WO2018214348A1 - 千米深井提升机主轴多失效模式可靠性评估方法 - Google Patents

千米深井提升机主轴多失效模式可靠性评估方法 Download PDF

Info

Publication number
WO2018214348A1
WO2018214348A1 PCT/CN2017/102000 CN2017102000W WO2018214348A1 WO 2018214348 A1 WO2018214348 A1 WO 2018214348A1 CN 2017102000 W CN2017102000 W CN 2017102000W WO 2018214348 A1 WO2018214348 A1 WO 2018214348A1
Authority
WO
WIPO (PCT)
Prior art keywords
failure
main shaft
hoist
shaft
stiffness
Prior art date
Application number
PCT/CN2017/102000
Other languages
English (en)
French (fr)
Inventor
卢昊
朱真才
曹国华
周公博
李伟
彭玉兴
沈刚
王大刚
江帆
Original Assignee
中国矿业大学
徐州煤矿安全设备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 徐州煤矿安全设备制造有限公司 filed Critical 中国矿业大学
Priority to CA3014415A priority Critical patent/CA3014415C/en
Priority to AU2017396541A priority patent/AU2017396541B9/en
Priority to RU2018130014A priority patent/RU2682821C1/ru
Publication of WO2018214348A1 publication Critical patent/WO2018214348A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/02Computing arrangements based on specific mathematical models using fuzzy logic
    • G06N7/04Physical realisation

