WO2021259247A1 - 显示基板及其制备方法、面板、显示装置及掩膜板 - Google Patents

显示基板及其制备方法、面板、显示装置及掩膜板 Download PDF

Info

Publication number
WO2021259247A1
WO2021259247A1 PCT/CN2021/101504 CN2021101504W WO2021259247A1 WO 2021259247 A1 WO2021259247 A1 WO 2021259247A1 CN 2021101504 W CN2021101504 W CN 2021101504W WO 2021259247 A1 WO2021259247 A1 WO 2021259247A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
area
light
black matrix
mask
Prior art date
Application number
PCT/CN2021/101504
Other languages
English (en)
French (fr)
Inventor
陈炎
苏醒
张荡
吴伟
Original Assignee
京东方科技集团股份有限公司
武汉京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 武汉京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021259247A1 publication Critical patent/WO2021259247A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate and a preparation method thereof, a panel, a display device and a mask.
  • LCD Liquid Crystal Display
  • LCD Liquid Crystal Display
  • a display substrate has a display area and a non-display area.
  • the display substrate includes a base substrate and a black matrix located on the base substrate.
  • the black matrix includes a first portion located in the display area and a black matrix located in the display area.
  • the second part of the non-display area wherein the first part of the black matrix is provided with an opening, and the second part of the black matrix is provided with a pit.
  • a portion of the inner wall of the pit that is close to the edge of the pit is arc-shaped or substantially arc-shaped.
  • the black matrix is formed of a negative photoresist material
  • the pits are elongated in shape
  • the pits are along a side of the non-display area adjacent to the display area.
  • the sides extend, and in the width direction of the pits, the depth of the pits is larger in the middle and smaller on the sides.
  • the black matrix is formed of a negative photoresist material, and the depression depth of the pit is larger in the middle than in the outer periphery.
  • the black matrix is formed of a positive photoresist material
  • the shape of the pits is elongated
  • the pits are along a side of the non-display area adjacent to the display area.
  • the sides extend, and in the width direction of the pits, the depth of the pits is smaller in the middle and larger on the two sides, or increases first and then decreases from the middle to the two sides.
  • the black matrix is formed of a positive photoresist material, and the depression depth of the pits is larger in the middle and smaller in the outer periphery, or the depth of the pits is increased first and then decreased from the middle to the outer periphery.
  • the display substrate further includes: a flat layer located on the black matrix; in the non-display area of the display substrate, a part of the flat layer is located in the pit; In the display area of the display substrate, a part of the flat layer is located in the opening.
  • a liquid crystal panel comprising the display substrate according to any one of the above embodiments, a counter substrate disposed opposite to the display substrate, and a liquid crystal panel located between the display substrate and the counter substrate.
  • the liquid crystal layer between the substrates.
  • a dual-cell liquid crystal display panel in another aspect, includes a display sub-panel and a dimming sub-panel; the dimming sub-panel is the liquid crystal panel described in any of the foregoing embodiments.
  • a display device in another aspect, includes the double-cell liquid crystal display panel as described in any of the foregoing embodiments, or the liquid crystal panel as described in any of the foregoing embodiments.
  • a method for preparing a display substrate includes forming a black matrix on a base substrate; wherein the display substrate has a display area and a non-display area, and the black matrix includes a first portion located in the display area and a first portion located in the non-display area. In the second part of the area, the first part of the black matrix is provided with an opening, and the second part of the black matrix is provided with a pit.
  • the method for preparing the display substrate includes: coating a black photoresist on a base substrate; aligning a mask with the base substrate coated with the black photoresist; The quasi mask plate exposes the coated black photoresist; develops the exposed black photoresist to form a black matrix on the base substrate.
  • the black photoresist is a negative photoresist
  • the mask has a first light-transmitting area, a second light-transmitting area, and a light-shielding area.
  • the aligning the mask with the base substrate coated with the black photoresist includes: aligning the light-shielding area at least with the opening in the first part of the black matrix to be formed, and aligning the first transparent
  • the light area corresponds to the part other than the opening in the first part of the black matrix to be formed
  • the second light-transmitting area corresponds to the pits in the second part of the black matrix to be formed.
  • the step of exposing the coated black photoresist based on the aligned mask includes: exposing the black photoresist corresponding to the first light-transmitting area and the second light-transmitting area of the mask .
  • the step of developing the exposed black photoresist includes: removing the unexposed black photoresist that is blocked by the light-shielding area of the mask plate to form the opening; and leaving through the mask plate.
  • the black photoresist exposed to the first light-transmitting area of the black matrix is formed to form a part other than the opening in the first part of the black matrix; and, the black photoresist that is exposed through the second light-transmitting area of the mask is removed Part of the glue to form pits in the second part of the black matrix.
  • the black photoresist is a positive photoresist
  • the mask has a first light-transmitting area, a second light-transmitting area, and a light-shielding area.
  • the aligning the mask with the base substrate coated with the black photoresist includes: aligning the first light-transmitting area with the opening in the first part of the black matrix to be formed, and aligning the The second light-transmitting area corresponds to the pits in the second part of the black matrix to be formed, and the light-shielding area corresponds to at least parts other than the openings in the first part of the black matrix to be formed.
  • the step of exposing the coated black photoresist based on the aligned mask includes: exposing the black photoresist corresponding to the first light-transmitting area and the second light-transmitting area of the mask.
  • the step of developing the exposed black photoresist includes: removing the black photoresist exposed through the first light-transmitting area of the mask plate to form the opening; The black photoresist that is shielded by the light-shielding area of the plate without being exposed to form a portion other than the opening in the first part of the black matrix; and the black photoresist that is exposed through the second light-transmitting area of the mask is removed Part of the glue to form pits in the second part of the black matrix.
  • the preparation method of the display substrate before the step of aligning the mask with the base substrate coated with the black photoresist, the preparation method of the display substrate further includes: determining the mask and the to-be-formed The size of the second light-transmitting area corresponding to the second part of the black matrix is used to control the depression depth of the pit.
  • determining the size of the second light-transmissive area corresponding to the mask plate and the second portion of the black matrix to be formed includes: The size of the partly corresponding second light-transmitting area is set to an initial value; the mask is used to prepare a sample of the display substrate, and the sample of the display substrate is used to prepare a sample of a dimming sub-panel; detecting the dimming sub The box thickness of the peripheral area and the display area of the panel sample; determine whether the absolute value of the difference between the peripheral area box thickness and the display area box thickness is greater than the preset value; when the peripheral area box thickness and the display area When the absolute value of the difference in the cell thickness of the display area is greater than the preset value, adjust the size of the initial value and return to the execution of using the mask to prepare the display substrate sample, and use the display substrate sample to prepare dimming
  • the step of sampling the sub-panel ends when the absolute value of the difference between the box thickness of the peripheral area and the box thickness of the display area is less than or equal to the preset
  • the size of the second light-transmitting area corresponding to the mask plate and the second portion of the black matrix to be formed is when the absolute value of the difference between the cell thickness of the peripheral area and the cell thickness of the display area is less than or equal to
  • the preset value is the size of the initial value.
  • the preset value is in the range of 0.05um to 0.1um.
  • the method further includes: coating a flat layer material on the surface of the black matrix away from the base substrate, and the flat layer material flows into the non-display area of the display substrate. In the pit, the flat layer material flows into the opening in the display area of the display substrate; the flat layer material is cured to form a flat layer.
  • the mask is a mask used in the method for preparing a display substrate as described in any of the above embodiments.
  • Figure 1 is a schematic diagram of the structure of a dual-cell liquid crystal display in the related art
  • FIG. 2 is a schematic diagram of the structure of the color film substrate of the dimming sub-panel in the dual-cell liquid crystal display shown in FIG. 1;
  • FIG. 3A is a schematic structural diagram of a display device according to some embodiments of the present disclosure.
  • 3B is a schematic diagram of the connection between the first display substrate of the display sub-panel and the driving circuit in the display device shown in FIG. 3A;
  • FIG. 4 is a schematic structural diagram of a dual-cell liquid crystal display panel according to some embodiments of the present disclosure.
  • FIG. 5 is a schematic diagram of a sub-pixel of the display sub-panel in the display device shown in FIG. 3A;
  • FIG. 6 is a schematic structural diagram of a dimming unit of the dimming sub-panel in the display device shown in FIG. 3A;
  • FIG. 7A is a schematic structural diagram of a fourth display substrate of the dimming sub-panel in the display device shown in FIG. 3A;
  • FIG. 7B is a cross-sectional view of the fourth display substrate shown in FIG. 7A along the SS' section line;
  • 7C is another cross-sectional view of the fourth display substrate of the dimming sub-panel in the display device shown in FIG. 3A;
  • 7D is still another cross-sectional view of the fourth display substrate of the dimming sub-panel in the display device shown in FIG. 3A;
  • 7E is still another cross-sectional view of the fourth display substrate of the dimming sub-panel in the display device shown in FIG. 3A;
  • 7F is a structural diagram of pits simulated by optical software according to some embodiments of the present disclosure.
  • Figure 7G is a schematic structural diagram of a pit according to some embodiments of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for preparing a fourth display substrate of the dimming sub-panel in the display device shown in FIG. 3A;
  • FIG. 9A is a process flow chart of the manufacturing method of the fourth display substrate shown in FIG. 7B;
  • FIG. 9B is a process flow diagram of the manufacturing method of the fourth display substrate shown in FIG. 7C;
  • FIG. 9C is a process flow diagram of the manufacturing method of the fourth display substrate shown in FIG. 7D;
  • FIG. 9D is a process flow chart of the manufacturing method of the fourth display substrate shown in FIG. 7E;
  • 10A is a schematic diagram showing the meaning of various parameters related to the Fresnel coefficient F in some embodiments of the present disclosure
  • 10B is a schematic diagram showing the diffraction phenomenon generated by incident light in the exposure machine in some embodiments of the present disclosure
  • 10C is a schematic diagram of forming pits in black photoresist in some embodiments of the present disclosure.
  • FIGS. 9A-9D is a flowchart of a method for determining the size of the second light-transmitting area corresponding to the second portion of the black matrix on the fourth display substrate and the mask in FIGS. 9A-9D;
  • FIG. 12 is a schematic diagram of forming pits in a black photoresist using a half-exposure mask in the related art.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” is optionally interpreted to mean “when determining" or “in response to determining" Or “when [stated condition or event] is detected” or “in response to detecting [stated condition or event]”.
  • parallel includes absolute parallel and approximately parallel, where the acceptable deviation range of approximately parallel can be, for example, within 5°;
  • vertical includes absolute vertical and approximately vertical, where the acceptable deviation range of approximately vertical can also be, for example Deviation within 5°.
  • equal includes absolute equality and approximately equal, wherein the difference between the two within the acceptable deviation range of approximately equal, for example, which may be equal, is less than or equal to 5% of either one.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing.
  • the etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • liquid crystal display screens also called liquid crystal display panels
  • Contrast is a key factor in the performance of the LCD screen, which greatly affects the visual effect of the LCD screen.
  • the higher the contrast the clearer and more eye-catching the picture, and the brighter the color; while the lower the contrast, the whole picture will be gray.
  • the dual cell liquid crystal display (Dual Cell, also known as the dual cell liquid crystal display panel) has a higher contrast ratio.
  • the dual-cell liquid crystal display includes a display sub-panel 1 (Normal Cell) and a dimming sub-panel 2 (Mono Cell) arranged in a stack.
  • the display sub-panel 1 includes an array substrate 11 and a color filter substrate 12 arranged opposite to each other, and a liquid crystal 13 located between the array substrate 11 and the color filter substrate 12.
  • the color film substrate 12 has RGB color resists (also referred to as RGB filters) 121, so the display sub-panel 1 can perform color display and realize the display function of the display panel.
  • the dimming sub-panel 2 includes an array substrate 21 and a color filter substrate 22 arranged opposite to each other, and a liquid crystal 23 located between the array substrate 21 and the color filter substrate 22.
  • the color film substrate 22 does not have RGB color resistance (at this time, the color film substrate 22 can be called a display substrate), so the dimming sub-panel 2 can perform pure grayscale display (that is, display grayscale images), and realize the display of the sub-panel 1 zone dimming.
  • the color filter substrate 22 has a display area 221 and a peripheral area 222, and the color filter substrate 22 includes a black matrix 224, a flat layer 225, and a flat layer 225, which are arranged in sequence away from the base substrate 223 in the display area 221 and the peripheral area 222. Septa 226. Since the color filter substrate 22 of the dimming sub-panel does not have RGB color resistance, the areas of the color filter substrate 22 that are not covered by the black matrix 224 (the areas S1, S2, and S3 shown in FIG. 2) will form a blank pattern area ( That is the open area).
  • the part of the flat layer 225 located in the display area 221 flows to the blank pattern area around the black matrix 224, as shown by the arrowed curve in FIG. As shown, the actual thickness of the portion of the flat layer 225 located in the display area 221 is reduced. At the same time, in order to prevent light leakage, the portion of the base substrate 223 located in the peripheral area 222 is completely covered by the black matrix 224.
  • the actual thickness of the portion of the flat layer 225 located in the peripheral area 222 will not decrease, thereby forming a step difference with the portion of the flat layer 225 located in the display area 221.
  • halftone masks are often used to make the color filter substrate 22 or the spacers 226 on the color filter substrate 22 are made to different heights to eliminate the difference in box thickness, but this greatly increases the cost of the mask, especially for large In the generation line, the cost of the mask is even higher.
