WO2018214945A1 - 曲面玻璃热成型设备及其方法 - Google Patents

曲面玻璃热成型设备及其方法 Download PDF

Info

Publication number
WO2018214945A1
WO2018214945A1 PCT/CN2018/088255 CN2018088255W WO2018214945A1 WO 2018214945 A1 WO2018214945 A1 WO 2018214945A1 CN 2018088255 W CN2018088255 W CN 2018088255W WO 2018214945 A1 WO2018214945 A1 WO 2018214945A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
section
heating
curved
mold
Prior art date
Application number
PCT/CN2018/088255
Other languages
English (en)
French (fr)
Inventor
李庆文
李青
金宪优
李兆廷
Original Assignee
东旭科技集团有限公司
东旭集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东旭科技集团有限公司, 东旭集团有限公司 filed Critical 东旭科技集团有限公司
Priority to EP18806679.9A priority Critical patent/EP3632858A1/en
Priority to KR1020197037501A priority patent/KR102283632B1/ko
Priority to JP2019560703A priority patent/JP6928113B2/ja
Priority to US16/611,716 priority patent/US11639306B2/en
Publication of WO2018214945A1 publication Critical patent/WO2018214945A1/zh
Priority to ZA2019/07379A priority patent/ZA201907379B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0305Press-bending accelerated by applying mechanical forces, e.g. inertia, weights or local forces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0302Re-forming glass sheets by bending by press-bending between shaping moulds between opposing full-face shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0307Press-bending involving applying local or additional heating, cooling or insulating means