Definitions

  • the invention relates to a system reliability evaluation method for a mechanical product of a kilometer deep well hoist main shaft and considering the failure mode probability correlation, and belongs to the technical research field of mechanical structure reliability technology.
  • the maximum static tension of the hoist and the number of winding layers of the spindle reel are greatly increased, resulting in a wire rope on the reel that is much larger than the winding pressure of the existing structure, and the tension and torque of the wire rope acting on the main shaft A significant increase.
  • the static load of the hoist terminal will reach 240t or more, and the economic lifting speed will reach 20m/s or more.
  • the huge dynamic load generated will seriously endanger the service life of the main shaft. Therefore, the kilometer deep well hoist puts higher requirements on the reliability of the main shaft.
  • the object of the present invention is to provide a feasible probabilistic modeling and analysis method for solving system reliability assessment in a multi-failure mode combined failure state of a kilometer deep well hoist spindle.
  • a multi-failure mode reliability evaluation method for a shaft deep shaft hoist spindle Firstly, a parametric 3D model of the main shaft is established according to the structural size of the main shaft. Secondly, a sampling matrix of random variables is established according to the probability attribute of the spindle random variable, and used. The finite element method is used to solve the strength and stiffness response of the main axis under the sampling matrix. Again, the neural network method is used to establish an explicit function between the response and the random variable matrix. According to the strength and stiffness design criteria, the intensity and stiffness failure modes are respectively established. The function function is then used to calculate the two failure probabilities using the saddle point approximation method. Finally, the joint failure probability model between the two failure modes is constructed by Clayton copula function, and the interval reliability method is used to solve the system reliability under joint failure.
  • Step 1 Determine the mean value and variance of the dimensional parameters, material property parameters and working condition loads in the shaft of the deep shaft hoist of the kilometer, and determine the distribution type of each parameter;
  • Step 2 According to the structural parameters of the main shaft of the hoist, establish a three-dimensional parametric model of the main shaft, and introduce the three-dimensional parametric model of the main shaft into the finite element software for static analysis;
  • Step 3 According to the mean and variance of each basic parameter of the main axis determined in step 1, combined with the sampling method, establish a random sampling matrix of each basic parameter;
  • Step 4 repeatedly generate a new three-dimensional model of the main axis according to the parameter values of each row of the random sampling matrix, and perform finite element analysis again to obtain a new stress and strain response sample;
  • Step 5 Using a neural network method to fit the random sampling matrix and the stress-strain value, and obtain a functional relationship between the stress-strain response of the main axis and the change of the structural performance parameter;
  • Step 6 According to the requirements of the strength and stiffness of the hoist main shaft, establish the reliability function function under the failure state of strength and stiffness respectively; calculate the third moment and the fourth moment according to the mean and variance of the basic parameters, and then according to the established The function function obtains the mean, variance, third moment and fourth moment of the function function, and uses the saddle point approximation method to calculate the failure probability of the strength and stiffness failure respectively;
  • Step 7 The correlation coefficient between strength failure and stiffness failure is obtained by statistical method.
  • the joint failure distribution of strength and stiffness failure is established by Clayton copula function, and then the interval reliability method is used to solve the system failure probability of failure correlation.
  • Step 1 is specifically as follows:
  • Step 2 is specifically as follows:
  • the finite element model of the main shaft is established, and external loads such as bending moment, torque and maximum static load are applied.
  • the structural parameters of the main shaft include the diameter and length of each shaft section of the main shaft, the diameter and length of each reel, etc.; the material performance parameters include elastic modulus, Poisson's ratio and density.
  • Step 4 is specifically as follows:
  • variable value is modified in the command stream file of the modeling process to generate a new spindle model
  • the newly generated spindle model is analyzed using a command stream of finite element analysis to obtain a new stress-strain response value
  • Step 7 is specifically as follows:
  • Random sampling is performed according to the distribution type of the spindle random variable, and the calculated value between the strength and the stiffness failure is obtained by the reliability function function established in step 6;
  • the strength failure probability and the stiffness failure probability and the joint failure probability obtained in step 6 are substituted to calculate the system failure probability of the hoist spindle.
  • FIG. 1 is a flow chart showing the implementation of a multi-failure mode reliability evaluation method for a shaft of a deep well hoist in the present invention.
  • Figure 2 is a two-dimensional structure diagram of the hoist main shaft.
  • Figure 3 is a probability density plot of the Clayton copula function.
  • Figure 4 is a scatter plot of the Clayton copula function.
  • D1 is the diameter of the joint between the main shaft and the left bearing
  • L1 is the length of the joint between the main shaft and the left bearing
  • D2 is The diameter of the spindle mounting sleeve
  • D3 is the diameter of the joint between the main shaft and the right bearing