  • Display devices are products with image display functions, such as monitors, televisions, billboards, digital photo frames, laser printers with display functions, phones, mobile phones, tablet computers, game consoles, and personal digital assistants (Personal Digital Assistant, PDA), digital cameras, portable camcorders, viewfinders, navigators, vehicles, large-area walls, home appliances, information query equipment (such as e-government, banking, hospitals, electric power and other department business query equipment, monitors, etc.).
  • PDA Personal Digital Assistant
  • FIG. 3A is a schematic structural diagram of a display device provided by an embodiment of the present disclosure, showing the structure on the left side of the display device, and the structure on the right side is not completely shown.
  • the display device includes a dual-cell liquid crystal display panel 40, and the display device may also include a frame 10, a front sheet metal 20, a backlight module 30, and a driving circuit 50.
  • the frame 10 surrounds an accommodating space, and the backlight module 30, the double-cell liquid crystal display panel 40 and the driving circuit 50 are arranged in the accommodating space.
  • the front sheet metal 20 is arranged on the open side of the frame 10 and functions to fix the backlight module 30, the double cell liquid crystal display panel 40 and the driving circuit 50 together.
  • the function of the backlight module 30 is to provide a light source with uniform in-plane brightness to the double cell liquid crystal display panel 40.
  • the dual-cell liquid crystal display panel 40 includes a display sub-panel 410 and a dimming sub-panel 420 that are stacked, and the dimming sub-panel 420 can be closer to the backlight module 30 than the display sub-panel 410, that is, in the display device
  • the backlight module 30 can be located on the side of the dimming sub-panel 420 far away from the display sub-panel 410.
  • the backlight module 30 can pass through the dimming sub-panel 420 and the display sub-panel 410 in sequence, so that the backlight module 30
  • the display sub-panel 410 and the dimming sub-panel 420 can be provided with a light source with uniform in-plane brightness distribution.
  • the backlight module 30 is divided into two types: side-type and direct-type.
  • the backlight module 30 shown in FIG. 3A is a direct type backlight module, which includes a plurality of LED lamp beads and a back plate carrying the plurality of LED lamp beads.
  • the backlight module 30 also includes optical films such as diffusers and prism sheets between the LED lamp beads and the dimming sub-panel 420 to make the surface light source provided by the backlight module more uniform .
  • the driving circuit 50 is coupled to the dual cell liquid crystal display panel 40.
  • the dual-cell liquid crystal display panel 40 may include a display sub-panel 410 and a dimming sub-panel 420 that are stacked, and the driving circuit 50 may include a first driving circuit 51 and a second driving circuit 52, wherein the first driving circuit 51 may
  • the display sub-panel 410 is coupled to the display sub-panel 410 to provide electrical signals for the display sub-panel 410.
  • the display sub-panel 410 includes a first display substrate 411 and a second display substrate 412.
  • the first driving circuit 51 can be connected to the first display substrate 411 Coupling;
  • the second driving circuit 52 can be coupled with the dimming sub-panel 420 to provide electrical signals for the dimming sub-panel 420.
  • the dimming sub-panel 420 includes a third display substrate 421 and a fourth display substrate 422,
  • the second driving circuit 52 may be coupled with the third display substrate 421.
  • FIG. 3B is a schematic diagram of the connection between the first display substrate or the third display substrate and the driving circuit.
  • the first display substrate 411 in the display sub-panel has a plurality of gate lines GL and a plurality of data lines DL arranged in a spatially intersecting manner, thereby forming a plurality of sub-pixel regions arranged in an array (that is, the sub-pixel regions in the display sub-panel)
  • the area occupied by one sub-pixel in the first display substrate 411) 4111, and the first display substrate 411 includes a switching transistor 4112 in one sub-pixel area 4111.
  • the third display substrate 421 in the dimming sub-panel may also have multiple gate lines and multiple data lines arranged in a spatially intersecting manner, thereby forming multiple dimming regions arranged in an array (the smallest one of the dimming sub-panels)
  • the area 4211 occupied by the repeating unit in the third display substrate, and the third display substrate 421 includes a switch transistor 4212 in a dimming area 4211.
  • the switching transistor 4112 and/or the switching transistor 4212 may be thin film transistors, such as polysilicon thin film transistors such as low temperature poly-silicon thin-film transistors (LTPS TFT), single-crystal silicon thin-film transistors, and amorphous silicon thin-film transistors. Transistors, metal oxide thin film transistors, etc.
  • the first driving circuit includes a power supply circuit (Power IC) 501, a timing control circuit (TCON IC) 502, a gate driver circuit (Gate Driver IC) 503, a source driver circuit (Source Driver IC) 504, a grayscale circuit 505, and an interface Circuit 506.
  • Power IC power supply circuit
  • TCON IC timing control circuit
  • Gate Driver IC gate driver circuit
  • Source Driver IC source driver circuit
  • grayscale circuit an interface Circuit 506.
  • the interface circuit 506 receives the signal input by the system, and the system may be the main board of the complete machine.
  • the system represented by the dashed frame shown in FIG. 4 may be included in the display device, for example, when the display device is a television; the system represented by the dashed frame shown in FIG. 4 may also be excluded from the display device, for example, when When the display device is only used as a display.
  • the signal received by the interface circuit 506 from the system includes a power signal and a digital signal.
  • the power signal is input to the power circuit 501, and the digital signal is input to the timing control circuit 502.
  • the power circuit 501 generates various operating voltages according to the received power signal, and delivers these operating voltages to the timing control circuit 502, the gate drive circuit 503, the source drive circuit 504, and the gray scale circuit 505.
  • the timing control circuit 502 generates the operating timing of the gate driving circuit 503 and the source driving circuit 504 according to the received digital signal.
  • the gate driving circuit 503 generates a high and low level digital voltage according to the corresponding working sequence, and outputs the digital voltage to the gate of the corresponding switch transistor 4112 through each row of gate lines GL, thereby controlling the switching state of each row of sub-pixels.
  • the source driving circuit 504 generates an analog voltage according to the corresponding work sequence, and outputs the analog voltage to the source or drain of the corresponding switch transistor 4112 through each column data line DL, and then outputs to the corresponding pixel electrode to form The voltage required for liquid crystal deflection.
  • the gray scale circuit 505 generates a reference voltage required by the source driving circuit 504, and this reference voltage is also called a gamma reference voltage.
  • connection between the third display substrate 421 and the second driving circuit 52 in the dimming sub-panel 420 in FIG. 3A is similar to that shown in FIG.
  • Some embodiments of the present disclosure provide a dual cell liquid crystal display panel. Next, referring to FIGS. 3A and 4, the display sub-panel 410 and the dimming sub-panel 420 in the dual-cell liquid crystal display panel 40 will be described in detail.
  • the display sub-panel 410 includes a first display substrate 411 and a second display substrate 412 arranged opposite to each other, and a first liquid crystal layer 413 located between the first display substrate 411 and the second display substrate 412.
  • the first display substrate 411 and the second display substrate 412 may be pasted together by the frame sealant SG, thereby confining the first liquid crystal layer 413 in the area enclosed by the frame sealant SG.
  • the first display substrate 411 or the second display substrate 412 includes color resists, such as RGB color resists, so the display sub-panel 410 can perform color display and realize the display function of the display panel.
  • the dimming sub-panel 420 includes a third display substrate 421 and a fourth display substrate 422 disposed opposite to each other, and a second liquid crystal layer 423 located between the third display substrate 421 and the fourth display substrate 422.
  • the third display substrate 421 and the fourth display substrate 422 may be pasted together by the frame sealant SG, thereby confining the second liquid crystal layer 423 in the area enclosed by the frame sealant SG.
  • the third display substrate 421 and the fourth display substrate 422 do not have RGB color resistance, so the dimming sub-panel 420 can perform pure grayscale display and realize the regional dimming of the display sub-panel.
  • the dimming sub-panel 420 and the display sub-panel 410 may have a display area and a peripheral area located on at least one side of the display area.
  • the dimming sub-panel 420 has a display area AA2 and a peripheral area SA2 located around the display area AA2, and at least one (for example, one; another example, multiple) dimming unit (also may be referred to as a minimum repeating unit) AU is located in the display area AA2 of the dimming sub-panel 420;
  • the display sub-panel 410 has a display area AA1 and a peripheral area SA1 located around the display area AA1, and at least one (for example, one; for example, multiple) sub-pixels P It may be located in the display area AA1 of the display sub-panel 410.
  • the display area AA1 of the display sub-panel 410 may correspond to the display area AA2 of the dimming sub-panel 420, for example, in the thickness direction of the dual-cell liquid crystal display panel 40 (for example, parallel to the z direction in FIG. 3B)
  • the display area AA1 of the display sub-panel 410 may be flush with the display area AA2 of the dimming sub-panel 420.
  • the sub-pixels P in the display area AA1 of the display sub-panel 410 may correspond to the dimming units AU in the display area AA2 of the dimming sub-panel 420, so that the light emitted from the backlight module can be sequentially It exits through a dimming unit AU and a sub-pixel P.
  • one dimming unit AU in the display area AA2 of the dimming sub-panel 420 can correspond to multiple sub-pixels P in the display area AA1 of the display sub-panel 410, so that the light emitted from the backlight module It can be emitted through a dimming unit AU and a plurality of sub-pixels P in sequence.
  • a dimming unit AU can correspond to one pixel in the display area AA1 of the display sub-panel 410, wherein one pixel can include multiple (for example, three ) Sub-pixels.
  • FIG. 5 is a partial structure diagram of the display sub-panel in the display device shown in FIG. 3A, showing the structure of one sub-pixel P in the display sub-panel 410.
  • the above-mentioned first display substrate 411 includes a base substrate ST1', and thin film transistors TFT' and pixel electrodes PD' arranged in an array on the base substrate ST1'.
  • the base substrate ST1' provides a basis for other structures in the first display substrate 411, and structures such as the thin film transistor TFT' and the pixel electrode PD' can all be formed on the base substrate ST1'.
  • the base substrate ST1' may be rigid or flexible.
  • the material of the base substrate ST1' may be glass, metal, quartz, resin, or the like.
  • the thin film transistor TFT' and the pixel electrode PD' correspond one-to-one.
  • the thin film transistor TFT' may be an N-type thin film transistor or a P-type thin film transistor, and the difference lies only in the conduction condition.
  • the N-type thin film transistor the high level is turned on and the low level is turned off; for the P-type thin film transistor, the low level is turned on and the high level is turned off.
  • the thin film transistor TFT' includes a gate G', a gate insulating layer GI', an active layer AL', and source and drain electrodes disposed along a direction away from the base substrate ST1'.
  • the source and drain include a source S'and a drain D'.
  • a protective layer PL' is formed over the source and drain electrodes and the pixel electrode PD'.
  • the gate G' is provided in the same layer as the gate line GL shown in FIG. 4.
  • the pixel electrode PD' is connected to the drain D'.
  • the data line DL shown in FIG. 4 is connected to the source S'. It should be understood that the pixel electrode PD' can also be connected to the source electrode S', and the data line DL' can also be connected to the drain electrode D', which is not limited.
  • the TFT' shown in FIG. 5 is a TFT with a bottom gate structure. In some embodiments of the present disclosure, the TFT' on the first display substrate 411 may also be a TFT with a top gate structure.
  • the above-mentioned second display substrate 412 includes a base substrate ST2', a black matrix BM' on the base substrate ST2', a plurality of color resists SZ formed in the black matrix BM', and a black matrix BM' and a plurality of The flat layer OC' on the color resist SZ.
  • the material and properties of the base substrate ST2' can be the same as those of the base substrate ST1', and will not be repeated here.
  • a plurality of color resists SZ can form a color resist array.
  • the plurality of color resistances SZ may include three primary color resistance units.
  • the color resistance SZ may include a red color resistance unit, a green color resistance unit, and a blue color resistance unit.
  • the light emitted from the backlight module can be emitted through the color resist SZ, so that the light emitted from the display sub-panel 410 has a color.
  • a sub-pixel P in the display sub-panel 410 includes a color resist SZ, for example, a red color resist unit, a green color resist unit, and a blue color resist unit are respectively opposed to the sub-pixel regions on the first display substrate 411 one by one.
  • the material of the black matrix BM' may be black photoresist.
  • the embodiment of the present disclosure does not limit the material of the black photoresist.
  • the black photoresist material can use acrylic resin mixed with black pigments (mainly carbon).
  • the photoresist can be mixed with carbon (C), titanium (Ti), nickel (Ni) and other raw materials to form a black resin.
  • the embodiment of the present disclosure does not limit the type of black photoresist.
  • the black photoresist can be a negative photoresist or a positive photoresist. The nature of the negative photoresist is that the exposed photoresist changes from being soluble before exposure to insoluble after exposure, and then hardens.
  • the exposed photoresist cannot be washed away in the developing solution, and the pattern remaining on the photoresist is opposite or complementary to the pattern on the mask plate.
  • the nature of the positive photoresist is that the exposed photoresist changes from insoluble before exposure to soluble after exposure.
  • the exposed photoresist is softened and soluble in the developing solution, and the pattern remaining on the photoresist It is the same as the pattern on the mask.
  • the black matrix BM' can separate the red color resistance unit, the green color resistance unit, and the blue color resistance unit to avoid crosstalk of the light emitted from adjacent sub-pixels; the black matrix BM' can also block the opaque
  • the TFT' structure enables the display sub-panel 410 to display higher image quality when the user views from the side of the display surface (for example, the side of the second display substrate 412 away from the first display substrate 411). It should be understood that the above-mentioned black matrix BM' and a plurality of color resists SZ may also be provided in the first display substrate 411.
