WO2018214198A1 - 具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩 - Google Patents

具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩 Download PDF

Info

Publication number
WO2018214198A1
WO2018214198A1 PCT/CN2017/089249 CN2017089249W WO2018214198A1 WO 2018214198 A1 WO2018214198 A1 WO 2018214198A1 CN 2017089249 W CN2017089249 W CN 2017089249W WO 2018214198 A1 WO2018214198 A1 WO 2018214198A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light
completely
transparent region
spacer
Prior art date
Application number
PCT/CN2017/089249
Other languages
English (en)
French (fr)
Inventor
于承忠
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2018214198A1 publication Critical patent/WO2018214198A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • the present invention relates to the field of liquid crystal display process technology, and in particular, to a method and a photomask for manufacturing a liquid crystal panel having an integrated black matrix and a photoresist spacer.
  • LCDs liquid crystal displays
  • a liquid crystal display on the existing market generally includes a housing, a liquid crystal panel disposed in the housing, and a backlight module disposed in the housing.
  • the structure of the liquid crystal panel is composed of a color filter (CF) substrate, a thin film transistor array substrate (TFT Array Substrate), and a liquid crystal layer (Liquid Crystal Layer) disposed between the two substrates.
  • the working principle is that the rotation of the liquid crystal molecules of the liquid crystal layer is controlled by applying a driving voltage on the two substrates, and the light of the backlight module is refracted to generate a picture.
  • a conventional CF substrate includes a black matrix (BM), a color chrome layer, a common electrode, and a photo space spacer (PS).
  • BM black matrix
  • PS photo space spacer
  • the color resist layer is a light transmissive film having three primary colors of red, green and blue
  • the black matrix is used for dividing adjacent color resists, blocking gaps between different colors, preventing light leakage or color mixing
  • the photoresist spacer is used for A column spacer supporting the two substrates, maintaining the thickness of the liquid crystal layer and ensuring the uniformity of the thickness of the liquid crystal layer, is divided into a main photoresist spacer (Main PS) and a sub-resistance spacer (Sub PS).
  • Main PS main photoresist spacer
  • Sub PS sub-resistance spacer
  • the conventional CF substrate fabrication process uses a mask to create a black matrix through a yellow process, and another mask is used to create a photoresist spacer through another yellow process.
  • Black Photo Spacer BPS
  • BPS Black Photo Spacer
  • the BPS technology generally uses a negative photoresist (the characteristic is that the region irradiated with light is not removed by the developer, and the region not irradiated with light is removed by the developer), using a half having different transmittances.
  • a halftone mask (Half Tone Mask) is exposed, and after development and baking, an integrated black matrix and photoresist spacer are obtained.
  • the conventional halftone mask for fabricating the integrated black matrix and the photoresist spacer includes a completely transparent region A having a light transmittance Tr of 100%. ,Light a first partial light-transmitting region B having a transmittance Tr of X1%, a second partial light-transmitting region C having a light transmittance Tr of X2%, and a complete light-shielding region D having a light transmittance Tr of 0, wherein 0 ⁇ X2 ⁇ X1 ⁇ 100.
  • the negative photoresist layer 200 is exposed to the negative photoresist layer 200, and then developed and baked.
  • the fully transparent region A corresponds to the main photoresist spacer 210, and the first portion of the transparent region B is correspondingly fabricated.
  • the second photoresist spacer 230 has a grid-shaped retaining wall 250 corresponding to the black matrix, and the complete shading region D is defined by the grid-shaped retaining wall 250 in the black matrix.
  • the main photoresist spacer 210 is irradiated with 100% ultraviolet (UV) light energy, thereby enabling sufficient crosslinking reaction to occur during the development process.
  • the medium can basically withstand the etching of the developer to keep the film thickness unchanged; and the sub-resistor spacer 230 and the grid-shaped retaining wall 250 in the black matrix are only irradiated by part of the UV light energy, failing to completely cross. In the reaction, some film thickness is eroded by the developer during the development process, and the film thickness loss of the sub-photoresist spacer 230 is smaller than that of the barrier-shaped wall 250 in the black matrix.
  • the degree of loss ultimately results in a difference in film thickness between the main photoresist spacer 210, the sub-resistor spacer 230, and the barrier-shaped barrier 250 in the black matrix, wherein the mutual gap can pass.
  • the light transmittance of different areas of the halftone mask is set to adjust.
  • the sub-resistor spacer and the black matrix retaining wall are formed by different degrees of erosion of the developing solution due to insufficient exposure energy, and the transmittance accuracy and exposure energy of different areas of the halftone mask are formed.
  • Control accuracy, accuracy of developer concentration during development, accuracy of development time, accuracy of development temperature, accuracy of development pressure, and even Queue time from exposure to development to the sub-resistance spacer and black matrix The effect of the film thickness of the wall is particularly large, and it is easy to cause uniformity of the uniformity of the respective film thickness (Uniformity).
  • the uniformity of the film thickness of the main photoresist spacer in the integrated black matrix and photoresist spacer fabricated by using the above-mentioned conventional halftone mask is 3.8 %
  • the film thickness uniformity difference between the sub-resistor spacer and the black matrix retaining wall is 10.6% and 11.4%, respectively, and the uniformity of the sub-resistor spacer is large, which will affect the uniformity of the liquid crystal layer.
  • the display effect of the final LCD panel product is
  • An object of the present invention is to provide a method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer, which can reduce the number of masks, save a yellow light process, reduce production cost, reduce production time, and make liquid crystal panels
  • the integrated black matrix and the sub-resist spacer of the photoresist spacer have better uniformity of film thickness, and the gap between the main photoresist spacer and the sub-resistor spacer is stable, and the yield of the liquid crystal panel product is improved.
  • Another object of the present invention is to provide a photomask capable of fabricating an integrated black matrix and photoresist spacer, which reduces production cost, reduces production time, and enables an integrated black matrix and photoresist to be produced.
  • the film thickness uniformity of the sub-photoresist spacer in the spacer is good, and the gap between the main photoresist spacer and the sub-resist spacer is stable, and the yield of the liquid crystal panel product is improved.
  • the present invention first provides a method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer, comprising the following steps:
  • Step S1 providing a substrate, and coating a negative photoresist layer on the substrate;
  • Step S2 providing a photomask
  • the reticle includes a first fully transparent region, a second fully transparent region spaced apart from the first fully transparent region, a first completely opaque region surrounding the periphery of the second fully transparent region, and surrounded by a first transparent region and a partial transparent region of the first completely light-shielding region, and a second completely light-shielding region connected to an edge of the partial light-transmitting region;
  • Step S3 exposing the negative photoresist layer using the photomask
  • Step S4 developing the exposed negative photoresist layer
  • the negative photoresist layer exposed by the first completely transparent region is developed to maintain a constant film thickness to form a main photoresist spacer; a negative photoresist layer exposed by the second completely transparent region After the development, the film thickness is kept constant, and a photoresist pillar having the same thickness as the main photoresist spacer is formed; the negative photoresist layer exposed by the first complete light-shielding region is completely etched after being developed to form a surrounding The vacant groove of the resistive cylinder; the negative photoresist layer exposed by the partially transparent region is partially etched after being developed to form a retaining wall having a black matrix having a film thickness smaller than that of the main photoresist spacer; The negative photoresist layer exposed by the second completely opaque region is developed to be completely eroded to form a blank region defined by the black matrix retaining wall;
  • Step S5 performing a baking process, controlling the baking temperature to exceed the glass transition temperature of the negative photoresist, so that the photoresist column is transformed into a viscous flow state and filled into the empty groove, thereby causing the photoresist column
  • the film thickness of the body is lowered to form a sub-resist spacer having a film thickness smaller than that of the main photoresist spacer and larger than the thickness of the black matrix.
  • the spacing between the contour of the second fully transparent region and the outer contour of the first fully opaque region is no more than 7 um.
  • the spacing between the contour of the second fully transparent region and the outer contour of the first fully opaque region is equal to 4 um.