  • L2 is the length of the joint between the main shaft and the right bearing.
  • the system reliability evaluation method proposed by the present invention considering multiple failure modes includes the following steps:
  • Step 1 Through the on-site mapping and design drawings of the hoist main shaft, obtain the mean value and variance of the dimensional parameters, material properties and working condition loads, and determine the distribution type of each parameter;
  • Step 2 According to the structural parameters of the hoist main shaft, a three-dimensional parametric model of the main shaft is established, and the three-dimensional parametric model of the main shaft is introduced into the finite element software for static analysis.
  • Step 3 According to the mean and variance of each basic parameter of the main axis determined in step 1, combined with WSP (Wootton, Sergent, Phan-Tan-Luu) sampling method, a random sampling matrix of each basic parameter is established;
  • WSP Wiotton, Sergent, Phan-Tan-Luu
  • Step 4 repeatedly generate a new three-dimensional model of the main axis according to the parameter values of each row of the random sampling matrix, and perform finite element analysis again to obtain a new stress and strain response sample;
  • Step 5 Using a neural network method to fit a random sampling matrix (input sample) and a stress-strain value (response sample) to obtain a functional relationship between the stress-strain response of the spindle and the change in structural performance parameters;
  • Step 6 According to the requirements of the strength and stiffness of the hoist main shaft, establish the reliability function function under the failure state of strength and stiffness respectively; calculate the third moment and the fourth moment according to the mean and variance of the basic parameters, and then according to the established The function function obtains the mean, variance, third moment and fourth moment of the function function, and uses the saddle point approximation method to calculate the failure probability of the strength and stiffness failure respectively;
  • Step 7 The correlation coefficient between strength failure and stiffness failure is obtained by statistical method.
  • the joint failure distribution of strength and stiffness failure is established by Clayton copula function, and then the interval reliability method is used to solve the system failure probability of failure correlation.
  • the present invention is directed to the structural stability of the strength and stiffness associated with the proposed spindle structure of the deep well hoist as shown in FIG.
  • the spindle structure is subjected to bending moments and torque. Based on the structural dimensions and load conditions of the main shaft, a random sampling matrix of the main shaft can be established, and the response sample matrix of the stress and strain of the main shaft can be obtained by the finite element method.
  • the explicit function relationship between the response and the input matrix is established by the neural network method, and then the explicit limit state equations of the two failure modes are established according to the strength criterion and the stiffness criterion of the hoist main shaft, namely the limit state equation of the strength failure and the limit of the stiffness failure. Equation of state.
  • Table 1 gives The probability information of the spindle random variable in this embodiment is shown.
  • D1 is the diameter of the joint between the main shaft and the left bearing
  • L1 is the length of the joint between the main shaft and the left bearing
  • D2 is the diameter at the main shaft mounting sleeve
  • D3 is the diameter of the joint between the main shaft and the right bearing
  • L2 is The length of the joint between the main shaft and the right bearing.
  • the n sample values of random variables of random spindle structure are generated by random sampling method, and the explicit limit state equations of the two failure modes are substituted, and n response values are calculated respectively.
  • the intensity response vector and stiffness are calculated by using the commands in MATLAB.
  • the correlation coefficient between the response vectors and the pending parameters of the Clayton copula function Substitution of failure probabilities Pf 1 and Pf 2 into the formula
  • P f1 is the maximum failure probability in the failure mode of the hoist spindle
  • P fi is the failure probability of the ith failure mode
  • P fij is the ith and jth
  • the joint failure probability between failure modes, P fs represents the probability of system failure associated with the failure of the hoist spindle.
  • the method proposes a system reliability solution method for the strength of the kilometer deep well hoist main shaft considering the strength and stiffness failure correlation.
  • the parametric 3D model of the main axis is established according to the structural size of the main shaft.
  • the sampling matrix of the random variable is established, and the finite element method is used to solve the strength and stiffness response of the main axis under the sampling matrix.
  • the neural network method is used to establish an explicit function between the response and the random variable matrix.
  • the explicit function functions in the intensity and stiffness failure modes are respectively established.
  • the saddle point approximation method is used to calculate the two failure probabilities.
  • the joint failure probability model between two failure modes is constructed by Clayton copula function, and the reliability of the system under joint failure is solved by the interval reliability method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Databases & Information Systems (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Biomedical Technology (AREA)
  • Fuzzy Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种考虑多失效模式的千米深井提升机主轴的可靠性评估方法,首先,根据主轴的结构尺寸建立主轴的参数化三维模型,其次,根据主轴随机变量的概率属性,建立随机变量的抽样矩阵,并使用有限元方法求解抽样矩阵下主轴的强度和刚度响应,再次,使用神经网络方法建立响应与随机变量矩阵之间的显式函数,根据强度和刚度设计准则,分别建立强度和刚度失效模式下的显式功能函数,然后,使用鞍点逼近方法计算两种失效概率,最后,通过Clayton copula函数构建两种失效模式间的联合失效概率模型,使用区间可靠性方法求解联合失效下的系统可靠性。本发明考虑了强度与刚度失效间的概率相关性,能够更加准确和合理地评估提升机主轴的系统可靠性。