  • a spacer SP Spacer
  • PS columnar spacer
  • the spacer may include a main spacer SP1 and an auxiliary spacer SP2.
  • the height of the auxiliary spacer SP2 is smaller than the height of the main spacer SP1, and the main function is to enable the display sub-panel 410 to be pressed by an external force.
  • the panel 410 maintains a certain box thickness.
  • Some embodiments of the present disclosure also provide a liquid crystal panel, which can be used as the dimming sub-panel 420 of the double cell liquid crystal display panel 40 in FIG. 3A.
  • the liquid crystal panel can also be used as a liquid crystal display panel.
  • the display device provided by the embodiment of the present disclosure can also include the liquid crystal panel, and the liquid crystal panel can be used as the liquid crystal display panel, so that the display device can perform pure grayscale display.
  • the liquid crystal panel will be described by taking the dimming sub-panel of the double-cell liquid crystal display panel as an example.
  • FIG. 6 is a partial structure diagram of the dimming sub-panel in the display device shown in FIG. 3A, showing the structure of a dimming unit AU in the dimming sub-panel 420.
  • the structure of a dimming unit AU of the dimming sub-panel 420 is similar to the structure of a sub-pixel P of the display sub-panel 410 shown in FIG. 5.
  • the dimming sub-panel 420 includes a display substrate and a counter substrate disposed opposite to the display substrate (in other words, a counter substrate paired with the display substrate); wherein, the display substrate includes a black matrix BM.
  • the black matrix BM is disposed in the fourth display substrate 422.
  • the display substrate is the fourth display substrate 422, and the counter substrate is the third display substrate 421.
  • the black matrix BM may be disposed in the third display substrate 421, at this time the display substrate is the third display substrate 421, and the counter substrate is the fourth display substrate 422.
  • the dimming sub-panel 420 also includes a liquid crystal layer located between the display substrate and the opposite substrate, which is hereinafter referred to as a second liquid crystal layer 423.
  • the display substrate of the dimming sub-panel 420 (for example, the fourth display substrate 422 in FIG. 3A) does not have color resistance.
  • the amount of light emitted from the dimming unit AU can be controlled.
  • the sub-pixels P in the display area AA1 of the display sub-panel 410 can correspond to the dimming unit AU in the display area AA2 of the dimming sub-panel 420.
  • the rotation of the liquid crystal molecules in the second liquid crystal layer 423 corresponding to one dimming unit AU of the photonic panel 420 controls the light incident on one or more sub-pixels P corresponding to the dimming unit AU in the display sub-panel 410
  • the sub-pixels P in the display area AA1 of the display sub-panel 410 can correspond to the dimming units AU in the display area AA2 of the dimming sub-panel 420, and one dimming unit AU of the dimming sub-panel 420 can be controlled.
  • the rotation of the liquid crystal molecules in the corresponding second liquid crystal layer 423 controls the amount of light incident on a sub-pixel P in the display sub-panel 410 corresponding to the dimming unit AU.
  • Some embodiments of the present disclosure also provide a display substrate.
  • the structure of the display substrate is described below by taking the fourth display substrate 422 as the display substrate as an example. 6, the fourth display substrate 422 includes a base substrate ST2, a black matrix BM on the base substrate ST2, and the fourth display substrate 422 may also include a flat layer OC on the black matrix BM.
  • the material and properties of the base substrate ST2 may be the same as the materials and properties of the base substrate in the display sub-panel described above, and will not be repeated here.
  • the material and type of the black matrix BM can be the materials and types described above, and will not be repeated here.
  • the black matrix BM is used to separate different dimming units to avoid crosstalk of the light emitted from adjacent dimming units; the black matrix BM can also block the opaque TFT structure, so that the user can view the side of the display surface (for example, the first When viewing the side of the four display substrate 422 away from the third display substrate 421 and the side of the display sub-panel 410 away from the dimming sub-panel 420 in FIG. 3A), the double-cell liquid crystal display panel displays higher picture quality.
  • the black matrix BM and the flat layer OC may also be provided in the third display substrate 421.
  • the dimming sub-panel 420 includes a display area AA2 and a peripheral area SA2.
  • the third display substrate 421 and the fourth display substrate 422 of the dimming sub-panel 420 may also have display areas and non-display areas.
  • the display area for example, in the thickness direction of the dimming sub-panel 420 (for example, parallel to the z direction), the display area AA2 of the dimming sub-panel 420 corresponds to the display area of the fourth display substrate, and the dimming sub-panel 420
  • the peripheral area SA2 corresponds to the non-display area of the fourth display substrate.
  • FIG. 7A shows the structure of the fourth display substrate.
  • the fourth display substrate 422 has a display area AA3 and a non-display area SA3.
  • the display area AA3 includes a plurality of openings, the opening AU' is not covered by the black matrix BM, and one opening AU' can correspond to a dimming unit of the dimming sub-panel.
  • the black matrix BM is located not only in the display area AA3 but also in the non-display area SA3.
  • the black matrix BM includes a first part located in the display area AA3 and a second part located in the non-display area SA3.
  • FIG. 7B is a cross-sectional view of the fourth display substrate in FIG. 7A along the SS' section line
  • FIG. 7C to FIG. 7E are cross-sectional views of another three types of fourth display substrates.
  • the black matrix BM may include a first portion BM1 located in the display area AA3, and a second portion BM2 located in the non-display area SA3.
  • the first part BM1 of the black matrix BM is provided with an opening AU'.
  • the second part BM2 of the black matrix BM is provided with pits H.
  • the pit H does not penetrate the second part BM2 of the black matrix.
  • the entire inner wall of the pit H is formed of the black matrix material.
  • the opening AU' penetrates the first part BM1 of the black matrix, that is, there is no black matrix material on the side of the opening AU' close to the base substrate ST2, for example, the base substrate ST2 is exposed.
  • FIG. 7F shows the structure of some pits simulated by optical software
  • FIG. 7G shows a schematic structure of the pits in an embodiment of the present disclosure.
  • the part of the inner wall HW of the pit close to the edge HT of the pit is arc-shaped or roughly arc-shaped; that is, the surface of the inner wall HW of the pit that meets the edge HT of the pit is an arc-shaped surface Or roughly curved surface.
  • Roughly curved means that the inner wall of the actually formed pit as shown in FIG. 7F may include microstructures, for example, there are protrusions and/or recesses on the inner wall, so that the inner wall HW of the actually formed pit is close to The edge portion of the pit is roughly arc-shaped.
  • the pit shown in a in Fig. 7G the part of the inner wall HW close to the edge HT of the pit is roughly linear, and the depth d of the depression is larger in the middle and smaller on the two sides, and the maximum depth of the depression (can also be The height of the pit) is denoted as dmax.
  • the inner wall HW of the pit shown in b in FIG. 7G may be an arc-shaped surface as a whole, and the dent depth d is larger in the middle and smaller on the two sides, and the maximum dent depth is denoted as dmax; in addition, the inner wall HW of the pit It can be a roughly curved surface as a whole.
  • the part of the inner wall HW near the edge HT of the pit has a roughly linear cliff-like shape, and the depth d of the depression is the smaller in the middle and the larger on both sides, and the maximum depth of the depression is denoted as dmax .
  • the surface of the inner wall HW that is in contact with the edge HT of the pit is an arc-shaped surface or a substantially arc-shaped surface, and the depth d of the pit is from the middle to both sides.
  • the maximum depression depth is recorded as dmax.
  • the part of the inner wall HW near the edge HT of the pit is arc-shaped or roughly arc-shaped, the inner wall HW of the pit is not easily torn, and the product yield is higher.
  • the black matrix BM may be formed of a negative photoresist material.
  • the shape of the pit H may be a long strip, and the pit H may be formed along the non-display
  • the side of the area SA3 adjacent to the display area AA3 extends.
  • the pit may be located in the non-display area SA3. Take the pit located in the non-display area SA3a adjacent to the side of the display area AA3 in the negative x direction in FIG. 7A as an example.
  • the side adjacent to the non-display area SA3a and the display area AA3 is the side SA3a' of the display area AA3 in the negative x direction (ie, the left side of the paper), and the elongated pits can be Extend along the side SA3a', for example, the extending direction of the elongated pit is parallel to the y direction.
  • the depression of the pit is The depth is larger in the middle and smaller on the two sides. In some examples, in the extending direction of the pit H, the depth of the pit is larger in the middle and smaller on the sides, and the depth of the pit is larger in the middle and smaller in the outer periphery.
  • the base substrate ST2 located in the non-display area SA3 is covered with a black matrix, that is, the second part BM2 of the black matrix is continuous on the base substrate ST2, And its edge is flush with the edge of the non-display area SA3.
  • the black matrix BM can cover the entire non-display area SA3, and the light leakage phenomenon of the dimming sub-panel can be improved.
  • the second part BM2 of the black matrix is broken or has openings on the base substrate ST2, that is, discontinuous, and the black matrix BM does not cover the entire non-display area SA3.
  • a pit H can be formed in a continuous pattern (the area enclosed by the outer contour of the continuous pattern is equal to the actual area of the continuous pattern) in the second part BM2 of the black matrix.
  • the black matrix in FIG. 7C The second part BM2 includes three continuous patterns, and a pit H can be formed in each area.
  • a pit H may also be a long strip extending in other directions.
  • the edge of a pit H can also be round, elliptical, quasi-circular, ellipse-like, etc. At this time, the depth of the dent can be larger in the middle and smaller in the outer periphery.
  • the black matrix BM may be formed of a positive photoresist material.
  • the shape of the pit H may be a long strip, and the pit H extends along the side of the non-display area SA3 adjacent to the display area AA3.
  • the pit may be located in the non-display area SA3. Take the pit located in the non-display area SA3a adjacent to the side of the display area AA3 in the negative x direction in FIG. 7A as an example.
  • the side adjacent to the non-display area SA3a and the display area AA3 is the side SA3a' of the display area AA3 in the negative x direction (ie, the left side of the paper), and the elongated pits can be It extends along the side SA3a', for example, the extending direction of the elongated pit is parallel to the y direction.
  • the depression of the pit is The depth is small in the middle and large on both sides.
  • the depth of the pit in the extension direction of the pit H, is smaller in the middle and larger on both sides, and the depth of the pit is smaller in the middle and larger in the outer periphery.
  • the depth of the pit in the width direction of the pit, may also increase first and then decrease from the middle to the two sides.
  • the depth of the pit in the extension direction of the pit, the depth of the pit first increases and then decreases from the middle to the two sides. At this time, the depth of the pit first increases and then decreases from the middle to the periphery.
  • a pit H may also be a long strip extending in other directions.
  • the edge of a pit can also be round, elliptical, quasi-circular, elliptical, etc.
  • the depth of the pit can be small in the middle and large in the periphery, or from From the middle to the periphery, increase first and then decrease.
  • the number of pits may be at least one (for example, one; for example, multiple).
  • the base substrate ST2 located in the non-display area SA3 may be covered with a black matrix, that is, the second part BM2 of the black matrix is on the base substrate ST2.
  • the above is continuous, so that the black matrix BM can cover the entire non-display area SA3, and the light leakage phenomenon of the dimming sub-panel can be improved.
  • one or more pits may be formed on the entire continuous second portion BM2 in the black matrix BM.
  • the fourth display substrate 422 further includes a flat layer OC on the black matrix BM2.
  • a part of the flat layer OC is located in the opening AU'; in the non-display area SA3 of the fourth display substrate 422, a part of the flat layer OC is located in the recess H.
  • the surface of the flat layer OC is separated from the base substrate
  • the distance of ST2 close to the surface of the flat layer OC decreases, that is, in the non-display area SA3 of the fourth display substrate 422, the actual thickness of the fourth display substrate 422 decreases.
  • the level difference between the portion of the flat layer OC located in the non-display area SA3 and the portion of the flat layer OC located in the display area AA3 is reduced, thereby reducing the difference in cell thickness of the dimming sub-panel, and solving the problem caused by the difference in cell thickness.
  • the fourth display substrate 422 further includes spacers SP on the flat layer OC.
  • Some embodiments of the present disclosure also provide a method for manufacturing a display substrate, which may be used to manufacture the display substrate provided in any of the above embodiments, such as the fourth display substrate 422 shown in FIG. 6; When the BM and the flat layer OC are disposed on the third display substrate 421, the manufacturing method can also be used to manufacture the third display substrate 421.
  • the preparation method of the display substrate includes: forming a black matrix on a base substrate.
  • the display substrate may have a display area and a non-display area; the black matrix may include a first part located in the display area and a second part located in the non-display area, wherein the first part of the black matrix is provided with an opening, and the second part of the black matrix Dimples are provided on the part.
  • the preparation method of the display substrate may include S101 to S104.
  • the structure of the base substrate is not limited.
  • the base substrate may be a blank substrate, such as a blank glass substrate, a resin substrate, a quartz substrate, a metal substrate, and the like.
  • the base substrate not only includes a blank substrate, but also includes some patterns on the blank substrate. These patterns include, for example, arrays of thin film transistors TFT and arrays of thin film transistors. Pixel electrode PD and so on.
  • the material of the black photoresist is not limited.
  • the black photoresist material can use acrylic resin mixed with black pigments (mainly carbon).