Definitions

  • the present disclosure relates to a glass processing apparatus, and in particular to a curved glass thermoforming apparatus and a curved glass thermoforming method.
  • the problem addressed by the present disclosure is to provide a curved glass thermoforming apparatus that improves the heating efficiency of glass and a curved glass thermoforming method using the curved glass thermoforming apparatus.
  • a curved glass thermoforming apparatus including a furnace body having a feed port and a discharge port, the furnace body including a heating section and a molding section is provided And a cooling section, and the furnace body is provided with a rotating disc that is rotatable and is used for sequentially circulating the glass to the heating section, the forming section and the cooling section, and the rotating disc is provided with a glass for carrying glass
  • the plurality of master molds are press-fitted to the glass in cooperation with the male mold in the forming section, and the heating section is provided with heating capable of locally heating the desired curved surface forming portion of the glass in cooperation with the master mold. structure.
  • the heating structure has a heating block for heating the glass, the heating block having a concave surface and a protruding surface corresponding to the heating surface of the glass, the protruding surface and the desired curved surface of the glass The surface is arranged correspondingly.
  • the portion of the furnace body corresponding to the rotating disk is formed into an annular body or a cylinder, and a plurality of stations are formed in a circumferential direction of the furnace body, the heating section, the forming section and The cooling sections are respectively arranged on the station.
  • the heating section is disposed on a first station of the furnace body, and the heating section is provided with a filming machine for inputting glass, and the furnace body
  • the cooling section is disposed on the last station and the film taking machine is disposed on the cooling section, and the forming section is disposed on at least two stations between the first station and the last station.
  • the forming section includes a male mold clamping section and a curved molding section, and the male clamping section is provided with a male mold for heating the glass after being matched with the heating structure.
  • the master mold is clamped, and the curved forming section is provided with pressurizing means for applying pressure to the clamped male mold to form a curved surface of the glass.
  • the male mold in the forming section is clamped with the female mold together with the female mold to rotate to the station before the cooling section.
  • the forming section further includes a male mold section section between the curved forming section and the cooling section for splitting the male mold and the female mold.
  • the male mold segment portion and the male mold clamping portion share a common mold.
  • the curved forming section is disposed on at least two stations of the furnace body, and the curved forming sections are sequentially arranged in the conveying sequence.
  • a heating device for heating the master and the male mold is disposed in the furnace body.
  • the heating device comprises a master heating device disposed on a surface of the master mold facing the glass, and a male mold heating device disposed on a surface of the male mold facing the glass, the heating device being provided with A controller that controls the heating temperature of the master heating device and the male heating device.
  • the cooling section is provided with a cleaning device for cleaning and dusting the male mold.
  • the furnace body further includes a feed section having the feed port and a discharge section having the discharge port, and the feed section and the location are located in the transfer order of the rotary disk
  • the heating section of the first station is in communication
  • the discharge section is in communication with the cooling section located at the last station.
  • the furnace body is provided with a gas supply device for charging nitrogen gas, so that the furnace body is filled with nitrogen gas of a preset pressure during the curved surface molding process of the glass.
  • a plurality of one-way doors for preventing entry of outside air are respectively disposed on the feeding port and the discharging port.
  • the furnace body is formed with five or more odd-numbered stations in a circumferential direction corresponding to a portion of the rotating disk, and the rotating disk transmits the glass in steps of one station at a time.
  • the rotating disk requires two cycles for completing the curved surface forming of the glass.
  • thermoforming method for forming a glass by a curved glass thermoforming apparatus as described above.
  • the glass is preheated to between 300 ° C and 400 ° C before the heating structure heats the glass.
  • the desired curved surface forming portion of the glass is heated to 700 ° C to 800 ° C. .
  • the glass is cooled to 300 ° C to 400 ° C in the temperature decreasing section.
  • the glass is conveyed by rotating the disk so that the glass sequentially passes through the heating section, the molding section and the cooling section disposed in the furnace body, wherein the glass is located in the heating section, and the heating structure is
  • the desired curved portion of the glass is locally heated to a preset temperature so that the desired curved portion of the glass is rapidly heated to the glass softening point, and the glass is transferred to the forming section to form a curved surface of the desired curved portion of the glass.
  • the temperature is lowered by the cooling section to cool the tempered glass while removing the local stress concentration of the glass, thereby completing the surface molding of the glass.
  • the heating efficiency for the glass is improved, and the surface molding work efficiency for the glass can be further improved.
  • FIG. 1 is a schematic structural view of a curved glass thermoforming apparatus according to an embodiment of the present disclosure
  • FIG. 2 is a structural view of a heating structure in a curved glass thermoforming apparatus according to an embodiment of the present disclosure
  • FIG. 3 is a view showing a mold clamping state of a male mold and a female mold in a curved glass thermoforming apparatus according to an embodiment of the present disclosure
  • FIG. 4 is a partial state diagram of a male mold and a female mold in a curved glass thermoforming apparatus according to an embodiment of the present disclosure.
  • a curved glass thermoforming apparatus including a furnace body 1 having a feed port 11 and a discharge port 12, the furnace body 1 including a heating section 13, a forming section and a cooling section 14, and the rotating body of the furnace 2 is rotatably provided for sequentially circulating the glass 2 to the heating section 13, the forming section and the cooling section 14. 3.
  • the rotating disk 3 is provided with a plurality of master molds 4 for carrying the glass 2 to be press-fittable with the male mold 5 in the forming section, and the heating section 13 is provided with a capable A heating structure that directly cooperates with the master mold 4 to directly heat the desired curved portion of the glass 2.
  • the glass 2 is conveyed by rotating the disk 3 such that the glass 2 sequentially passes through the heating section 13, the forming section and the cooling section 14 disposed in the furnace body 1, wherein the glass 2 is located in the heating section 13,
  • the desired curved forming portion of the glass 2 is locally heated to a preset temperature by a heating structure, so that the desired curved forming portion of the glass 2 is rapidly heated to the glass softening point, and the glass 2 is transferred into the forming section to the glass 2
  • the desired curved surface forming portion is subjected to curved surface forming, and then cooled by the cooling section 14 to cool the shaped glass 2 while removing the local stress concentration of the glass 2, thereby completing the curved surface forming of the glass 2.
  • the heating efficiency for the glass 2 is improved, and the surface forming work efficiency for the glass 2 can be further improved.
  • the heating structure has a heating block 6 for heating the glass 2, the heating block 6 having a concave surface 61 and a protruding surface corresponding to the heating surface of the glass 2. 62.
  • the protruding surface 62 is arranged corresponding to the surface of the desired curved molding portion of the glass 2.
  • the heating block 6 can be electrically heated, high-frequency heating or microwave heating, etc.
  • the heating block 6 of the heating structure can be moved in the height direction to a position of 0.2 mm to 1 mm from the glass 2, and then the desired curved molding portion of the glass 2 is subjected to heating.
  • the protruding surface 62 of the heating block 6 corresponds to the surface of the desired curved surface forming portion of the glass 2
  • the concave surface 61 corresponds to the surface of the remaining portion of the glass 2 separated from the surface of the remaining portion by a predetermined distance.
  • the desired curved surface forming portion of the glass 2 is heated above the glass softening point, and the temperature of the remaining portion of the glass 2 is below the glass softening point, thereby effectively deforming the curved surface of the desired curved surface portion of the glass 2, and is effective
  • the thermal deformation of the rest of the glass 2 is avoided, minimizing molding defects.
  • the glass 2 may be preheated to 300 ° C to 400 ° C to improve the heating efficiency of the glass 2 .
  • the desired curved surface forming portion of the glass 2 is directly heated by the heating block 6 as described above, whereby accurate control of the temperature of the glass 2 can be ensured, heating time can be shortened, thereby effectively improving the heating efficiency of the glass 2, and also having Energy saving effect.
  • the heating structure may adopt other reasonable structures as long as the function of heating the desired curved portion of the glass 2 can be realized, for example, the heating block 6 of the heating structure corresponds to The heated surface of the glass 2 can be formed as a flat surface.
  • the portion of the furnace body 1 corresponding to the rotating disk 3 is formed into an annular body or a cylinder, and a plurality of stations are formed in the circumferential direction of the furnace body 1, the heating section 13, the The forming section and the cooling section 14 are respectively arranged on the station.
  • the furnace body 1 has the functions of heat insulation, installation of heating devices, driving mechanisms and the like.
  • the glass 2 disposed on each of the master molds 4 is rotated by the rotating disk 3 to be sequentially transferred to the heating section 13, the forming section and the cooling section 14 for heating, molding, and cooling setting processes, and finally continuously cycled.
  • the curved surface forming process of the glass 2 enables continuous production and has the effects of high production efficiency and energy saving.
  • the heating section 13 is disposed on the first station of the furnace body 1, and the filming machine 7 for inputting the glass 2 is disposed on the heating section 13.
  • the cooling station 14 is disposed on the last station of the furnace body 1 and the stripping machine 8 is disposed on the cooling section 14, at least two between the first station and the last station
  • the forming section is arranged on the station.
  • the glass 2 is put into the master mold 4 on the heating section 13 by the filming machine 7, and the glass 2 is sequentially transferred to the forming section and the cooling section 14 by the rotating disk 3, respectively, after the surface forming and cooling shaping,
  • the take-up machine 8 takes out the glass 2 from the temperature-lowering section 14, whereby the glass 2 can be subjected to a rapid and continuous curved surface forming operation.
  • the molding section is disposed at at least two stations between the first station and the last station, the glass 2 can be curved and formed stably and reliably, and the surface molding quality is improved.
  • the forming section includes a male mold clamping section and a curved molding section, and the male mold clamping section is provided with a male mold 5 for passage and heating
  • the master mold 4 heated by the glass 2 is clamped by structurally matching, and the curved forming section is provided with pressurizing means for applying pressure to the mold 5 after the mold clamping to perform surface forming of the glass 2.
  • the female mold 4 is formed with a receiving groove for accommodating the glass 2, and the both sides of the receiving groove are formed with a back side.
  • a curved portion 41 in which the direction of the glass 2 is curved is formed, and a portion of the male mold 5 corresponding to the curved portion 41 is formed with a pressing portion 51 having a shape corresponding to the curved portion 41.
  • both side edges of the glass 2 are pressed by the engagement of the pressing portion 51 of the male mold 5 and the curved portion 41 of the master mold 4, so that both side edges of the glass 2 are deformed to form a curved surface.
  • the present disclosure is not limited thereto, and the structures of the master mold 4 and the male mold 5 are rationally designed in accordance with the actual desired curved surface forming portion of the glass 2.
