971a2 may be disposed inside the inner passage 971a1, that is, between the inner passage 971a1 and the support 933.
  • the heater 971b extends toward the outlet 971a1 'between the inlet 971a1 "and the outlet 971a1', and is configured to reheat the working fluid F recovered through the inlet 971a1".
  • the structure in which the inner flow path 971a1 extends from the lower side of the evaporator 930 in the vertical direction upward is advantageous in that the working fluid F in the inner flow path 971a1 is heated to form a rising flow. There is an advantage that the back flow of the working fluid F can be prevented.
  • the working fluid F is preferably filled higher than the top end of the heater (971b) extending in the vertical direction in the heater case (971a). According to such a configuration, defrosting operation can be safely performed without the heating unit 971 not overheated, and the continuous supply of the working fluid F in the gas state to the heat pipe 972 can be made stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Defrosting Systems (AREA)

Abstract

본 발명은, 양단부에 입구와 출구가 형성된 내부 유로를 구비하는 히터 케이스와, 상기 히터 케이스에 장착되어 상기 내부 유로 내의 작동액을 가열하는 히터를 포함하는 히팅 유닛; 및 상기 입구와 상기 출구를 통해 상기 히터 케이스의 내부에 삽입되어 상기 내부 유로와 연통되고, 상기 히터에 의해 가열되어 이송되는 고온의 작동액에 의해 증발기의 냉각관에 방열하도록 적어도 일부가 상기 냉각관에 인접하게 배치되는 히트 파이프를 포함하며, 상기 히터는 기설정된 온도 이상에서는 저항이 급증함으로 인해 전류가 억제되어 더 이상 발열하지 않도록 이루어지는 제상 장치를 개시한다.