  • the light transmittance of the partially transparent region is greater than 0 and less than 100%.
  • the step S3 is performed by ultraviolet light.
  • the present invention also provides a photomask comprising a first fully transparent region, a second fully transparent region spaced apart from the first fully transparent region, and a first surrounding the periphery of the second fully transparent region Finish a full light-shielding region, a partial light-transmitting region surrounding the first complete light-transmitting region and the first complete light-shielding region, and a second complete light-shielding region connected to an edge of the partial light-transmitting region;
  • the first completely transparent region is used to fabricate a main photoresist spacer; the second completely transparent region is matched with the first complete light shielding region for forming a sub-light barrier spacer; For making a retaining wall in the black matrix; the second fully opaque area is used to make a blank area defined by the retaining wall in the black matrix.
  • the spacing between the contour of the second fully transparent region and the outer contour of the first fully opaque region is no more than 7 um.
  • the spacing between the contour of the second fully transparent region and the outer contour of the first fully opaque region is equal to 4 um.
  • the light transmittance of the partially transparent region is greater than 0 and less than 100%.
  • the invention also provides a method for manufacturing a liquid crystal panel with an integrated black matrix and a photoresist spacer, comprising the following steps:
  • Step S1 providing a substrate, and coating a negative photoresist layer on the substrate;
  • Step S2 providing a photomask
  • the reticle includes a first fully transparent region, a second fully transparent region spaced apart from the first fully transparent region, a first completely opaque region surrounding the periphery of the second fully transparent region, and surrounded by a first transparent region and a partial transparent region of the first completely light-shielding region, and a second completely light-shielding region connected to an edge of the partial light-transmitting region;
  • Step S3 exposing the negative photoresist layer using the photomask
  • Step S4 developing the exposed negative photoresist layer
  • the negative photoresist layer exposed by the first completely transparent region is developed to maintain a constant film thickness to form a main photoresist spacer; a negative photoresist layer exposed by the second completely transparent region After the development, the film thickness is kept constant, and a photoresist pillar having the same thickness as the main photoresist spacer is formed; the negative photoresist layer exposed by the first complete light-shielding region is completely etched after being developed to form a surrounding The vacant groove of the resistive cylinder; the negative photoresist layer exposed by the partially transparent region is partially etched after being developed to form a retaining wall having a black matrix having a film thickness smaller than that of the main photoresist spacer; The negative photoresist layer exposed by the second completely opaque region is developed to be completely eroded to form a blank region defined by the black matrix retaining wall;
  • Step S5 performing a baking process, controlling the baking temperature to exceed the glass transition temperature of the negative photoresist, so that the photoresist column is transformed into a viscous flow state and filled into the empty groove, thereby causing the photoresist column
  • the film thickness of the body is reduced, and a sub-thresist spacer having a film thickness smaller than that of the main photoresist spacer and larger than the black matrix of the barrier film is formed;
  • the light transmittance of the partially transparent region is greater than 0 and less than 100%.
  • the method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer provided by the present invention utilizes different characteristics of the cross-linking reaction and viscous flow characteristics of the negative photoresist layer due to different light energy.
  • first fully transparent region Using a first fully transparent region, a second fully transparent region spaced from the first fully transparent region, a first fully opaque region surrounding the periphery of the second fully transparent region, surrounding the first fully transparent region
  • the integrated black matrix and the photoresist spacer in the liquid crystal panel wherein the film thickness of the sub photoresist spacer is smaller than the film thickness of the main photoresist spacer and larger than the thickness of the black matrix, which can reduce the number of masks and save a yellow
  • the optical process reduces the production cost, reduces the production time, and stabilizes the gap between the main photoresist spacer and the sub-resistor spacer, and improves the yield of the liquid crystal panel product.
  • the photomask provided by the invention can produce an integrated black matrix and a photoresist spacer, thereby reducing production cost, reducing production time, and making the uniformity of the film thickness of the sub-photoresist spacer in the integrated black matrix and the photoresist spacer.
  • the gap between the main photoresist spacer and the sub-resistor spacer is stable, and the yield of the liquid crystal panel product is improved.
  • 1 is a top plan view of a conventional halftone mask for fabricating an integrated black matrix and photoresist spacer
  • Figure 2 is a schematic cross-sectional view corresponding to K-K in Figure 1;
  • FIG. 3 is a schematic view showing a process of fabricating an integrated black matrix and a photoresist spacer using an existing halftone mask
  • FIG. 4 is a flow chart of a method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer according to the present invention
  • FIG. 5 is a top plan view of a photomask used in a method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer according to the present invention
  • Figure 6 is a schematic cross-sectional view corresponding to the P-P in Figure 5;
  • FIG. 7 is a schematic view showing the process of fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer according to the present invention.
  • Figure 8 is a data table showing the variation of the gap between the main photoresist spacer and the sub-resistor spacer as a function of the distance between the contour of the second completely transparent region and the outer contour of the first complete light-shielding region;
  • Figure 9 is a data sheet of the sub-resistor spacer film thickness at different positions when the pitch between the outline of the second completely light-transmitting region and the outer contour of the first full light-shielding region is 4 um.
  • the present invention first provides a method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer, comprising the following steps:
  • Step S1 in conjunction with FIG. 7, provides a substrate 3 on which a negative photoresist layer 5 is applied.
  • the negative photoresist layer 5 has the following characteristics:
  • the area illuminated by light is not removed by the developer, and the area not irradiated with light is removed by the developer;
  • step S2 the reticle 1 is provided.
  • the reticle 1 includes a first fully transparent region 11, a second completely transparent region 13 spaced apart from the first fully transparent region 11, and a surrounding portion. a first complete light-shielding region 15 around the periphery of the second completely transparent region 13 , a partial light-transmissive region 17 surrounding the first fully transparent region 11 and the first complete light-shielding region 15 , and the partial light-transmitting region 17
  • the second fully opaque region 19 is connected to the edge.
  • the light transmittance Tr of the first completely transparent region 11 is 100%
  • the light transmittance Tr of the second completely transparent region 13 is 100%
  • the light transmittance of the first complete light shielding region 15 is 100%.
  • Tr is 0,
  • the light transmittance Tr of the second complete light-shielding region 19 is 0, and the light transmittance Tr of the partial light-transmitting region 17 is X%, where 0 ⁇ X ⁇ 100, that is, the partial light-transmitting region
  • the light transmittance Tr of 17 is greater than 0 and less than 100%.
  • first completely transparent region 11 may be, but not limited to, a circle as shown in FIG. 5, and the second fully transparent region 13 may be, but not limited to, an elliptical shape as shown in FIG. 15 is a light-shielding ring that conforms to the shape of the second completely light-transmitting region 13.
  • Step S3 as shown in FIG. 7, the negative photoresist layer 5 is exposed using the photomask 1 using ultraviolet light as a light source.
  • the negative photoresist layer 5 exposed by the first completely transparent region 11 and the first The negative photoresist layer 5 exposed by the two completely transparent regions 13 is irradiated with 100% ultraviolet light energy, so that a sufficient crosslinking reaction can occur; the negative photoresist layer exposed by the partial light transmitting region 17 5 is irradiated by part of the ultraviolet light energy, and a complete cross-linking reaction fails; the negative photoresist layer 5 exposed by the first complete light-shielding region 15 and the second full light-shielding region 19 are exposed.
  • the negative photoresist layer 5 is not irradiated with ultraviolet light energy, and no crosslinking reaction occurs.
  • Step S4 as shown in FIG. 7, the exposed negative photoresist layer 5 is developed.
  • the negative photoresist layer 5 exposed by the first completely transparent region 11 has a sufficient cross-linking reaction, and the film thickness is maintained after development to form a main photoresist spacer 51;