  • the master mold 4 and the male mold 5 can employ a graphite mold, thereby having the advantages of good high temperature resistance, small expansion deformation, and stable performance.
  • the furnace body 1 may be filled with nitrogen gas to prevent the graphite mold from being oxidized, thereby improving the service life.
  • the master mold 4 and the male mold 5 may be formed by a mold such as stainless steel.
  • the male mold 5 in the forming section can be rotated with the female mold 4 to the station before the cooling section 14 together with the female mold 4.
  • a control device for controlling the pressure applied to the glass 2 may be provided in the molding section to enable precise control of the curved surface forming of the glass 2.
  • the male mold 5 is always clamped to the mother mold 4 during the surface forming process of the glass 2, and is moved together with the mother mold 4 to before the temperature lowering portion 14, so that the curved surface of the glass 2 can be more stably realized. It is avoided that the glass 2 is thermally deformed except for the portion of the curved surface to be formed.
  • the forming section further includes a male mold section section between the curved forming section and the cooling section 14 and used to mold the male mold 5 and the female mold 4. .
  • the rotating disk 3 drives the glass 2 on the female mold 4 to rotate to the cooling section 14 for cooling and setting.
  • the glass 2 can be cooled by using natural cooling or forced cooling.
  • the cooling of the glass 2 can be achieved by blowing the convection fan into the cooling section 14.
  • the male mold segment portion and the male mold clamping portion share a common mold 5. That is, after the male mold 5 and the female mold 4 in the male mold split section are divided, the male mold 5 can be moved into the male mold clamping section by a driving mechanism such as a rotating mechanism, and transferred to the male mold. The master 4 of the mold clamping section is clamped. Thereby, resources can be effectively utilized, and the manufacturing cost of the curved glass thermoforming apparatus can be reduced.
  • the present disclosure is not limited thereto, and the number of the male molds 5 and the position within the furnace body 1 can be reasonably arranged according to actual needs.
  • the curved forming section is disposed on at least two stations of the furnace body 1, and the curved forming sections are sequentially arranged in the conveying sequence.
  • the at least two Each curved forming section on each station is adjacently arranged; when the conveying sequence is rotated in the circumferential direction of the furnace body 1 by two working stations in the circumferential direction of the furnace body 1, the adjacent ones are adjacent to each other
  • Each curved forming section of at least two stations is arranged at a position of one station, so that when the rotating disc 3 is rotated from the curved forming section of a certain station, it can be moved to another station.
  • the curved surface is formed on the section. Thereby, the surface forming quality of the glass 2 is further improved by arranging at least two curved forming sections to improve the processing efficiency.
  • the furnace body 1 is provided with a heating device 9 for heating the master mold 4 and the male mold 5.
  • the heating temperature of the master mold 4 and the male mold 5 is controlled by the heating device 9 to satisfy the temperature range required for the glass 2 at each station.
  • the heating device 9 may include a master mold heating device 91 disposed on a surface of the master mold 4 facing away from the glass 2, and disposed on the male mold 5 against A male mold heating device 92 on the surface of the glass 2 is provided with a controller for controlling the heating temperature of the master heating device 91 and the male mold heating device 92.
  • the master mold heating device 91 and the male mold heater 92 may be electrically heated by the electric heating rod 93, and the master mold 4 and the male mold 5 are respectively heated by the master mold heating device 91 and the male mold heater 92.
  • heat is transferred indirectly to the glass 2 through the master mold 4 and/or the male mold 5 to achieve precise control of the temperature of the glass 2.
  • the present disclosure is not limited thereto, and the temperature of the glass 2 may be controlled by other means, for example, by controlling the temperature of the gas in the furnace body 1.
  • the cooling section 14 is provided with a cleaning device for cleaning and removing the mother mold 4 on the rotating disk 3.
  • the glass 2 in the temperature decreasing section 14, the glass 2 can be cooled to 300 ° C to 400 ° C.
  • the master mold 4 on the rotating disk 3 cleaned by the cleaning device in the cooling section 14 is turned to the next station, that is, the first station, thereby performing the next curved surface forming process cycle again.
  • the furnace body 1 further comprises a feed section 15 having the feed opening 11 and a discharge section 16 having the discharge opening 12, in the order of transport of the rotating disk 3,
  • the feed section 15 is in communication with the heating section 13 at the first station
  • the discharge section 16 is in communication with the cooling section 14 at the last station.
  • the furnace body 1 is provided with a gas supply device for charging nitrogen gas, so that the furnace body 1 is filled with nitrogen gas of a preset pressure during the curved surface molding process of the glass. Thereby, the entire curved surface forming process of the glass 2 is performed under a nitrogen atmosphere, so that the phenomenon that the mother mold 4 and the male mold 5 are oxidized can be effectively prevented, thereby significantly increasing the service life of the mold.
  • the feed port 11 and the discharge port 12 are respectively provided with a multi-layer one-way door for preventing entry of outside air.
  • the nitrogen pressure in the furnace body 1 is greater than the air pressure outside the furnace body 1, thereby effectively preventing the external gas from being sent to the furnace during the process of feeding the glass 2 to the feed section 15 or removing the glass 2 from the discharge section 16. The inflow of body 1.
  • the furnace body 1 is formed with five or more odd-numbered stations in a circumferential direction corresponding to a portion of the rotating disk 3, and the rotating disk 3 is stepped by one station at a time.
  • the glass 2 is conveyed, and the rotating disk 3 has two transfer cycles required to complete the curved surface forming of the glass 2.
  • the furnace body 1 is formed with eleven stations in the circumferential direction corresponding to the portion of the rotating disk 3.
  • the structure of the curved glass thermoforming apparatus of the present embodiment is counterclockwise in the circumferential direction.
  • the direction is named from the first station to the eleventh station in turn, and since the rotating disk 3 transmits the glass 2 in steps of one step at a time, the order of transmission of the rotating disk 3 is in turn
  • the first station is the first station
  • the tenth station is the last station.
  • the heating section 13 may include a preheating section and a heating section, the preheating section may be disposed at a first station as a first station and provided with a filming machine 7 as described above, The heating section is disposed at the third station and is provided with a heating structure as described above.
  • the male mold clamping section of the forming section is arranged at a fifth station, and the curved forming section of the forming section can be respectively arranged at the seventh station, the ninth station, the eleventh station, The second station and the fourth station, and the male mold 5 is always held in a state of being clamped with the master mold 4 at the plurality of stations arranged with the curved forming section, in this state, the driving cylinder can be driven
  • the structure applies pressure to the male mold 5, whereby the desired curved surface forming portion of the glass 2 can be more sufficiently pressed to reliably achieve bending deformation, and the male mold 5 is always kept with the female mold 4 in the process.
  • the state of the mold is closed to avoid thermal deformation of the rest of the glass 2.
  • the male mold splitting section of the forming section is arranged at the sixth station.
  • the fifth station and the sixth station can share one male mold 5 to make full use of effective resources and reduce the manufacturing cost of the equipment.
  • the male mold 5 at the sixth station is moved from the master mold 4 placed at the sixth station to the fifth station and clamped to the master mold 4 at the fifth station.
  • the cooling section 14 may include a cooling section and a discharge section, the cooling section is disposed at the eighth station, and the glass 2 is naturally cooled or forcedly cooled, and the discharge section is disposed at At the tenth station, and the take-up machine 8 as described above is arranged, the glass 2 can be continuously cooled or forcedly cooled on the discharge section.
  • the operation of the curved glass thermoforming apparatus structured as described above will be described with reference to FIGS. 1 to 4.
  • Feeding the glass 2 from the feed section 15 in communication with the first station, and placing the glass 2 through the filming machine 7 onto the female mold 4 corresponding to the rotating disk 3 on the preheating section of the first station Here, the glass 2 can be preheated to 300 ° C to 400 ° C by heating the master mold 4 by the master mold heating device 91.
  • the rotating disc 3 drives the master mold 4 carrying the preheated glass 2 to be transferred to the heating section of the third station.
  • the heating block 6 of the heating structure can be moved to the corresponding preloading by the driving mechanism.
  • the desired curved surface forming portion of the glass 2 is heated to 700 ° C.
  • the temperature of the rest of the glass 2 is lower than the softening point of 50 ° C ⁇ 100 ° C and higher than the glass annealing point, in order to avoid unnecessary thermal deformation of the rest of the glass 2 respectively.
  • the heating block 6 is separated from the master mold 4 carrying the heated glass 2, and the rotating disk 3 drives the master mold 4 carrying the heated glass 2 to the male mold clamping section of the fifth station.
  • the male mold 5 is moved to a position corresponding to the mother mold 4 carrying the heated glass 2 by a driving mechanism or the like and is clamped with the female mold 4, wherein the male mold 5 is moved by a driving mechanism or the like.
  • the male mold 5 can be heated by the male mold heating device 92 during the process.
  • the rotating disk 3 drives the clamping die 4 and the male die 5 together to be sequentially transferred to the seventh station, the ninth station, the eleventh station, the second station and the fourth as the curved forming section.
  • the male mold 5 is pressed by the pressing device at the above-mentioned station to make the curved molding portion of the glass 2 to be curved, and can also be controlled by the master heating device 91 and the male heating device 92.
  • the male mold 5 and the female mold 4 are always kept in the mold clamping state and a predetermined pressure is applied to the curved molding portion of the glass 2 by the pressurizing device, thereby being transferred to the fourth station.
  • the curved portion of the glass 2 is substantially shaped.
  • the rotating disk 3 drives the master mold 4 and the male mold 5 carrying the curved glass 2 to be transported to the male mold splitting portion of the sixth station.
  • the male mold 5 is driven by the driving After the master mold of the six stations is divided into four molds, it is moved to the fifth station and clamped with the master mold 4 at the fifth station. After that, the rotating disk 3 drives the partial die 4 to be transferred to the cooling section of the eighth station, where the glass 2 is cooled to 300 ° C to 400 ° C by natural cooling or forced cooling, thereby completing the glass. 2 cooling stereotypes. Then, the rotating disk 3 drives the master die 4 carrying the cooled and shaped glass 2 to the discharge section of the tenth station. At this time, the glass 2 is taken out from the master die 4 by the film picker 8 and passed. The discharge section 16 communicating with the discharge section is removed from the furnace body 1.
  • the heating section 13 since the desired curved molding portion of the glass 2 is locally heated by the heating structure, accurate control of the temperature of the glass 2 can be ensured, and the heating time can be shortened, thereby improving the heating of the glass 2.
  • the efficiency can further improve the efficiency of the curved surface forming operation of the glass 2.
  • the curved surface forming process of the entire glass 2 is performed under the working environment in which the furnace body 1 is filled with nitrogen gas, so that the mother mold 4 and the male mold 5 can effectively avoid oxidation under repeated temperature changes, thereby improving the mold. The service life, and thus the surface molding quality of the glass 2 is effectively ensured.
  • a curved glass thermoforming method for forming a curved surface of a glass 2 using a curved glass thermoforming apparatus as described above.
  • the curved glass thermoforming method has the above-described effects brought about by the above-described curved glass thermoforming apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