  • the photoresist can be mixed with carbon (C), titanium (Ti), nickel (Ni) and other raw materials to form a black resin.
  • the black photoresist can be a negative photoresist or a positive photoresist.
  • the nature of the negative photoresist is that the exposed photoresist changes from being soluble before exposure to insoluble after exposure, and then hardens. The exposed photoresist cannot be washed away in the developing solution, and the pattern remaining on the photoresist is opposite or complementary to the pattern on the mask plate.
  • the nature of the positive photoresist is that the exposed photoresist changes from insoluble before exposure to soluble after exposure. The exposed photoresist is softened and soluble in the developing solution, and the pattern remaining on the photoresist It is the same as the pattern on the mask.
  • the base substrate before coating the black photoresist, the base substrate may also be cleaned.
  • the mask may have a first light-transmitting area, a second light-transmitting area, and a light-shielding area.
  • the black photoresist coated in step S101 is a negative photoresist.
  • S102 may include the following steps:
  • the light-shielding area of the mask is at least corresponding to the opening AU' in the first part BM1 of the black matrix to be formed, and the first light-transmitting area of the mask is outside the opening AU' in the first part BM1 of the black matrix to be formed
  • the second light-transmitting area of the mask corresponds to the pit H in the second part BM2 of the black matrix to be formed.
  • the black photoresist coated in step S101 is a positive photoresist.
  • S102 may include the following steps:
  • the first light-transmitting area of the mask is corresponding to the opening AU' in the first part BM1 of the black matrix to be formed
  • the second light-transmitting area of the mask is corresponding to the opening AU' in the second part BM2 of the black matrix to be formed.
  • the pit H corresponds to at least the light-shielding area of the mask corresponding to the part other than the opening AU' in the first part BM1 of the black matrix to be formed.
  • ultraviolet light is used as a light source to expose the coated black photoresist, and the wavelength of the ultraviolet light is 300 nm to 500 nm.
  • a series of parallel arrows shown in FIGS. 9A, 9B, 9C, and 9D represent light rays.
  • the mask has a first light-transmitting area, a second light-transmitting area, and a light-shielding area.
  • the black photoresist corresponding to the first light-transmitting area and the second light-transmitting area is exposed, and the black photoresist is exposed to the light-shielding area.
  • the corresponding black photoresist is not exposed. According to whether the black photoresist is a negative photoresist or a positive photoresist, the following exposure operations are performed respectively.
  • the black photoresist when the black photoresist is a negative photoresist, the light-shielding area of the mask at least corresponds to the opening AU' of the black matrix to be formed, and light cannot pass through the mask.
  • the light-shielding area irradiates the black photoresist corresponding to the light-shielding area, that is, the black photoresist corresponding to the light-shielding area is blocked by the light-shielding area of the mask, so that this part of the photoresist becomes unexposed photoresist.
  • the nature of the exposed black photoresist does not change, and it is soluble in the developing solution.
  • the first light-transmitting area of the mask corresponds to the part other than the opening AU' in the first part BM1 of the black matrix to be formed
  • the second light-transmitting area of the mask corresponds to the second part BM2 of the black matrix to be formed
  • light can pass through the first and second light-transmitting areas of the mask to irradiate the black photoresist corresponding to the first and second light-transmitting areas. Therefore, it can be masked.
  • the black photoresist corresponding to the first light-transmitting area and the second light-transmitting area of the film plate is exposed, so that this part of the photoresist becomes the exposed photoresist, and the exposed photoresist undergoes a cross-linking reaction and hardens. Therefore, compared with the unexposed photoresist, the dissolution speed of the exposed photoresist in the developing solution is slower, and the more fully exposed, the more intense the crosslinking reaction of the exposed photoresist and the degree of hardening The higher the value, the slower the dissolution rate in the developing solution; when the exposure is sufficient enough, it can be considered that the fully exposed photoresist is insoluble in the developing solution.
  • the black photoresist when the black photoresist is a positive photoresist, the light-shielding area of the mask is at least the same as the part other than the opening AU' in the first part BM1 of the black matrix to be formed (also called Corresponding to the non-open area), the light cannot pass through the mask to irradiate the black photoresist corresponding to the light-shielding area.
  • This part of the photoresist becomes the unexposed photoresist, and the nature of the unexposed black photoresist No change, insoluble in the developer.
  • the first light-transmitting area of the mask corresponds to the opening AU' in the first part BM1 of the black matrix to be formed
  • the second light-transmitting area corresponds to the pit H of the second part BM2 of the black matrix to be formed
  • Light can pass through the first light-transmitting area and the second light-transmitting area of the mask to irradiate the black photoresist corresponding to the first light-transmitting area and the second light-transmitting area.
  • the light-transmitting area and the black photoresist corresponding to the second light-transmitting area are exposed, so that this part of the photoresist becomes the exposed photoresist, and the exposed photoresist undergoes a photochemical reaction, which is soluble in the developing solution, and , The more fully exposed, the greater the degree of photochemical reaction of the exposed photoresist, and the faster the dissolution rate in the developing solution.
  • the black photoresist when the black photoresist is a negative photoresist, the black photoresist that is blocked by the light-shielding area of the mask and not exposed can be removed in the developer solution to form black The opening AU' in the first part of the matrix BM1.
  • the black photoresist exposed through the first light-transmitting area of the mask may be retained in the developer to form a portion other than the opening AU' in the first portion BM1 of the black matrix.
  • the light diffraction phenomenon causes the intensity distribution of the light source to be low in the middle and high on both sides (for example, both sides along the width direction).
  • the photoresist in the middle area in the second part of the black matrix BM2 is not fully exposed, so that the photoresist in the middle area has a lower degree of hardening and dissolves faster in the developer.
  • the photoresist on both sides along the width direction in the second part BM2 of the black matrix is more fully exposed, so that the photoresist on both sides along the width direction has a higher degree of hardening.
  • the dissolution rate in the liquid is slower, and the part that is retained in the developer is more, and the part that is removed is less.
  • a part of the black photoresist exposed through the second light-transmitting area of the mask can be removed, so as to form the pit H in the second part BM2 of the black matrix, and the depth of the pit H is larger in the middle. Small on both sides.
  • the black photoresist when the black photoresist is a positive photoresist, the black photoresist that is blocked by the light-shielding area of the mask and not exposed is retained in the developer to form a black matrix The part outside the opening AU' in the first part.
  • the black photoresist exposed through the first light-transmitting area of the mask undergoes a photochemical reaction and can be removed in the developing solution to form an opening AU' in the first part of the black matrix.
  • the light diffraction phenomenon makes the intensity distribution of the light source appear to be low in the middle, on both sides (for example, the two sides along the width direction and/or along the The two sides perpendicular to the width direction) are high.
  • the photoresist in the middle area in the second part of the black matrix BM2 is not sufficiently exposed, so that the photochemical reaction of the photoresist in the middle area is small, the dissolution speed in the developer is slow, and the remaining in the developer is
  • the photoresist on both sides of the second part BM2 of the black matrix is more fully exposed, so that the photochemical reaction of the photoresist on both sides is greater, and the dissolution rate in the developer is higher. Fast, fewer parts are retained in the developer, and more parts are removed.
  • a part of the black photoresist exposed through the second light-transmitting area of the mask can be removed, so as to form the pit H in the second part BM2 of the black matrix, and the depth of the pit H is small in the middle. Big on both sides.
  • the material of the flat layer is resin and has fluidity
  • the material of the flat layer is oriented toward the removal of black lithography.
  • the glue's opening AU' flows and flows into the opening AU'; in the second portion BM2 of the black matrix (ie, the non-display area SA3 of the fourth display substrate), the flat layer material flows into the pit H and flows into In the pit H.
  • the level difference between the portion of the flat layer OC corresponding to the non-display area SA3 and the portion of the flat layer corresponding to the display area AA3 is reduced.
  • S101 to S105 are only an example of a method for preparing a display substrate. In some embodiments of the present disclosure, only the foregoing S101 to S104 may also be performed. Alternatively, other steps may be performed before, during, or after S101 to S105. For example, after S105 is performed, spacers can be continuously formed on the surface of the flat layer OC away from the base substrate ST2.
  • the preparation method of the display substrate can form pits on the part of the black matrix corresponding to the non-display area of the display substrate, that is, on the second part of the black matrix, so that the flat layer corresponds to the non-display area.
  • the part of the area flows into the pit, and its actual thickness is reduced.
  • the level difference between the part of the flat layer corresponding to the non-display area and the part of the flat layer corresponding to the display area is reduced.
  • the thickness difference is reduced.
  • the depth of the pit is related to the Fresnel coefficient F.
  • F Fresnel coefficient
  • the Fresnel coefficient F ⁇ /(L ⁇ ), where ⁇ is the size of the light-transmitting area of the mask, L is the exposure gap, and ⁇ is the wavelength of the incident light.
  • FIG. 10A uses a light-transmitting area on the mask as an example to show the meaning of various parameters related to the Fresnel coefficient F. As shown in FIG.
  • is the size of the light-transmitting area of the mask in a direction parallel to the paper surface
  • L is the distance between the mask and the fourth display substrate.
  • FIG. 10B shows the diffraction phenomenon of incident light in the exposure machine when the size ⁇ of the light-transmitting area of the mask is different.
  • Figure 10B shows the four diffraction phenomena produced by incident light in the exposure machine when ⁇ takes four different values. Among them, the y-axis can represent the light intensity. When the light is stronger than Th, pits can be formed.
  • the fourth kind of diffraction phenomenon is highly consistent with the actual desired diffraction phenomenon, and has practical application value. Using this fourth diffraction phenomenon, after exposing and developing the black photoresist, when a negative photoresist is used for the black photoresist, pits as shown in FIG.
  • FIG. 10C can be obtained in the black photoresist.
  • FIG. 10C is a schematic diagram of forming pits in the black photoresist.
  • a pit is formed in the second part of the black matrix (ie, the non-display area of the fourth display substrate)
  • part of the flat layer material can flow into the pit, thereby eliminating the flat layer corresponding to the non-display area to a certain extent.
  • the level difference between the part and the part corresponding to the display area is not limited to the display area.
  • the mask plate Before aligning the base substrate coated with black photoresist, it can be determined that the mask corresponds to the second part of the black matrix to be formed (that is, the part where the black matrix is located in the non-display area of the fourth display substrate) The size of the second light-transmitting area. It should be noted that it is not necessary to first determine the size of the second light-transmitting area of the mask plate corresponding to the second part of the black matrix to be formed before each preparation of the display substrate.
  • the size of the second light-transmitting area of the mask plate corresponding to the second part of the black matrix to be formed is determined for the first time, it can be used in each exposure operation on the exposure production line.
  • the size of the second light-transmitting area corresponding to the second part of the black matrix to be formed of the determined mask is used.
  • the operation of FIG. 11 can be performed to determine the size of the second light-transmitting area of the mask plate corresponding to the second portion of the black matrix to be formed.
  • Step 1 Set an initial value for the size of the second light-transmitting area corresponding to the second portion of the black matrix to be formed on the mask.
  • the depth of the pits is larger in the middle and smaller on the sides.
  • the top view of the fourth display substrate is not given, it can be understood from FIG. 7B that the shape of the pit may be a long strip extending along the side of the non-display area SA3 adjacent to the display area AA3, and is In the non-display area SA3 adjacent to one side of the display area AA3 (for example, the non-display area SA3a adjacent to the side of the display area AA3 in the negative x direction in FIG. 7A), the black matrix has only one elongated concave pit.
  • the shape of the pit may be a strip, a circle or other shapes, and the number of pits may be more than one at this time.
  • the second part BM2 of the black matrix can completely cover the non-display area SA3, which can improve the problem of light leakage in the non-display area SA3 of the fourth display substrate. Therefore, Taking the formation of the fourth display substrate shown in FIG. 7B as an example, in step 1, the size ⁇ of the second light-transmitting area corresponding to the second portion of the black matrix to be formed on the mask plate shown in FIG. 9A can be set Set the initial value.
  • the size of the second light-transmitting area may be the size of the second light-transmitting area of the mask plate corresponding to the second portion of the black matrix to be formed in the left-right direction parallel to the paper surface.
  • the size of the second light-transmitting area may also be the size of the second light-transmitting area of the mask plate corresponding to the second part of the black matrix to be formed in a direction perpendicular to the paper surface.
  • the depth of the pit H is smaller in the middle and larger on the two sides.
  • the top view of the fourth display substrate is not given, it can be understood from FIG. 7D that the shape of the pit H is a long strip extending along the side of the non-display area SA3 adjacent to the display area AA3, and is In the non-display area SA3 adjacent to one side of the display area AA3 (for example, the non-display area SA3a adjacent to the side of the display area AA3 in the negative x direction in FIG. 7A), the black matrix may only have one long strip.
  • the shape of the pit H may be a strip, a circle or other shapes, and the number of pits may be more than one at this time. Therefore, in step 1, an initial value can be set for the size ⁇ of the second light-transmitting area corresponding to the second portion of the black matrix to be formed on the mask shown in FIGS. 9C and 9D.
  • the size of the second light-transmitting area may be the size of the second light-transmitting area of the mask plate corresponding to the second portion of the black matrix to be formed in the left-right direction parallel to the paper surface.
  • the size of the second light-transmitting area may also be the size of the second light-transmitting area of the mask plate corresponding to the second part of the black matrix to be formed in a direction perpendicular to the paper surface.
  • the size of the light-transmitting area corresponding to the mask plate and the first area is conventionally designed according to the customer's requirements for transmittance.