Description

제상 장치 및 이를 구비하는 냉장고
본 발명은 냉동 사이클에 구비되는 증발기에 착상된 성에를 제거하기 위한 제상 장치, 그리고 이를 구비하는 냉장고에 관한 것이다.
냉장고는 압축-응축-팽창-증발의 과정이 연속적으로 이루어지는 냉동 사이클에 의해 생성된 냉기를 이용하여 내부에 저장된 식품을 저온 보관하는 장치이다.
냉장실 내의 냉동 사이클은, 냉매를 압축하는 압축기와, 압축기로부터 압축된 고온고압상태의 냉매를 방열을 통하여 응축하는 응축기와, 응축기로부터 제공된 냉매가 증발하면서 주위의 잠열을 흡수하는 냉각작용에 의하여 주변의 공기를 냉각하는 증발기를 포함한다. 응축기와 증발기 사이에는 모세관 내지는 팽창밸브가 구비되어, 증발기로 유입되는 냉매의 증발이 쉽게 일어날 수 있도록, 냉매의 유속을 증가시키고 압력을 낮추도록 이루어진다.
이처럼, 냉동 사이클에 구비되는 증발기는 냉각관을 유동하는 냉매의 순환에 의해 생성된 냉기를 이용하여 주변의 온도를 낮추게 된다. 이 과정에서, 주변 공기와의 온도차가 발생할 경우, 공기 중의 수분이 냉각관의 표면에 응축 동결되어 성에로 발전하기도 한다. 증발기에 착상된 성에는 증발기의 열교환 효율을 저하시키는 요인으로 작용한다.
증발기에 착상된 성에를 제거하기 위한 제상 작업으로, 종래에는 열선을 이용한 제상 방법이 이용되었다. 그러나 열선을 이용한 제상 구조에서는 증발기의 특정 부분에 제상에 필요한 적정 온도가 전달되지 않아, 에너지 손실의 문제를 야기하였다.
이에 자사에서는 히터에 의해 가열된 작동액이 히트 파이프를 유동하면서 제상을 수행하는 새로운 구조의 제상 장치를 개발하고, 이를 개선 및 발전시켜 나가고 있다.
제상 장치는 열을 가하여 제상을 수행하는 장치이기 때문에, 안전성 확보를 위해서는, 고온의 열을 발생하는 히터의 과열을 방지하는 것이 무엇보다 중요하다. 히터의 과열은, 히터의 수명 단축, 증발기의 효율 저하 등을 야기하게 된다. 경우에 따라 히터가 지나치게 과열되면 파손되어 이후 재작동이 불가능한 상태에 이를 수도 있다. 따라서, 히터의 과열 방지는 냉장고의 작동 신뢰성과 관련된 중요한 문제라 할 수 있다.
최근에는, 히터에 퓨즈를 연결하여, 히터의 과열시 상기 퓨즈가 끊어지도록 함으로써 히터를 보호하는 기술이 연구되었다. 그러나 퓨즈가 끊어진 이후에는 히터와 전원공급 유닛 상호 간의 전기적 연결이 차단되어, 히터의 재작동이 이루어질 수 없다는 한계가 있다.
본 발명의 첫 번째 목적은, 히터의 과열을 대비한 안전장치로서의 퓨즈가 구비지 않고도 안전성이 확보될 수 있는 새로운 히터를 제공하는 데에 있다.
본 발명의 두 번째 목적은, 상기 안전장치를 구비하는 기존의 히팅 유닛의 구조적 복잡성 및 비용 증가의 문제를 해결할 수 있는 새로운 구조의 히팅 유닛을 제공하는 데에 있다.
본 발명의 세 번째 목적은, 이러한 새로운 히팅 유닛에서, 제상시 작동액의 순환이 보다 잘 이루어질 수 있는 구조를 제공하는 데에 있다.
본 발명의 네 번째 목적은, 히터에서 발생된 열이 작동액을 가열하는 데에 사용되지 못하고 히터 케이스의 외부로 방출되어 열손실로 이어지는 것을 줄일 수 있는 구조를 제공하는 데에 있다.
본 발명의 다섯 번째 목적은, 히터가 히터 케이스의 적어도 일면에 견고하게 부착될 수 있는 다양한 구조의 히팅 유닛을 제공하는 데에 있다.
본 발명의 여섯 번째 목적은, 히터 케이스 위에 쌓인 성에를 보다 효율적으로 제거할 수 있는 히팅 유닛을 제공하는 데에 있다.
본 발명의 첫 번째 목적을 달성하기 위하여, 본 발명의 제상 장치는, 양단부에 입구와 출구가 형성된 내부 유로를 구비하는 히터 케이스와, 상기 히터 케이스에 장착되어 상기 내부 유로 내의 작동액을 가열하는 히터를 포함하는 히팅 유닛; 및 상기 입구와 상기 출구를 통해 상기 히터 케이스의 내부에 삽입되어 상기 내부 유로와 연통되고, 상기 히터에 의해 가열되어 이송되는 고온의 작동액에 의해 증발기의 냉각관에 방열하도록 적어도 일부가 상기 냉각관에 인접하게 배치되는 히트 파이프를 포함하며, 상기 히터는 기설정된 온도 이상에서는 저항이 급증함으로 인해 전류가 억제되어 더 이상 발열하지 않도록 이루어진다.
상기 히터는 온도가 상승함에 따라 저항이 증가하는 특성을 가지는 PTC(Positive Temperature Coefficient) 서미스터를 포함한다.
상기 히터는 상기 PTC 서미스터를 사이에 두고 서로 마주하도록 배치되는 제1 및 제2전극판을 더 포함한다.
상기 구조에서, 본 발명의 두 번째 목적을 달성하기 위하여, 상기 히터 케이스에는, 상기 내부 유로에 평행하게 연장되어 상기 양단부에서 개방되고, 상기 히터가 삽입되는 히터 수용부가 형성된다.
아울러, 상기 히터는 상기 PTC 서미스터가 개재된 상기 제1 및 제2전극판을 수용하는 절연필름을 더 포함한다.
상기 구조에서, 본 발명의 세 번째 목적을 달성하기 위하여, 상기 내부 유로에는 둘레를 따라 홈이 형성되며, 상기 홈은 상기 내부 유로를 따라 연장 형성된다.
상기 홈은 내부 유로의 둘레를 따라 연속적으로 형성될 수 있다.
상기 구조에서, 본 발명의 네 번째 목적을 달성하기 위하여, 상기 내부 유로의 주위에는 상기 내부 유로에 평행하게 연장되어 상기 히터 케이스의 양단부에서 개방되는 홀이 형성된다.
상기 홀은 상기 내부 유로와 상기 히터 케이스의 모서리 사이에 위치할 수 있다.
상기 구조에서, 본 발명의 다섯 번째 목적을 달성하기 위하여, 상기 히터 케이스에는 상기 히터 수용부를 향하여 움푹 들어간 형태의 프레스드부가 형성되며, 상기 히터는 상기 프레스드부에 의해 가압되어 상기 히터 수용부의 내부면에 밀착된다.
상기 히터가 상기 히터 수용부에 장착된 상태에서, 상기 히터 수용부에는 실링부재가 상기 히터를 실링하도록 충진된다.
또는, 본 발명의 다섯 번째 목적은, 양단부에 입구와 출구가 형성된 내부 유로를 구비하는 히터 케이스; 상기 입구와 상기 출구를 통해 상기 히터 케이스의 내부에 삽입되어 상기 내부 유로와 연통되는 히트 파이프; 상기 히터 케이스의 일면에 부착되어 상기 내부 유로 내의 작동액을 가열하는 히터; 상기 히터 케이스에 장착되어 상기 히터를 덮도록 배치되는 홀더; 및 상기 히터와 상기 홀더 사이에 압축된 상태로 개재되어, 상기 히터를 상기 히터 케이스의 일면에 밀착시키는 탄성부재를 포함하는 제상 장치에 의해 달성될 수 있다.
본 발명의 여섯 번째 목적은, 상기 히팅 유닛이 상기 증발기의 좌우 방향으로 배치된 구조에서, 상기 히터 수용부가 상기 내부 유로의 상부에 위치하도록 배치됨으로써 달성될 수 있다.
아울러, 본 발명은 다음과 같은 구조를 가질 수 있다.
상기 히트 파이프는 상기 증발기의 전면부와 후면부에 각각 배치되는 제1히트 파이프와 제2히트 파이프를 포함하고, 상기 출구는 상기 제1 및 제2히트 파이프의 일단부를 수용하는 단일 개구로 형성되며, 상기 입구는 상기 제1 및 제2히트 파이프의 타단부를 수용하는 단일 개구로 형성될 수 있다.
상기 히팅 유닛은, 상기 히트 파이프의 일단부와 상기 출구 간의 틈을 메우도록 형성되는 제1용접부; 및 상기 히트 파이프의 타단부와 상기 입구 간의 틈을 메우도록 형성되는 제2용접부를 더 포함할 수 있다.
상기 히팅 유닛은, 상기 히터 케이스의 저부에 상부를 향하여 리세스된 형태로 형성되는 히터 장착부; 및 상기 히터 장착부에 충진되어, 상기 히터 장착부의 리세스된 바닥면에 부착되는 히터를 덮도록 배치되는 실링부재를 더 포함할 수 있다.
상술한 해결수단을 통해 얻게 되는 본 발명의 효과는 다음과 같다.
첫째, 전류가 제한되어 일정 온도 이상으로 발열하지 않는 특성을 가지는 히터가 이용됨으로써, 기존의 히팅 유닛에서 구비되었던 안전장치로서의 퓨즈를 사용하지 않고도 히터의 안전성이 확보될 수 있다.
둘째, 본 발명의 히팅 유닛에 구비되는 히터는 졀연 시트지로 감싸져 있으므로, 별도의 절연재가 불필요하다. 또한, 히터가 히터 케이스에 형성된 히터 수용부에 수용되는 구조를 가지는 경우, 안전장치의 고정을 위한 홀더도 불필요하다. 따라서, 본 발명의 히팅 유닛은 구조적으로 단순하여 제조가 용이하며, 생산 비용을 줄일 수 있는 이점이 있다.
셋째, 히터 케이스의 내부 유로에 둘레를 따라 홈이 반복적으로 형성되는 경우, 작동액의 발열면적이 증가하고, 이에 따라 작동액의 작동압의 증가하여, 작동액의 순환 안정화 및 제상의 신뢰성 향상이 이루어질 수 있다.
넷째, 히터 케이스의 내부 유로의 주위에 열의 외부 방출을 제한하는 홀이 형성됨으로써, 내부 유로로 전달된 열이 작동액을 가열하는 데에 사용되지 못하고 히터 케이스의 외부로 방출되어 열손실로 이어지는 것을 줄일 수 있으며, 내부 유로로 보다 많은 열을 집중시킬 수 있다.
다섯째, 히터가 히터 케이스에 형성된 히터 수용부에 수용된 상태에서 프레스된 후 실링부재의 충진에 의해 히터가 고정되는 구조를 가지거나, 탄성부재가 히터와 홀더 사이에 개재되어 히터를 히터 케이스에 밀착된 상태로 고정되는 구조 등을 통하여, 히터가 히터 케이스의 적어도 일면에 견고하게 부착될 수 있으며, 그 결과 히터에서 발생된 열이 내부 유로로 보다 많이 전달되어 작동액을 가열하는 데에 이용될 수 있다.
여섯째, 히팅 유닛이 증발기의 좌우 방향으로 배치된 구조에서, 히터 수용부가 내부 유로의 상부에 위치하도록 배치되는 경우, 히터에서 발생된 열은 작동액을 가열하는 데에 뿐만 아니라, 히터 케이스 위에 쌓인 성에를 제거하는 데에도 이용되어, 히터의 열효율이 향상될 수 있다.
도 1은 본 발명의 일 실시예에 따른 냉장고의 구성을 개략적으로 나타낸 종단면도.
도 2 및 도 3은 도 1의 냉장고에 적용되는 제상 장치의 일 예를 보인 정면도 및 사시도.
도 4는 도 3에 도시된 히팅 유닛의 제1실시예를 보인 분해 사시도.
도 5는 프레스에 의해 히터가 히터 케이스의 히터 수용부에 밀착 고정된 구조를 보인 도면.
도 6은 도 5에 도시된 히터 케이스를 라인 A-A를 따라 취한 단면도.
도 7은 도 1에 도시된 히터 케이스와 히트 파이프 간의 연결 구조를 보인 개념도.
도 8은 도 7에 도시된 히팅 유닛을 라인 B-B를 따라 취한 단면도.
도 9는 도 4에 도시된 히터의 일 예를 보인 분해 사시도.
도 10은 도 9에 도시된 PTC 서미스터의 저항-온도 특성을 보인 그래프.
도 11은 도 9에 도시된 PTC 서미스터의 전류-전압 특성을 보인 그래프.
도 12 및 도 13은 히터의 작동 전 및 작동 후 상태에서의 작동액의 순환을 설명하기 위한 개념도들.
도 14는 도 3에 도시된 히팅 유닛의 제2실시예를 보인 개념도.
도 15는 도 3에 도시된 히팅 유닛의 제3실시예를 보인 개념도.
도 16은 도 15에 도시된 히터 케이스를 라인 C-C를 따라 취한 단면도.
도 17은 도 3에 도시된 히팅 유닛의 제4실시예를 보인 개념도.
도 18은 도 3에 도시된 히팅 유닛의 제5실시예를 보인 개념도.
도 19는 도 18에 도시된 히팅 유닛을 라인 D-D를 따라 취한 단면도.
도 20은 도 3에 도시된 히팅 유닛의 제6실시예를 보인 개념도.
도 21은 도 20에 도시된 히팅 유닛을 라인 E-E를 따라 취한 단면도.
도 22 및 도 23은 도 4의 냉장고에 적용되는 제상 장치의 다른 일 예를 보인 정면도 및 사시도.
이하, 본 발명에 관련된 제상 장치 및 이를 구비하는 냉장고에 대하여 도면을 참조하여 보다 상세하게 설명한다.
본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.
또한, 서로 다른 실시예라도 구조적, 기능적으로 모순이 되지 않는 한 어느 하나의 실시예에 적용되는 구조는 다른 하나의 실시예에도 동일하게 적용될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 냉장고(300)의 구성을 개략적으로 나타낸 종단면도이다.
냉장고(300)는 압축-응축-팽창-증발의 과정이 연속적으로 이루어지는 냉동 사이클에 의해 생성된 냉기를 이용하여 내부에 저장된 식품을 저온 보관하는 장치이다.
도시된 바와 같이, 냉장고 본체(310)는 내부에 식품의 저장을 위한 저장공간을 구비한다. 상기 저장공간은 격벽(311)에 의해 분리될 수 있으며, 설정 온도에 따라 냉장실(312)과 냉동실(313)로 구분될 수 있다.
본 실시예에서는, 냉동실(313)이 냉장실(312) 위에 배치되는 탑 마운트 타입(top mount type)의 냉장고를 보이고 있지만, 본 발명은 이에 한정되지 않는다. 본 발명은, 냉장실과 냉동실이 좌우로 배치되는 사이드 바이 사이드 타입(side by side type)의 냉장고, 상부에 냉장실이 마련되고 하부에 냉동실이 마련되는 바텀 프리저 타입(bottom freezer type)의 냉장고 등에도 적용될 수 있다.
냉장고 본체(310)에는 도어가 연결되어, 냉장고 본체(310)의 전면 개구부를 개폐하도록 이루어진다. 본 도면에서는, 냉장실 도어(314)와 냉동실 도어(315)가 각각 냉장실(312)과 냉동실(313)의 전면부를 개폐하도록 구성된 것을 보이고 있다. 도어는 냉장고 본체(310)에 회전 가능하게 연결되는 회전형 도어, 냉장고 본체(310)에 슬라이드 이동 가능하게 연결되는 서랍형 도어 등으로 다양하게 구성될 수 있다.
냉장고 본체(310)에는 내부 저장공간의 효율적인 활용을 위한 수납유닛[180, 예를 들어, 선반(381), 트레이(382), 바스켓(383) 등]이 적어도 하나 이상 구비된다. 예를 들어, 선반(381)과 트레이(382)는 냉장고 본체(310) 내부에 설치될 수 있고, 바스켓(383)은 냉장고 본체(310)에 연결되는 도어(314) 내측에 설치될 수 있다.