一种曲面玻璃热成型设备及其方法,该曲面玻璃热成型设备包括具有进料口和出料口的炉体,炉体包括加热段、成型段以及降温段,且炉体内设置有能够旋转且用于依次向加热段、成型段和降温段循环传送玻璃的转动盘,转动盘上设置有用于承载玻璃的多个母模以能够与成型段中的公模配合而对玻璃压合成型,加热段上设置有能够与母模配合而直接对玻璃的所需曲面成型部分进行局部加热的加热结构。

Description

曲面玻璃热成型设备及其方法 技术领域
本公开涉及玻璃加工设备,具体地,涉及一种曲面玻璃热成型设备和曲面玻璃热成型方法。
背景技术
目前,对于手机等电子设备的曲面玻璃基板的需求量越来越多,为此用于加工曲面玻璃基板的多种成型设备也随之广为面世,其中,普遍采用玻璃热成型设备来实现曲面玻璃基板的加工,在曲面玻璃基板热成型过程中需要对玻璃基板进行加热,以使得玻璃基板升温至玻璃软化点,再通过对玻璃基板施加压力以使得玻璃变形为具有预定曲面的玻璃基板,由此完成曲面玻璃基板的成型。但现有技术中普遍存在对玻璃基板的加热效率较低的问题。
发明内容
本公开解决的问题是提供一种提高对玻璃的加热效率的曲面玻璃热成型设备以及利用该曲面玻璃热成型设备的曲面玻璃热成型方法。
为了实现上述目的,根据本公开的一个方面,提供一种曲面玻璃热成型设备,该曲面玻璃热成型设备包括具有进料口和出料口的炉体,所述炉体包括加热段、成型段以及降温段,且所述炉体内设置有能够旋转且用于依次向所述加热段、所述成型段和所述降温段循环传送玻璃的转动盘,所述转动盘上设置有用于承载玻璃的多个母模以能够与所述成型段中的公模配合而对玻璃压合成型,所述加热段上设置有能够与母模配合而直接对玻璃的所需曲面成型部分进行局部加热的加热结构。
可选地,所述加热结构具有用于对玻璃加热的加热块,该加热块对应于 所述玻璃的加热表面具有凹入面和突出面,所述突出面与玻璃的所需曲面成型部分的表面对应布置。
可选地,所述炉体对应于所述转动盘的部分形成为环形体或圆柱体,且在所述炉体的周向上形成有多个工位,所述加热段、所述成型段和所述降温段分别布置在所述工位上。
可选地,在所述转动盘的传送顺序上,所述炉体的首位工位上布置有所述加热段,且该加热段上设置有用于投入玻璃的投片机,所述炉体的末位工位上布置有所述降温段且该降温段上设置有取片机,所述首位工位和所述末位工位之间的至少两个工位上布置有所述成型段。
可选地,所述成型段包括公模合模段部和曲面成型段部,所述公模合模段部上设置有公模以用于与通过和所述加热结构配合而对玻璃加热后的母模进行合模,所述曲面成型段部上设置有加压装置以用于向合模后的公模施加压力以对玻璃进行曲面成型。
可选地,所述成型段中的公模与母模合模后一同随该母模旋转至所述降温段之前的工位上。
可选地,所述成型段还包括位于所述曲面成型段部和所述降温段之间并用于使公模和母模分模的公模分模段部。
可选地,所述公模分模段部与所述公模合模段部共用一个公模。
可选地,所述曲面成型段部设置在所述炉体的至少两个工位上,且在所述传送顺序上所述曲面成型段部依次布置。
可选地,所述炉体内设置有用于对母模和公模加热的加热装置。
可选地,所述加热装置包括设置在母模背对于玻璃的表面上的母模加热装置、以及设置在公模背对于玻璃的表面上的公模加热装置,所述加热装置上设置有用于控制所述母模加热装置和所述公模加热装置的加热温度的控制器。
可选地,所述降温段上设置有用于对公模清扫除尘的清扫装置。
可选地,所述炉体还包括具有所述进料口的进料段和具有所述出料口的出料段,在所述转动盘的传送顺序上,所述进料段与位于所述首位工位的所述加热段连通,所述出料段与位于所述末位工位的所述降温段连通。
可选地,所述炉体内设置有用于充入氮气的供气装置,以在玻璃的曲面成型过程中使得炉体内填充有预设压力的氮气。
可选地,所述进料口和所述出料口上分别设置有用于防止外部空气进入的多层单向门。
可选地,所述炉体对应于所述转动盘的部分沿周向形成有五个或大于五的奇数个工位,所述转动盘以每次隔一个工位步进的方式传送玻璃,且所述转动盘为完成玻璃的曲面成型所需的传送周期为两圈。
根据本公开的另一方面,还提供一种曲面玻璃热成型方法,所述曲面玻璃热成型方法利用如上所述的曲面玻璃热成型设备对玻璃进行曲面成型。
可选地,在所述加热结构对玻璃加热之前,先对玻璃进行预热至300℃~400℃。
可选地,在所述加热段,所述加热结构的加热块在高度方向上移动至距离玻璃的0.2mm~1mm的位置后,对玻璃的所需曲面成型部分进行加热至700℃~800℃。
可选地,在所述降温段对玻璃降温至300℃~400℃。
通过上述技术方案,即,在曲面玻璃热成型过程中,通过转动盘传送玻璃以使得玻璃依次经过设置在炉体内的加热段、成型段以及降温段,其中玻璃位于加热段时,通过加热结构对玻璃的所需曲面成型部分进行局部加热至预设温度,以使得玻璃的所需曲面成型部分快速升温至玻璃软化点后,将玻璃传送至成型段中对玻璃的所需曲面成型部分进行曲面成型,之后再经过降温段降温以冷却定型玻璃的同时去除玻璃的局部应力集中,从而完成玻璃的 曲面成型。如上所述,在加热段中由于通过加热结构对玻璃的所需曲面成型部分进行局部加热,从而提高了对于玻璃的加热效率,进而能够进一步提高对玻璃的曲面成型作业效率。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为根据本公开具体实施方式的曲面玻璃热成型设备的结构示意图;
图2为根据本公开具体实施方式的曲面玻璃热成型设备中加热结构的结构图;
图3为根据本公开具体实施方式的曲面玻璃热成型设备中公模与母模的合模状态图;
图4为根据本公开具体实施方式的曲面玻璃热成型设备中公模与母模的分模状态图。
附图标记说明
1     炉体               2     玻璃
3     转动盘             4     母模
5     公模               6     加热块
7     投片机             8     取片机
9     加热装置           11    进料口
12    出料口             13    加热段
14    降温段             15    进料段
16    出料段             41     弯曲部
52    施压部             61     凹入面
62    突出面             63、93 电加热棒
91    母模加热装置       92     公模加热装置
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
如图1所示,根据本公开的一个方面,提供一种曲面玻璃热成型设备,该曲面玻璃热成型设备包括具有进料口11和出料口12的炉体1,所述炉体1包括加热段13、成型段以及降温段14,且所述炉体1内设置有能够旋转且用于依次向所述加热段13、所述成型段和所述降温段14循环传送玻璃2的转动盘3,所述转动盘3上设置有用于承载玻璃2的多个母模4以能够与所述成型段中的公模5配合而对玻璃2压合成型,所述加热段13上设置有能够与母模4配合而直接对玻璃2的所需曲面成型部分进行局部加热的加热结构。即,在曲面玻璃热成型过程中,通过转动盘3传送玻璃2以使得玻璃2依次经过设置在炉体1内的加热段13、成型段以及降温段14,其中玻璃2位于加热段13时,通过加热结构对玻璃2的所需曲面成型部分进行局部加热至预设温度,以使得玻璃2的所需曲面成型部分快速升温至玻璃软化点后,将玻璃2传送至成型段中而对玻璃2的所需曲面成型部分进行曲面成型,之后再经过降温段14降温以冷却定型玻璃2的同时去除玻璃2的局部应力集中,从而完成玻璃2的曲面成型。如上所述,在加热段13中由于通过加热结构对玻璃2的所需曲面成型部分进行局部加热,从而提高了对于玻璃2的加热效率,进而能够进一步提高对玻璃2的曲面成型作业效率。
在此,可选地,如图2所示,所述加热结构具有用于对玻璃2加热的加 热块6,该加热块6对应于所述玻璃2的加热表面具有凹入面61和突出面62,所述突出面62与玻璃2的所需曲面成型部分的表面对应布置。其中,加热块6可以采用电加热、高频加热或微波加热等方式,图2中加热结构的加热块6采用了加热结构的内部设置有电加热棒63的电加热方式,在加热块6对玻璃2进行加热时,在所述加热段13,所述加热结构的加热块6在高度方向上可以移动至距离玻璃2的0.2mm~1mm的位置后,对玻璃2的所需曲面成型部分进行加热。另外,加热块6的突出面62对应于玻璃2的所需曲面成型部分的表面,而凹入面61则对应于玻璃2的其余部分的表面与所述其余部分的表面分离有预设距离,从而保证玻璃2的所需曲面成型部分被加热至玻璃软化点以上,同时玻璃2的其余部分的温度则处于玻璃软化点以下,从而有效对玻璃2的所需曲面成型部分进行曲面变形,并有效避免玻璃2的其余部分发生热变形,最小化成型缺陷。在此,可选地,在加热段13中,所述加热结构对玻璃2进行加热之前,可以先对玻璃2进行预热至300℃~400℃,以提高对玻璃2的加热效率。通过如上所述的加热块6直接对玻璃2的所需曲面成型部分进行加热,由此能够保证对于玻璃2温度的精确控制,缩短加热时间,从而有效提高对玻璃2的加热效率,并且还具有节约能源的效果。但本公开并不限定于此,所述加热结构还可以采用其他合理的结构,只要能够实现对玻璃2的所需曲面成型部分加热的功能即可,例如,所述加热结构的加热块6对应于玻璃2的加热表面可以形成为平面。
可选地,所述炉体1对应于所述转动盘3的部分形成为环形体或圆柱体,且所述炉体1的周向上形成有多个工位,所述加热段13、所述成型段和所述降温段14分别布置在所述工位上。其中,所述炉体1具有隔热保温、安装加热装置、驱动机构等辅助设备的作用。如上所述,通过转动盘3带动设置在各个母模4上的玻璃2循环旋转而依次传送至加热段13、成型段和降温段14中进行加热、成型和冷却定型工艺,最终连续地循环实现玻璃2的曲面成 型工艺,从而能够连续地生产而具有生产效率高和节能降耗的效果。
可选地,在所述转动盘3的传送顺序上,所述炉体1的首位工位上布置有所述加热段13,且该加热段13上设置有用于投入玻璃2的投片机7,所述炉体1的末位工位上布置有所述降温段14且该降温段14上设置有取片机8,所述首位工位和所述末位工位之间的至少两个工位上布置有所述成型段。在此,通过投片机7将玻璃2投入到加热段13上的母模4上,并利用转动盘3将玻璃2依次传送至成型段和降温段14分别进行曲面成型和冷却定型之后,通过取片机8将玻璃2从降温段14中取出,由此能够对玻璃2进行快速且连续地曲面成型加工作业。另外,由于成型段布置在首位工位和末位工位之间的至少两个工位上,从而能够稳定且可靠地对玻璃2进行曲面成型,提高曲面成型质量。