  • the negative photoresist layer 5 exposed by the second completely transparent region 13 has a sufficient cross-linking reaction, and the film thickness is maintained after development to form a photoresist column having the same thickness as the main photoresist spacer 51.
  • the negative photoresist layer 5 exposed by the first complete light-shielding region 15 is completely eroded by development after being developed without forming a cross-linking reaction to form an annular space surrounding the resistive cylinder 53'
  • the groove 55'; the negative photoresist layer 5 exposed by the partial light-transmissive region 17 is partially eroded after being developed due to failure to undergo a thorough crosslinking reaction, and the film thickness is smaller than that of the main photoresist spacer 51.
  • the black matrix retaining wall 57; the negative photoresist layer 5 exposed by the second completely light-shielding region 19 is completely eroded by the development to form the retaining wall 57 of the black matrix because no cross-linking reaction occurs.
  • a blank area 59 is defined.
  • Step S5 performing a baking process to control the baking temperature to exceed the glass transition temperature of the negative photoresist, so that the photoresist pillar 53' is transformed into a viscous flow state and is directed to the empty groove 55'.
  • the inner filling is performed to cause the photoresist pillar 53' to collapse, and the film thickness of the photoresist pillar 53' is correspondingly reduced to form a retaining wall 57 having a film thickness smaller than that of the main photoresist spacer 51 and larger than the black matrix.
  • a sub-thresist spacer 53 of film thickness is performed to control the baking temperature to exceed the glass transition temperature of the negative photoresist, so that the photoresist pillar 53' is transformed into a viscous flow state and is directed to the empty groove 55'.
  • the inner filling is performed to cause the photoresist pillar 53' to collapse, and the film thickness of the photoresist pillar 53' is correspondingly reduced to form a retaining wall 57 having a film
  • the distance between the contour of the second completely transparent region 13 and the outer contour of the first complete light-shielding region 15 is ⁇ D
  • the difference between the main photoresist spacer 51 and the sub-resist spacer 53 is the main
  • the difference in film thickness between the photoresist spacer 51 and the sub-resist spacer 53 is ⁇ H. It is experimentally verified that, as shown in FIG. 8, when ⁇ D is in the range of 1 to 4 um, ⁇ H increases with ⁇ D.
  • the actual sampling points (different 12 position points) are measured, and the different positions are measured.
  • the film thickness of the sub-photoresist spacer 53 is relatively uniform, and the film thickness uniformity difference is only 1.62% (film
  • the formula for calculating the difference in thickness uniformity is: (Max-Min) / (Max + Min) ⁇ 100%, where Max represents the maximum thickness of the film, and Min represents the minimum value of the film thickness, which is reduced compared to the prior art.
  • the number of masks saving a yellow light process, reducing the production cost, and reducing the production time, greatly improving the film thickness uniformity of the sub-photoresist spacers 53, so that the main photoresist spacers 51 and the sub-resist spacers 53
  • the stability of the gap is stable, which can improve the yield of the liquid crystal panel product.
  • the present invention also provides a photomask.
  • the photomask is used for exposing the negative photoresist layer 5 , including the first completely transparent region 11 and the first fully transparent region 11 .
  • a second completely transparent region 13 a first complete light-shielding region 15 surrounding the periphery of the second completely transparent region 13 , and a portion of the first complete light-transmissive region 11 and the first complete light-shielding region 15 A region 17 and a second completely opaque region 19 connected to the edge of the partially transparent region 17.
  • the light transmittance Tr of the first completely light-transmitting region 11 is 100%
  • the light transmittance Tr of the second completely light-transmitting region 13 is 100%
  • the light transmittance Tr of the first complete light-shielding region 15 is 0%.
  • the light transmittance Tr of the second complete light-shielding region 19 is 0, and the light transmittance Tr of the partial light-transmitting region 17 is X%, wherein 0 ⁇ X ⁇ 100, that is, the light of the partial light-transmitting region 17
  • the penetration rate Tr is greater than 0 and less than 100%.
  • the first completely transparent region 11 may be, but not limited to, a circular shape as shown in FIG. 5, and the second fully transparent region 13 may be, but not limited to, an elliptical shape as shown in FIG. 5, and the first complete light-shielding region 15 is
  • the second fully transparent region 13 has a uniform shape of the light-shielding ring; the distance ⁇ D between the contour of the second fully transparent region 13 and the outer contour of the first completely light-shielding region 15 is not more than 7 um, preferably 4 um.
  • the first fully transparent region 11 is used to fabricate the main photoresist spacer 51; the second fully transparent region 13 is matched with the first complete light-shielding region 15 for fabricating the secondary photoresist spacer 53;
  • the partial light-transmissive region 17 is used to form the retaining wall 57 in the black matrix;
  • the second completely light-shielding region 19 is used to form the blank region 59 defined by the retaining wall 57 in the black matrix;
  • the main photoresist spacer 51 The sub-resistor spacer 53, the retaining wall 57 in the black matrix, and the blank area 59 defined by the retaining wall 57 in the black matrix constitute an integral black matrix and a photoresist spacer.
  • the negative photoresist layer 5 when the negative photoresist layer 5 is exposed by using the photomask 1 with ultraviolet light as a light source: the negative photoresist layer 5 exposed by the first completely transparent region 11 and the first The negative photoresist layer 5 exposed by the two completely transparent regions 13 is irradiated with 100% ultraviolet light energy, so that a sufficient crosslinking reaction can occur; the negative photoresist layer exposed by the partial light transmitting region 17 5 is irradiated by part of the ultraviolet light energy, and a complete cross-linking reaction fails; the negative photoresist layer 5 exposed by the first complete light-shielding region 15 and the second full light-shielding region 19 are exposed.
  • the negative photoresist layer 5 is not irradiated with ultraviolet light energy, and no crosslinking reaction occurs.
  • the exposed negative photoresist layer 5 is developed: the negative photoresist layer 5 exposed by the first completely transparent region 11 has a sufficient cross-linking reaction, and the film thickness is maintained after development.
  • the main photoresist spacer 51 is formed; the negative photoresist layer 5 exposed by the second completely transparent region 13 has a sufficient cross-linking reaction, and the film thickness is maintained after development to form a main
  • the resist spacer 51 has a film thickness 53' of equal thickness; the negative photoresist layer 5 exposed by the first complete light-shielding region 15 is completely eroded by development after forming due to no cross-linking reaction.
  • the annular groove 55' of the photoresist cylinder 53'; the negative photoresist layer 5 exposed by the partial light-transmissive region 17 is partially eroded after being developed due to failure to undergo a thorough crosslinking reaction.
  • Forming a barrier wall 57 having a black matrix having a film thickness smaller than that of the main photoresist spacer 51; the negative photoresist layer 5 exposed by the second completely opaque region 19 is completely cured after development due to no cross-linking reaction
  • the erosion forms a blank area 59 defined by the retaining wall 57 of the black matrix.
  • a baking process is performed to control the baking temperature to exceed the glass transition temperature of the negative photoresist, so that the photoresist pillar 53' is transformed into a viscous flow state and filled into the empty groove 55', thereby making the light
  • the resisting cylinder 53' is collapsed, and the film thickness of the resistive cylinder 53' is correspondingly reduced, and a sub-thresist spacer having a film thickness smaller than that of the main photoresist spacer 51 and larger than the black matrix of the retaining wall 57 is formed. 53.
  • the use of the reticle of the present invention enables the fabrication of an integrated black matrix and photoresist spacer, which reduces production costs, reduces production time, and results in a film of the integrated black matrix and the sub-resist spacer 53 in the photoresist spacer.
  • the thickness uniformity is good, and the difference ⁇ H between the main photoresist spacer 51 and the sub-resistor spacer 53 is stabilized, and the yield of the liquid crystal panel product is improved.
  • the method for fabricating a liquid crystal panel having an integrated black matrix and a photoresist spacer of the present invention utilizes different characteristics of the cross-linking reaction and viscous flow characteristics of the negative photoresist layer due to different light energy.
  • the photomask of the invention can produce an integrated black matrix and photoresist spacer, which reduces production cost, reduces production time, and makes the film thickness uniformity of the sub-photoresist spacer in the integrated black matrix and the photoresist spacer better.
  • the gap between the main photoresist spacer and the sub-resistor spacer is stable, and the yield of the liquid crystal panel product is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)