한편, 냉동실(313)의 후방측에는 증발기(330) 및 송풍팬(340)이 구비되는 냉각실(316)이 마련된다. 격벽(311)에는 냉장실(312) 및 냉동실(313)의 공기가 냉각실(316) 측으로 흡입 및 복귀될 수 있도록 하는 냉장실 귀환덕트(311a) 및 냉동실 귀환덕트(311b)가 형성된다. 또한, 냉장실(312)의 후방측에는 냉동실(313)과 통하고 전면부에 다수의 냉기토출구(350a)를 갖는 냉기덕트(350)가 설치된다.
냉장고 본체(310)의 배면 하부측에는 기계실(317)이 마련되고, 기계실(317)의 내부에는 압축기(360)와 응축기(미도시) 등이 구비된다.
한편, 냉장실(312) 및 냉동실(313)의 공기는 냉각실(316)의 송풍팬(340)에 의하여 격벽(311)의 냉장실 귀환덕트(311a) 및 냉동실 귀환덕트(311b)를 통해서 냉각실(316)로 흡입되어 증발기(330)와 열교환을 이루게 되고, 다시 냉기덕트(350)의 냉기토출구(350a)를 통하여 냉장실(312) 및 냉동실(313)로 토출되는 과정을 반복적으로 행하게 된다. 이때, 증발기(330)의 표면에는 냉장실 귀환덕트(311a) 및 냉동실 귀환덕트(311b)를 통하여 재유입되는 순환 공기와의 온도차에 의해서 성에가 착상된다.
이러한 성에를 제거하기 위해 증발기(330)에는 제상 장치(370)가 구비되며, 제상 장치(370)에 의해 제거된 물, 즉 제상수는 제상수 배출관(318)을 통하여 냉장고 본체(310)의 하부측 제상수 받이(미도시)에 집수되게 된다.
이하에서는, 제상 장치(370)에 대하여 보다 구체적으로 설명한다.
도 2 및 도 3은 도 1의 냉장고(300)에 적용되는 제상 장치(370)의 일 예를 보인 정면도 및 사시도이다.
도 2 및 도 3을 참조하면, 증발기(330)는 냉각관(331, 쿨링 파이프), 복수의 냉각핀(332) 및 지지대(333)를 포함한다.
냉각관(331)은 지그재그 형태로 반복적으로 벤딩되어 복수의 단(step, column)을 이루며, 내부에는 냉매가 충진된다. 냉각관(331)은 알루미늄 재질로 형성될 수 있다.
냉각관(331)은 수평배관부와 벤딩배관부의 조합으로 구성될 수 있다. 수평배관부는 상하로 서로 수평하게 배치되어 복수의 단을 이루고, 각 단의 수평배관부는 냉각핀(332)을 관통하도록 구성된다. 벤딩배관부는 상측 수평배관부의 단부와 하측 수평배관부의 단부를 각각 연결하여 내부를 상호 연통시키도록 구성된다.
냉각관(331)은 증발기(330)의 좌우 양측에 각각 구비되는 지지대(333)를 관통하여 지지된다. 이때, 냉각관(331)의 벤딩배관부는 지지대(333)의 외측에서 상측 수평배관부의 단부와 하측 수평배관부의 단부를 연결하도록 구성된다.
도 3을 참조하면, 본 실시예에서는 증발기(330)의 전면부와 후면부에 각각 제1냉각관(331')과 제2냉각관(331")이 배치되어 2열(row)을 이루는 것을 보이고 있다. 참고로, 도 2에서는 전방의 제1냉각관(331')과 후방의 제2냉각관(331")이 서로 동일한 형태로 형성되어, 제2냉각관(331")이 제1냉각관(331')에 의해 가려져 있다.
그러나, 본 발명이 이에 한정되는 것은 아니다. 전방의 제1냉각관(331')과 후방의 제2냉각관(331")은 서로 다른 형태로 형성될 수 있다. 다른 한편으로는, 냉각관(331)은 단일 열로 형성될 수도 있다.
냉각관(331)에는 복수의 냉각핀(332)이 냉각관(331)의 연장방향을 따라 소정 간격을 두고 이격되게 배치된다. 냉각핀(332)은 알루미늄 재질의 평판체로 형성될 수 있으며, 냉각관(331)은 냉각핀(332)의 삽입홀에 삽입된 상태에서 확관되어 상기 삽입홀에 견고하게 끼워질 수 있다.
복수의 지지대(333)는 증발기(330)의 좌우 양측에 각각 구비되며, 각각은 상하방향을 따라 수직으로 연장되어 관통된 냉각관(331)을 지지하도록 구성된다. 지지대(333)에는 후술하는 히트 파이프(372)가 끼워져 고정될 수 있는 삽입홈 또는 삽입홀이 형성된다.
제상 장치(370)는 증발기(330)에 설치되어, 증발기(330)에서 발생하는 성에를 제거하도록 이루어진다. 제상 장치(370)는 히팅 유닛(371) 및 히트 파이프(372, 전열관)를 포함한다.
히팅 유닛(371)은 증발기(330)의 하부에 배치되며, 제어부(미도시)와 전기적으로 연결되어 상기 제어부로부터 구동 신호를 받으면 열을 발생하도록 형성된다.
상기 제어부는 기설정된 시간 간격마다 히팅 유닛(371)에 구동 신호를 인가하도록 구성될 수 있다. 일 예로, 상기 제어부는 냉동 사이클을 구성하는 압축기(360)가 작동된 후 일정 시간이 지나면, 압축기(360)의 작동을 중지(OFF)하고 전원공급 유닛(미도시)을 작동(ON)시켜, 히터(371b, 도 4 참조)에 전원이 공급되도록 할 수 있다.
상기 제어부의 제어가 시간 제어에만 한정되는 것은 아니다. 상기 제어부는 감지된 냉각실(316)의 온도가 기설정된 온도 이하로 낮아질 경우 히팅 유닛(371)에 구동 신호를 인가하도록 구성될 수도 있다.
히트 파이프(372)는 히팅 유닛(371)과 연결되어, 히팅 유닛(371)과 함께 작동액(F, working fluid)이 순환할 수 있는 폐루프 형태의 유로를 형성한다. 히트 파이프(372)는 알루미늄 재질로 형성될 수 있다.
히프 파이프(372)는 히팅 유닛(371)에서 가열되어 이송되는 고온의 작동액(F)에 의해 증발기(330)의 냉각관(331)에 방열하도록, 적어도 일부가 냉각관(331)에 인접하게 배치된다. 상기 작동액(F)으로는, 냉장고(300)의 냉동 조건에서 액상으로 존재하되, 가열되면 기상으로 상변화하여 열을 수송하는 역할을 하는 냉매(예를 들어, R-134a, R-600a 등)가 이용될 수 있다.
히트 파이프(372)는 증발기(330)의 전면부 및 후면부에 각각 배치되는 제1히트 파이프(372')와 제2히트 파이프(372")로 구성될 수 있다. 본 실시예에서는, 제1히트 파이프(372')가 제1냉각관(331')의 전방에 배치되고, 제2히트 파이프(372")가 제2냉각관(331")의 후방에 배치되어, 2열을 이루도록 형성된 것을 보이고 있다.
히트 파이프(372)는 냉각관(331)의 각 단에 고정되는 복수의 냉각핀(332) 사이에 수용되도록 구성될 수 있다. 상기 구조에 의하면, 히트 파이프(372)는 냉각관(331)의 각 단 사이사이에 배치되게 된다. 이때, 히트 파이프(372)는 냉각핀(332)과 접촉하도록 구성될 수도 있다.
그러나 본 발명이 이에 한정되는 것은 아니다. 일 예로, 히트 파이프(372)는 복수의 냉각핀(332)을 관통하도록 설치될 수 있다. 즉, 히트 파이프(372)는 냉각핀(332)의 삽입홀에 삽입된 상태에서 확관되어 상기 삽입홀에 견고하게 끼워질 수 있다. 상기 구조에 따르면, 히트 파이프(372)는 냉각관(331)에 대응되게 배치되게 된다.
도 4는 도 3에 도시된 히팅 유닛(371)의 제1실시예를 보인 분해 사시도이고, 도 5는 프레스에 의해 히터(371b)가 히터 케이스(371a)의 히터 수용부(371a2)에 밀착 고정된 구조를 보인 도면이며, 도 6은 도 5에 도시된 히터 케이스(371a)를 라인 A-A를 따라 취한 단면도이다.
상기 도면들을 참조하여 히팅 유닛(371)에 대하여 상세하게 살펴보면, 히팅 유닛(371)은 히터 케이스(371a) 및 히터(371b)를 포함한다.
히터 케이스(371a)는 길이방향 상의 양단부에 출구(371a1')와 입구(371a1")가 형성된 단일 몸체로 형성된다. 히터 케이스(371a)의 내부에는 입구(371a1")에서 출구(371a1')를 향하여 연장되는 내부 유로(371a1)가 형성된다. 즉, 내부 유로(371a1)는 히터 케이스(371a)의 길이방향을 따라 연장 형성되며, 히터 케이스(371a)의 양단부에서 개방되어 출구(371a1')와 입구(371a1")를 각각 형성한다.
히터 케이스(371a)는 히트 파이프(372)의 양단부와 각각 연결되어 히트 파이프(372)와 함께 작동액(F)이 순환할 수 있는 폐루프 형태의 순환 유로를 형성한다. 즉, 히트 파이프(372)의 양단부는 출구(371a1')와 입구(371a1")를 통해 히터 케이스(371a)의 내부에 삽입되어 내부 유로(371a1)와 연통되도록 구성된다.
구체적으로, 히터 케이스(371a)의 일단부[예를 들어, 히터 케이스(371a)의 전단부]에는 히트 파이프(372)의 일단부(372c', 372c")가 삽입되는 출구(371a1')가 형성된다. 히터(371b)에 의해 가열된 내부 유로(371a1) 내의 작동액(F)은 출구(371a1')에 삽입된 히트 파이프(372)의 일단부(372c', 372c")로 배출된다.
히터 케이스(371a)의 타단부[예를 들어, 히터 케이스(371a)의 후단부]에는 히트 파이프(372)의 타단부(372d', 372d")가 삽입되는 입구(371a1")가 형성된다. 히트 파이프(372)를 지나면서 응축된 작동액(F)은 입구(371a1")에 삽입된 히트 파이프의 타단부(372d', 372d")를 통하여 내부 유로(371a1)로 회수된다.
히터 케이스(371a)에는 히터(371b)가 삽입되는 히터 수용부(371a2)가 형성된다. 히터 수용부(371a2)는 내부 유로(371a)에 평행하게 연장되어 히터 케이스(371a)의 양단부에서 개방된 형태를 가진다. 즉, 히터 수용부(371a2)는 히터 케이스(371a)를 관통하도록 형성된다. 본 도면에서는, 히터 수용부(371a2)가 내부 유로(371a)의 아래에 형성된 것을 보이고 있다.
이처럼, 히터 케이스(371a)에 삽입홀 형태의 히터 수용부(371a2)가 형성된 구조는, 히터(371b)의 장착이 용이하고, 히터를 히터 케이스(371a)에 부착하기 위한 별도의 접착제가 불필요하다는 점에서 이점이 있다.
히터 케이스(371a)는 사각 기둥 형태의 외형을 갖도록 형성될 수 있다. 또한, 히터 케이스(371a)는 금속 재질(예를 들어, 알루미늄 재질)로 형성될 수 있다.
히터 케이스(371a)는 압출 성형에 의해 형성될 수 있다. 이 경우, 내부 유로(371a1)와 히터 수용부(371a2)는 압출 성형 방향, 즉 히터 케이스(371a)의 길이 방향을 따라 연장 형성된다. 또한, 이 경우, 입구(371a1")와 출구(371a1')는 동일한 크기를 가진다. 이에 따라, 히터 케이스(371a)의 입구(371a1")와 출구(371a1')는 서로 마주하도록 배치되며, 입구(371a1")와 출구(371a1')에 각각 삽입되는 히트 파이프(372)의 유입부(372c', 372c")와 리턴부(372d', 372d")도 서로 마주하도록 배치된다.
히터 케이스(371a)는 어큐뮬레이터(334)가 위치하는 증발기(330)의 일측, 그 반대편인 타측, 또는 상기 일측과 상기 타측 사이의 임의의 위치에 배치될 수 있다.
히터 케이스(371a)는 냉각관(331)의 최저단에 인접하게 배치될 수 있다. 예를 들어, 히터 케이스(371a)는 냉각관(331)의 최저단과 동일한 높이에 배치되거나, 냉각관(331)의 최저단보다 낮은 위치에 배치될 수 있다.
본 실시예에서는, 히터 케이스(371a)가 어큐뮬레이터(334)가 위치하는 증발기(330)의 일측에서, 냉각관(331)의 최저단보다 낮은 위치에, 냉각관(331)과 평행하게 증발기(330)의 수평방향(즉, 좌우방향)으로 배치된 것을 보이고 있다.
히터 수용부(371a2)에는 내부 유로(371a1) 내의 작동액(F)을 가열하기 위한 히터(371b)가 장착된다. 히터(371b)는 전원 공급시 열을 발생하도록 형성되며, 내부 유로(371a1) 내의 작동액(F)은 발열되는 히터(371b)에 의해 열을 전달받아 고온으로 가열된다.
히터(371b)는 히터 수용부(371a2)의 연장방향을 따라 길게 연장된 형태를 가질 수 있다. 히터(371b)는 소정 두께를 가지는 납작한 플레이트 형태를 가질 수 있다.
본 실시예에서는, 히터 수용부(371a2)가 내부 유로(371a)의 아래에 형성된 것을 보이고 있다. 이처럼, 히터(371b)가 히터 케이스(371a)의 아래에 배치되는 구조는, 가열된 작동액(F)이 상측을 향하는 추진력을 갖게 하는 데에 유리하다.
히터(371b)가 히터 수용부(371a2)에 삽입된 상태에서, 히터 수용부(371a2)를 한정하는 히터 케이스(371a)의 일면은 가압부재(미도시)에 의해 가압된다. 상기 가압은 히터 수용부(371a2)에서 내부 유로(371a1)를 향하는 방향으로 이루어진다. 상기 가압에 의해, 히터 케이스(371a)에는 히터 수용부(371a2)를 향하여 움푹 들어간 형태의 프레스드부(371a')가 형성된다.
히터(371b)는 프레스드부(371a')에 의해 가압되어 히터 수용부(371a2)의 내부면에 밀착된다. 도 5 및 도 6에서는, 히터 케이스(371a)의 바닥면에 프레스드부(371a')가 형성된 것을 보이고 있다. 프레스드부(371a')는 히터 수용부(371a2)에서 내부 유로(371a1)를 향하는 방향으로 움푹 들어간 형태를 가진다. 따라서, 히터(371b)는 프레스드부(371a')에 의해 가압되어, 히터 수용부(371a2)의 상측 내부면과 하측 내부면에 밀착된다.
상기 구조에 의해, 히터(371b)는 히터 수용부(371a2) 내에 견고하게 고정될 수 있다. 또한, 히터(371b)가 내부 유로(371a1)와 히터 수용부(371a2)를 구획하는 히터 수용부(371a2)의 상측 내부면에 밀착됨으로써, 히터(371b)에서 발생된 열이 내부 유로(371a1)로 보다 많이 전달되어 작동액(F)을 가열하는 데에 이용될 수 있다.
히터(371b)가 히터 수용부(371a2) 내에 장착(수용 및 고정)된 상태에서, 히터 수용부(371a2)에는 실링부재(371a4)가 히터(371b)를 실링하도록 충진될 수 있다. 실링부재(371a4)는 히터(371b)가 배치되지 않은 빈 공간에 충진된다.