可选地,如图3所示,所述成型段包括公模合模段部和曲面成型段部,所述公模合模段部上设置有公模5以用于与通过和所述加热结构配合而对玻璃2加热后的母模4进行合模,所述曲面成型段部上设置有加压装置以用于向合模后的公模5施加压力以对玻璃2进行曲面成型。在此,例如,需要对玻璃2的两侧边缘进行曲面成型的情况下,如图4所示,母模4上形成有用于容纳玻璃2的容纳槽,该容纳槽的两侧形成有背向玻璃2的方向弯曲的弯曲部41,而公模5对应于所述弯曲部41的部分突出形成有具有与所述弯曲部41对应形状的施压部51。由此,通过公模5的施压部51与母模4的弯曲部41的配合而对玻璃2的两侧边缘施压,使得玻璃2的两侧边缘变形而形成曲面。但本公开并不限定于此,根据对玻璃2的实际所需曲面成型部分来合理地设计母模4和公模5的结构。另外,母模4和公模5可以采用石墨模具,由此具有耐高温性能良好、膨胀变形小和性能稳定的优点。在此,当采用石墨模具作为母模4和公模5的情况下,可以向炉体1内填充氮气,以防止石墨模具被氧化,提高使用寿命。但本公开并不限定于此,例如母模4和 公模5还可以采用不锈钢等模具。
可选地,所述成型段中的公模5与母模4合模后能够一同随该母模4旋转至所述降温段14之前的工位上。在此,成型段中还可以设置有用于控制对玻璃2施加的压力的控制装置,以能够精确控制玻璃2的曲面成型。如上所述,在对玻璃2进行曲面成型过程中公模5始终与母模4保持合模的状态而一同随母模4移动至降温段14之前,从而能够更稳定地实现玻璃2的曲面成型,避免玻璃2除所需曲面成型部分外的其余部分也发生热变形。
可选地,如图4所示,所述成型段还包括位于所述曲面成型段部和所述降温段14之间并用于使公模5和母模4分模的公模分模段部。在公模分模段部中公模5与母模4分模后,转动盘3带动母模4上的玻璃2旋转至降温段14进行冷却定型。在此,可以通过采用自然冷却或强制冷却方式对玻璃2进行降温,例如当采用强制冷却方式的情况下,可以通过对流风机向降温段14内吹风而实现对玻璃2的冷却定型。
可选地,所述公模分模段部与所述公模合模段部共用一个公模5。即,在公模分模段部中的公模5与母模4分模后可以通过旋转机构等驱动机构将该公模5移动至公模合模段部中,并且与传送至该公模合模段部的母模4进行合模。由此能够有效利用资源,降低曲面玻璃热成型设备的制造成本。但本公开并不限定于此,可以根据实际需要来合理地布置公模5的数量以及在炉体1内的位置。
可选地,所述曲面成型段部设置在所述炉体1的至少两个工位上,且在所述传送顺序上所述曲面成型段部依次布置。在此,在转动盘3采用步进式旋转方式的情况下,当传送顺序采用转动盘3沿炉体1的周向以每次步进一个工位的方式旋转的情况下,所述至少两个工位上的各个曲面成型段部分别相邻布置;当传送顺序采用转动盘3沿炉体1的周向以每次步进两个工位的方式旋转的情况下,相互邻近的所述至少两个工位上的各个曲面成型段部分 别间隔一个工位的方式布置,从而在转动盘3从某一工位上的曲面成型段部进行一次旋转时能够移动至另一工位上的曲面成型段部上。由此通过布置至少两个曲面成型段部而进一步提高玻璃2的曲面成型质量进而提高加工效率。
可选地,如图3和图4所示,所述炉体1内设置有用于对母模4和公模5加热的加热装置9。由此通过加热装置9控制对母模4和公模5的加热温度而能够满足玻璃2在各个工位上所需的温度范围。在此,可选地,如图3和图4所示,所述加热装置9可以包括设置在母模4背对于玻璃2的表面上的母模加热装置91、以及设置在公模5背对于玻璃2的表面上的公模加热装置92,所述加热装置9上设置有用于控制所述母模加热装置91和所述公模加热装置92的加热温度的控制器。其中,母模加热装置91和公模加热装置92可以采用设置有电加热棒93的电加热方式,通过利用母模加热装置91和公模加热装置92分别对母模4和公模5进行加热,从而通过母模4和/或公模5间接地将热量传递给玻璃2以实现精确控制玻璃2的温度。但本公开并不限定于此,也可以通过采用其他方式,例如通过也可以通过控制炉体1内的气体温度的方式来控制玻璃2的温度。
可选地,所述降温段14上设置有用于对所述转动盘3上的母模4清扫除尘的清扫装置。其中,在所述降温段14可以对玻璃2降温至300℃~400℃。根据如上所述的结构,降温段14中通过该清扫装置清扫后的转动盘3上的母模4转向下一个工位即首位工位,从而再次进行下一个曲面成型工艺循环。
可选地,所述炉体1还包括具有所述进料口11的进料段15和具有所述出料口12的出料段16,在所述转动盘3的传送顺序上,所述进料段15与位于所述首位工位的所述加热段13连通,所述出料段16与位于所述末位工位的所述降温段14连通。可选地,所述炉体1内设置有用于充入氮气的供气装置,以在玻璃的曲面成型过程中使得炉体1内填充有预设压力的氮气。由此,在玻璃2的整个曲面成型过程均在氮气环境下执行,从而能够有效防止 母模4和公模5被氧化的现象,进而显著提高了模具的使用寿命。
可选地,所述进料口11和所述出料口12上分别设置有用于防止外部空气进入的多层单向门。在此,可选地,炉体1内的氮气压力大于炉体1外的气压,由此向进料段15投入玻璃2或从出料段16取出玻璃2的过程中有效避免外部气体向炉体1的流入。
可选地,所述炉体1对应于所述转动盘3的部分沿周向形成有五个或大于五的奇数个工位,所述转动盘3以每次隔一个工位步进的方式传送玻璃2,且所述转动盘3为完成玻璃2的曲面成型所需的传送周期为两圈。在此,基于如上所述的技术方案,以下对具体实施方式之一的曲面玻璃热成型设备的结构进行具体说明。
如图1所示,所述炉体1对应于转动盘3的部分沿周向上形成有十一个工位,为了便于说明本实施方式的曲面玻璃热成型设备的结构,沿周向以逆时针方向对十一个工位依次命名为第一工位至第十一工位,并且由于转动盘3以每次隔一个工位步进的方式传送玻璃2,因此,转动盘3的传送顺序依次为第一工位、第三工位、第五工位、第七工位、第九工位、第十一工位、第二工位、第四工位、第六工位、第八工位以及第十工位。在此,第一工位即为首位工位,而第十工位即为末位工位。其中所述加热段13可以包括预加热段部和加热段部,所述预加热段部可以布置在作为首位工位的第一工位上且设置有如上所述的投片机7,所述加热段部布置在第三工位上且设置有如上所述的加热结构。所述成型段的所述公模合模段部布置在第五工位上,所述成型段的曲面成型段部可以分别布置在第七工位、第九工位、第十一工位、第二工位以及第四工位上,并且在布置有曲面成型段部的上述多个工位上公模5始终保持在与母模4合模的状态,在此状态下,可以通过驱动缸等结构对公模5施加压力,由此能够更加充分地对玻璃2的所需曲面成型部分进行施压使其可靠地实现弯曲变形,并且在此过程中由于公模5始终保持与 母模4合模的状态而避免玻璃2的其余部分发生热变形。所述成型段的公模分模段部布置在第六工位上,在此,第五工位和第六工位可以共用一个公模5而充分利用有效资源,降低设备的制造成本。在此,第六工位上的公模5从置于第六工位的母模4分模后被移动至第五工位上而与第五工位上的母模4进行合模。另外,所述降温段14可以包括降温段部和卸料段部,所述降温段部布置在第八工位上,并对玻璃2进行自然冷却或强制冷却,所述卸料段部布置在第十工位上,且布置有如上所述的取片机8,在该卸料段部上还可以继续对玻璃2进行自然冷却或强制冷却。
在此,结合图1至图4对如上所述结构的曲面玻璃热成型设备的工作过程进行说明。从与第一工位连通的进料段15送入玻璃2,并通过投片机7将玻璃2放置到位于第一工位的预加热段部上的转动盘3对应的母模4上,在此,可以通过母模加热装置91对母模4加热的方式对玻璃2进行预加热至300℃~400℃。之后转动盘3带动承载有预加热后的玻璃2的母模4传送至第三工位的加热段部上,此时,可以通过驱动机构将加热结构的加热块6移动至对应于承载有预加热后的玻璃2的母模4的位置,并且该加热块6在高度方向上移动至距离玻璃2的0.2mm~1mm的位置后,对玻璃2的所需曲面成型部分进行加热至700℃~800℃,而玻璃2的其余部分的温度则低于软化点50℃~100℃且高于玻璃退火点,以避免玻璃2的其余分别发生不必要的热变形。之后,从承载有加热后的玻璃2的母模4上分离加热块6,转动盘3带动承载有加热后的玻璃2的母模4传送至第五工位的公模合模段部上,此时,通过驱动机构等将公模5移动至对应于承载有加热后的玻璃2的所述母模4的位置并与该母模4合模,其中,在通过驱动机构等移动公模5的过程中可以通过公模加热装置92对公模5进行加热。之后,转动盘3一同带动合模后的母模4和公模5依次传送至作为曲面成型段部的第七工位、第九工位、第十一工位、第二工位和第四工位上,其中,在上述工位上通过加压 装置对公模5施加压力以使得玻璃2的曲面成型部分进行曲面成型,并且还可以通过母模加热装置91和公模加热装置92来控制玻璃2的加热温度。在玻璃2的曲面成型过程中,公模5与母模4始终保持在合模状态且通过加压设备对玻璃2的曲面成型部分施加预设压力,从而在传送到第四工位上时,玻璃2的曲面成型部分基本定型。之后,转动盘3带动承载有曲面成型后的玻璃2的母模4和公模5传送至第六工位的公模分模段部上,此时,通过驱动就等将公模5从第六工位上的母模4分模后,被移动至第五工位上而与第五工位上的母模4进行合模。之后,转动盘3带动分模后的母模4传送至第八工位的降温段部上,在此,通过自然冷却或强制冷却方式对玻璃2降温至300℃~400℃,由此完成玻璃2的冷却定型。之后转动盘3带动承载有冷却定型后的玻璃2的母模4传送至第十工位的卸料段部上,此时,通过取片机8从所述母模4上取出玻璃2并通过与该卸料段部连通的出料段16移出炉体1。如上所述,在加热段13中由于通过加热结构对玻璃2的所需曲面成型部分进行局部加热,从而能够保证对玻璃2温度的精确控制,缩短加热时间,由此提高了对于玻璃2的加热效率,进而能够进一步提高对玻璃2的曲面成型作业效率。另外,在整个玻璃2的曲面成型过程均在炉体1内填充有氮气的工作环境下执行,从而母模4和公模5在反复处于温度变化状态下能够有效避免被氧化,提高了模具的使用寿命,进而有效保证了玻璃2的曲面成型质量。
根据本公开的另一方面,还提供一种曲面玻璃热成型方法,所述曲面玻璃热成型方法利用如上所述的曲面玻璃热成型设备对玻璃2进行曲面成型。该曲面玻璃热成型方法具备上述曲面玻璃热成型设备所带来的如上所述的作用效果。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开 的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (20)