Abstract

一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩。该方法利用负性光阻层受光照能量不同而发生不同程度交联反应的特性和粘流特性,使用包括第一完全透光区(11)、第二完全透光区(13)、第一完全遮光区(15)、部分透光区(17)、以及第二完全遮光区(19)的光罩(1)来对负性光阻层(5)进行曝光,再经显影、烘烤制程制作出液晶面板中的一体式黑色矩阵与光阻间隔物,其中副光阻间隔物(53)的膜厚小于主光阻间隔物(51)的膜厚且大于黑色矩阵的挡墙(57)膜厚,能够减少光罩数量,节省一道黄光制程,降低生产成本,减少生产时间,并使得主光阻间隔物(51)与副光阻间隔物(53)的断差稳定,提高液晶面板产品的良率。

Description

具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩 技术领域
本发明涉及液晶显示器制程技术领域,尤其涉及一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩。
背景技术
液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,成为显示装置中的主流而被广泛地应用于手机、电视、平板电脑、数字相机、笔记本电脑、台式计算机等各种消费性电子产品。
现有市场上的液晶显示器通常包括壳体、设于壳体内的液晶面板及设于壳体内的背光模组(Backlight Module)。液晶面板的结构是由一彩色滤光片(Color Filter,CF)基板、一薄膜晶体管阵列基板(Thin Film Transistor Array Substrate,TFT Array Substrate)以及一配置于两基板间的液晶层(Liquid Crystal Layer)所构成,其工作原理是通过在两片基板上施加驱动电压来控制液晶层的液晶分子的旋转,将背光模组的光线折射出来产生画面。
以常见的垂直配向(Vertical Alignment,VA)型液晶面板为例,传统的CF基板包括黑色矩阵(Black Matrix,BM)、彩色色阻层、公共电极、及光阻间隔物(Photo Spacer,PS)等,其中,彩色色阻层为具有红、绿、蓝三原色的透光膜;黑色矩阵用于分割相邻色阻,遮挡不同色彩间的空隙,防止漏光或者混色;光阻间隔物是用来支撑两基板,维持液晶层盒厚及保证液晶层盒厚均匀性的柱状间隔物,分为主光阻间隔物(Main PS)及副光阻间隔物(Sub PS)。传统的CF基板制作工艺使用一光罩经一道黄光制程制作出黑色矩阵,再使用另一光罩经另一道黄光制程制作出光阻间隔物。
随着显示技术的发展,出现了将黑色矩阵与光阻间隔物合二为一的技术(Black Photo Spacer,BPS),能够减少一光罩及一道黄光制程,从而降低材料成本及减少生产时间(Tact Time)。目前,BPS技术一般采用负性光阻(特性是被光照射的区域不会被显影液去除,而不被光照射的区域则会被显影液去除)为材料,使用具有不同穿透率的半色调光罩(Half Tone Mask)进行曝光,再经显影、烘烤后,得到一体式的黑色矩阵与光阻间隔物。
具体地,请参阅图1、图2、与图3,现有的用于制作一体式黑色矩阵与光阻间隔物的半色调光罩包括光穿透率Tr为100%的完全透光区A、光 穿透率Tr为X1%的第一部分透光区B、光穿透率Tr为X2%的第二部分透光区C、及光穿透率Tr为0的完全遮光区D,其中,0<X2<X1<100。使用该半色调光罩对负性光阻层200进行曝光后再经显影、烘烤制程,所述完全透光区A对应制作出主光阻间隔物210,第一部分透光区B对应制作出副光阻间隔物230,第二部分透光区C对应制作出黑色矩阵中呈网格形的挡墙250,完全遮光区D对应制作出黑色矩阵中由网格形的挡墙250所界定出的用于供光线穿过以进行显示的空白区270。
在使用所述半色调光罩对负性光阻进行曝光的过程中,主光阻间隔物210受到了100%的紫外(UV)光能量照射,从而能够发生足够的交联反应,在显影过程中基本上能承受显影液的蚀刻而保持膜厚不变;而副光阻间隔物230与黑色矩阵中呈网格形的挡墙250只受到部分UV光能量的照射,未能发生彻底的交联反应,在显影过程中会有部分膜厚被显影液侵蚀,有不同程度的损失,且副光阻间隔物230的膜厚损失程度小于黑色矩阵中呈网格形的挡墙250的膜厚损失程度,最终导致了主光阻间隔物210、副光阻间隔物230、与黑色矩阵中呈网格形的挡墙250这三者之间的膜厚有差异,其中相互的断差可以通过设置半色调光罩不同区域的光穿透率来进行调节。
但在实际用BPS技术时,副光阻间隔物与黑色矩阵的挡墙是由于曝光能量不足而受到显影液不同程度的侵蚀所形成,半色调光罩不同区域的穿透率精度、曝光能量的控制精度、显影过程中显影液浓度的精度、显影时间的精度、显影温度的精度、显影压力的精度,甚至从曝光到显影的间隔时间(Queue time)对副光阻间隔物与黑色矩阵的挡墙的膜厚影响都特别大,容易造成各自膜厚的均匀性(Uniformity)较差。经实际采点(不同的12个位置点)量测,使用上述现有的半色调光罩制作的一体式黑色矩阵与光阻间隔物中,主光阻间隔物的膜厚均匀性差异在3.8%,而副光阻间隔物与黑色矩阵的挡墙的膜厚均匀性差异分别在10.6%与11.4%,副光阻间隔物的均匀性差异较大时,会影响到液晶层盒厚的均匀性以及最终液晶面板产品的显示效果。
发明内容
本发明的目的在于提供一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,能够减少光罩数量,节省一道黄光制程,降低生产成本,减少生产时间,并使得液晶面板中的一体式黑色矩阵与光阻间隔物中副光阻间隔物的膜厚均匀性较好,主光阻间隔物与副光阻间隔物的断差稳定,提高液晶面板产品的良率。
本发明的另一目的在于提供一种光罩,使用该光罩能够制作出一体式黑色矩阵与光阻间隔物,降低生产成本,减少生产时间,并使得制得的一体式黑色矩阵与光阻间隔物中副光阻间隔物的膜厚均匀性较好,主光阻间隔物与副光阻间隔物的断差稳定,提高液晶面板产品的良率。
为实现上述目的,本发明首先提供一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,包括以下步骤:
步骤S1、提供基板,在所述基板上涂布负性光阻层;
步骤S2、提供光罩;
所述光罩包括第一完全透光区、与所述第一完全透光区间隔设置的第二完全透光区、环绕在所述第二完全透光区外围的第一完全遮光区、包围所述第一完全透光区与第一完全遮光区的部分透光区、以及与所述部分透光区的边缘相连接的第二完全遮光区;
步骤S3、使用所述光罩对负性光阻层进行曝光;
步骤S4、对曝光后的负性光阻层进行显影;
被所述第一完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成主光阻间隔物;被所述第二完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成与主光阻间隔物膜厚相等的光阻柱体;被所述第一完全遮光区所曝光的负性光阻层经显影后被完全侵蚀而形成环绕所述光阻柱体的空槽;被所述部分透光区所曝光的负性光阻层经显影后被部分侵蚀,形成膜厚小于主光阻间隔物膜厚的黑色矩阵的挡墙;被所述第二完全遮光区所曝光的负性光阻层经显影后被完全侵蚀形成被所述黑色矩阵的挡墙所界定出的空白区;