도시된 바와 같이, 실링부재(371a4)는 히터 수용부(371a2)의 좌우 양측 내부면과 히터(371b)의 좌우 양측면 사이의 틈에 충진될 수 있다. 뿐만 아니라, 실링부재(371a4)는 히터(371b)의 전면과 후면을 덮도록 배치될 수 있다.
실링부재(371a4)로 실리콘, 우레탄, 에폭시 등이 이용될 수 있다. 예를 들어, 액상의 에폭시가 상기 빈 공간 내에 충진된 후 경화 과정을 거쳐, 히터(371b)의 실링 구조가 완성될 수 있다.
히터(371b)의 작동 및 작동 중지는 시간, 온도 조건 등에 의해 제어될 수 있다. 일 예로, 히터(371b)의 작동은 시간 조건에 의해 제어되고, 히터(371b)의 작동 중지는 온도 조건에 의해 제어될 수 있다.
구체적으로, 제어부는 증발기(330)와 냉동 사이클을 구성하는 압축기(360)가 작동된 후 일정 시간이 지나면, 압축기(360)의 작동을 중지(OFF)하고 히터(371b)에 전원을 공급할 수 있다. 따라서, 히터(371b)는 전원을 공급받아 발열하게 된다.
제어부는 후술하는 제상센서(335)에 의해 감지된 온도가 기설정된 제상 종료 온도에 도달하면, 히터(371b)에 공급되는 전원을 차단할 수 있다. 히터(371b)로 전원이 공급되지 않으므로, 히터(371b)의 능동적인 발열은 중지되고, 점차 온도가 떨어지게 된다.
앞서 설명한 바와 같이, 이전에 발명된 제상 장치에서는 히터의 과열을 방지하기 위하여 퓨즈를 이용하였다. 그러나, 본 발명의 제상 장치(370)에는 기설정된 온도 이상에서는 저항이 급증함으로 인해 전류가 억제되어 더 이상 발열하지 않는 특성을 가지는 히터(371b)가 이용된다. 즉, 히터(371b) 자체가 과열을 방지하는 기능을 가진다. 이에 대해서는 뒤에서 자세히 설명하기로 한다.
증발기(330) 또는 증발기(330)가 배치되는 냉각실(316)에는 제상을 위한 온도를 감지하는 제상센서(335)가 구비된다. 제상센서(335)는 증발기(330)의 온도를 대변하기에 적합한 위치에 설치되며, 이를 위해서 제상센서(335)는 제상 장치(370)에 의한 온도 상승의 영향을 적게 받는 부분에 위치하는 것이 바람직하다.
본 실시예에서는, 제상센서(335)가 지지대(333)의 상단부에 장착된 것을 예시하고 있다. 히팅 유닛(371)이 일측 지지대(333)에 인접하게 배치되는 경우, 제상센서(335)는 히팅 유닛(371)으로부터 보다 멀리 떨어진 타측 지지대(333)에 장착될 수 있다.
또는, 제상센서(335)는 냉각관(331)의 입구측에 장착될 수도 있다. 냉각관(331)의 입구측은, 증발기(330)에서 온도가 가장 낮은 부분이며, 제상 장치(370)에 의한 온도 상승의 영향을 적게 받는 부분으로서, 증발기(330)의 온도를 대변하는 또 다른 위치로 적합하다.
제어부는 제상센서(335)에 의해 감지된 온도가 기설정된 제상 종료 온도에 도달하면, 히터(371b)에 공급되는 전원을 차단할 수 있다. 히터(371b)로 전원이 공급되지 않으므로, 히터(371b)의 능동적인 발열은 중지되고, 점차 온도가 떨어지게 된다.
한편, 히터(371b)에 의해 내부 유로(371a1)에 충진된 작동액(F)이 고온으로 가열됨에 따라, 작동액(F)은 압력 차이에 의해 방향성을 가지고 유동하게 된다.
구체적으로, 히터(371b)에 의해 가열되어 출구(371a1')로 배출된 고온의 작동액(F)은 히트 파이프(372)로 유입되어 히트 파이프(372)를 따라 이동하면서 증발기(330)의 냉각관(331)에 열을 전달한다. 작동액(F)은 이러한 열교환 과정을 거치면서 점차 냉각되어 입구(371a1")로 유입된다. 냉각된 작동액(F)은 히터(371b)에 의해 재가열된 후 다시 출구(371a1')로 배출되어 위의 과정을 반복 수행한다. 이러한 순환 방식에 의해 냉각관(331)에 대한 제상이 이루어지게 된다.
도 2 및 도 3을 참조하면, 히트 파이프(372)의 적어도 일부는 증발기(330)의 냉각관(331)에 인접하게 배치되어, 히팅 유닛(371)에 의해 가열되어 이송되는 고온의 작동액(F)에 의해 증발기(330)의 냉각관(331)에 열을 전달하여 성에를 제거하도록 구성된다.
히트 파이프(372)는 냉각관(331)과 같이 반복적으로 벤딩된 형태(지그재그 형태)를 가질 수 있다. 이를 위하여, 히트 파이프(372)는 연장부(372a) 및 방열부(372b)를 포함한다.
연장부(372a)는 히팅 유닛(371)에 의해 가열된 작동액(F)을 증발기(330)의 상측으로 이송하는 유로를 형성한다. 연장부(372a)는 증발기(330)의 하부에 구비되는 히터 케이스(371a)의 출구(371a1') 및 증발기(330)의 상부에 구비되는 방열부(372b)와 연결된다.
연장부(372a)는 증발기(330)의 상측으로 연장되는 수직연장부를 포함한다. 상기 수직연장부는 증발기(330)의 일측에 구비되는 지지대(333)의 외측에 지지대(333)로부터 이격 배치된 상태로 증발기(330)의 상부까지 연장된다.
한편, 히팅 유닛(371)의 설치 위치에 따라 연장부(372a)는 수평연장부를 더 구비할 수 있다. 일 예로, 히팅 유닛(371)이 수직연장부로부터 이격된 위치에 구비될 경우, 히팅 유닛(371)과 수직연장부를 연결하기 위한 수평연장부가 추가로 구비될 수 있다.
히팅 유닛(371)에 수평연장부가 연결되어 길게 연장 형성되는 경우, 고온의 작동액(F)이 증발기(330)의 하부를 거쳐가게 되므로, 증발기(330) 하측 냉각관(331)에 대한 제상이 원활하게 이루어질 수 있는 이점이 있다.
방열부(372b)는 증발기(330)의 상부로 연장된 연장부(372a)와 연결되어, 증발기(330)의 냉각관(331)을 따라 지그재그 형태로 연장된다. 방열부(372b)는 상하로 단을 이루는 복수의 수평배관(372b') 및 이들을 지그재그 형태로 연결하도록 벤딩된 U자관 형태로 구성되는 연결배관(372b")의 조합으로 구성된다.
연장부(372a) 또는 방열부(372b)는 어큐뮬레이터(334)에 적상된 성에를 제거하기 위하여, 어큐뮬레이터(334)에 인접한 위치까지 연장될 수 있다.
도시된 바와 같이, 수직연장부가 어큐뮬레이터(334)가 위치하는 증발기(330)의 일측에 배치되는 경우에는, 수직연장부가 어큐뮬레이터(334)에 인접한 위치까지 상측으로 연장된 후, 냉각관(331)을 향하여 하측으로 벤딩 및 연장되어 방열부(372b)와 연결되도록 구성될 수 있다.
반면에, 수직연장부가 상기 일측의 반대편인 타측에 배치되는 경우, 방열부(372b)는 수직연장부와 연결되어 수평으로 연장된 후, 어큐뮬레이터(334)를 향하여 상측으로 연장되었다가 다시 냉각관(331)에 대응되도록 하측으로 연장될 수 있다.
히트 파이프(372)에서, 출구(371a1')를 통해 히터 케이스(371a)의 내부로 삽입되는 일단부는 고온의 작동액(F)이 유입되는 유입부(372c', 372c")를 구성하며, 입구(371a1")를 통해 히터 케이스(371a)의 내부로 삽입되는 타단부는 냉각된 작동액(F)이 회수되는 리턴부(372d', 372d")를 구성한다.
본 실시예에서, 히터(371b)에 의해 가열된 작동액(F)은 유입부(372c', 372c")로 유입되어 연장부(372a)를 통해 증발기(330)의 상부로 이송된 후, 방열부(372b)를 따라 흐르면서 냉각관(331)에 열을 전달하여 제상을 수행한 뒤, 리턴부(372d', 372d")를 통하여 히터 케이스(371a)로 리턴되며, 다시 히터(371b)에 의해 재가열되어 히트 파이프(372)를 유동하는 순환 유로를 형성한다.
히트 파이프(372)가 2열을 이루는 제1 및 제2히트 파이프(372', 372")로 구성되는 구조에서, 제1 및 제2히트 파이프(372', 372")는 내부 유로(371a1)의 출구(371a1') 및 입구(371a1")와 각각 연결된다.
내부 유로(371a1)는 제1 및 제2히트 파이프(372', 372")를 한꺼번에 수용하도록 형성될 수 있다. 이를 위해, 내부 유로(371a1)는 제1 및 제2히트 파이프(372', 372")가 삽입되는 하나의 출구(371a1')와 하나의 입구(371a1")를 구비한다.
도시된 바와 같이, 출구(371a1')와 입구(371a1")는 장공 형태를 가질 수 있다. 출구(371a1')와 입구(371a1")는 제1 및 제2히트 파이프(372', 372")의 외형 일부에 대응되는 형태를 가질 수 있다.
이처럼, 하나의 출구(371a1')와 하나의 입구(371a1")에 제1 및 제2히트 파이프(372', 372")가 한꺼번에 삽입되는 구조를 가지는 경우, 히터 케이스(371a)와 제1 및 제2히트 파이프(372', 372") 간의 용접 지점이 감소될 수 있다는 이점이 있다. 이에 대해서는 뒤에서 자세히 설명하기로 한다.
한편, 상기 연결 구조에 의해, 히팅 유닛(371)에 의해 가열된 기체 상태의 작동액(F)은 출구(371a1')를 통하여 제1 및 제2히트 파이프(372', 372")로 각각 방출된다. 출구(371a1')를 통하여 히터 케이스(371a)의 내부로 삽입되는 제1 및 제2히트 파이프(372', 372")의 일단부는 그 기능상[히터(371b)에 의해 가열된 고온의 작동액(F)이 유입되는 부분] 제1 및 제2유입부(372c', 372c")로 이해될 수 있다. 제1 및 제2유입부(372c', 372c")는 평행하게 배치되어, 장공 형태를 가지는 단일 출구(371a1')에 각각 삽입된다.
또한, 제1 및 제2히트 파이프(372', 372")를 이동하면서 냉각된 액체 상태의 작동액(F)은 입구(371a1")를 통하여 히터 케이스(371a)의 내부로 유입된다. 입구(371a1")를 통하여 히터 케이스(371 a)의 내부로 삽입되는 제1 및 제2히트 파이프(372', 372")의 타단부는 그 기능상[각각의 히트 파이프(372)를 이동하면서 냉각된 액체 상태의 작동액(F)이 회수되는 부분] 제1 및 제2리턴부(372d', 372d")로 이해될 수 있다. 제1 및 제2리턴부(372d', 372d")는 평행하게 배치되어, 장공 형태를 가지는 단일 입구(371a1")에 각각 삽입된다.
참고로, 본 실시예에서는, 히트 파이프(372)가 2열을 이루는 제1 및 제2히트 파이프(372', 372")로 구성된 것을 보이고 있으나, 본 발명이 이에 한정되는 것은 아니다. 히트 파이프(372)는 단일 열로 형성될 수도 있다.
히터 케이스(371a)에는 내부 유로(371a1)로 작동액(F)을 주입하기 위한 작동액 주입구(371a3)가 구비된다. 작동액 주입구(371a3)를 통하여 주입되는 작동액(F)은 히터 케이스(371a)의 내부 유로(371a1)에 충진된 후, 히트 파이프(372) 내에 일정량 충진되게 된다.
작동액 주입구(371a3)는 히터 케이스(371a)의 일면을 관통하여 내부 유로(371a1)와 연통되도록 형성된다. 본 도면에서는, 작동액 주입구(371a3)가 히터 케이스(371a)의 일측면에서 내부를 향하여 관통 형성되어, 내부 유로(371a1)와 연통되도록 구성된 것을 보이고 있다.
작동액(F)의 주입을 위하여, 작동액 주입구(371a3)에는 작동액 주입 파이프(373)가 연결된다. 작동액 주입 파이프(373)는 작동액 주입구(371a3)에 삽입된 후, 작동액 주입구(371a3)와 작동액 주입 파이프(373) 간의 틈을 메우는 용접에 의해 히터 케이스(371a)에 고정될 수 있다. 작동액 주입 파이프(373)를 통하여 작동액(F)이 충진된 이후, 작동액 주입 파이프(373)는 밀봉된다.
도 7은 도 1에 도시된 히터 케이스(371a)와 히트 파이프(372) 간의 연결 구조를 보인 개념도이다.
도 7을 참조하면, 히트 파이프(372)의 유입부(372c', 372c")는 출구(371a1')를 통해 히터 케이스(371a)의 내부에 형성된 내부 유로(371a1)에 삽입되며, 히트 파이프(372)의 리턴부(372d', 372d")는 입구(371a1")를 통해 상기 내부 유로(371a1)에 삽입된다. 히트 파이프(372)의 유입부(372c', 372c")와 리턴부(372d', 372d")는 내부 유로(371a1)를 사이에 두고 서로 마주하도록 배치될 수 있다.
히트 파이프(372)와 히터 케이스(371a) 간의 틈은 용접에 의해 메워질 수 있다. 구체적으로, 제1용접부(371m)는 유입부(372c', 372c")와 출구(371a1') 간의 틈을 메우도록 형성되고, 제2용접부(371n)는 리턴부(372d', 372d")와 입구(371a1") 간의 틈을 메우도록 형성된다.
도시된 바와 같이, 제1 및 제2유입부(372c', 372c")가 평행하게 배치된 상태로 출구(371a1')에 삽입되는 경우, 제1용접부(371m)는 제1유입부(372c')와 출구(371a1') 간의 틈 및 제2유입부(372c")와 출구(371a1') 간의 틈을 함께 메우도록 형성된다. 따라서, 한 번의 용접을 통하여 제1 및 제2유입부(372c', 372c")를 히터 케이스(371a)에 고정시킬 수 있다.
마찬가지로, 제1 및 제2리턴부(372d', 372d")가 평행하게 배치된 상태로 입구(371a1")에 삽입되는 경우, 제2용접부(371n)는 제1리턴부(372d')와 입구(371a1") 간의 틈 및 제2리턴부(372d")와 입구(371a1") 간의 틈을 함께 메우도록 형성된다. 따라서, 한 번의 용접을 통하여 제1 및 제2리턴부(372d', 372d")를 히터 케이스(371a)에 고정시킬 수 있다.
이처럼, 평행하게 형성된 제1 및 제2유입부(372c', 372c")와 출구(371a1') 간의 틈을 한 번에 용접하고, 평행하게 형성된 제1 및 제2리턴부(372d', 372d")와 입구(371a1") 간의 틈을 한 번에 용접하면, 용접 지점을 보다 감소시킬 수 있으며, 이에 따라 생산 비용이 줄어들 수 있다.