  1. 一种曲面玻璃热成型设备,其特征在于,该曲面玻璃热成型设备包括具有进料口(11)和出料口(12)的炉体(1),所述炉体(1)包括加热段(13)、成型段以及降温段(14),且所述炉体(1)内设置有能够旋转且用于依次向所述加热段(13)、所述成型段和所述降温段(14)循环传送玻璃(2)的转动盘(3),所述转动盘(3)上设置有用于承载玻璃(2)的多个母模(4)以能够与所述成型段中的公模(5)配合而对玻璃(2)压合成型,所述加热段(13)上设置有能够与母模(4)配合而直接对玻璃(2)的所需曲面成型部分进行局部加热的加热结构。
  2. 根据权利要求1所述的曲面玻璃热成型设备,其特征在于,所述加热结构具有用于对玻璃(2)加热的加热块(6),该加热块(6)对应于所述玻璃(2)的加热表面具有凹入面(61)和突出面(62),所述突出面(62)与玻璃(2)的所需曲面成型部分的表面对应布置。
  3. 根据权利要求1所述的曲面玻璃热成型设备,其特征在于,所述炉体(1)对应于所述转动盘(3)的部分形成为环形体或圆柱体,且在所述炉体(1)的周向上形成有多个工位,所述加热段(13)、所述成型段和所述降温段(14)分别布置在所述工位上。
  4. 根据权利要求3所述的曲面玻璃热成型设备,其特征在于,在所述转动盘(3)的传送顺序上,所述炉体(1)的首位工位上布置有所述加热段(13),且该加热段(13)上设置有用于投入玻璃(2)的投片机(7),所述炉体(1)的末位工位上布置有所述降温段(14)且该降温段(14)上设置有取片机(8),所述首位工位和所述末位工位之间的至少两个工位上布置有 所述成型段。
  5. 根据权利要求4所述的曲面玻璃热成型设备,其特征在于,所述成型段包括公模合模段部和曲面成型段部,所述公模合模段部上设置有公模(5)以用于与通过和所述加热结构配合而对玻璃(2)加热后的母模(4)进行合模,所述曲面成型段部上设置有加压装置以用于向合模后的公模(5)施加压力以对玻璃(2)进行曲面成型。
  6. 根据权利要求5所述的曲面玻璃热成型设备,其特征在于,所述成型段中的公模(5)与母模(4)合模后能够一同随该母模(4)旋转至所述降温段(14)之前的工位上。
  7. 根据权利要求6所述的曲面玻璃热成型设备,其特征在于,所述成型段还包括位于所述曲面成型段部和所述降温段(14)之间并用于使公模(5)和母模(4)分模的公模分模段部。
  8. 根据权利要求7所述的曲面玻璃热成型设备,其特征在于,所述公模分模段部与所述公模合模段部共用一个公模(5)。
  9. 根据权利要求5所述的曲面玻璃热成型设备,其特征在于,所述曲面成型段部设置在所述炉体(1)的至少两个工位上,且在所述传送顺序上所述曲面成型段部依次布置。
  10. 根据权利要求1所述的曲面玻璃热成型设备,其特征在于,所述炉体(1)内设置有用于对母模(4)和公模(5)加热的加热装置(9)。
  11. 根据权利要求10所述的曲面玻璃热成型设备,其特征在于,所述加热装置(9)包括设置在母模(4)背对于玻璃(2)的表面上的母模加热装置(91)、以及设置在公模(5)背对于玻璃(2)的表面上的公模加热装置(92),所述加热装置(9)上设置有用于控制所述母模加热装置(91)和所述公模加热装置(92)的加热温度的控制器。
  12. 根据权利要求1所述的曲面玻璃热成型设备,其特征在于,所述降温段(14)上设置有用于对所述转动盘(3)上的母模(4)清扫除尘的清扫装置。
  13. 根据权利要求1所述的曲面玻璃热成型设备,其特征在于,所述炉体(1)还包括具有所述进料口(11)的进料段(15)和具有所述出料口(12)的出料段(16),在所述转动盘(3)的传送顺序上,所述进料段(15)与位于所述首位工位的所述加热段(13)连通,所述出料段(16)与位于所述末位工位的所述降温段(14)连通。
  14. 根据权利要求13所述的曲面玻璃热成型设备,其特征在于,所述炉体(1)内设置有用于充入氮气的供气装置,以在玻璃(2)的曲面成型过程中使得炉体(1)内填充有预设压力的氮气。
  15. 根据权利要求13所述的曲面玻璃热成型设备,其特征在于,所述进料口(11)和所述出料口(12)上分别设置有用于防止外部空气进入的多层单向门。
  16. 根据权利要求3-15中任一项所述的曲面玻璃热成型设备,其特征在于,所述炉体(1)对应于所述转动盘(3)的部分沿周向形成有五个或大 于五的奇数个工位,所述转动盘(3)以每次隔一个工位步进的方式传送玻璃(2),且所述转动盘(3)为完成玻璃(2)的曲面成型所需的传送周期为两圈。
  17. 一种曲面玻璃热成型方法,其特征在于,所述曲面玻璃热成型方法利用根据权利要求1-16中任一项所述的曲面玻璃热成型设备对玻璃(2)进行曲面成型。
  18. 根据权利要求17所述的曲面玻璃热成型方法,其特征在于,在所述加热结构对玻璃(2)进行加热之前,先对玻璃(2)进行预热至300℃~400℃。
  19. 根据权利要求17所述的曲面玻璃热成型方法,其特征在于,在所述加热段(13),所述加热结构的加热块(6)在高度方向上移动至距离玻璃(2)的0.2mm~1mm的位置后,对玻璃(2)的所需曲面成型部分进行加热至700℃~800℃。
  20. 根据权利要求17-19中任一项所述的曲面玻璃热成型方法,其特征在于,在所述降温段(14)对玻璃(2)降温至300℃~400℃。
PCT/CN2018/088255 2017-05-25 2018-05-24 曲面玻璃热成型设备及其方法 WO2018214945A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18806679.9A EP3632858A1 (en) 2017-05-25 2018-05-24 Curved-glass thermoforming device and method therefor
KR1020197037501A KR102283632B1 (ko) 2017-05-25 2018-05-24 곡면 유리 열성형 설비 및 열성형 방법
JP2019560703A JP6928113B2 (ja) 2017-05-25 2018-05-24 曲面ガラスの熱成形装置及びその方法
US16/611,716 US11639306B2 (en) 2017-05-25 2018-05-24 Curved glass thermal forming device and method therefor
ZA2019/07379A ZA201907379B (en) 2017-05-25 2019-11-06 Curved-glass thermoforming device and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710380364.0A CN107010820B (zh) 2017-05-25 2017-05-25 曲面玻璃热成型设备及其方法
CN201710380364.0 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018214945A1 true WO2018214945A1 (zh) 2018-11-29