  • Step 2 Use the mask to prepare a sample of the display substrate, and use the sample of the display substrate to prepare a sample of a dimming sub-panel.
  • the above S101 to S104 executes the above S101 to S104 to prepare a sample of the display substrate.
  • the above S101 to S105 can also be performed to prepare a sample of the display substrate.
  • spacers can be made on the surface of the flat layer OC away from the base substrate. The sample of the display substrate and the sample of the opposing substrate are boxed to form a sample of the dimming sub-panel.
  • Step 3 Detect the cell thickness of the peripheral area and the cell thickness of the display area of the sample of the dimming sub-panel.
  • Step 4 Determine whether the absolute value of the difference between the peripheral area box thickness and the display area box thickness is greater than a preset value; when the absolute value of the difference between the peripheral area box thickness and the display area box thickness is greater than When the preset value is set, adjust the size of the initial value and return to step 2 to step 4 until the absolute value of the difference between the box thickness of the peripheral area and the box thickness of the display area is less than or equal to the preset value.
  • the thickness of the flat layer is set to 1.3 um, and the step difference between the portion of the flat layer corresponding to the non-display area and the portion of the flat layer corresponding to the display area can reach 0.4 um.
  • the preset value is set within the range of 0.05um to 0.1um.
  • the preset value can be 0.05um, 0.06um, 0.07um, 0.08um, 0.09um, or 0.1um.
  • the preset value is determined to be 0.1um.
  • steps 2 to 4 are executed for the last time, that is, when the absolute value of the difference between the cell thickness of the peripheral area and the cell thickness of the display area is less than or equal to the preset value, the mask and the black matrix to be formed
  • the size of the second light-transmitting area corresponding to the two parts is determined as the final size of the second light-transmitting area of the mask.
  • FIG. 12 provides a comparative example, specifically a schematic diagram of forming pits in a black photoresist using a half-exposure mask in the related art.
  • the part of the inner wall near the edge of the pit also called the edge of the pit, such as shown in the dashed frame in FIG. 12
  • the edges of the pits in the embodiments of the present disclosure are not easily torn, and the yield rate is higher.
  • the half-exposure mask is used to form the pits in the related art, the cost of the mask is greatly increased. Especially in the exposure production line of the large-generation line, the cost of the half-exposure mask will be even higher. Using the manufacturing method shown in FIG. 8 provided by the embodiments of the present disclosure will greatly reduce the cost of the mask.
  • Some embodiments of the present disclosure also provide a mask, which is a mask used in the method for preparing a display substrate provided in any of the above embodiments, such as the mask shown in FIGS. 9A to 9D .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板(422),显示基板(422)具有显示区域(AA3)和非显示区域(SA3),显示基板(422)包括:衬底基板(ST2)和位于衬底基板(ST2)上的黑矩阵(BM),黑矩阵包括(BM)位于显示区域(AA3)的第一部分(BM1)和位于非显示区域(SA3)的第二部分(BM2);其中,黑矩阵的第一部分(BM1)上设置有开口(AU'),黑矩阵的第二部分(BM2)上设置有凹坑(H)。

Description

显示基板及其制备方法、面板、显示装置及掩膜板
本申请要求于2020年6月22日提交的、申请号为202010575550.1的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板及其制备方法、面板、显示装置及掩膜板。
背景技术
LCD(Liquid Crystal Display,液晶显示)装置具有重量轻、厚度薄、功耗低和辐射小等优点,已被广泛用于信息技术、多媒体技术等领域,并逐渐成为各种显示装置的主流。
发明内容
一方面,提供一种显示基板。所述显示基板具有显示区域和非显示区域,所述显示基板包括:衬底基板和位于所述衬底基板上的黑矩阵,所述黑矩阵包括位于所述显示区域的第一部分和位于所述非显示区域的第二部分;其中,所述黑矩阵的第一部分上设置有开口,所述黑矩阵的第二部分上设置有凹坑。
在一些实施例中,所述凹坑的内壁中靠近所述凹坑的边沿的部分为弧形或大致的弧形。
在一些实施例中,所述黑矩阵由负性光刻胶材料形成,所述凹坑的形状为长条形,所述凹坑沿所述非显示区域的与所述显示区域相邻的侧边延伸,并且,在所述凹坑的宽度方向上,所述凹坑的凹陷深度为中间大两边小。
在一些实施例中,所述黑矩阵由负性光刻胶材料形成,所述凹坑的凹陷深度为中间大外围小。
在一些实施例中,所述黑矩阵由正性光刻胶材料形成,所述凹坑的形状为长条形,所述凹坑沿所述非显示区域的与所述显示区域相邻的侧边延伸,并且,在所述凹坑的宽度方向上,所述凹坑的凹陷深度为中间小两边大,或者,从中间到两边先增大再减小。
在一些实施例中,所述黑矩阵由正性光刻胶材料形成,所述凹坑的凹陷深度为中间小外围大,或者,从中间到外围先增大再减小。
在一些实施例中,所述显示基板还包括:位于所述黑矩阵上的平坦层;在所述显示基板的所述非显示区域,所述平坦层的一部分位于所述凹坑中;在所述显示基板的所述显示区域,所述平坦层的一部分位于所述开口中。
另一方面,提供一种液晶面板,所述液晶面板包括如上述任一实施例所 述的显示基板、与所述显示基板相对设置的对置基板、以及位于所述显示基板和所述对置基板之间的液晶层。
又一方面,提供一种双盒液晶显示面板。所述双盒液晶显示面板包括显示子面板和调光子面板;所述调光子面板为如上述任一实施例所述的液晶面板。
又一方面,提供一种显示装置。所述显示装置包括如上述任一实施例所述的双盒液晶显示面板,或者,如上述任一实施例所述的液晶面板。
又一方面,提供一种显示基板的制备方法。所述显示基板的制备方法包括在衬底基板上形成黑矩阵;其中,所述显示基板具有显示区域和非显示区域,所述黑矩阵包括位于所述显示区域的第一部分和位于所述非显示区域的第二部分,所述黑矩阵的第一部分上设置有开口,所述黑矩阵的第二部分上设置有凹坑。
在一些实施例中,所述显示基板的制备方法包括:在衬底基板上涂覆黑色光刻胶;使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准;基于对准后的掩膜板对涂覆的所述黑色光刻胶进行曝光;对曝光后的所述黑色光刻胶进行显影,以在所述衬底基板上形成黑矩阵。
在一些实施例中,所述黑色光刻胶为负性光刻胶,所述掩膜板具有第一透光区域、第二透光区域和遮光区域。所述使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准包括:将所述遮光区域至少与待形成的黑矩阵的第一部分中的开口对应,将所述第一透光区域与所述待形成的黑矩阵的第一部分中开口以外的部分对应,将所述第二透光区域与待形成的黑矩阵的第二部分中的凹坑对应。基于对准后的掩膜板对涂覆的所述黑色光刻胶进行曝光的步骤包括:对所述掩膜板的第一透光区域和第二透光区域对应的黑色光刻胶进行曝光。对曝光后的所述黑色光刻胶进行显影的步骤包括:去除被所述掩膜板的遮光区域遮挡而未被曝光的黑色光刻胶,以形成所述开口;保留通过所述掩膜板的第一透光区域而被曝光的黑色光刻胶,以形成黑矩阵的第一部分中开口以外的部分;并且,去除通过所述掩膜板的第二透光区域而被曝光的黑色光刻胶中的一部分,以形成黑矩阵的第二部分中的凹坑。
在一些实施例中,所述黑色光刻胶为正性光刻胶,所述掩膜板具有第一透光区域、第二透光区域和遮光区域。所述使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准包括:将所述第一透光区域与所述待形成的黑矩阵的第一部分中的开口对应,将所述第二透光区域与待形成的黑矩阵的第二部分中的凹坑对应,将所述遮光区域至少与待形成的黑矩阵的第一部分中开口以外的 部分对应。基于对准后的掩膜板对涂覆的黑色光刻胶进行曝光的步骤包括:对所述掩膜板的第一透光区域和第二透光区域对应的黑色光刻胶进行曝光。对曝光后的所述黑色光刻胶进行显影的步骤包括:去除通过所述掩膜板的第一透光区域而被曝光的黑色光刻胶,以形成所述开口;保留被所述掩膜板的遮光区域遮挡而未被曝光的黑色光刻胶,以形成黑矩阵的第一部分中开口以外的部分;并且,去除通过所述掩膜板的第二透光区域而被曝光的黑色光刻胶中的一部分,以形成黑矩阵的第二部分中的凹坑。
在一些实施例中,使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准的步骤之前,所述显示基板的制备方法还包括:确定所述掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小,以控制所述凹坑的凹陷深度。