Description

千米深井提升机主轴多失效模式可靠性评估方法 技术领域
本发明是一种针对千米深井提升机主轴并考虑失效模式概率相关时的机械产品的系统可靠性评估方法,属于机械结构可靠性技术研究领域。
背景技术
我国目前大多数煤井都是浅井,深至地面500~800m,而煤炭资源埋藏深度在1000~2000m的约占总储量的53%,必须采用千米深井提升系统(包括提升机、提升容器、提升钢丝绳等)。作为提升机的主要承载部件,主轴承担了提升、下放载荷的全部扭矩,同时也承受着两侧钢丝绳的拉力。随着井深达到千米以上,提升机最大静张力以及主轴卷筒的缠绕层数大大增加,导致钢丝绳在卷筒上产生远大于现有结构的缠绕压力,钢丝绳作用在主轴上的拉力以及扭矩也显著增加。当井深达到2000m时,提升机终端静载荷将达到240t以上,经济提升速度将达到20m/s以上,由此产生的巨大动载荷将严重危及主轴的使用寿命。因此,千米深井提升机对主轴的可靠性提出了更高的要求。
千米深井提升机主轴的故障种类较多,且形式各异,而强度失效和刚度失效是影响提升机安全、稳定工作的最主要的失效模式。由于激励作用的同源性和表征系统特征参数的同一性,使得提升机主轴的故障间普遍存在相关性,忽略这一特征将难以获得准确的失效数据和可靠性信息。
发明内容
发明目的:本发明的目的是为解决千米深井提升机主轴多失效模式联合失效状态下的系统可靠性评估提供一种可行的概率建模与分析方法。
为了实现上述目的,本发明采用了如下的技术方案:
一种千米深井提升机主轴多失效模式可靠性评估方法,首先,根据主轴的结构尺寸建立主轴的参数化三维模型,其次,根据主轴随机变量的概率属性,建立随机变量的抽样矩阵,并使用有限元方法求解抽样矩阵下主轴的强度和刚度响应,再次,使用神经网络方法建立响应与随机变量矩阵之间的显式函数,根据强度和刚度设计准则,分别建立强度和刚度失效模式下的显式功能函数,然后,使用鞍点逼近方法计算两种失效概率,最后,通过Clayton copula函数构建两种失效模式间的联合失效概率模型,使用区间可靠性方法求解联合失效下的系统可靠性。
其实现步骤具体如下:
步骤1、确定千米深井提升机主轴中尺寸参数、材料属性参数及工况载荷的均值和方差,确定各参数的分布类型;
步骤2、根据提升机主轴的结构参数,建立主轴的三维参数化模型,将主轴的三维参数化模型导入有限元软件,进行静力学分析;
步骤3、根据步骤1所确定的主轴各个基本参数的均值和方差,结合抽样方法,建立各基本参数的随机抽样矩阵;
步骤4、根据随机抽样矩阵每一行的参数值,重复生成新的主轴的三维模型,并重新进行有限元分析,获得新的应力与应变的响应样本;
步骤5、使用神经网络方法将随机抽样矩阵和应力应变值进行拟合,得到主轴应力应变响应与结构性能参数变化的函数关系;
步骤6、根据提升机主轴强度和刚度的要求,分别建立强度和刚度失效状态下的可靠性功能函数;根据基本参数的均值和方差,计算其三阶矩和四阶矩,进而根据已建立的功能函数,求得功能函数的均值、方差、三阶矩和四阶矩,使用鞍点逼近方法分别计算强度和刚度失效的失效概率;
步骤7、通过统计方法获得强度失效与刚度失效间的关联系数,通过Clayton copula函数建立强度与刚度失效的联合失效分布,进而结合区间可靠性方法求解失效相关时的系统失效概率。
步骤1具体为:
确定提升机主轴的结构尺寸和材料属性的均值和方差;
确定提升机主轴的工况,由此确定各工况下主轴所承担的静载荷、动载荷、弯矩和扭矩等载荷的均值和方差;
确定上述各参数的分布类型。
步骤2具体为:
通过提升机主轴的参数化建模,生成建模的命令流文件,导出建立的主轴模型,保存在工作目录中,
通过提升机主轴的有限元分析,生成分析过程的命令流文件,并导出包含分析结果的文本文件,保存在同一工作目录下;
根据主轴的材料性能参数,建立主轴的有限元模型,并施加弯矩、扭矩及最大静载荷等外载荷,
其中,主轴的结构参数包括主轴各轴段的直径、长度,各卷筒的直径和长度等;材料性能参数包括弹性模量、泊松比和密度。
步骤4具体为:
在设定的工作目录下,根据所生成的随机抽样矩阵,在建模过程的命令流文件中进行变量值的修改,生成新的主轴模型;
使用有限元分析的命令流分析新生成的主轴模型,获得新的应力应变响应值;
重复上述步骤,直到随机变量矩阵中的每组随机变量值都获得了对应的应力应变响应值。
步骤7具体为:
根据主轴随机变量的分布类型进行随机抽样,并通过步骤6所建立的可靠性功能函数获得强度与刚度失效之间的计算值;
使用统计方法求得两失效模式间的秩相关系数,并计算Clayton copula的待定参数;
使用Clayton copula计算强度与刚度的联合失效概率;
使用二阶窄界限理论,代入步骤6所得到的强度失效概率和刚度失效概率以及联合失效概率,计算提升机主轴的系统失效概率。
本发明方法的优点和积极效果在于:
1)采用WSP(Wootton,Sergent,Phan-Tan-Luu)抽样方法能够建立提升机主轴中多维随机变量的抽样矩阵,在保证非线性函数拟合精度的基础上,降低基于有限元分析的试验设计次数;