Family

ID=59451438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088255 WO2018214945A1 (zh) 2017-05-25 2018-05-24 曲面玻璃热成型设备及其方法

Country Status (8)

Country Link
US (1) US11639306B2 (zh)
EP (1) EP3632858A1 (zh)
JP (1) JP6928113B2 (zh)
KR (1) KR102283632B1 (zh)
CN (1) CN107010820B (zh)
TW (1) TWI725312B (zh)
WO (1) WO2018214945A1 (zh)
ZA (1) ZA201907379B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107010820B (zh) * 2017-05-25 2020-10-23 东旭光电科技股份有限公司 曲面玻璃热成型设备及其方法
CN107915396B (zh) * 2017-12-25 2023-12-08 深圳市创世纪机械有限公司 石墨模具加热装置和玻璃热弯机
CN109991832A (zh) * 2017-12-29 2019-07-09 晶石科技(中国)股份有限公司 一种智能手表3d曲面玻璃盖板
CN110117153B (zh) * 2018-02-06 2023-07-04 深圳市拓野智能股份有限公司 一种3d玻璃热弯装置及其方法
CN108439774A (zh) * 2018-05-30 2018-08-24 福耀玻璃工业集团股份有限公司 一种盖板玻璃的弯曲成型装置和弯曲成型方法
CN108640488B (zh) * 2018-07-25 2019-11-26 温州美富达工艺品有限公司 一种反弯式玻璃热弯炉
CN114075032A (zh) * 2020-08-11 2022-02-22 Oppo(重庆)智能科技有限公司 热成型方法、热成型设备、玻璃件、壳体和电子设备
CN112975457A (zh) * 2021-03-18 2021-06-18 广州市昊志机电股份有限公司 一种多轴转台和机床