한편, 작동액 주입구(371a3)는 제1 및 제2유입부(372c', 372c")와 제1 및 제2리턴부(372d', 372d") 사이의 내부 유로(371a1)와 연통되도록 형성된다. 또한, 작동액 주입 파이프(373)가 작동액 주입구(371a3)에 삽입된 상태에서, 제3용접부(371p)는 작동액 주입구(371a3)와 작동액 주입 파이프(373) 간의 틈을 메우도록 형성된다.
도 8은 도 7에 도시된 히팅 유닛(371)을 라인 B-B를 따라 취한 단면도이다.
도 8에 도시된 바와 같이, 히터 케이스(371a)는 히터(371b)가 배치되는 부분에 대응되는 능동발열부(AHP: Active Heating Part)와 히터(371b)가 미배치되는 부분에 대응되는 수동발열부(PHP: Passive Heating Part)로 구획된다.
히터 수용부(371a2) 중 능동발열부(AHP)에 대응되는 부분[도면상 능동발열부(AHP)의 하측]에는 히터(371b)가 배치되며, 수동발열부(PHP)에 대응되는 부분[도면상 수동발열부(PHP)의 하측]에는 실링부재(371a4)가 배치된다.
상기 능동발열부(AHP)는 히터(371b)에 의해 직접적으로 가열되는 부분으로서, 액체 상태의 작동액(F)은 능동발열부(AHP)에서 가열되어 고온의 기체 상태로 상변화된다.
히트 파이프(372)의 유입부(372c', 372c")는 능동발열부(AHP) 내에 위치하거나, 능동발열부(AHP)보다 전방[작동액(F)의 유동 방향 기준]에 위치할 수 있다. 도 8에서는, 히터(371b)가 유입부(372c', 372c") 아래를 지나 전방으로 연장 형성된 것을 예시하고 있다. 즉, 본 실시예에서, 히트 파이프(372)의 유입부(372c', 372c")는 능동발열부(AHP) 내에 위치한다.
능동발열부(AHP)의 후방[작동액(F)의 흐름에 반대되는 방향]에는 수동발열부(PHP)가 형성된다. 수동발열부(PHP)는 능동발열부(AHP)처럼 히터(371b)에 의해 직접적으로 가열되는 부분은 아니지만, 간접적으로 열을 전달받아 일정 온도 수준으로 가열된다. 여기서, 수동발열부(PHP)는 액체 상태의 작동액(F)에 소정의 온도 상승을 야기할 수 있을 뿐, 작동액(F)을 기체 상태로 상변화시킬 수 있을 만큼 고온을 가지지는 않는다. 즉, 온도 관점에서, 능동발열부(AHP)는 상대적으로 고온부를 형성하고, 수동발열부(PHP)는 상대적으로 저온부를 형성한다.
만일, 작동액(F)이 고온의 능동발열부(AHP) 측으로 바로 리턴되도록 구성된다면, 회수되는 작동액(F)이 다시 가열되어 히터 케이스(371a) 내로 원활하게 귀환되지 못하고 역류하게 되는 경우가 발생할 수 있다. 이는 히트 파이프(372) 내의 작동액(F)의 순환 유동에 방해가 되어, 히터(371b)가 과열되는 문제를 야기할 수 있다.
이러한 문제점을 개선하기 위하여, 입구(371a1")에 삽입되는 히트 파이프(372)의 리턴부(372d', 372d")는 수동발열부(PHP)와 연통되어, 히트 파이프(372)를 이동한 후 리턴되는 작동액(F)이 능동발열부(AHP)로 바로 유입되지 않도록 구성된다.
도 9는 도 4에 도시된 히터(371b)의 일 예를 보인 분해 사시도이다.
앞서 설명한 바와 같이, 히터(371b)는 기설정된 온도 이상에서는 저항이 급증함으로 인해 전류가 억제되어 더 이상 발열하지 않도록 이루어진다. 예를 들어, 제상 장치(370)의 안전성이 확보될 수 있도록, 히터(371b)는 280℃에 도달하면 더 이상 발열하지 않도록 구성될 수 있다.
이처럼, 히터(371b)는 그 자체의 특성에 의해 발열 온도가 제한된다. 따라서, 기존의 히팅 유닛에서 구비되었던 안전장치로서의 퓨즈를 사용하지 않고도 히터(371b)의 안전성이 확보될 수 있다는 점에서 이점이 있다.
도 9를 참조하면, 히터(371b)는 제1 및 제2전극판(371b1, 371b2), PTC 서미스터(Positive Temperature Coefficient Thermistor, 371b3)를 포함할 수 있다.
제1 및 제2전극판(371b1, 371b2)은 소정 간격을 두고 서로 마주하도록 배치된다. 제1 및 제2전극판(371b1, 371b2)은 금속 재질(예를 들어, 알루미늄 재질)로 형성된다.
제1 및 제2전극판(371b1, 371b2) 각각은 리드 와이어(371b5)를 통하여 전원공급 유닛(미도시)과 전기적으로 연결된다. 리드 와이어(371b5)를 제1 및 제2전극판(371b1, 371b2)에 연결하기 위해, 제1 및 제2전극판(371b1, 371b2) 각각에는 리드 와이어(371b5)를 감싸 고정하는 클램핑부(371b1', 371b2')가 형성될 수 있다.
제1전극판(371b1)과 제2전극판(371b2) 사이에는PTC서미스터(371b3)가 개재된다. PTC 서미스터(371b3)는 온도가 상승함에 따라 저항이 증가하는 특성을 가진다. PTC 서미스터(371b3)는 티탄산바륨에 미량(0.1~1.5%)의 란탄, 이트륨, 비스무트 및 토륨 등의 산화물을 혼합하여 소성한 티탄산바륨계의 세라믹스로 형성된다.
PTC 서미스터(371b3)는 낮은 온도에서는 비교적 작은 저항치를 갖지만, 특정 온도에 도달하면 갑자기 저항이 급격하게 증가하는 특성을 가진다. 따라서, 상기 특정 온도 이상에서는 전류가 억제된다.
이처럼 PTC 서미스터(371b3)의 온도-저항 특성이 급변하는 온도를 큐리점(Curie Point) 또는 큐리 온도(Curie Temperature)라 한다. 상기 큐리점은 PTC 서미스터(371b3)의 성분 조절에 의해 고온쪽 혹은 저온쪽으로 이동될 수 있다. 따라서, PTC 서미스터(371b3)의 성분을 조절함으로써, 제상에 충분한 열을 발생하되 특정 온도 이상에서는 발열이 제한되는 히터(371b)를 제작할 수 있다.
큐리점을 조절하는 방법은 다음과 같다. 바륨의 일부를 납으로 치환하면, 큐리점은 고온쪽으로 이동한다. 바륨을 스트론튬으로 치환하거나, 티탄의 일부를 주석 또는 지르코늄으로 치환하면, 큐리점은 저온쪽으로 이동한다. 이와 같은 방법으로, 제상용 히터(371b)로 이용되기에 적절한 발열 특성을 가지는 PTC 서미스터(371b3)가 만들어질 수 있다.
PTC 서미스터(371b3)는 복수 개로 구비될 수 있다. 예를 들어, 도시된 바와 같이, xW(와트)의 PTC 서미스터(371b3) 두 개가 일방향을 따라 배치되어, 2xW(와트)의 히터(371b)를 구성할 수 있다.
PTC 서미스터(371b3)는 제1 및 제2전극판(371b1, 371b2)에 각각 밀착된다. 제1 및 제2전극판(371b1, 371b2)과 각각 맞닿는 PTC 서미스터(371b3)의 양면에는 저항 페이스트(예를 들어, Ag Paste)가 도포될 수 있다.
한편, 히터(371b)는 제1 및 제2전극판(371b1, 371b2)을 감싸도록 형성되는 절연필름(371b4)을 더 포함할 수 있다. 도시된 바와 같이, 절연필름(371b4)은 PTC 서미스터(371b3)가 개재된 제1 및 제2전극판(371b1, 371b2)을 수용하도록 구성될 수 있다.
이하에서는, PTC 서미스터(371b3)의 특성에 대하여 보다 자세히 설명한다.
도 10은 도 9에 도시된 PTC 서미스터(371b3)의 저항-온도 특성을 보인 그래프이다.
PTC 서미스터(371b3)의 온도 변화에 따른 저항을 측정하면, 도 10과 같은 저항-온도 특성이 얻어진다. PTC 서미스터(371b3)는 큐리점에 도달하면 갑자기 저항이 급격하게 증가하는 특성을 나타낸다.
PTC 서미스터(371b3)의 온도-저항 특성이 급변하는 큐리점은 일반적으로 최소 저항값(Rmin)의 2배에 대응하는 온도 또는 기준 온도(Tn, 상온, 25℃)에서의 저항값(Rn)의 2배에 대응하는 온도로 정의된다.
그래프에서, Tmin은 최소 저항값(Rmin)에 대한 온도이고, Ts는 저항값이 급격히 증가하는 큐리점(switching 온도)이며, Rs는 큐리점에서의 저항값을 의미한다.
도 11은 도 9에 도시된 PTC 서미스터(371b3)의 전류-전압 특성을 보인 그래프이다.
PTC 서미스터(371b3)에 전압을 인가하여 서서히 증가시키면, 도 11과 같이 자기발열에 의해 온도가 상승하게 된다. 온도가 상승해서 큐리점을 넘어서게 되면, 상술한 저항-온도 특성에 의해 저항이 증가하여, 전류가 감소하는 특성을 보이게 된다. 이 특성을 이용하여 PTC 서미스터(371b3)를 정온발열 기능과 과전류 보호 기능을 가지는 히터(371b)로 이용할 수 있다.
전압과 전류를 log scale로 보면, 전류가 감소하는 부분에서 정전력 특성이 나타남을 볼 수 있다. 이 특성으로 인해 PTC 서미스터(371b3)에는 별도의 제어회로가 필요하지 않은 이점이 있다.
상술한 PTC 서미스터(371b3)의 특성에 의해, PTC 서미스터(371b3)는 정상 동작시에는 저저항 영역에 머무르며 일반적인 고정저항의 역할을 하게 되지만, 자기발열로 큐리점을 넘어선 이후에는 전류가 억제되어 더 이상의 과열이 방지된다. 따라서, 과열로 인한 히터의 수명 단축, 증발기의 효율 저하 등의 문제점이 해소될 수 있다. 또한, 기설정된 온도 이상이 되면 내부 구성이 녹아버려서 다시 기능을 수행하지 못하는 퓨즈와는 달리, PTC 서미스터(371b)를 이용한 히터(371b)는 과열 자체를 방지하는 특성을 가지므로, 제상 장치(370)의 유지 보수 측면에서 장점이 있다.
도 12 및 도 13은 히터(371b)의 작동 전 및 작동 후 상태에서의 작동액(F)의 순환을 설명하기 위한 개념도들이다.
먼저, 도 12를 참조하면, 히터(371b)의 작동 전, 작동액(F)은 액체 상태에 놓이며, 히트 파이프(372)의 하부 최저단을 기준으로 상부의 기설정된 단까지 차오르게 된다. 일 예로, 이 상태에서 작동액(F)은 히트 파이프(372)의 하부 2단까지 채워질 수 있다.
히터(371b)가 작동하면, 히터 케이스(371a) 내의 작동액(F)은 히터(371b)에 의해 가열된다. 도 13을 참조하면, 고온의 기체 상태(F1)로 가열된 작동액(F)은 히트 파이프(372)의 유입부(372c', 372c")로 유입되어 히트 파이프(372)를 흐르면서, 냉각관(331)에 방열하게 된다. 작동액(F)은 상기 방열 과정에서 열을 잃으면서 액체와 기체가 공존하는 상태(F2)로 흐르게 되고, 최종적으로 액체 상태(F3)로 히트 파이프(372)의 리턴부(372d', 372d")를 통해 히팅 유닛(371)으로 유입되게 된다. 히팅 유닛(371)으로 유입된 작동액(F)은 히터(371b)에 의해 재가열되어, 앞서 설명한 바와 같은 흐름을 반복(순환)하게 되며, 이 과정에서 증발기(330)에 열이 전달되어 증발기(330)에 적상된 성에가 제거되게 된다.
이처럼, 작동액(F)은 히팅 유닛(371)에 의해 발생되는 압력 차이에 의해 유동하여 히트 파이프(372)를 빠르게 순환하게 되므로, 히트 파이프(372)의 전 구간이 단시간 내에 안정된 작동 온도에 도달할 수 있고, 이에 따라 제상이 빠르게 이루어질 수 있다.
한편, 유입부(372c', 372c")로 유입되는 작동액(F)은 고온의 기체 상태(F1)로 히트 파이프(372)의 순환 과정 중 가장 높은 온도를 가진다. 따라서, 이러한 고온의 기체 상태(F1)에 놓인 작동액(F)에 의한 열의 대류를 이용하면, 보다 효율적으로 증발기(330)에 적상된 성에를 제거할 수 있다.
일 예로, 유입부(372c', 372c")는 증발기(330)에 구비되는 냉각관(331)의 최저단보다 상대적으로 낮은 위치 또는 최저단과 같은 위치에 배치될 수 있다. 이에 따르면, 유입부(372c', 372c")를 통하여 유입되는 고온의 작동액(F)이 냉각관(331)의 최저단 가까이에서 열을 전달하게 될 뿐만 아니라, 이러한 열이 상승되어 상기 최저단에 인접한 냉각관(331)으로 전달될 수 있다.
한편, 작동액(F)이 이와 같은 상 변화(phase change)를 이루며 히트 파이프(372)를 순환하기 위해서는, 작동액(F)이 적정량으로 히트 파이프(372)에 충진되어야 한다.
실험 결과, 작동액(F)이 히트 파이프(372)와 히터 케이스(371a)의 총 내부 체적 대비 30% 미만으로 충진된 경우, 시간이 지남에 따라 히팅 유닛(371)의 온도가 급격하게 증가하는 것을 확인할 수 있었다. 이는 히트 파이프(372)와 히터 케이스(371a)의 총 내부 체적 대비 작동액(F)이 부족하다는 것을 의미한다.
또한, 작동액(F)이 히트 파이프(372)와 히터 케이스(371a)의 총 내부 체적 대비 40%를 초과하여 충진된 경우, 히트 파이프(372)의 일부 단의 온도가 안정된 작동 온도[40℃~50℃(-21℃ 냉동 조건)]에 도달하지 못하는 것을 확인할 수 있었다. 이러한 온도 저하는 히트 파이프(372)가 리턴부(372d', 372d")에 가까워질 수록 두드러진다. 이는, 히트 파이프(372)와 히터 케이스(371a)의 총 체적 대비 작동액(F)이 과다하여 작동액(F)이 액체 상태로 흐르는 구간이 많아지는 것을 의미한다고 볼 수 있다.
작동액(F)이 히트 파이프(372)와 히터 케이스(371a)의 총 내부 체적 대비 30% 이상 40% 이하로 충진된 경우, 히팅 유닛(371)의 온도 및 히트 파이프(372)의 각 단의 온도는 시간이 경과함에 따라 안정된 작동 온도에 도달하는 것을 확인할 수 있었다.
이때, 히트 파이프(372)의 각 단의 온도는, 유입부(372c', 372c")에 가까울수록 보다 높은 온도를 보이고, 리턴부(372d', 372d")에 가까울수록 보다 낮은 온도를 보이는 것으로 나타났다. 충진된 작동액(F)의 양이 줄어들수록, 유입부(372c', 372c")에서의 온도(최고 온도)와 리턴부(372d', 372d")에서의 온도(최저 온도) 간의 차이도 줄어들었다.
따라서, 작동액(F)은 히트 파이프(372)와 히터 케이스(371a)의 총 내부 체적 대비 30% 이상 40% 이하로 충진되되, 제상 장치(370)의 열 전달 구조, 안정성 등에 따라 각각의 제상 장치(370) 별로 최적화된 작동액(F)의 충진량이 선정될 수 있다.