2)考虑了强度与刚度失效间的概率相关性,相对于失效独立假设,能够更加准确和合理地评估提升机主轴的系统可靠性;
3)提升机主轴强度与刚度失效表现为较强的正相关性,采用Clayton copula能够准确地建立这种正相关的概率模型,避免了Gaussian copula只能描述对称相关的缺点,从而提高提升机主轴系统可靠性评估的精度。
附图说明
图1为本发明的千米深井提升机主轴多失效模式可靠性评估方法的实现流程图。
图2为提升机主轴的二维结构图。
图3为Clayton copula函数的概率密度图。
图4为Clayton copula函数的散点图。
其中,D1为主轴与左侧轴承配合处的直径,L1为主轴与左侧轴承配合处的长度,D2为 主轴安装套筒处的直径,D3为主轴与右侧轴承配合处的直径,L2为主轴与右侧轴承配合处的长度。
具体实施方式:
下面结合附图和实施例对本发明做进一步的说明。
如图1所示,本发明所提出的考虑多失效模式的系统可靠性评估方法,包含如下步骤:
步骤1、通过现场测绘和提升机主轴的设计图纸,获取尺寸参数、材料属性及工况载荷的均值和方差,确定各参数的分布类型;
步骤2、根据提升机主轴的结构参数,建立主轴的三维参数化模型,将主轴的三维参数化模型导入有限元软件,进行静力学分析。
步骤3、根据步骤1所确定的主轴各个基本参数的均值和方差,结合WSP(Wootton,Sergent,Phan-Tan-Luu)抽样方法,建立各基本参数的随机抽样矩阵;
步骤4、根据随机抽样矩阵每一行的参数值,重复生成新的主轴的三维模型,并重新进行有限元分析,获得新的应力与应变的响应样本;
步骤5、使用神经网络方法将随机抽样矩阵(输入样本)和应力应变值(响应样本)进行拟合,得到主轴应力应变响应与结构性能参数变化的函数关系;
步骤6、根据提升机主轴强度和刚度的要求,分别建立强度和刚度失效状态下的可靠性功能函数;根据基本参数的均值和方差,计算其三阶矩和四阶矩,进而根据已建立的功能函数,求得功能函数的均值、方差、三阶矩和四阶矩,使用鞍点逼近方法分别计算强度和刚度失效的失效概率;
步骤7、通过统计方法获得强度失效与刚度失效间的关联系数,通过Clayton copula函数建立强度与刚度失效的联合失效分布,进而结合区间可靠性方法求解失效相关时的系统失效概率。
实施例:
为了更充分地了解该发明的特点及工程适用性,本发明针对如图2所示拟建的千米深井提升机主轴结构,进行强度和刚度相关的系统可靠性求解。
该主轴结构承受弯矩和扭矩作用。综合主轴的结构尺寸和载荷条件,可以建立主轴随机抽样矩阵,并通过有限元方法获得主轴应力应变的响应样本矩阵。通过神经网络方法建立响应与输入矩阵的显式函数关系,进而根据提升机主轴的强度准则和刚度准则建立两种失效模式的显式极限状态方程,即强度失效的极限状态方程以及刚度失效的极限状态方程。表1给 出了本实施例中主轴随机变量的概率信息。其中,D1为主轴与左侧轴承配合处的直径,L1为主轴与左侧轴承配合处的长度,D2为主轴安装套筒处的直径,D3为主轴与右侧轴承配合处的直径,L2为主轴与右侧轴承配合处的长度。
表1主轴中随机变量的概率统计特性
Figure PCTCN2017102000-appb-000001
该实施例中利用本发明中所提出的失效概率的求解方法得到强度失效模式下的失效概率为Pf1=0.003241,刚度失效概率为Pf2=0.005173。通过随机抽样方法生成随机主轴结构随机变量的n个样本值,并代入两种失效模式的显式极限状态方程,分别计算得到n个响应值,并利用MATLAB中的命令计算得到强度响应向量和刚度响应向量之间的相关系数,并估计Clayton copula函数的待定参数。将失效概率Pf1和Pf2代入公式
Figure PCTCN2017102000-appb-000002
式中,m表示提升机主轴失效模式的个数,Pf1表示提升机主轴失效模式中的最大失效概率,Pfi表示第i个失效模式的失效概率,Pfij表示第i个和第j个失效模式间的联合失效概率,Pfs表示提升机主轴失效相关的系统失效概率。
得到考虑主轴结构强度和刚度相关性的失效概率为Pfs=0.008536。通过仿真方法计算得到的系统失效概率为Pfsm=0.008746。
综上所述,本方法提出了一种针对千米深井提升机主轴,考虑强度和刚度失效相关性的系统可靠性求解方法。首先,根据主轴的结构尺寸建立主轴的参数化三维模型,其次,根据主轴随机变量的概率属性,建立随机变量的抽样矩阵,并使用有限元方法求解抽样矩阵下主轴的强度和刚度响应,再次,使用神经网络方法建立响应与随机变量矩阵之间的显式函数,根据强度和刚度设计准则,分别建立强度和刚度失效模式下的显式功能函数,然后,使用鞍点逼近方法计算两种失效概率,最后,通过Clayton copula函数构建两种失效模式间的联合失效概率模型,使用区间可靠性方法求解联合失效下的系统可靠性。
本发明未详细阐述的部分属于本领域研究人员的公知技术。