在一些实施例中,确定所述掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小包括:为所述掩膜板与所述待形成的黑矩阵的第二部分对应的第二透光区域的大小设定初始值;使用所述掩膜板制备所述显示基板的样品,使用所述显示基板的样品制备调光子面板的样品;检测所述调光子面板的样品的周边区盒厚和显示区盒厚;判断所述周边区盒厚和所述显示区盒厚的差值的绝对值是否大于预设值;当所述周边区盒厚和所述显示区盒厚的差值的绝对值大于预设值时,调整所述初始值的大小并返回执行使用所述掩膜板制备所述显示基板的样品,使用所述显示基板的样品制备调光子面板的样品的步骤,直到所述周边区盒厚和所述显示区盒厚的差值的绝对值小于或等于所述预设值时结束。所述掩膜板与所述待形成的黑矩阵的第二部分对应的第二透光区域的大小为当所述周边区盒厚和所述显示区盒厚的差值的绝对值小于或等于所述预设值时所述初始值的大小。
在一些实施例中,所述预设值位于0.05um~0.1um的范围内。
在一些实施例中,所述方法还包括:在所述黑矩阵远离所述衬底基板的表面涂覆平坦层材料,在所述显示基板的所述非显示区域所述平坦层材料流入所述凹坑中,在所述显示基板的所述显示区域所述平坦层材料流入所述开口中;所述平坦层材料固化形成平坦层。
另一方面,提供一种掩膜板。所述掩膜板为如上述任一实施例中所述的显示基板的制备方法中使用的掩膜板。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中的双盒液晶显示屏的结构示意图;
图2为图1所示的双盒液晶显示屏中的调光子面板的彩膜基板的结构示意图;
图3A为根据本公开一些实施例的一种显示装置的结构示意图;
图3B为图3A所示的显示装置中的显示子面板的第一显示基板与驱动电路连接的示意图;
图4为根据本公开一些实施例的一种双盒液晶显示面板的结构示意图;
图5为图3A所示显示装置中显示子面板的一个亚像素的结构示意图;
图6为图3A所示显示装置中调光子面板的一个调光单元的结构示意图;
图7A为图3A所示显示装置中调光子面板的第四显示基板的结构示意图;
图7B为图7A所示第四显示基板沿SS’剖面线的剖视图;
图7C为图3A所示显示装置中调光子面板的第四显示基板的另一种剖视图;
图7D为图3A所示显示装置中调光子面板的第四显示基板的又一种剖视图;
图7E为图3A所示显示装置中调光子面板的第四显示基板的又一种剖视图;
图7F为根据本公开一些实施例的光学软件模拟的凹坑的结构图;
图7G为根据本公开一些实施例的凹坑的示意性结构图;
图8为图3A所示显示装置中调光子面板的第四显示基板的制备方法的流程示意图;
图9A为图7B所示第四显示基板的制备方法的工艺流程图;
图9B为图7C所示第四显示基板的制备方法的工艺流程图;
图9C为图7D所示第四显示基板的制备方法的工艺流程图;
图9D为图7E所示第四显示基板的制备方法的工艺流程图;
图10A为显示本公开一些实施例中与菲涅尔系数F有关的各个参数的含义的示意图;
图10B为显示本公开一些实施例中曝光机中入射光所产生的衍射现象的示意图;
图10C为本公开一些实施例中在黑色光刻胶中形成凹坑的示意图;
图11为确定图9A~图9D中掩模板与第四显示基板上的黑矩阵的第二部 分对应的第二透光区域的大小的方法的流程图;
图12为相关技术中使用半曝光掩模板在黑色光刻胶中形成凹坑的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
随着液晶显示技术的发展,人们对液晶显示屏(也称为液晶显示面板)在画质方面的性能要求越来越高。对比度是液晶显示屏性能的一项关键因素,极大地影响着液晶显示屏的视觉效果。一般来说,对比度越高,画面越清晰 醒目,色彩也越鲜明艳丽;而对比度低,则会让整个画面都灰蒙蒙的。相比传统的液晶显示屏,双盒液晶显示屏(Dual Cell,也称为双盒液晶显示面板)具有更高的对比度。
如图1所示,双盒液晶显示屏包括层叠设置的显示子面板1(Normal Cell)和调光子面板2(Mono Cell)。显示子面板1包括相对设置的阵列基板11和彩膜基板12,以及位于阵列基板11和彩膜基板12之间的液晶13。彩膜基板12具有RGB色阻(也可称为RGB滤光片)121,因此显示子面板1能够进行彩色显示,实现显示面板的显示功能。调光子面板2包括相对设置的阵列基板21和彩膜基板22,以及位于阵列基板21和彩膜基板22之间的液晶23。但是彩膜基板22不具有RGB色阻(此时,彩膜基板22可以称为显示基板),因此调光子面板2能够进行纯灰阶显示(即显示灰度图),实现对显示子面板1分区域调光。
如图2所示,彩膜基板22具有显示区域221和周边区域222,并且彩膜基板22在显示区域221和周边区域222均包括远离衬底基板223依次设置的黑矩阵224、平坦层225和隔垫物226。由于调光子面板的彩膜基板22不具有RGB色阻,因此彩膜基板22的未被黑矩阵224覆盖的区域(如图2中显示的区域S1、S2和S3)将形成空白图案区域(即开口区域)。在彩膜基板22的制作过程中,由于平坦层225的材料具有流动性,因此平坦层225位于显示区域221的部分向黑矩阵224周边的空白图案区域流动,如图2中带箭头的曲线所示,造成平坦层225位于显示区域221的部分实际厚度降低。同时,为了防止漏光,衬底基板223位于周边区域222的部分被黑矩阵224完全覆盖。由于黑矩阵224位于周边区域222的部分不存在空白图案区域,因此平坦层225位于周边区域222的部分实际厚度不会降低,从而与平坦层225位于显示区域221的部分之间形成段差。这导致阵列基板21与彩膜基板22对盒后的调光子面板中,周边区盒厚(Cell Gap)偏高(周边区盒厚与显示区盒厚之间的差异记为ΔCG),从而产生调光子面板的周边发黄不良。
目前,多采用半色调掩膜板制作彩膜基板22或者将彩膜基板22上的隔垫物226制作成不同的高度来消除盒厚差异,但这大大增加了掩膜的成本,尤其对于大世代线,掩膜的成本更加高昂。
基于此,本公开的一些实施例提供了一种显示装置。显示装置为具有图像显示功能的产品,例如可以是:显示器,电视机,广告牌,数码相框,具有显示功能的激光打印机,电话,手机,平板电脑,游戏机,个人数字助理(Personal Digital Assistant,PDA),数码相机,便携式摄录机,取景器,导 航仪,车辆,大面积墙壁、家电、信息查询设备(如电子政务、银行、医院、电力等部门的业务查询设备、监视器等。
图3A是本公开实施例提供的一种显示装置的结构示意图,显示了显示装置左侧的结构,右侧的结构未显示完全。如图3A所示,该显示装置包括双盒液晶显示面板40,显示装置还可以包括框架10、前钣金20、背光模组30、以及驱动电路50。
其中,框架10围绕出一容置空间,背光模组30和双盒液晶显示面板40以及驱动电路50设置于该容置空间内。前钣金20设置于框架10敞开的一面上,作用是把背光模组30和双盒液晶显示面板40以及驱动电路50固定起来。
背光模组30的作用是给双盒液晶显示面板40提供一个面内亮度均匀分布的光源。示例性地,双盒液晶显示面板40包括层叠设置的显示子面板410和调光子面板420,调光子面板420相比于显示子面板410可以更靠近背光模组30,即,在显示装置中,背光模组30可以位于调光子面板420远离显示子面板410的一侧,这样,背光模组30发射的光可以依次通过调光子面板420和显示子面板410,使得背光模组30可以为显示子面板410和调光子面板420提供一个面内亮度均匀分布的光源。根据光源分布位置的不同,背光模组30分为侧入式和直下式两种结构。图3A所示的背光模组30为直下式背光模组,包括多个LED灯珠和承载多个LED灯珠的背板。虽然图3A未显示,但应该明白,背光模组30还包括位于LED灯珠和调光子面板420之间的扩散片、棱镜片等光学膜片,以使背光模组提供的面光源更加均匀。
驱动电路50与双盒液晶显示面板40耦接。具体地,双盒液晶显示面板40可以包括层叠设置的显示子面板410和调光子面板420,驱动电路50可以包括第一驱动电路51和第二驱动电路52,其中,第一驱动电路51可以与显示子面板410耦接,以便为显示子面板410提供电信号,具体地,显示子面板410包括第一显示基板411和第二显示基板412,第一驱动电路51可以与第一显示基板411耦接;第二驱动电路52可以与调光子面板420耦接,以便为调光子面板420提供电信号,具体地,调光子面板420包括第三显示基板421和第四显示基板422,第二驱动电路52可以与第三显示基板421耦接。
图3B为第一显示基板或第三显示基板与驱动电路连接的示意图。如图4所示,显示子面板中第一显示基板411具有空间交叉排列的多条栅线GL和多条数据线DL,从而形成多个阵列排布的亚像素区(即显示子面板中的一个亚像素在第一显示基板411中所占的区域)4111,第一显示基板411在一个亚像素区4111内包括一个开关晶体管4112。类似地,调光子面板中的第三显示 基板421也可以具有空间交叉排列的多条栅线和多条数据线,从而形成多个阵列排布的调光区域(调光子面板中一个最小重复单元在第三显示基板中所占的区域)4211,第三显示基板421在一个调光区域4211内包括一个开关晶体管4212。其中,开关晶体管4112和/或开关晶体管4212可以为薄膜晶体管,例如多晶硅薄膜晶体管如低温多晶硅薄膜晶体管(Low Temperature Poly-Silicon Thin-Film Transistor,LTPS TFT)、单晶硅薄膜晶体管、非晶硅薄膜晶体管、金属氧化物薄膜晶体管等。
第一驱动电路包括电源电路(Power IC)501、时序控制电路(TCON IC)502、栅极驱动电路(Gate Driver IC)503、源极驱动电路(Source Driver IC)504、灰阶电路505、接口电路506。
接口电路506接收由系统输入的信号,该系统可以是整机的主板。图4所示的由虚线框表示的系统可以被包括在显示装置内,例如当显示装置为电视机时;图4所示的由虚线框表示的系统也可以被排除在显示装置外,例如当显示装置仅作为显示器时。接口电路506从系统接收的信号包括电源信号和数字信号,电源信号被输入到电源电路501,数字信号被输入到时序控制电路502。
电源电路501根据接收到的电源信号生成各种不同的工作电压,并将这些工作电压输送至时序控制电路502、栅极驱动电路503、源极驱动电路504和灰阶电路505。时序控制电路502根据接收到的数字信号生成栅极驱动电路503和源极驱动电路504的工作时序。栅极驱动电路503根据相应的工作时序生成高低电平的数字电压,并将该数字电压通过各行栅线GL输出到相应的开关晶体管4112的栅极,从而控制每一行亚像素的开关状态。源极驱动电路504根据相应的工作时序生成模拟电压,并将该模拟电压通过各列数据线DL输出到相应的开关晶体管4112的源极或漏极,并进而输出到相应的像素电极,以形成液晶偏转所需的电压。灰阶电路505生成源极驱动电路504所需的参考电压,这个参考电压也叫做伽马(Gamma)基准电压。
虽然未图示,但本领域技术人员应该理解,图3A中的调光子面板420中第三显示基板421与第二驱动电路52的连接与图4所示类似,因此这里不再赘述。
本公开的一些实施例提供了一种双盒液晶显示面板。下面,参见图3A和图4,对双盒液晶显示面板40中的显示子面板410和调光子面板420进行详细介绍。
显示子面板410包括相对设置的第一显示基板411和第二显示基板412, 以及位于第一显示基板411和第二显示基板412之间的第一液晶层413。第一显示基板411和第二显示基板412可以通过封框胶SG粘贴在一起,从而将第一液晶层413限定在封框胶SG围成的区域内。第一显示基板411或第二显示基板412包括彩色色阻,例如RGB色阻,因此显示子面板410能够进行彩色显示,实现显示面板的显示功能。
调光子面板420包括相对设置的第三显示基板421和第四显示基板422,以及位于第三显示基板421和第四显示基板422之间的第二液晶层423。第三显示基板421和第四显示基板422可以通过封框胶SG粘贴在一起,从而将第二液晶层423限定在封框胶SG围成的区域内。但是第三显示基板421和第四显示基板422均不具有RGB色阻,因此调光子面板420能够进行纯灰阶显示,实现对显示子面板分区域调光。
参见图4,调光子面板420和显示子面板410可以具有显示区和位于显示区至少一侧的周边区。具体地,调光子面板420具有显示区AA2和位于显示区AA2四周的周边区SA2,并且,至少一个(例如,一个;又如,多个)调光单元(也可称为最小重复单元)AU位于调光子面板420的显示区AA2中;显示子面板410具有显示区AA1和位于显示区AA1四周的周边区SA1,并且,至少一个(例如,一个;又如,多个)亚像素P可以位于显示子面板410的显示区AA1中。其中,显示子面板410的显示区AA1可以与调光子面板420的显示区AA2相对应,示例性地,在双盒液晶显示面板40的厚度方向(例如平行于图3B中的z方向)上,显示子面板410的显示区AA1可以与调光子面板420的显示区AA2齐平。在一些可能的实现方式中,显示子面板410的显示区AA1中亚像素P可以与调光子面板420的显示区AA2中调光单元AU一一对应,使得从背光模组出射的光可以依次经过一个调光单元AU和一个亚像素P而出射。在另一些可能的实现方式中,调光子面板420的显示区AA2中一个调光单元AU可以对应显示子面板410的显示区AA1中的多个亚像素P,使得从背光模组出射的光可以依次经过一个调光单元AU和多个亚像素P而出射,例如,一个调光单元AU可以对应显示子面板410的显示区AA1中的一个像素,其中,一个像素可以包括多个(例如三个)亚像素。