이하에서는, 도 3에 도시된 히팅 유닛(371)의 다른 실시예들에 대하여 설명한다. 참고로, 설명의 중복 내지 반복을 줄이고자, 다른 실시예들에 대한 설명에서는 제1실시예와 구조적으로 다른 부분들에 대해서만 설명하기로 한다. 따라서, 제1실시예의 히터(371b)에 대한 설명은 후술하는 다른 실시예들의 히터(471b, 571b, 671b, 771b, 871b, 971b)에도 동일하게 적용될 수 있다.
도 14는 도 3에 도시된 히팅 유닛(371)의 제2실시예를 보인 개념도이다.
앞선 구조와 같이, 히터 케이스(371a)가 증발기(330)의 수평방향(즉, 좌우방향)으로 배치되는 경우, 히터 케이스(371a)의 상면에는 성에가 쌓일 수 있다. 히터 케이스(371a)의 상면 바로 아래에 내부 유로(371a1)가 형성된 경우에는, 히터 케이스(371a)의 상면에 쌓인 성에는 내부 유로(371a1) 내의 작동액(F)의 온도를 떨어뜨리게 된다. 따라서, 히터(371b)의 열효율을 감소시키는 요인이 될 수 있다.
이를 개선하기 위하여, 내부 유로(471a1)와 히터 수용부(471a2)의 위치가 서로 뒤바뀐 히팅 유닛(471)이 고려될 수 있다. 즉, 히터 케이스(471a)가 증발기(430)의 수평방향(즉, 좌우방향)으로 배치되는 구조에서, 히터 수용부(471a2)는 내부 유로(471a)의 위에 형성된다. 상기 배치에 의해, 히터 케이스(471a)의 상면 바로 아래에는 히터 수용부(471a2)가 형성된다. 즉, 히터 케이스(471a)의 상면은 히터 수용부(471a2)를 한정한다.
상기 배치에 의해, 히터(471b)에서 발생된 열은 작동액(F)을 가열하는 데에 뿐만 아니라, 히터 케이스(471a) 위에 쌓인 성에를 제거하는 데에도 이용된다. 따라서, 히터(471b)의 열효율이 향상될 수 있다.
도 15는 도 3에 도시된 히팅 유닛(371)의 제3실시예를 보인 개념도이고, 도 16은 도 15에 도시된 히터 케이스(571a)를 라인 C-C를 따라 취한 단면도이다.
도 15 및 도 16을 참조하면, 히터 케이스(571a)에 형성된 내부 유로(571a1)에는 둘레를 따라 홈(571a1a)이 반복적으로 형성된다. 히터 케이스(371a)가 압출 성형에 의해 형성되므로, 홈(571a1a)은 내부 유로(571a1) 및 히터 수용부(571a2)와 마찬가지로 압출 성형 방향, 즉 히터 케이스(571a)의 길이 방향을 따라 연장 형성된다.
홈(571a1a)이 내부 유로(571a1)의 둘레를 따라 반복적으로 형성됨으로써, 내부 유로(571a1)의 발열면적이 증가될 수 있다. 따라서, 작동액(F)으로 전달되는 열전달량이 증가될 수 있으며, 작동압의 증가로 인해 작동액(F)의 순환 안정화 및 제상의 신뢰성 향상이 이루어질 수 있다.
내부 유로(571a1)의 발열면적을 최대로 증가시키기 위하여, 홈(571a1a)의 반경은 압출 성형에 의해 형성 가능한 수준에서 가능한 한 작게 설정되는 것이 바람직하다. 예를 들어, 홈(571a1a)의 반경은 0.45mm로 설정될 수 있다.
본 도면에서는, 홈(571a1a)이 내부 유로(571a1)의 둘레를 따라 연속적으로 형성된 것을 보이고 있다. 여기서, 연속적이라 함은 어느 하나의 홈(571a1a)이 끝나는 시점에 다른 하나의 홈(571a1a)이 바로 시작되는 것을 의미한다.
이와 달리, 홈(571a1a)은 내부 유로(571a1)의 둘레를 따라 일정 간격을 두고 반복적으로 형성될 수도 있다.
도 17은 도 3에 도시된 히팅 유닛(371)의 제4실시예를 보인 개념도이다.
도 17을 참조하면, 내부 유로(671a1)의 주위에는 내부 유로(671a1)에 평행하게 연장되어 히터 케이스(671a)의 양단부에서 개방되는 홀(671a1b)이 형성될 수 있다. 홀(671a1b)은 내부 유로(671a1)와 히터 케이스(671a)의 모서리 사이에 위치할 수 있다.
히터 케이스(671a)가 압출 성형에 의해 형성되므로, 홀(671a1b)은 내부 유로(671a1) 및 히터 수용부(671a2)와 마찬가지로 압출 성형 방향, 즉 히터 케이스(671a)의 길이 방향을 따라 연장 형성된다.
홀(671a1b)은 내부 유로(671a1)의 주위로 열이 방출되는 경로 상에 형성되어, 방출된 열이 홀(671a1b)에 다시 집중될 수 있도록 하는 방식으로, 열의 외부 방출을 제한하도록 이루어진다. 홀(671a1b)에 집중된 열이 다시 내부 유로(671a1)를 향하여 방출될 수 있도록, 홀(671a1b)은 내부 유로(671a1)를 향하여 뾰족한 형태로 형성될 수 있다.
이처럼, 홀(671a1b)이 형성됨으로써, 내부 유로(671a1)로 전달된 열이 작동액을 가열하는 데에 사용되지 못하고 히터 케이스(671a)의 외부로 방출되어 열손실로 이어지는 것이 감소될 수 있다. 결과적으로, 홀(671a1b)이 형성됨으로써, 내부 유로(671a1)로 보다 많은 열이 집중될 수 있다.
본 도면에서는, 앞선 제3실시예와 같이 내부 유로(671a1)의 둘레를 따라 홈(671a1a)이 반복적으로 형성된 히터 케이스(671a)에 홀(671a1b)이 추가로 형성된 구조를 보이고 있다. 그러나 본 발명이 반드시 이에 한정되는 것은 아니다. 앞선 제1 및 제2실시예의 히터 케이스(371a, 471a) 뿐만 아니라, 후술하는 다른 실시예의 히터 케이스에도 홀(671a1b)이 추가로 형성될 수 있다.
도 18은 도 3에 도시된 히팅 유닛(371)의 제5실시예를 보인 개념도이고, 도 19는 도 18에 도시된 히팅 유닛(771)을 라인 D-D를 따라 취한 단면도이다.
도 18 및 도 19를 참조하면, 히터 케이스(771a)의 양측에는 제1 및 제2연장핀(771a', 771a")이 저면으로부터 하측으로 각각 돌출 형성된다. 제1 및 제2연장핀(771a', 771a")은 히터 케이스(771a)의 길이 방향을 따라 연장 형성될 수 있다.
이에 의해, 히터 케이스(771a)의 저부에는 제1 및 제2연장핀(771a', 771a")에 의해 한정되는 히터 장착부(771a2)가 형성된다. 히터 장착부(771a2)는 히터 케이스(771a)의 저부에서 상부를 향하여 리세스된 형태를 가진다. 히터 케이스(771a)가 압출 성형에 의해 형성되므로, 히터 장착부(771a2)는 내부 유로(771a1)와 마찬가지로 압출 성형 방향, 즉 히터 케이스(771a)의 길이 방향을 따라 연장 형성된다.
히터 장착부(771a2)를 한정하는 히터 케이스(771a)의 저면에는 히터(771b)가 부착된다. 히터 케이스(771a)의 저면에 부착된 히터(771b)의 양측은 제1 및 제2연장핀(771a', 771a")에 의해 덮여 가려진다. 상기 구조에 의해, 제상으로 인하여 발생된 제상수가 히터 케이스(771a)에 떨어져 히터 케이스(771a)의 측면을 타고 흘러내리더라도, 제1 및 제2연장핀(771a', 771a") 사이의 내측 공간에 수용된 히터(771b)로는 제상수가 침투되지 않는다.
히터(771b)가 히터 장착부(771a2)에 부착된 상태에서, 제1 및 제2연장핀(771a', 771a")에 의해 형성되는 리세스된(recessed) 공간에는 히터(771b)의 실링을 위한 실링부재(771e)가 충진될 수 있다. 상기 실링부재(771e)로 실리콘, 우레탄, 에폭시 등이 이용될 수 있다. 예를 들어, 액상의 에폭시가 히터(771b)를 덮도록 상기 리세스된 공간 내에 충진된 후 경화 과정을 거쳐, 히터(771b)의 실링 구조가 완성될 수 있다. 이때, 제1 및 제2연장핀(771a', 771a")은 실링부재(771e)가 충진되는 리세스된 공간을 한정하는 측벽으로서 기능하게 된다.
참고로, 상기 구조에서는, 히터(771b) 자체가 절연필름을 포함하므로, 히터(771b)와 실링부재(771e) 사이에 실링부재(771e)로의 열전달을 제한하기 위한 별도의 절연재가 불필요하다는 이점이 있다.
도 20은 도 3에 도시된 히팅 유닛(371)의 제6실시예를 보인 개념도이고, 도 21은 도 20에 도시된 히팅 유닛(871)을 라인 E-E를 따라 취한 단면도이다.
도 20 및 도 21을 참조하면, 히팅 유닛(871)은 히터 케이스(871a), 히터(871b), 홀더(871c) 및 탄성부재(871d)를 포함한다.
히터 케이스(871a)에는 양단부에 입구(871a1")와 출구(871a1')가 형성된 내부 유로(871a1)가 형성된다. 또한, 히터 케이스(871a)에는 작동액(F)의 주입을 위하여 내부 유로(871a1)와 연통되는 작동액 주입구(871a3)가 형성된다.
히터(871b)는 히터 케이스(871a)에 부착되어 내부 유로(871a1) 내의 작동액(F)을 가열하도록 이루어진다. 본 도면에서는, 히터(871b)가 히터 케이스(871a)의 저면에 부착된 것을 보이고 있다. 그러나 본 발명이 반드시 이에 한정되는 것은 아니다. 히터(871b)는 히터 케이스(871a)의 상면 또는 측면에 부착될 수도 있다.
홀더(871c)는 히터 케이스(871a)에 장착되어 히터(871b)를 덮도록 배치된다. 홀더(871c)는 소정의 탄성 변형이 가능한 합성수지 재질 또는 금속 재질로 형성될 수 있다.
홀더(871c)는 후크 결합을 통해 히터 케이스(871a)에 고정될 수 있다. 이를 위해, 홀더(871c)의 양측에는 제1 및 제2후크(871c1', 871c1")가 형성될 수 있다. 히터 케이스(871a)에는 제1 및 제2후크(871c1', 871c1")가 걸림되는 걸림돌기(871a', 871a")가 형성될 수 있다.
본 도면에서는, 홀더(871c)가 히터 케이스(871a)의 저면 및 양측면을 덮도록 배치되고, 홀더(871c)의 제1 및 제2후크(871c1', 871c1")가 히터 케이스(871a)의 상면에 형성된 걸림돌기(871a', 871a")에 각각 걸림된 구조를 보이고 있다.
탄성부재(871d)는 히터(871b)와 홀더(871c) 사이에 압축된 상태로 개재되어, 히터(871b)를 히터 케이스(871a)에 밀착시키도록 구성된다. 탄성부재(871d)는 히터(871b)의 길이 방향을 따라 적어도 하나 이상 구비될 수 있다. 탄성부재(871d)로는 스프링이 이용될 수 있다.
홀더(871c)에는 탄성부재(871d)의 고정을 위한 고정돌기(871c2)가 돌출 형성될 수 있다. 탄성부재(871d)는 고정돌기(871c2)에 장착되어 특정 위치에 고정될 수 있다. 도시된 바와 같이, 고정돌기(871c2)는 탄성부재(871d)에 끼워질 수 있다. 즉, 탄성부재(871d)는 고정돌기(871c2)를 감싸도록 형성될 수 있다.
상술한 구조에 의해, 히터(871b)는 히터 케이스(871a)에 견고하게 부착될 수 있다. 그 결과, 히터(871b)에서 발생된 열이 히터 케이스(871a)로 보다 많이 전달되어 작동액(F)을 가열하는 데에 이용될 수 있다.
도 22 및 제 23은 도 1의 냉장고(300)에 적용되는 제상 장치(370)의 다른 일 예를 보인 정면도 및 사시도이다.
도 22 및 도 23을 참조하면, 히팅 유닛(971)은 제상 장치(970)의 일측 외곽에 배치될 수 있다. 구체적으로, 히터 케이스(971a)는 증발기(930)의 일측에 구비되는 지지대(933)의 외측에 위치할 수 있으며, 증발기(930)의 하측에서 상측을 향하는 수직방향으로 연장 형성될 수 있다. 이때, 히터 케이스(971a)의 적어도 일부는 제1냉각관(931')과 상기 제2냉각관(931") 사이에 배치될 수도 있다.
히터 케이스(971a)는 히트 파이프(972)와 각각 연결되어, 작동액(F)이 순환할 수 있는 순환 유로를 형성한다. 이를 위하여, 히터 케이스(971a)의 상측과 하측에 각각 출구(971a1')와 입구(971a1")가 형성된다. 출구(971a1')는 히트 파이프(972)의 연장부(972a)와 연결되며, 입구(971a1")는 히트 파이프(972)의 방열부(972b) 최저단과 연결된다.
히터(971b)는 히터 케이스(871a)에 장착되어 증발기(930)의 상하방향으로 수직하게 배치된다. 앞선 실시예들에서 설명한 바와 같이, 히터(971b)가 히터 케이스(971a)에 장착되는 구조는 다양하게 구성될 수 있다. 예를 들어, 히터(971b)는 히터 케이스(971a)를 관통하도록 형성된 히터 수용부(971a2)에 수용될 수도 있고, 히터 케이스(971a)의 일면에 부착될 수도 있다.
참고로 도 22에서는, 내부 유로(971a1)와 히터 수용부(971a2)가 히터 케이스(971a)를 관통하도록 형성되고, 히터(971b)가 히터 수용부(971a2)에 수용된 구조를 보이고 있다. 본 도면에서는 히터 수용부(971a2)가 내부 유로(971a1)의 외측에 배치된 것을 보이고 있으나, 본 발명이 반드시 이에 한정되는 것은 아니다. 히터 수용부(971a2)는 내부 유로(971a1)의 내측, 즉 내부 유로(971a1)와 지지대(933)사이에 배치될 수도 있다.
히터(971b)는 입구(971a1")와 출구(971a1') 사이에서 출구(971a1')를 향하여 연장 형성되어, 입구(971a1")를 통하여 회수된 작동액(F)을 재가열하도록 이루어진다. 이처럼, 내부 유로(971a1)가 증발기(930)의 하측에서 상측을 향하는 수직방향으로 연장 형성되는 구조는, 내부 유로(971a1) 내의 작동액(F)이 가열되어 상승 유동을 형성하는 데에 유리하여, 작동액(F)의 역류가 방지될 수 있다는 이점이 있다.
한편, 작동액(F)은 히터 케이스(971a) 내부에 수직방향으로 연장되는 히터(971b)의 최상단보다 높게 충진되는 것이 바람직하다. 이와 같은 구성에 의하면, 히팅 유닛(971)이 과열되지 않은 상태로 안전하게 제상 운전이 이루어질 수 있으며, 히트 파이프(972)에 기체 상태의 작동액(F)의 연속적인 공급이 안정적으로 이루어질 수 있다.