Claims (6)

  1. 一种千米深井提升机主轴多失效模式可靠性评估方法,其特征在于:首先,根据主轴的结构尺寸建立主轴的参数化三维模型,其次,根据主轴随机变量的概率属性,建立随机变量的抽样矩阵,并使用有限元方法求解抽样矩阵下主轴的强度和刚度响应,再次,使用神经网络方法建立响应与随机变量矩阵之间的显式函数,根据强度和刚度设计准则,分别建立强度和刚度失效模式下的显式功能函数,然后,使用鞍点逼近方法计算两种失效概率,最后,通过Clayton copula函数构建两种失效模式间的联合失效概率模型,使用区间可靠性方法求解联合失效下的系统可靠性。
  2. 根据权利要求1所述千米深井提升机主轴多失效模式可靠性评估方法,其特征在于,其实现步骤具体如下:
    步骤1、确定千米深井提升机主轴中尺寸参数、材料属性参数及工况载荷的均值和方差,确定各参数的分布类型;
    步骤2、根据提升机主轴的结构参数,建立主轴的三维参数化模型,将主轴的三维参数化模型导入有限元软件,进行静力学分析;
    步骤3、根据步骤1所确定的主轴各个基本参数的均值和方差,结合抽样方法,建立各基本参数的随机抽样矩阵;
    步骤4、根据随机抽样矩阵每一行的参数值,重复生成新的主轴的三维模型,并重新进行有限元分析,获得新的应力与应变的响应样本;
    步骤5、使用神经网络方法将随机抽样矩阵和应力应变值进行拟合,得到主轴应力应变响应与结构性能参数变化的函数关系;
    步骤6、根据提升机主轴强度和刚度的要求,分别建立强度和刚度失效状态下的可靠性功能函数;根据基本参数的均值和方差,计算其三阶矩和四阶矩,进而根据已建立的功能函数,求得功能函数的均值、方差、三阶矩和四阶矩,使用鞍点逼近方法分别计算强度和刚度失效的失效概率;
    步骤7、通过统计方法获得强度失效与刚度失效间的关联系数,通过Clayton copula函数建立强度与刚度失效的联合失效分布,进而结合区间可靠性方法求解失效相关时的系统失效概率。
  3. 根据权利要求2所述的一种千米深井提升机主轴多失效模式可靠性评估方法,其特征在于,步骤1具体为:
    确定提升机主轴的结构尺寸和材料属性的均值和方差;
    确定提升机主轴的工况,由此确定各工况下主轴所承担的静载荷、动载荷、弯矩和扭矩等载荷的均值和方差;
    确定上述各参数的分布类型。
  4. 根据权利要求2所述的一种千米深井提升机主轴多失效模式可靠性评估方法,其特征在于,步骤2具体为:
    通过提升机主轴的参数化建模,生成建模的命令流文件,导出建立的主轴模型,保存在工作目录中,
    通过提升机主轴的有限元分析,生成分析过程的命令流文件,并导出包含分析结果的文本文件,保存在同一工作目录下;
    根据主轴的材料性能参数,建立主轴的有限元模型,并施加弯矩、扭矩及最大静载荷等外载荷,
    其中,主轴的结构参数包括主轴各轴段的直径、长度,各卷筒的直径和长度等;材料性能参数包括弹性模量、泊松比和密度。
  5. 根据权利要求2所述的一种千米深井提升机主轴多失效模式可靠性评估方法,其特征在于,步骤4具体为:
    在设定的工作目录下,根据所生成的随机抽样矩阵,在建模过程的命令流文件中进行变量值的修改,生成新的主轴模型;
    使用有限元分析的命令流分析新生成的主轴模型,获得新的应力应变响应值;
    重复上述步骤,直到随机变量矩阵中的每组随机变量值都获得了对应的应力应变响应值。
  6. 根据权利要求2所述的一种千米深井提升机主轴多失效模式可靠性评估方法,其特征在于,步骤7具体为:
    根据主轴随机变量的分布类型进行随机抽样,并通过步骤6所建立的可靠性功能函数获得强度与刚度失效之间的计算值;
    使用统计方法求得两失效模式间的秩相关系数,并计算Clayton copula的待定参数;
    使用Clayton copula计算强度与刚度的联合失效概率;
    使用二阶窄界限理论,代入步骤6所得到的强度失效概率和刚度失效概率以及联合失效概率,计算提升机主轴的系统失效概率。
PCT/CN2017/102000 2017-05-25 2017-09-18 千米深井提升机主轴多失效模式可靠性评估方法 WO2018214348A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3014415A CA3014415C (en) 2017-05-25 2017-09-18 Reliability evaluation method for hoist main shaft of kilometer-deep mine considering multiple failure modes
AU2017396541A AU2017396541B9 (en) 2017-05-25 2017-09-18 Reliability evaluation method for hoist main shaft of kilometer-deep mine considering multiple failure modes
RU2018130014A RU2682821C1 (ru) 2017-05-25 2017-09-18 Метод оценки надежности подъемной системы шахтного ствола с подъемником в километровых шахтах

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710377138.7 2017-05-25
CN201710377138.7A CN107291989B (zh) 2017-05-25 2017-05-25 千米深井提升机主轴多失效模式可靠性评估方法

Publications (1)

Publication Number Publication Date
WO2018214348A1 true WO2018214348A1 (zh) 2018-11-29

Family

ID=60093990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102000 WO2018214348A1 (zh) 2017-05-25 2017-09-18 千米深井提升机主轴多失效模式可靠性评估方法

Country Status (5)