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732548A (zh) * 2011-05-27 2014-04-16 康宁股份有限公司 玻璃模制系统及相关设备和方法
US20140373573A1 (en) * 2013-06-25 2014-12-25 Samsung Display Co., Ltd. Apparatus and method for manufacturing 3d glass
KR20150046843A (ko) * 2013-10-23 2015-05-04 (주)대호테크 곡면부를 갖는 글라스 성형기의 예열장치
CN105084722A (zh) * 2015-08-23 2015-11-25 洛阳新兆电子有限公司 一种手机3d曲面玻璃盖板热成型炉的加工工艺
CN105377781A (zh) * 2013-05-07 2016-03-02 康宁股份有限公司 制备成型玻璃制品的方法和设备
CN107010820A (zh) * 2017-05-25 2017-08-04 东旭科技集团有限公司 曲面玻璃热成型设备及其方法
CN207130148U (zh) * 2017-05-25 2018-03-23 东旭科技集团有限公司 曲面玻璃热成型设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3387963A (en) * 1964-06-25 1968-06-11 Pittsburgh Plate Glass Co Annealing lehr for glass sheets with reradiating side wall plates
CH1792472A4 (zh) * 1971-12-09 1975-06-30
US4057409A (en) * 1976-02-23 1977-11-08 Kudryavtsev Alexandr Alexandro Apparatus for making cathode-ray tube screens with integrally formed contoured fixtures
US4609391A (en) * 1984-11-23 1986-09-02 Glasstech, Inc. Method for forming glass sheets
US4891055A (en) * 1987-11-06 1990-01-02 Nippon Sheet Glass Co., Ltd. Method of forming glass product having smooth surface
JP2565974B2 (ja) 1988-03-24 1996-12-18 日本板硝子株式会社 ガラス製品の成形方法
CA1333220C (fr) * 1989-09-28 1994-11-29 Piezo Ceram Electronique Four annulaire a sole tournante pour conformer a un profil voulu l'une des faces d'ebauches de lentilles optiques par affaissement thermique et application de vide
DE4115235C1 (zh) * 1991-05-10 1992-12-24 Vegla Vereinigte Glaswerke Gmbh, 5100 Aachen, De
US5908483A (en) * 1996-10-30 1999-06-01 Lynch Machinery, Inc. Apparatus and process for molding of glass
KR100839731B1 (ko) * 2005-01-19 2008-06-19 호야 가부시키가이샤 몰드 프레스 성형 몰드 및 광학소자의 제조방법
US20100281919A1 (en) * 2009-05-06 2010-11-11 Solfocus, Inc. Device and Method for Shaping Optical Components
US8573005B2 (en) * 2011-02-24 2013-11-05 Corning Incorporated Apparatus and method for mass producing 3D articles from 2D glass-containing sheets
US8816252B2 (en) * 2011-11-22 2014-08-26 Corning Incorporated Methods and apparatus for localized heating and deformation of glass sheets
US8924006B2 (en) * 2011-11-30 2014-12-30 Corning Incorporated Device and methods for picking and placing hot 3D glass
KR101735974B1 (ko) * 2012-09-28 2017-05-15 도시바 기카이 가부시키가이샤 성형 장치
JP2014139121A (ja) * 2012-11-07 2014-07-31 Nippon Electric Glass Co Ltd ディスプレイ用カバーガラスの製造方法及びディスプレイ用カバーガラスの製造装置
EP2958863B1 (en) * 2013-02-20 2018-09-26 Corning Incorporated Method and apparatus for forming shaped glass articles
KR20170131128A (ko) * 2016-05-20 2017-11-29 임홍주 3d 유리 성형장치 및 방법
CN205874202U (zh) * 2016-07-27 2017-01-11 深圳市宇泰隆科技有限公司 一种3d玻璃的加工装置
CN106517762A (zh) * 2016-10-08 2017-03-22 深圳市普盛旺科技有限公司 电子设备玻璃热弯成型炉及其自动上下料装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103732548A (zh) * 2011-05-27 2014-04-16 康宁股份有限公司 玻璃模制系统及相关设备和方法
CN105377781A (zh) * 2013-05-07 2016-03-02 康宁股份有限公司 制备成型玻璃制品的方法和设备
US20140373573A1 (en) * 2013-06-25 2014-12-25 Samsung Display Co., Ltd. Apparatus and method for manufacturing 3d glass
KR20150046843A (ko) * 2013-10-23 2015-05-04 (주)대호테크 곡면부를 갖는 글라스 성형기의 예열장치
CN105084722A (zh) * 2015-08-23 2015-11-25 洛阳新兆电子有限公司 一种手机3d曲面玻璃盖板热成型炉的加工工艺
CN107010820A (zh) * 2017-05-25 2017-08-04 东旭科技集团有限公司 曲面玻璃热成型设备及其方法
CN207130148U (zh) * 2017-05-25 2018-03-23 东旭科技集团有限公司 曲面玻璃热成型设备

Also Published As

Publication number Publication date
KR20200059190A (ko) 2020-05-28
CN107010820A (zh) 2017-08-04
JP6928113B2 (ja) 2021-09-01
ZA201907379B (en) 2021-07-28
US20200109077A1 (en) 2020-04-09
TWI725312B (zh) 2021-04-21
US11639306B2 (en) 2023-05-02
CN107010820B (zh) 2020-10-23
TW201904894A (zh) 2019-02-01
EP3632858A1 (en) 2020-04-08
JP2020518548A (ja) 2020-06-25
KR102283632B1 (ko) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2018214945A1 (zh) 曲面玻璃热成型设备及其方法
JP5934801B2 (ja) 成形装置
US7695233B2 (en) Substrate processing apparatus
WO2018040386A1 (zh) 一种手机玻璃及手表面盖热弯成型机
WO2020062575A1 (zh) 3d玻璃热弯机和3d玻璃成型方法
CN108439774A (zh) 一种盖板玻璃的弯曲成型装置和弯曲成型方法
CN105084722A (zh) 一种手机3d曲面玻璃盖板热成型炉的加工工艺
TW202039379A (zh) 玻璃板之成形裝置
CN207130148U (zh) 曲面玻璃热成型设备
JP6116366B2 (ja) 金型組
CN100474485C (zh) 用于生产平面荧光灯上板的系统
CN108455832A (zh) 一种盖板玻璃的弯曲成型装置和弯曲成型方法
JP4849785B2 (ja) 真空熱処理設備
JP2009289973A (ja) リフローはんだ付け方法およびリフローはんだ付け装置
CN205420154U (zh) 一种热弯机
TWI601703B (zh) 玻璃成型爐
TWI441260B (zh) 薄膜太陽能電池的退火裝置
CN216528807U (zh) 一种半导体晶圆连续退火处理设备
CN214654442U (zh) 一种弧形弯曲玻璃的热弯成型装置
CN112811796A (zh) 一种弧形弯曲玻璃的热弯成型方法
WO2019084910A1 (zh) 一种热弯机
JP2601514Y2 (ja) 連続式熱処理炉
KR20150072440A (ko) 유리 성형체의 제조 방법, 및 유리 성형체의 제조 장치
CN110963677A (zh) 多曲面玻璃的成型方法及成型装置
CN216039261U (zh) 一种新型双曲钢化炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560703

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018806679

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018806679

Country of ref document: EP

Effective date: 20200102