Claims (18)

  1. 내부를 관통하여 양단부에 입구와 출구가 형성된 내부 유로와, 상기 내부 유로로부터 이격된 위치에 내부를 관통하여 형성된 히터 수용부를 구비하는 히터 케이스;
    상기 입구와 상기 출구를 통해 상기 히터 케이스의 내부에 삽입되어 상기 내부 유로와 연통되는 히트 파이프; 및
    상기 히터 수용부에 삽입되어 상기 내부 유로 내의 작동액을 가열하는 히터를 포함하고,
    상기 내부 유로와 상기 히터 수용부는 상기 히터 케이스 내에서 미연통되는 것을 특징으로 하는 제상 장치.
  2. 제1항에 있어서,
    상기 히터는 기설정된 온도 이상에서는 저항이 급증함으로 인해 전류가 억제되어, 더 이상 발열하지 않도록 이루어지는 것을 특징으로 하는 제상 장치.
  3. 제2항에 있어서,
    상기 히터는,
    온도가 상승함에 따라 저항이 증가하는 특성을 가지는 PTC(Positive Temperature Coefficient) 서미스터; 및
    상기 PTC 서미스터를 사이에 두고 서로 마주하도록 배치되는 제1 및 제2전극판을 포함하는 것을 특징으로 하는 제상 장치.
  4. 제1항에 있어서,
    상기 히터 수용부는 상기 내부 유로에 평행하게 연장되어 상기 양단부에서 개방되는 것을 특징으로 하는 제상 장치.
  5. 제4항에 있어서,
    상기 히터 케이스에는 상기 히터 수용부를 향하여 움푹 들어간 형태의 프레스드부가 형성되며,
    상기 히터는 상기 프레스드부에 의해 가압되어 상기 히터 수용부의 내부면에 밀착되는 것을 특징으로 하는 제상 장치.
  6. 제5항에 있어서,
    상기 히터가 상기 히터 수용부에 장착된 상태에서, 상기 히터 수용부에는 실링부재가 상기 히터를 실링하도록 충진되는 것을 특징으로 하는 제상 장치.
  7. 제1항에 있어서,
    상기 내부 유로에는 둘레를 따라 홈이 형성되며,
    상기 홈은 상기 내부 유로를 따라 연장 형성되는 것을 특징으로 하는 제상 장치.
  8. 제7항에 있어서,
    상기 홈은 내부 유로의 둘레를 따라 연속적으로 형성되는 것을 특징으로 하는 제상 장치.
  9. 제1항에 있어서,
    상기 내부 유로의 주위에는 상기 내부 유로에 평행하게 연장되어 상기 히터 케이스의 양단부에서 개방되는 홀이 형성되는 것을 특징으로 하는 제상 장치.
  10. 제9항에 있어서,
    상기 홀은 상기 내부 유로와 상기 히터 케이스의 모서리 사이에 위치하는 것을 특징으로 하는 제상 장치.
  11. 제1항에 있어서,
    상기 히터 케이스는 증발기의 좌우 방향으로 배치되며,
    상기 히터 수용부는 상기 내부 유로의 상부 또는 하부에 위치하는 것을 특징으로 하는 제상 장치.
  12. 제1항에 있어서,
    상기 히트 파이프는 증발기의 전면부와 후면부에 각각 배치되는 제1히트 파이프와 제2히트 파이프를 포함하고,
    상기 출구는 상기 제1 및 제2히트 파이프의 일단부를 수용하는 단일 개구로 형성되며,
    상기 입구는 상기 제1 및 제2히트 파이프의 타단부를 수용하는 단일 개구로 형성되는 것을 특징으로 하는 제상 장치.
  13. 제12항에 있어서,
    상기 히트 파이프의 일단부와 상기 출구 간의 틈을 메우도록 형성되는 제1용접부; 및
    상기 히트 파이프의 타단부와 상기 입구 간의 틈을 메우도록 형성되는 제2용접부를 더 포함하는 것을 특징으로 하는 제상 장치.
  14. 제1항에 있어서,
    상기 히터 케이스는, 상기 히터가 배치되는 부분에 대응되는 능동발열부와, 상기 히터가 미배치되는 부분에 대응되는 수동발열부로 구획되고,
    상기 입구를 통하여 리턴되는 작동액이 재가열되어 역류하는 것을 방지하도록, 상기 입구에 삽입되는 상기 히트 파이프의 일단부는 상기 수동발열부와 연통되는 것을 특징으로 하는 제상 장치.
  15. 양단부에 입구와 출구가 형성된 내부 유로를 구비하는 히터 케이스와, 상기 히터 케이스에 장착되어 상기 내부 유로 내의 작동액을 가열하는 히터를 포함하는 히팅 유닛; 및
    상기 입구와 상기 출구를 통해 상기 히터 케이스의 내부에 삽입되어 상기 내부 유로와 연통되고, 상기 히터에 의해 가열되어 이송되는 고온의 작동액에 의해 증발기의 냉각관에 방열하도록 적어도 일부가 상기 냉각관에 인접하게 배치되는 히트 파이프를 포함하며,
    상기 히터는 기설정된 온도 이상에서는 저항이 급증함으로 인해 전류가 억제되어, 더 이상 발열하지 않도록 이루어지는 것을 특징으로 하는 제상 장치.
  16. 제15항에 있어서,
    상기 히터 케이스에는, 상기 내부 유로에 평행하게 연장되어 상기 양단부에서 개방되고, 상기 히터가 삽입되는 히터 수용부가 형성되는 것을 특징으로 하는 제상 장치.
  17. 제15항에 있어서,
    상기 히팅 유닛은,
    상기 히터 케이스에 장착되어 상기 히터를 덮도록 배치되는 홀더; 및
    상기 히터와 상기 홀더 사이에 압축된 상태로 개재되어, 상기 히터를 상기 히터 케이스에 밀착시키는 탄성부재를 더 포함하는 것을 특징으로 하는 제상 장치.
  18. 제15항에 있어서,
    상기 히팅 유닛은,
    상기 히터 케이스의 저부에 상부를 향하여 리세스된 형태로 형성되는 히터 장착부; 및
    상기 히터 장착부에 충진되어, 상기 히터 장착부의 리세스된 바닥면에 부착되는 히터를 덮도록 배치되는 실링부재를 더 포함하는 것을 특징으로 하는 제상 장치.
PCT/KR2017/015268 2017-05-25 2017-12-21 제상 장치 및 이를 구비하는 냉장고 WO2018216869A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17910919.4A EP3633293A4 (en) 2017-05-25 2017-12-21 DEFROST DEVICE AND REFRIGERATOR WITH IT
US16/616,817 US11428455B2 (en) 2017-05-25 2017-12-21 Defrosting apparatus and refrigerator comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0064810 2017-05-25
KR20170064810 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216869A1 true WO2018216869A1 (ko) 2018-11-29