步骤S5、进行烘烤制程,控制烘烤温度超过负性光阻的玻璃化温度,使得所述光阻柱体转变为粘流态并向所述空槽内填充,从而使得所述光阻柱体的膜厚降低,形成膜厚小于主光阻间隔物膜厚且大于黑色矩阵的挡墙膜厚的副光阻间隔物。
第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距不大于7um。
第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距等于4um。
所述部分透光区的光穿透率大于0且小于100%。
所述步骤S3采用紫外光进行曝光。
本发明还提供一种光罩,包括第一完全透光区、与所述第一完全透光区间隔设置的第二完全透光区、环绕在所述第二完全透光区外围的第一完 全遮光区、包围所述第一完全透光区与第一完全遮光区的部分透光区、以及与所述部分透光区的边缘相连接的第二完全遮光区;
所述第一完全透光区用于制作主光阻间隔物;所述第二完全透光区与第一完全遮光区相配合,用于制作副光阻间隔物;所述部分透光区用于制作黑色矩阵中的挡墙;所述第二完全遮光区用于制作黑色矩阵中由挡墙所界定出的空白区。
第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距不大于7um。
第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距等于4um。
所述部分透光区的光穿透率大于0且小于100%。
本发明还提供一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,包括以下步骤:
步骤S1、提供基板,在所述基板上涂布负性光阻层;
步骤S2、提供光罩;
所述光罩包括第一完全透光区、与所述第一完全透光区间隔设置的第二完全透光区、环绕在所述第二完全透光区外围的第一完全遮光区、包围所述第一完全透光区与第一完全遮光区的部分透光区、以及与所述部分透光区的边缘相连接的第二完全遮光区;
步骤S3、使用所述光罩对负性光阻层进行曝光;
步骤S4、对曝光后的负性光阻层进行显影;
被所述第一完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成主光阻间隔物;被所述第二完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成与主光阻间隔物膜厚相等的光阻柱体;被所述第一完全遮光区所曝光的负性光阻层经显影后被完全侵蚀而形成环绕所述光阻柱体的空槽;被所述部分透光区所曝光的负性光阻层经显影后被部分侵蚀,形成膜厚小于主光阻间隔物膜厚的黑色矩阵的挡墙;被所述第二完全遮光区所曝光的负性光阻层经显影后被完全侵蚀形成被所述黑色矩阵的挡墙所界定出的空白区;
步骤S5、进行烘烤制程,控制烘烤温度超过负性光阻的玻璃化温度,使得所述光阻柱体转变为粘流态并向所述空槽内填充,从而使得所述光阻柱体的膜厚降低,形成膜厚小于主光阻间隔物膜厚且大于黑色矩阵的挡墙膜厚的副光阻间隔物;
其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距 不大于7um;
其中,所述部分透光区的光穿透率大于0且小于100%。
本发明的有益效果:本发明提供的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,利用负性光阻层受光照能量不同而发生不同程度交联反应的特性和粘流特性,使用包括第一完全透光区、与第一完全透光区间隔设置的第二完全透光区、环绕在第二完全透光区外围的第一完全遮光区、包围第一完全透光区与第一完全遮光区的部分透光区、以及与部分透光区的边缘相连接的第二完全遮光区的光罩来对负性光阻层进行曝光,再经显影、烘烤制程制作出液晶面板中的一体式黑色矩阵与光阻间隔物,其中副光阻间隔物的膜厚小于主光阻间隔物膜厚且大于黑色矩阵的挡墙膜厚,能够减少光罩数量,节省一道黄光制程,降低生产成本,减少生产时间,并使得主光阻间隔物与副光阻间隔物的断差稳定,提高液晶面板产品的良率。本发明提供的光罩能够制作出一体式黑色矩阵与光阻间隔物,降低生产成本,减少生产时间,并使得一体式黑色矩阵与光阻间隔物中副光阻间隔物的膜厚均匀性较好,主光阻间隔物与副光阻间隔物的断差稳定,提高液晶面板产品的良率。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的用于制作一体式黑色矩阵与光阻间隔物的半色调光罩的俯视示意图;
图2为对应于图1中K-K处的剖面结构示意图;
图3为使用现有的半色调光罩制作一体式黑色矩阵与光阻间隔物的过程的示意图;
图4为本发明的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法流程图;
图5为本发明的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法所使用的光罩暨本发明的光罩的俯视示意图;
图6为对应于图5中P-P处的剖面结构示意图;
图7为本发明的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法的过程示意图;
图8为主光阻间隔物与副光阻间隔物的断差随第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距变化的数据表;
图9为当第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距为4um时,不同位置点的副光阻间隔物膜厚的数据表。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图4,本发明首先提供一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,包括以下步骤:
步骤S1、结合图7,提供基板3,在所述基板3上涂布负性光阻层5。
所述负性光阻层5具有如下特性:
一、被光照射的区域不会被显影液去除,而不被光照射的区域会被显影液去除;
二、根据受到的光照能量的不同而发生不同程度的交联反应;
三、在温度超过玻璃化温度时发生粘性流动;粘性流动是不可逆的变形。
步骤S2、提供光罩1。
请参阅图5、图6、与图7,所述光罩1包括第一完全透光区11、与所述第一完全透光区11间隔设置的第二完全透光区13、环绕在所述第二完全透光区13外围的第一完全遮光区15、包围所述第一完全透光区11与第一完全遮光区15的部分透光区17、以及与所述部分透光区17的边缘相连接的第二完全遮光区19。
具体地,所述第一完全透光区11的光穿透率Tr为100%,第二完全透光区13的光穿透率Tr为100%,第一完全遮光区15的光穿透率Tr为0,第二完全遮光区19的光穿透率Tr为0,所述部分透光区17的光穿透率Tr为X%,其中0<X<100,即所述部分透光区17的光穿透率Tr大于0且小于100%。
进一步地,所述第一完全透光区11可以但不限于为图5所示的圆形,第二完全透光区13可以但不限于为图5所示的椭圆形,第一完全遮光区15为与第二完全透光区13形状一致的遮光环。
步骤S3、如图7所示,以紫外光为光源,使用所述光罩1对负性光阻层5进行曝光。