具体地,图5为图3A所示显示装置中显示子面板的局部结构图,示出了显示子面板410中一个亚像素P的结构。如图5所示,上述第一显示基板411包括衬底基板ST1’、以及在衬底基板ST1’上阵列排布的薄膜晶体管TFT’和阵列排布的像素电极PD’。
其中,衬底基板ST1’为第一显示基板411中的其他结构提供基础,薄膜 晶体管TFT’和像素电极PD’等结构均可以在衬底基板ST1’上形成。衬底基板ST1’既可以是刚性的,也可以是柔性的。衬底基板ST1’的材料可以是玻璃、金属、石英、树脂等。
薄膜晶体管TFT’和像素电极PD’一一对应。薄膜晶体管TFT’可以为N型薄膜晶体管,也可以为P型薄膜晶体管,其区别仅在于导通条件。对于N型薄膜晶体管来说,高电平导通,低电平关断;对于P型薄膜晶体管来说,低电平导通,高电平关断。薄膜晶体管TFT’包括沿着远离衬底基板ST1’的方向设置的栅极G’、栅极绝缘层GI’、有源层AL’和源漏极。源漏极包括源极S’和漏极D’。源漏极和像素电极PD’的上方形成有保护层PL’。栅极G’与图4所示的栅线GL同层设置。像素电极PD’与漏极D’连接。图4所示的数据线DL与源极S’连接。应当理解的是,像素电极PD’也可以与源极S’连接,数据线DL’也可以与漏极D’连接,对此不做限定。还应该理解的是,图5所示的TFT’为底栅结构的TFT,在本公开一些实施例中,上述第一显示基板411上的TFT’还可以为顶栅结构的TFT。
上述第二显示基板412包括衬底基板ST2’、位于衬底基板ST2’上的黑矩阵BM’和形成在黑矩阵BM’中的多个彩色色阻SZ、以及位于黑矩阵BM’和多个彩色色阻SZ上的平坦层OC’。
衬底基板ST2’的材料和性质可以与衬底基板ST1’的相同,在此不再赘述。
多个彩色色阻SZ可以形成色阻阵列。多个彩色色阻SZ可以包括三基色色阻单元,例如,彩色色阻SZ可以包括红色色阻单元、绿色色阻单元以及蓝色色阻单元。从背光模组出射的光可以通过彩色色阻SZ射出,使得从显示子面板410出射的光具有颜色。在显示子面板410的一个亚像素P包括一个彩色色阻SZ,例如,红色色阻单元、绿色色阻单元以及蓝色色阻单元分别与第一显示基板411上的亚像素区一一相对。
黑矩阵BM’的材料可以是黑色光刻胶。本公开的实施例对黑色光刻胶的材料不进行限定。黑色光刻胶的材料可以使用掺入黑色颜料(主要是碳)的丙烯树脂。为了降低成本,可以在光刻胶中掺入碳(C)、钛(Ti)、镍(Ni)等原料形成黑色树脂。此外,本公开的实施例对黑色光刻胶的类型不进行限定。黑色光刻胶可以为负性光刻胶或正性光刻胶。负性光刻胶的性质为经过曝光的光刻胶由曝光前的可溶解变为曝光后的不可溶解,并随之硬化。被曝光的光刻胶不能在显影液中被洗掉,光刻胶上保留的图案与掩膜板上的图案相反或互补。正性光刻胶的性质为经过曝光的光刻胶由曝光前的不可溶解变为曝光后的可溶解,被曝光的光刻胶在显影液中软化并可溶解,光刻胶上保 留的图案与掩膜板上的图案相同。
基于此,黑矩阵BM’可以将红色色阻单元、绿色色阻单元以及蓝色色阻单元间隔开,以避免从相邻亚像素出射的光相互串扰;黑矩阵BM’还可以遮挡不透光的TFT’结构,使得用户从显示面一侧(例如第二显示基板412远离第一显示基板411的一侧)观看时,显示子面板410显示的画面质量更高。应该理解的是,上述黑矩阵BM’和多个彩色色阻SZ也可以设置在第一显示基板411中。
此外,为了确保显示子面板410能够保持一定的盒厚(Cell Gap),在第一显示基板411和第二显示基板412之间设置有隔垫物SP(Spacer),例如柱状隔垫物(Post Spacer,可以简称为PS),以使第一显示基板411和第二显示基板412之间形成间隙,进而将第一液晶层413设置于该间隙中。隔垫物可以包括主隔垫物SP1和辅助隔垫物SP2,辅助隔垫物SP2的高度小于主隔垫物SP1的高度,主要作用为在显示子面板410受到外力按压时仍能使显示子面板410保持一定的盒厚。
本公开的一些实施例还提供了一种液晶面板,该液晶面板可以作为图3A中双盒液晶显示面板40的调光子面板420。该液晶面板还可以作为液晶显示面板,相应地,本公开的实施例提供的显示装置也可以包括该液晶面板,并且将该液晶面板作为液晶显示面板,使得该显示装置可以进行纯灰阶显示。下文以双盒液晶显示面板的调光子面板为例对液晶面板加以说明。
图6为图3A所示显示装置中调光子面板的局部结构图,示出了调光子面板420中一个调光单元AU的结构。如图6所示,调光子面板420的一个调光单元AU的结构与图5所示的显示子面板410的一个亚像素P的结构类似。具体地,调光子面板420包括显示基板和与显示基板相对设置的对置基板(也可以说,与显示基板对盒的对置基板);其中,显示基板包括黑矩阵BM。例如,黑矩阵BM设置在第四显示基板422中,此时,显示基板为第四显示基板422,对置基板为第三显示基板421。又如,黑矩阵BM可以设置在第三显示基板421中,此时显示基板为第三显示基板421,对置基板为第四显示基板422。调光子面板420还包括位于显示基板和对置基板之间的液晶层,下文中称为第二液晶层423。
相比于显示子面板,调光子面板420的显示基板(例如图3A中的第四显示基板422)不具有彩色色阻。通过控制调光单元AU对应的第二液晶层423中液晶分子的转动,可以控制从调光单元AU出射的光的光量。又如上文所述,参见图4和图6,显示子面板410的显示区AA1中亚像素P可以与调光 子面板420的显示区AA2中调光单元AU相对应,因此,可以通过控制调光子面板420的一个调光单元AU对应的第二液晶层423中液晶分子的转动,来控制入射到显示子面板410中与该调光单元AU对应的一个或多个亚像素P中的光的光量,以便实现调光子面板420的调光功能,实现对显示子面板410分区域调光。示例性地,显示子面板410的显示区AA1中亚像素P可以与调光子面板420的显示区AA2中调光单元AU一一对应,可以通过控制调光子面板420的一个调光单元AU对应的第二液晶层423中液晶分子的转动,来控制入射到显示子面板410中与该调光单元AU对应的一个亚像素P中的光的光量。
本公开的一些实施例还提供了一种显示基板,下文以第四显示基板422作为显示基板为例,对显示基板的结构加以说明。继续参见图6,第四显示基板422包括衬底基板ST2、位于衬底基板ST2上的黑矩阵BM、第四显示基板422还可以包括位于黑矩阵BM上的平坦层OC。
衬底基板ST2的材料和性质可以与上文所述的显示子面板中衬底基板的材料和性质相同,在此不再赘述。
黑矩阵BM的材料和类型可以是如上文所述的材料和类型,在此不再赘述。黑矩阵BM用于将不同调光单元间隔开,以避免从相邻调光单元出射的光相互串扰;黑矩阵BM还可以遮挡不透光的TFT结构,使得用户从显示面一侧(例如第四显示基板422远离第三显示基板421的一侧,又如图3A中显示子面板410远离调光子面板420的一侧)观看时,双盒液晶显示面板显示的画面质量更高。继续参见图6,应当理解的是,在调光子面板420中,黑矩阵BM和平坦层OC也可以设置在第三显示基板421中。
如上文所述,参见图4,调光子面板420包括显示区AA2和周边区SA2,相应地,调光子面板420的第三显示基板421和第四显示基板422也可以具有显示区域和非显示区域,示例性地,在调光子面板420的厚度方向(例如平行于z方向)上,调光子面板420的显示区AA2与第四显示基板的显示区域对应,且调光子面板420的周边区SA2与第四显示基板的非显示区域对应。
图7A示出了第四显示基板的结构,参见图7A,第四显示基板422具有显示区域AA3和非显示区域SA3。其中,显示区域AA3包括多个开口,开口AU’未被黑矩阵BM覆盖,一个开口AU’可以对应调光子面板的一个调光单元。
黑矩阵BM不仅位于显示区域AA3中、而且可以位于非显示区域SA3中。相应地,黑矩阵BM包括位于显示区域AA3的第一部分和位于非显示区SA3 的第二部分。具体地,图7B为图7A中的第四显示基板沿SS’剖面线的剖视图,图7C至图7E为另外三种第四显示基板的剖视图。参见7A至图7E,黑矩阵BM可以包括位于显示区域AA3中的第一部分BM1,以及位于非显示区域SA3中的第二部分BM2。其中,黑矩阵BM的第一部分BM1上设置有开口AU’,。黑矩阵BM的第二部分BM2上设置有凹坑H。
其中,凹坑H没有穿透黑矩阵的第二部分BM2,例如,凹坑H的整个内壁由黑矩阵的材料形成。而开口AU’穿透黑矩阵的第一部分BM1,也就是说,在开口AU’靠近衬底基板ST2的一侧不存在黑矩阵的材料,例如露出衬底基板ST2。
图7F示出了通过光学软件模拟的一些凹坑的结构,图7G示出了本公开实施例中凹坑的示意性结构。参见图7F和7G,凹坑的内壁HW中靠近凹坑的边沿HT的部分为弧形或大致的弧形;即凹坑的内壁HW中与凹坑的边沿HT相接的表面是弧形面或大致的弧形面。大致的弧形是指,如图7F示出的实际形成的凹坑的内壁中可以包括微结构,例如内壁上存在凸起和/或内凹,这样,实际形成的凹坑的内壁HW中靠近凹坑的边沿的部分为大致的弧形。
示例性地,图7G中a示出的凹坑,其内壁HW中靠近凹坑边沿HT的部分呈大致直线式的断崖状,其凹陷深度d为中间大两边小,最大凹陷深度(也可以成为凹坑的高度)记为dmax。又示例性地,图7G中b示出的凹坑的内壁HW整体上可以是一弧形面,其凹陷深度d为中间大两边小,最大凹陷深度记为dmax;此外,凹坑的内壁HW整体上可以是一大致的弧形面。又示例性地,图7G中c示出的凹坑,其内壁HW中靠近凹坑边沿HT的部分呈大致直线式的断崖状,其凹陷深度d为中间小两边大,最大凹陷深度记为dmax。又示例性地,图7G中d示出的凹坑,其内壁HW中与凹坑的边沿HT相接的表面是弧形面或大致的弧形面,凹坑的凹陷深度d从中间到两边先增大再减小,最大凹陷深度记为dmax。图7G中b和d示出的凹坑,由于其内壁HW中靠近凹坑边沿HT的部分为弧形或大致的弧形,因此,凹坑的内壁HW不易撕裂,产品良率更高。
图7B~图7E示出了第四显示基板中凹坑的结构。其中,参见图7B~图7C,在一些实施例中,黑矩阵BM可以由负性光刻胶材料形成,此时,凹坑H的形状可以为长条形,并且,凹坑H沿非显示区域SA3的与显示区域AA3相邻的侧边延伸。示例性地,参见图7A,凹坑可以位于非显示区域SA3中,以凹坑位于图7A中与显示区域AA3的位于x负方向的一侧相邻的非显示区域SA3a中为例,此时,对于非显示区域SA3a而言,非显示区域SA3a与显示 区域AA3相邻的侧边为显示区域AA3的位于x负方向(即纸面左侧)的侧边SA3a’,长条形凹坑可以沿侧边SA3a’延伸,例如长条形凹坑的延伸方向平行于y方向。进一步地,继续参见图7B和图7C,在凹坑H的宽度方向(凹坑的宽度方向垂直于凹坑的延伸方向,例如,凹坑的宽度方向平行于x方向)上,凹坑的凹陷深度为中间大两边小。在一些示例中,在凹坑H的延伸方向上,凹坑的凹陷深度也是中间大两边小,此时该凹坑的凹陷深度为中间大外围小。
在一些可能的实现方式中,参见图7B,在位于非显示区域SA3中的衬底基板ST2上均覆盖有黑矩阵,即,黑矩阵的第二部分BM2在衬底基板ST2上是连续的,且其边沿与非显示区域SA3的边沿齐平,这样,黑矩阵BM可以覆盖整个的非显示区域SA3,可以改善调光子面板的漏光现象。在另一些可能的实现方式中,参见图7C,黑矩阵的第二部分BM2在衬底基板ST2上断开或具有开口等,即不连续,黑矩阵BM没有覆盖整个的非显示区域SA3,此时,可以在黑矩阵的第二部分BM2中一个连续图案(连续图案的外轮廓围成的面积与该连续图案的实际面积相等)上形成一个凹坑H,示例性地,图7C中黑矩阵的第二部分BM2包括三个连续图案,可以在每个区域上形成一个凹坑H。
在另一些实施例中,一凹坑H还可以是沿其他方向延伸的长条形。此外,参考图7F,一凹坑H的边沿还可以圆形、椭圆形、类圆形、类椭圆形等,此时,凹坑的凹陷深度可以为中间大外围小。
参见图7D~图7E,在一些实施例中,黑矩阵BM可以由正性光刻胶材料形成。在一些可能的实现方式中,凹坑H的形状可以为长条形,并且,凹坑H沿非显示区域SA3的与显示区域AA3相邻的侧边延伸。示例性地,参见图7A,凹坑可以位于非显示区域SA3中,以凹坑位于图7A中与显示区域AA3的位于x负方向的一侧相邻的非显示区域SA3a中为例,此时,对于非显示区域SA3a而言,非显示区域SA3a与显示区域AA3相邻的侧边为显示区域AA3的位于x负方向(即纸面左侧)的侧边SA3a’,长条形凹坑可以沿侧边SA3a’延伸,例如长条形凹坑的延伸方向平行于y方向。进一步地,继续参见图7D和图7E,在凹坑H的宽度方向(凹坑的宽度方向垂直于凹坑的延伸方向,例如,凹坑的宽度方向平行于x方向)上,凹坑的凹陷深度为中间小两边大。在一些示例中,在凹坑H的延伸方向上,凹坑的凹陷深度也是中间小两边大,此时该凹坑的凹陷深度为中间小外围大。在另一些可能的实现方式中,参见图7G中的d,在凹坑的宽度方向上,凹坑的凹陷深度还可以为从中间到两边 先增大再减小。在一些示例中,在凹坑的延伸方向上,凹坑的凹陷深度也是从中间到两边先增大再减小,此时该凹坑的凹陷深度为从中间到外围先增大再减小。
在另一些实施例中,一凹坑H还可以是沿其他方向延伸的长条形。此外,参考图7F,一凹坑的边沿还可以圆形、椭圆形、类圆形、类椭圆形等,此时,参考图7G,凹坑的凹陷深度可以为中间小外围大,或者,从中间到外围先增大再减小。此外,凹坑的数量可以为至少一个(例如,一个;又如,多个)。