Country Link
CN (1) CN107291989B (zh)
AU (1) AU2017396541B9 (zh)
CA (1) CA3014415C (zh)
RU (1) RU2682821C1 (zh)
WO (1) WO2018214348A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109977467A (zh) * 2019-02-21 2019-07-05 西北工业大学 一种机翼结构可靠性灵敏度分析方法
CN110197201A (zh) * 2019-04-25 2019-09-03 永大电梯设备(中国)有限公司 一种电梯保养5s检测方法与系统
CN110287601A (zh) * 2019-06-27 2019-09-27 浙江农林大学 一种毛竹胸径年龄二元联合分布精确估算方法
CN110321594A (zh) * 2019-06-05 2019-10-11 西北工业大学 具有多个失效模式的飞机机构的可靠性分析方法及装置
CN111160713A (zh) * 2019-12-06 2020-05-15 中国南方电网有限责任公司超高压输电公司广州局 基于多维联合分布理论的复合绝缘子可靠性评估方法
CN111625937A (zh) * 2020-05-11 2020-09-04 中国人民解放军战略支援部队航天工程大学 一种非概率失效评定图可靠性分析方法
CN113705045A (zh) * 2021-08-20 2021-11-26 上海交通大学 一种基于代理模型的转静子系统碰摩可靠性分析方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107832511A (zh) * 2017-10-31 2018-03-23 中国矿业大学 超深井提升容器多失效模式的可靠性稳健设计方法
CN108345731A (zh) * 2018-01-30 2018-07-31 中国矿业大学 一种不完备信息条件下深井提升机关键部件耦合失效相关性建模方法
CN108829987B (zh) * 2018-06-22 2022-10-11 中国核动力研究设计院 一种数据驱动型概率评估方法
CN109977550B (zh) * 2019-03-27 2023-07-18 湖北汽车工业学院 轴可靠性设计的重要性抽样方法
CN110288188A (zh) * 2019-05-21 2019-09-27 中国矿业大学 一种刮板输送机中部槽的耦合故障动态可靠性评估方法
CN110362858B (zh) * 2019-06-05 2021-10-22 徐州圣邦机械有限公司 一种高压内啮合齿轮泵齿轮副的可靠性评估方法
CN110390173B (zh) * 2019-07-29 2023-04-07 中国矿业大学 考虑剩余强度退化的千米深井提升机时变可靠性评估方法
CN110929453A (zh) * 2019-11-18 2020-03-27 西安电子科技大学 基于Copula函数失效相关系统动态模糊可靠性分析方法
CN112528533B (zh) 2020-11-19 2022-02-25 中国矿业大学 一种千米深井提升机制动器可靠性智能评估与寿命预测方法
CN112685825B (zh) * 2021-01-22 2024-06-11 西安航空职业技术学院 一种逐步等效平面法的优化方法
CN113962566A (zh) * 2021-10-26 2022-01-21 广西交科集团有限公司 一种多梁式桥梁体系失效概率的计算方法
CN115688311B (zh) * 2022-10-27 2023-06-23 苏州科技大学 一种行星滚柱丝杠副的不确定性分析方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866647A (zh) * 2015-04-15 2015-08-26 淮北矿业(集团)有限责任公司 煤矿井塔与提升机系统耦合振动计算机仿真分析方法
CN105653890A (zh) * 2016-04-07 2016-06-08 东北大学 一种基于轴向载荷的提升机轴承疲劳寿命模型

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1469106A1 (ru) * 1987-02-11 1989-03-30 Всесоюзный научно-исследовательский институт нефтепромысловой геофизики Устройство дл определени сил сопротивлени движению кабел в скважине
RU2098630C1 (ru) * 1995-08-02 1997-12-10 Открытое акционерное общество Фирма "Геомар" Станция для контроля параметров проводников шахтного ствола
EP2520534B1 (de) * 2011-05-02 2014-06-25 Hoffmann Foerdertechnik GmbH Vorrichtung zur Lasterfassung an Hebezeugen und Elektrokettenzuegen
CN105890884B (zh) * 2016-04-07 2018-05-22 东北大学 一种提升机主轴可靠性的分析计算评估方法
CN106202647B (zh) * 2016-06-29 2020-02-21 北京科技大学 电主轴的多轴疲劳寿命预测方法及疲劳寿命可靠性评估方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104866647A (zh) * 2015-04-15 2015-08-26 淮北矿业(集团)有限责任公司 煤矿井塔与提升机系统耦合振动计算机仿真分析方法
CN105653890A (zh) * 2016-04-07 2016-06-08 东北大学 一种基于轴向载荷的提升机轴承疲劳寿命模型