具体地,被所述第一完全透光区11所曝光的负性光阻层5及被所述第 二完全透光区13所曝光的负性光阻层5受到了100%的紫外光能量照射,从而能够发生足够的交联反应;被所述部分透光区17所曝光的负性光阻层5只受到部分紫外光能量的照射,未能发生彻底的交联反应;被所述第一完全遮光区15所曝光的负性光阻层5及被所述第二完全遮光区19所曝光的负性光阻层5未受到紫外光能量的照射,不发生交联反应。
步骤S4、如图7所示,对曝光后的负性光阻层5进行显影。
具体地,被所述第一完全透光区11所曝光的负性光阻层5由于发生了足够的交联反应,经显影后保持膜厚不变,形成主光阻间隔物51;被所述第二完全透光区13所曝光的负性光阻层5由于发生了足够的交联反应,经显影后保持膜厚不变,形成与主光阻间隔物51膜厚相等的光阻柱体53’;被所述第一完全遮光区15所曝光的负性光阻层5由于不发生交联反应,经显影后被完全侵蚀而形成环绕所述光阻柱体53’的环形的空槽55’;被所述部分透光区17所曝光的负性光阻层5由于未能发生彻底的交联反应,经显影后被部分侵蚀,形成膜厚小于主光阻间隔物51膜厚的黑色矩阵的挡墙57;被所述第二完全遮光区19所曝光的负性光阻层5由于不发生交联反应,经显影后被完全侵蚀形成被所述黑色矩阵的挡墙57所界定出的空白区59。
步骤S5、如图7所示,进行烘烤制程,控制烘烤温度超过负性光阻的玻璃化温度,使得所述光阻柱体53’转变为粘流态并向所述空槽55’内填充,从而使得所述光阻柱体53’出现坍塌的现象,光阻柱体53’的膜厚相应降低,形成膜厚小于主光阻间隔物51膜厚且大于黑色矩阵的挡墙57膜厚的副光阻间隔物53。
进一步地,设第二完全透光区13的轮廓与第一完全遮光区15的外轮廓之间的间距为ΔD,主光阻间隔物51与副光阻间隔物53之间的断差即主光阻间隔物51与副光阻间隔物53之间的膜厚差值为ΔH,经实验验证,如图8所示,当ΔD的取值在1~4um范围内,ΔH随着ΔD的增大而增大,在ΔD=4um时出现ΔH的最大值0.368,能够符合主光阻间隔物51与副光阻间隔物53之间断差的设计要求;当然,ΔD也不能无限制的增大,如果ΔD≥7,会导致所述光阻柱体53’不足以填满所述空槽55’而形成沟壑,最终形成显示面板产品时,此处便会有漏光的危险;因此,第二完全透光区13的轮廓与第一完全遮光区15的外轮廓之间的间距ΔD不大于7um,优选4um。
请参阅图9,第二完全透光区13的轮廓与第一完全遮光区15的外轮廓之间的间距ΔD为4um时,经实际采点(不同的12个位置点)量测,不同位置点的副光阻间隔物53的膜厚较均匀,膜厚均匀性差异仅为1.62%(膜 厚均匀性差异的计算公式为:(Max-Min)/(Max+Min)×100%,其中Max表示膜厚的最大值,Min表示膜厚的最小值),相比现有技术,在减少光罩数量,节省一道黄光制程,降低生产成本,减少生产时间的基础上,大大提高了副光阻间隔物53的膜厚均匀性,使得主光阻间隔物51与副光阻间隔物53的断差稳定,能够提高液晶面板产品的良率。
基于同一发明构思,本发明还提供一种光罩。请同时参阅图5、图6、与图7,所述光罩用于对负性光阻层5进行曝光,包括第一完全透光区11、与所述第一完全透光区11间隔设置的第二完全透光区13、环绕在所述第二完全透光区13外围的第一完全遮光区15、包围所述第一完全透光区11与第一完全遮光区15的部分透光区17、以及与所述部分透光区17的边缘相连接的第二完全遮光区19。
所述第一完全透光区11的光穿透率Tr为100%,第二完全透光区13的光穿透率Tr为100%,第一完全遮光区15的光穿透率Tr为0,第二完全遮光区19的光穿透率Tr为0,所述部分透光区17的光穿透率Tr为X%,其中0<X<100,即所述部分透光区17的光穿透率Tr大于0且小于100%。
所述第一完全透光区11可以但不限于为图5所示的圆形,第二完全透光区13可以但不限于为图5所示的椭圆形,第一完全遮光区15为与第二完全透光区13形状一致的遮光环;第二完全透光区13的轮廓与第一完全遮光区15的外轮廓之间的间距ΔD不大于7um,优选4um。
所述第一完全透光区11用于制作主光阻间隔物51;所述第二完全透光区13与第一完全遮光区15相配合,用于制作副光阻间隔物53;所述部分透光区17用于制作黑色矩阵中的挡墙57;所述第二完全遮光区19用于制作黑色矩阵中由挡墙57所界定出的空白区59;所述主光阻间隔物51、副光阻间隔物53、黑色矩阵中的挡墙57、及由黑色矩阵中的挡墙57所界定出的空白区59构成一体式黑色矩阵与光阻间隔物。
具体地,以紫外光为光源,使用所述光罩1对负性光阻层5进行曝光时:被所述第一完全透光区11所曝光的负性光阻层5及被所述第二完全透光区13所曝光的负性光阻层5受到了100%的紫外光能量照射,从而能够发生足够的交联反应;被所述部分透光区17所曝光的负性光阻层5只受到部分紫外光能量的照射,未能发生彻底的交联反应;被所述第一完全遮光区15所曝光的负性光阻层5及被所述第二完全遮光区19所曝光的负性光阻层5未受到紫外光能量的照射,不发生交联反应。
接下来对曝光后的负性光阻层5进行显影:被所述第一完全透光区11所曝光的负性光阻层5由于发生了足够的交联反应,经显影后保持膜厚不 变,形成主光阻间隔物51;被所述第二完全透光区13所曝光的负性光阻层5由于发生了足够的交联反应,经显影后保持膜厚不变,形成与主光阻间隔物51膜厚相等的光阻柱体53’;被所述第一完全遮光区15所曝光的负性光阻层5由于不发生交联反应,经显影后被完全侵蚀而形成环绕所述光阻柱体53’的环形的空槽55’;被所述部分透光区17所曝光的负性光阻层5由于未能发生彻底的交联反应,经显影后被部分侵蚀,形成膜厚小于主光阻间隔物51膜厚的黑色矩阵的挡墙57;被所述第二完全遮光区19所曝光的负性光阻层5由于不发生交联反应,经显影后被完全侵蚀形成被所述黑色矩阵的挡墙57所界定出的空白区59。
最后进行烘烤制程,控制烘烤温度超过负性光阻的玻璃化温度,使得所述光阻柱体53’转变为粘流态并向所述空槽55’内填充,从而使得所述光阻柱体53’出现坍塌的现象,光阻柱体53’的膜厚相应降低,形成膜厚小于主光阻间隔物51膜厚且大于黑色矩阵的挡墙57膜厚的副光阻间隔物53。
使用本发明的光罩能够制作出一体式黑色矩阵与光阻间隔物,降低生产成本,减少生产时间,并使得制得的一体式黑色矩阵与光阻间隔物中副光阻间隔物53的膜厚均匀性较好,主光阻间隔物51与副光阻间隔物53的断差ΔH稳定,提高液晶面板产品的良率。
综上所述,本发明的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,利用负性光阻层受光照能量不同而发生不同程度交联反应的特性和粘流特性,使用包括第一完全透光区、与第一完全透光区间隔设置的第二完全透光区、环绕在第二完全透光区外围的第一完全遮光区、包围第一完全透光区与第一完全遮光区的部分透光区、以及与部分透光区的边缘相连接的第二完全遮光区的光罩来对负性光阻层进行曝光,再经显影、烘烤制程制作出液晶面板中的一体式黑色矩阵与光阻间隔物,其中副光阻间隔物的膜厚小于主光阻间隔物膜厚且大于黑色矩阵的挡墙膜厚,能够减少光罩数量,节省一道黄光制程,降低生产成本,减少生产时间,并使得主光阻间隔物与副光阻间隔物的断差稳定,提高液晶面板产品的良率。本发明的光罩能够制作出一体式黑色矩阵与光阻间隔物,降低生产成本,减少生产时间,并使得一体式黑色矩阵与光阻间隔物中副光阻间隔物的膜厚均匀性较好,主光阻间隔物与副光阻间隔物的断差稳定,提高液晶面板产品的良率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (12)