Family

ID=64395802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015268 WO2018216869A1 (ko) 2017-05-25 2017-12-21 제상 장치 및 이를 구비하는 냉장고

Country Status (4)

Country Link
US (1) US11428455B2 (ko)
EP (1) EP3633293A4 (ko)
KR (1) KR102381243B1 (ko)
WO (1) WO2018216869A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120132A (ja) * 1987-10-01 1995-05-12 Fuji Electric Co Ltd 冷気循環形ショーケース
KR20110062631A (ko) * 2009-12-03 2011-06-10 현대자동차주식회사 차량 에어컨 시스템용 리시버 드라이어 장치
KR20160022735A (ko) * 2014-08-20 2016-03-02 양철훈 히터를 구비하는 히트파이프
KR20160046713A (ko) * 2014-10-21 2016-04-29 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
KR20170046543A (ko) * 2015-10-21 2017-05-02 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4432211A (en) * 1980-11-17 1984-02-21 Hitachi, Ltd. Defrosting apparatus
US5339644A (en) * 1993-04-29 1994-08-23 Singh Kanwal N Defrost system for refrigeration apparatus
JP3255818B2 (ja) * 1995-03-20 2002-02-12 カルソニックカンセイ株式会社 電子部品用冷却装置
JP2000329447A (ja) * 1999-05-17 2000-11-30 Matsushita Refrig Co Ltd 冷蔵庫および除霜用ヒーター
US6442341B1 (en) * 2000-11-27 2002-08-27 Chia-Hsiung Wu Simple-type fluid heating tube structural arrangement
KR100672571B1 (ko) * 2004-08-11 2007-01-24 엘지전자 주식회사 냉장고용 증발기의 제상장치
CN102016462B (zh) * 2008-04-28 2013-07-10 阿莫绿色技术有限公司 利用条带形平板发热体的除霜加热器及其制造方法和除霜装置
JP4965637B2 (ja) * 2009-12-24 2012-07-04 シャープ株式会社 冷蔵庫のヒータ装置組立方法
US9127875B2 (en) * 2011-02-07 2015-09-08 Electrolux Home Products, Inc. Variable power defrost heater
WO2012120708A1 (ja) * 2011-03-04 2012-09-13 カシン工業株式会社 液体加熱ヒータ
EP2574868B1 (en) * 2011-09-29 2019-06-12 LG Electronics Inc. Refrigerator
US9310121B2 (en) * 2011-10-19 2016-04-12 Thermo Fisher Scientific (Asheville) Llc High performance refrigerator having sacrificial evaporator
KR101982776B1 (ko) * 2012-12-10 2019-05-27 엘지전자 주식회사 냉장고 및 그 동작방법
US9482462B2 (en) * 2013-06-25 2016-11-01 Haier Us Appliance Solutions, Inc. Systems and methods for providing two energy level settings for a refrigerator hot water heater
EP3287724B1 (en) * 2013-07-24 2020-10-14 LG Electronics Inc. Refrigerator
US20150204538A1 (en) * 2014-01-20 2015-07-23 Martin Brice Infrared Gas Heater
WO2016064200A2 (en) * 2014-10-21 2016-04-28 Lg Electronics Inc. Defrosting device and refrigerator having the same
KR20160088777A (ko) * 2015-01-16 2016-07-26 주식회사 대창 제빙기
KR102447836B1 (ko) 2015-10-21 2022-09-27 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
KR101742587B1 (ko) * 2015-11-05 2017-06-01 엘지전자 주식회사 증발기 및 이를 구비하는 냉장고
KR102493237B1 (ko) * 2015-11-11 2023-01-30 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
KR20180026977A (ko) 2016-09-05 2018-03-14 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120132A (ja) * 1987-10-01 1995-05-12 Fuji Electric Co Ltd 冷気循環形ショーケース
KR20110062631A (ko) * 2009-12-03 2011-06-10 현대자동차주식회사 차량 에어컨 시스템용 리시버 드라이어 장치
KR20160022735A (ko) * 2014-08-20 2016-03-02 양철훈 히터를 구비하는 히트파이프
KR20160046713A (ko) * 2014-10-21 2016-04-29 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고
KR20170046543A (ko) * 2015-10-21 2017-05-02 엘지전자 주식회사 제상 장치 및 이를 구비하는 냉장고

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633293A4 *

Also Published As

Publication number Publication date
US11428455B2 (en) 2022-08-30
EP3633293A4 (en) 2021-04-28
EP3633293A1 (en) 2020-04-08
KR20180129607A (ko) 2018-12-05
US20210172671A1 (en) 2021-06-10
KR102381243B1 (ko) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2017082591A1 (en) Defrosting device and refrigerator having the same
WO2017078250A1 (ko) 증발기 및 이를 구비하는 냉장고
WO2019190113A1 (ko) 냉장고 및 그 제어방법
WO2009134052A2 (ko) 스트립형 면상발열체를 이용한 제상히터 및 그 제조방법과 이를 이용한 제상장치
WO2019190114A1 (ko) 냉장고 및 그 제어방법
WO2017000301A1 (zh) 电池及其壳体结构、电芯保护方法、可移动装置及其套件
WO2017039234A1 (en) Refrigerator
WO2020111688A1 (en) Refrigerator and control method thereof
WO2016099107A1 (ko) 제상장치를 구비한 냉장고
WO2017034170A1 (ko) 제상 장치 및 이를 구비하는 냉장고
EP3209957A2 (en) Defrosting device and refrigerator having the same
WO2017164711A1 (ko) 냉장고의 제어방법
WO2018174432A1 (ko) 냉장고
WO2018216858A1 (ko) 제상 장치 및 이를 구비하는 냉장고
WO2017164710A1 (ko) 냉장고의 제어방법
WO2018021857A1 (ko) 증발기 및 이를 구비하는 냉장고
WO2018216869A1 (ko) 제상 장치 및 이를 구비하는 냉장고
WO2016064200A2 (en) Defrosting device and refrigerator having the same
WO2017069386A1 (ko) 제상 장치 및 이를 구비하는 냉장고
AU2019292297B2 (en) Vacuum adiabatic body and refrigerator
AU2018385147B2 (en) Vacuum adiabatic body and refrigerator
WO2019164115A1 (en) Refrigerator and controlling method for the same
WO2019098650A1 (en) Deodorizing apparatus and refrigerator including the same
AU2016316427B2 (en) Refrigerator
WO2021157994A1 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017910919

Country of ref document: EP

Effective date: 20200102