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109977467A (zh) * 2019-02-21 2019-07-05 西北工业大学 一种机翼结构可靠性灵敏度分析方法
CN110197201A (zh) * 2019-04-25 2019-09-03 永大电梯设备(中国)有限公司 一种电梯保养5s检测方法与系统
CN110321594A (zh) * 2019-06-05 2019-10-11 西北工业大学 具有多个失效模式的飞机机构的可靠性分析方法及装置
CN110321594B (zh) * 2019-06-05 2022-11-04 西北工业大学 具有多个失效模式的飞机机构的可靠性分析方法及装置
CN110287601A (zh) * 2019-06-27 2019-09-27 浙江农林大学 一种毛竹胸径年龄二元联合分布精确估算方法
CN110287601B (zh) * 2019-06-27 2022-11-15 浙江农林大学 一种毛竹胸径年龄二元联合分布精确估算方法
CN111160713A (zh) * 2019-12-06 2020-05-15 中国南方电网有限责任公司超高压输电公司广州局 基于多维联合分布理论的复合绝缘子可靠性评估方法
CN111160713B (zh) * 2019-12-06 2020-12-08 中国南方电网有限责任公司超高压输电公司广州局 基于多维联合分布理论的复合绝缘子可靠性评估方法
CN111625937A (zh) * 2020-05-11 2020-09-04 中国人民解放军战略支援部队航天工程大学 一种非概率失效评定图可靠性分析方法
CN111625937B (zh) * 2020-05-11 2024-05-14 中国人民解放军战略支援部队航天工程大学 一种非概率失效评定图可靠性分析方法
CN113705045A (zh) * 2021-08-20 2021-11-26 上海交通大学 一种基于代理模型的转静子系统碰摩可靠性分析方法
CN113705045B (zh) * 2021-08-20 2024-04-12 上海交通大学 一种基于代理模型的转静子系统碰摩可靠性分析方法

Also Published As

Publication number Publication date
CN107291989A (zh) 2017-10-24
CN107291989B (zh) 2018-09-14
AU2017396541B9 (en) 2019-09-26
AU2017396541A1 (en) 2018-12-13
AU2017396541B2 (en) 2019-05-23
RU2682821C1 (ru) 2019-03-21
CA3014415C (en) 2020-12-01
CA3014415A1 (en) 2018-11-25

Similar Documents

Publication Publication Date Title
WO2018214348A1 (zh) 千米深井提升机主轴多失效模式可靠性评估方法
WO2019085145A1 (zh) 超深井提升容器多失效模式的可靠性稳健设计方法
Chatterjee et al. Numerical simulations of pipe–soil interaction during large lateral movements on clay
WO2020186507A1 (zh) 一种基于动态强度折减dda法的边坡稳定性分析系统
CN110377980B (zh) 一种基于bp神经网络岩石节理面峰值抗剪强度的预测方法
Filiz et al. Three dimensional dynamics of pretwisted beams: A spectral-Tchebychev solution
RU2714852C1 (ru) Способ корреляционного моделирования нарушения соединения критических компонентов подъемника для глубокой скважины в условиях неполной информации
CN115423132A (zh) 一种基于数字孪生的工程机械预测性维护方法
Liu et al. Hydraulic system fault diagnosis of the chain jacks based on multi-source data fusion
Fu et al. Gust response factor of a transmission tower under typhoon
CN110610041A (zh) 一种井筒失稳破坏的极限应变判别方法
CN107704428B (zh) 一种求解结构失效概率函数的贝叶斯再抽样方法
CN117786500A (zh) 一种盾构施工地表沉降预测方法、装置、设备及存储介质
KR20160131922A (ko) 금속 넥킹 파손을 겪을 것으로 예상되는 구조의 시간-전진 수치적 시뮬레이션을 행하기 위한 방법 및 시스템
CN102831290A (zh) 复合海缆应力场建模计算分析方法
CN117252050A (zh) 一种用于随机振动的可靠度计算方法及系统
CN107038285A (zh) 一种多重随机载荷作用下井架的动态可靠性分析方法
CN106339529A (zh) 一种降级钻杆接头抗拉性能快速评价方法
CN109766637A (zh) 基于Krigng代理模型的桥式起重机结构可靠性优化方法
CN114399513B (zh) 用于训练图像分割模型和图像分割的方法、装置
CN108595860B (zh) 一种基于计算机的桥梁施工竖向预应力钢筋检测系统
CN113486595A (zh) 一种井喷智能预警方法、系统、设备和存储介质
CN106547933A (zh) 一种输电铁塔中螺栓连接滑移的模拟方法
Sha et al. Fatigue reliability analysis on connecting rod of automobile engine using artificial neural network method
CN115688514B (zh) 一种综采工作面围岩的数字孪生体构建方法、系统及设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018130014

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2017396541

Country of ref document: AU

Date of ref document: 20170918

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910942

Country of ref document: EP

Kind code of ref document: A1