  1. 一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,包括以下步骤:
    步骤S1、提供基板,在所述基板上涂布负性光阻层;
    步骤S2、提供光罩;
    所述光罩包括第一完全透光区、与所述第一完全透光区间隔设置的第二完全透光区、环绕在所述第二完全透光区外围的第一完全遮光区、包围所述第一完全透光区与第一完全遮光区的部分透光区、以及与所述部分透光区的边缘相连接的第二完全遮光区;
    步骤S3、使用所述光罩对负性光阻层进行曝光;
    步骤S4、对曝光后的负性光阻层进行显影;
    被所述第一完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成主光阻间隔物;被所述第二完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成与主光阻间隔物膜厚相等的光阻柱体;被所述第一完全遮光区所曝光的负性光阻层经显影后被完全侵蚀而形成环绕所述光阻柱体的空槽;被所述部分透光区所曝光的负性光阻层经显影后被部分侵蚀,形成膜厚小于主光阻间隔物膜厚的黑色矩阵的挡墙;被所述第二完全遮光区所曝光的负性光阻层经显影后被完全侵蚀形成被所述黑色矩阵的挡墙所界定出的空白区;
    步骤S5、进行烘烤制程,控制烘烤温度超过负性光阻的玻璃化温度,使得所述光阻柱体转变为粘流态并向所述空槽内填充,从而使得所述光阻柱体的膜厚降低,形成膜厚小于主光阻间隔物膜厚且大于黑色矩阵的挡墙膜厚的副光阻间隔物。
  2. 如权利要求1所述的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距不大于7um。
  3. 如权利要求2所述的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距等于4um。
  4. 如权利要求1所述的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,其中,所述部分透光区的光穿透率大于0且小于100%。
  5. 如权利要求1所述的具有一体式黑色矩阵与光阻间隔物的液晶面板 的制作方法,其中,所述步骤S3采用紫外光进行曝光。
  6. 一种光罩,包括第一完全透光区、与所述第一完全透光区间隔设置的第二完全透光区、环绕在所述第二完全透光区外围的第一完全遮光区、包围所述第一完全透光区与第一完全遮光区的部分透光区、以及与所述部分透光区的边缘相连接的第二完全遮光区;
    所述第一完全透光区用于制作主光阻间隔物;所述第二完全透光区与第一完全遮光区相配合,用于制作副光阻间隔物;所述部分透光区用于制作黑色矩阵中的挡墙;所述第二完全遮光区用于制作黑色矩阵中由挡墙所界定出的空白区。
  7. 如权利要求6所述的光罩,其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距不大于7um。
  8. 如权利要求7所述的光罩,其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距等于4um。
  9. 如权利要求6所述的光罩,其中,所述部分透光区的光穿透率大于0且小于100%。
  10. 一种具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,包括以下步骤:
    步骤S1、提供基板,在所述基板上涂布负性光阻层;
    步骤S2、提供光罩;
    所述光罩包括第一完全透光区、与所述第一完全透光区间隔设置的第二完全透光区、环绕在所述第二完全透光区外围的第一完全遮光区、包围所述第一完全透光区与第一完全遮光区的部分透光区、以及与所述部分透光区的边缘相连接的第二完全遮光区;
    步骤S3、使用所述光罩对负性光阻层进行曝光;
    步骤S4、对曝光后的负性光阻层进行显影;
    被所述第一完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成主光阻间隔物;被所述第二完全透光区所曝光的负性光阻层经显影后保持膜厚不变,形成与主光阻间隔物膜厚相等的光阻柱体;被所述第一完全遮光区所曝光的负性光阻层经显影后被完全侵蚀而形成环绕所述光阻柱体的空槽;被所述部分透光区所曝光的负性光阻层经显影后被部分侵蚀,形成膜厚小于主光阻间隔物膜厚的黑色矩阵的挡墙;被所述第二完全遮光区所曝光的负性光阻层经显影后被完全侵蚀形成被所述黑色矩阵的挡墙所界定出的空白区;
    步骤S5、进行烘烤制程,控制烘烤温度超过负性光阻的玻璃化温度, 使得所述光阻柱体转变为粘流态并向所述空槽内填充,从而使得所述光阻柱体的膜厚降低,形成膜厚小于主光阻间隔物膜厚且大于黑色矩阵的挡墙膜厚的副光阻间隔物;
    其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距不大于7um;
    其中,所述部分透光区的光穿透率大于0且小于100%。
  11. 如权利要求10所述的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,其中,第二完全透光区的轮廓与第一完全遮光区的外轮廓之间的间距等于4um。
  12. 如权利要求10所述的具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法,其中,所述步骤S3采用紫外光进行曝光。
PCT/CN2017/089249 2017-05-23 2017-06-20 具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩 WO2018214198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710370734.2 2017-05-23
CN201710370734.2A CN106980202B (zh) 2017-05-23 2017-05-23 具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩

Publications (1)

Publication Number Publication Date
WO2018214198A1 true WO2018214198A1 (zh) 2018-11-29

Family

ID=59342906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089249 WO2018214198A1 (zh) 2017-05-23 2017-06-20 具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩

Country Status (2)

Country Link
CN (1) CN106980202B (zh)
WO (1) WO2018214198A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643624A (zh) * 2017-09-22 2018-01-30 深圳市华星光电半导体显示技术有限公司 有机薄膜结构及其制备方法
CN108511460B (zh) * 2018-03-20 2020-11-03 深圳市华星光电半导体显示技术有限公司 一种阵列基板的制备方法及其间隔件结构的制备方法
CN109541826B (zh) * 2018-10-08 2021-04-02 惠科股份有限公司 一种查找表的制作方法、显示面板的制作方法
CN109581756A (zh) * 2018-12-24 2019-04-05 惠科股份有限公司 曝光装置及间隔物的制作方法
CN112242098B (zh) * 2020-10-14 2022-08-05 Tcl华星光电技术有限公司 基板及其制备方法、显示面板
CN114744137B (zh) * 2022-05-07 2023-11-28 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法与显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070332A1 (en) * 2006-09-18 2008-03-20 Samsung Electronics Co., Ltd. Method of fabricating display substrate and method of fabricating display panel using the same
CN104298009A (zh) * 2014-08-28 2015-01-21 京东方科技集团股份有限公司 隔垫物、显示面板、显示装置和显示面板的制作方法
US20150198842A1 (en) * 2014-01-10 2015-07-16 Samsung Display Co., Ltd. Array substrate, liquid crystal display panel having the same and method of manufacturing the same
CN105045034A (zh) * 2015-09-14 2015-11-11 深圳市华星光电技术有限公司 隔垫物及其制造装置
US20160282665A1 (en) * 2015-03-23 2016-09-29 Samsung Display Co., Ltd. Mask of display device and display device fabricated with the mask
CN105988249A (zh) * 2015-02-26 2016-10-05 南京瀚宇彩欣科技有限责任公司 显示装置及其彩色滤光片的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105372867A (zh) * 2015-12-02 2016-03-02 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
CN105700225A (zh) * 2016-04-22 2016-06-22 深圳市华星光电技术有限公司 一种基于boa技术的显示面板及制作方法
CN105807503B (zh) * 2016-05-27 2019-09-03 京东方科技集团股份有限公司 隔垫物及制作方法、显示装置
CN106094427B (zh) * 2016-08-17 2021-01-22 京东方科技集团股份有限公司 一种隔垫物的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070332A1 (en) * 2006-09-18 2008-03-20 Samsung Electronics Co., Ltd. Method of fabricating display substrate and method of fabricating display panel using the same
US20150198842A1 (en) * 2014-01-10 2015-07-16 Samsung Display Co., Ltd. Array substrate, liquid crystal display panel having the same and method of manufacturing the same
CN104298009A (zh) * 2014-08-28 2015-01-21 京东方科技集团股份有限公司 隔垫物、显示面板、显示装置和显示面板的制作方法
CN105988249A (zh) * 2015-02-26 2016-10-05 南京瀚宇彩欣科技有限责任公司 显示装置及其彩色滤光片的制造方法
US20160282665A1 (en) * 2015-03-23 2016-09-29 Samsung Display Co., Ltd. Mask of display device and display device fabricated with the mask
CN105045034A (zh) * 2015-09-14 2015-11-11 深圳市华星光电技术有限公司 隔垫物及其制造装置

Also Published As

Publication number Publication date
CN106980202A (zh) 2017-07-25
CN106980202B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
WO2018214198A1 (zh) 具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩
US7440048B2 (en) Method of forming a color filter having various thicknesses and a transflective LCD with the color filter
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
US10012905B2 (en) Device substrate and fabricating method thereof
CN111596486B (zh) 基板及其制作方法、显示面板
US10365523B2 (en) Display panel and manufacturing method based on BOA technology
WO2018176629A1 (zh) 显示面板及其制造方法
CN107450224B (zh) Coa型阵列基板的制备方法
US10495920B2 (en) Color filter substrate and method of manufacturing the same
WO2018120463A1 (zh) 彩色滤光层基板的制造方法及其应用的液晶面板的制造方法
WO2019061724A1 (zh) Bps型阵列基板及其制作方法
WO2018171079A1 (zh) 主动开关阵列基板及其制造方法与显示面板
WO2021259247A1 (zh) 显示基板及其制备方法、面板、显示装置及掩膜板
WO2019127674A1 (zh) 黑色矩阵与间隔物的制作方法
JP2006337980A (ja) 液晶表示装置用カラーフィルタ基板及びその製造方法
WO2019075900A1 (zh) 液晶显示面板及其制作方法
WO2018176603A1 (zh) 光罩及其主动开关阵列基板的制造方法
WO2019214108A1 (zh) 一种显示面板的制作方法以及显示面板
WO2018201545A1 (zh) 光罩及其应用于主动开关阵列基板的制造方法
JP2009058606A (ja) カラーフィルタ及びその製造方法とフォトマスク及び液晶表示装置
KR101070796B1 (ko) 칼라필터기판 및 이의 제조방법
CN109143700B (zh) Tft阵列基板及其制作方法
US20200089032A1 (en) Color filter, and manufacturing method thereof and display panel
CN107145034B (zh) 一种半色调掩膜板
JP5655426B2 (ja) カラーフィルタの製造方法およびカラーフィルタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911246

Country of ref document: EP

Kind code of ref document: A1