此外,当黑矩阵BM由正性光刻胶材料形成时,在位于非显示区域SA3中的衬底基板ST2上可以均覆盖有黑矩阵,即,黑矩阵的第二部分BM2在衬底基板ST2上是连续的,这样,黑矩阵BM可以覆盖整个的非显示区域SA3,可以改善调光子面板的漏光现象。此时,可以在黑矩阵BM中整个连续的第二部分BM2上形成一个或多个凹坑。
在一些实施例中,参见图7B~图7E,第四显示基板422还包括位于黑矩阵BM2上的平坦层OC。在第四显示基板422的显示区域AA3中,平坦层OC的一部分位于开口AU’中;在第四显示基板422的非显示区域SA3中,平坦层OC的一部分位于凹坑H中。相比于平坦层位于没有凹坑的黑矩阵上,由于在第四显示基板422的非显示区域SA3中,平坦层OC的一部分位于凹坑H中,因此,平坦层OC的表面相距衬底基板ST2靠近平坦层OC的表面的距离减小,即,在第四显示基板422的非显示区域SA3中,第四显示基板422的实际厚度减小。这样,平坦层OC位于非显示区域SA3的部分与平坦层OC位于显示区域AA3的部分之间的段差减小,进而减小了调光子面板的盒厚差异,解决了因盒厚差异而产生的调光子面板周边发黄不良的问题。
在一些实施例中,第四显示基板422还包括位于平坦层OC上的隔垫物SP。
本公开的一些实施例还提供了一种显示基板的制备方法,该制备方法可以用于制作上文任一实施例提供的显示基板,例如图6所示的第四显示基板422;当黑矩阵BM和平坦层OC设置在第三显示基板421上时,该制备方法也可以用于制作该第三显示基板421。
显示基板的制备方法包括:在衬底基板上形成黑矩阵。其中,显示基板可以具有显示区域和非显示区域;黑矩阵可以包括位于显示区域的第一部分和位于非显示区域的第二部分,其中,黑矩阵的第一部分上设置有开口,黑矩阵的第二部分上设置有凹坑。
在一些实施例中,请参阅图8,该显示基板的制备方法可以包括 S101~S104。
S101、在衬底基板上涂覆黑色光刻胶。
首先,对衬底基板的结构不进行限定。例如,当制备图6所示的第四显示基板422时,该衬底基板可以为空白的基板,例如空白的玻璃基板、树脂基板、石英基板、金属基板等。当制备图6所示的第三显示基板421时,衬底基板不仅包括空白的基板,还包括位于该空白基板上的一些图案,这些图案例如包括阵列排布的薄膜晶体管TFT和阵列排布的像素电极PD等。
其次,对黑色光刻胶的材料不进行限定。黑色光刻胶的材料可以使用掺入黑色颜料(主要是碳)的丙烯树脂。为了降低成本,可以在光刻胶中掺入碳(C)、钛(Ti)、镍(Ni)等原料形成黑色树脂。
最后,对黑色光刻胶的类型不进行限定。黑色光刻胶可以为负性光刻胶或正性光刻胶。负性光刻胶的性质为经过曝光的光刻胶由曝光前的可溶解变为曝光后的不可溶解,并随之硬化。被曝光的光刻胶不能在显影液中被洗掉,光刻胶上保留的图案与掩膜板上的图案相反或互补。正性光刻胶的性质为经过曝光的光刻胶由曝光前的不可溶解变为曝光后的可溶解,被曝光的光刻胶在显影液中软化并可溶解,光刻胶上保留的图案与掩膜板上的图案相同。
在一些实施例中,在涂覆黑色光刻胶之前,还可以对衬底基板进行清洗。
S102、使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准。
在一些实施例中,参见图9A~图9D,掩膜板可以具有第一透光区域、第二透光区域、以及遮光区域。
在此基础上,在一些可能的实现方式中,步骤S101中涂覆的黑色光刻胶为负性光刻胶。此时,参见图9A和图9B,S102可以包括以下步骤:
将掩膜板的遮光区域至少与待形成的黑矩阵的第一部分BM1中的开口AU’对应,将掩膜板的第一透光区域与待形成的黑矩阵的第一部分BM1中开口AU’以外的部分(也可以称为非开口区域)对应,将掩膜板的第二透光区域与待形成的黑矩阵的第二部分BM2中的凹坑H对应。
在另一些可能的实现方式中,步骤S101中涂覆的黑色光刻胶为正性光刻胶。此时,参见图9C和图9D,S102可以包括以下步骤:
将掩膜板的第一透光区域与待形成的黑矩阵的第一部分BM1中的开口AU’对应,将掩膜板的第二透光区域与待形成的黑矩阵的第二部分BM2中的凹坑H对应,将掩膜板的遮光区域至少与待形成的黑矩阵的第一部分BM1中开口AU’以外的部分对应。
S103、基于对准后的掩膜板对涂覆的所述黑色光刻胶进行曝光。
在本公开一些实施例中,采用紫外光作为光源,对涂覆的黑色光刻胶进行曝光,紫外光的波长为300nm~500nm。图9A、图9B、图9C和图9D所示的一系列并行排列的箭头表示光线。
掩膜板具有第一透光区域、第二透光区域和遮光区域,采用紫外光照射时,与第一透光区域和第二透光区域对应的黑色光刻胶被曝光、而与遮光区域对应的黑色光刻胶未被曝光。根据黑色光刻胶是负性光刻胶还是正性光刻胶,分别执行如下的曝光操作。
如图9A和图9B所示,当黑色光刻胶是负性光刻胶时,掩膜板的遮光区域至少与待要形成的黑矩阵的开口AU’对应,光无法透过掩膜板的遮光区域照射到遮光区域对应的黑色光刻胶,也就是说,遮光区域对应的黑色光刻胶被掩膜板的遮光区域遮挡,使得这部分光刻胶成为未被曝光的光刻胶,未被曝光的黑色光刻胶的性质不发生改变,在显影液中可溶解。掩膜板的第一透光区域与待要形成的黑矩阵的第一部分BM1中开口AU’以外的部分对应,掩膜板的第二透光区域与待要形成的黑矩阵的第二部分BM2中凹坑H对应,光可以透过掩膜板的第一透光区域和第二透光区域照射到第一透光区域和第二透光区域对应的黑色光刻胶,因此,可以对掩膜板的第一透光区域和第二透光区域对应的黑色光刻胶进行曝光,使得这部分光刻胶成为被曝光的光刻胶,被曝光的光刻胶发生交联反应并硬化,因此,相较于未被曝光的光刻胶,被曝光的光刻胶在显影液中的溶解速度更慢,并且,曝光越充分,被曝光的光刻胶的交联反应越剧烈,硬化程度越高,在显影液中的溶解速度越慢;当曝光足够充分时,可以认为该被充分曝光的光刻胶在显影液中不可溶解。
如图9C和图9D所示,当黑色光刻胶是正性光刻胶时,掩膜板的遮光区域至少与待要形成的黑矩阵的第一部分BM1中开口AU’以外的部分(也可称为非开口区域)对应,光无法透过掩膜板照射到对应于遮光区域的黑色光刻胶,这部分光刻胶成为未被曝光的光刻胶,未被曝光的黑色光刻胶的性质不发生改变,在显影液中不可溶解。掩膜板的第一透光区域与待要形成的黑矩阵的第一部分BM1中的开口AU’对应,第二透光区域与待要形成的黑矩阵的第二部分BM2的凹坑H对应,光可以透过掩膜板的第一透光区域和第二透光区域照射到对应于第一透光区域和第二透光区域的黑色光刻胶,因此,可以对掩膜板的第一透光区域和第二透光区域对应的黑色光刻胶进行曝光,使得这部分光刻胶成为被曝光的光刻胶,被曝光的光刻胶发生光化学反应,在显影液中可溶解,并且,曝光越充分,被曝光的光刻胶的光化学反应程度越大,在显影液中的溶解速度越快。
S104、对曝光后的所述黑色光刻胶进行显影,以在所述衬底基板上形成黑矩阵。
如图9A和图9B所示,当黑色光刻胶为负性光刻胶时,被掩膜板的遮光区域遮挡而未被曝光的黑色光刻胶在显影液中可以被去除,以便形成黑矩阵的第一部分BM1中的开口AU’。通过掩膜板的第一透光区域而被曝光的黑色光刻胶在显影液中可以被保留,以便形成黑矩阵的第一部分BM1中开口AU’以外的部分。在通过掩膜板的第二透光区域而被曝光的黑矩阵的第二部分BM2中,光的衍射现象使得光源的强度分布呈现中间低,两边(例如沿宽度方向的两边)高的情形。黑矩阵的第二部分BM2中的中间区域的光刻胶曝光不充分,使得中间区域的光刻胶的硬化程度较低,在显影液中的溶解速度较快,因而在显影液中被保留的部分较少,被去除的部分较多;黑矩阵的第二部分BM2中沿宽度方向的两边的光刻胶曝光比较充分,使得沿宽度方向的两边的光刻胶的硬化程度较高,在显影液中的溶解速度较慢,在显影液中被保留的部分较多,被去除的部分较少。从而,可以去除通过掩膜板的第二透光区域而被曝光的黑色光刻胶中的一部分,以便形成黑矩阵的第二部分BM2中的凹坑H,凹坑H的凹陷深度为中间大两边小。
如图9C和图9D所示,当黑色光刻胶为正性光刻胶时,被掩膜板的遮光区域遮挡而未被曝光的黑色光刻胶在显影液中被保留,以便形成黑矩阵的第一部分中开口AU’以外的部分。通过掩膜板的第一透光区域而被曝光的黑色光刻胶发生光化学反应,在显影液中可以被去除,以便形成黑矩阵的第一部分中的开口AU’。在通过掩膜板的第二透光区域而被曝光的黑矩阵的第二部分BM2中,光的衍射现象使得光源的强度分布呈现中间低,两边(例如,沿宽度方向的两边和/或沿垂直于宽度方向的两边)高的情形。黑矩阵的第二部分BM2中的中间区域的光刻胶曝光不充分,使得中间区域的光刻胶的光化学反应的程度小,在显影液中的溶解速度较慢,在显影液中被保留的部分较多,被去除的部分较少;黑矩阵的第二部分BM2中两边的光刻胶曝光比较充分,使得两边的光刻胶的光化学反应的程度较大,在显影液中的溶解速度较快,在显影液中被保留的部分较少,被去除的部分较多。从而,可以去除通过掩膜板的第二透光区域而被曝光的黑色光刻胶中的一部分,以便形成黑矩阵的第二部分BM2中的凹坑H,凹坑H的凹陷深度为中间小两边大。
S105、在所述黑矩阵远离所述衬底基板的表面涂覆平坦层材料,所述平坦层材料固化形成平坦层。
参见图9A~图9D,由于平坦层的材料为树脂,具有流动性,因此:在黑 矩阵的第一部分BM1(即,第四显示基板的显示区域AA3)中,平坦层材料向去除黑色光刻胶的开口AU’流动,并流入该开口AU’中;在黑矩阵的第二部分BM2(即,第四显示基板的非显示区域SA3)中,平坦层材料向凹坑H中流动,并流入凹坑H中。如图9A至图9D所示,平坦层OC对应于非显示区域SA3的部分与平坦层对应于显示区域AA3的部分之间的段差有所减小。
应注意,上述S101~S105仅是显示基板制备方法的一种示例。在本公开一些实施例中,也可以仅执行上述S101~S104。或者,也可以在上述S101~S105之前、之中、或之后执行其他步骤,例如,还可以在执行S105之后,在平坦层OC的远离衬底基板ST2的表面继续制作隔垫物。
本公开一些实施例提供的显示基板的制备方法,能够在黑矩阵与显示基板的非显示区域对应的部分上,即黑矩阵的第二部分上,形成凹坑,从而使得平坦层对应于非显示区域的部分向凹坑内流动,其实际厚度降低,平坦层对应于非显示区域的部分与平坦层对应于显示区域的部分之间的段差减小,从而显示基板与对置基板对盒后,盒厚差异减小。
在上述显示基板的制备方法中,凹坑的凹陷深度与菲涅尔系数F有关。F大于1时,形成凹坑,且F越大,凹坑越明显,因此可通过调整F的大小,来控制凹坑的凹陷深度。根据菲涅尔衍射原理,菲涅尔系数F=α×α/(L×λ),其中α为掩膜板的透光区域的大小,L为曝光间隙,λ为入射光的波长。图10A以掩膜板上的一个透光区域为例,显示了与菲涅尔系数F有关的各个参数的含义。如图10A所示,α为掩膜板的透光区域在平行于纸面方向上的尺寸,L为掩膜板到第四显示基板之间的距离。由于所使用的曝光机的规格、型号确定之后,入射光的波长λ与曝光间隙L几乎就确定了,可调整的空间很小。例如,产线上的曝光间隙L通常为150um~400um,入射光一般为紫外光,波长通常为300nm~500nm。因此,可以通过调整掩膜板的透光区域的大小,使光线通过掩膜板的透光区域时产生衍射现象,从而形成凹陷深度不同的凹坑。
图10B显示了当掩膜板的透光区域的大小α不同时,曝光机中入射光所产生的衍射现象。图10B显示了α取4个大小不同的值时,曝光机中入射光所产生的4种衍射现象。其中,y轴可以表示光强,当光强大于Th时,可以形成凹坑。在这4种衍射现象中,第4种衍射现象与实际想要获得的衍射现象相符度较高,有实际的应用价值。利用该第4种衍射现象,对黑色光刻胶进行曝光显影后,当黑色光刻胶采用负性光刻胶时,可以在黑色光刻胶中得到如图10C所示的凹坑。图10C为在黑色光刻胶中形成凹坑的示意图。当在黑矩阵的第二部分(即,第四显示基板的非显示区域)中形成凹坑时,部分 平坦层材料可以流入该凹坑中,从而在一定程度上消除平坦层对应于非显示区域的部分与对应于显示区域的部分之间的段差。
因此,为了使得最终形成的凹坑的深度能够基本消除平坦层对应于非显示区域的部分与对应于显示区域的部分之间的段差,在制备第四显示基板之前,至少在将掩膜板与涂覆有黑色光刻胶的衬底基板对准之前,可以先确定掩膜板的与待形成的黑矩阵的第二部分(即,黑矩阵位于第四显示基板的非显示区域的部分)对应的第二透光区域的大小。需要说明的是,并不需要在每次制备显示基板之前均需要首先确定掩模板的与待形成的黑矩阵的第二部分对应的第二透光区域的大小。在一条曝光产线上,在首次确定好掩模板的与待形成的黑矩阵的第二部分对应的第二透光区域的大小之后,在该条曝光产线上的各次曝光操作中均可使用该确定好的掩模板的与待形成的黑矩阵的第二部分对应的第二透光区域的大小。
不论黑色光刻胶是负性光刻胶还是正性光刻胶,确定掩模板的与待形成的黑矩阵的第二部分对应的第二透光区域的大小均可以执行如图11的操作。
步骤1:为所述掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小设定初始值。
在一些实施例中,如图7B和7C所示,在第四显示基板的非显示区域,当黑色光刻胶为负性光刻胶时,凹坑的凹陷深度为中间大两边小。虽然未给出第四显示基板的俯视图,但根据图7B可以理解的是,凹坑的形状可以为沿非显示区域SA3的与显示区域AA3相邻的侧边延伸的长条形,且在与显示区域AA3的一侧相邻的非显示区域SA3(例如图7A中与显示区域AA3的位于x负方向的一侧相邻的非显示区域SA3a)中,黑矩阵仅具有一个长条形的凹坑。根据图7C可以理解的是,凹坑的形状可以为长条形、圆形或其他形状,此时凹坑的数量可以不止一个。如前所述,图7B所示的第四显示基板中,其黑矩阵的第二部分BM2可以完全覆盖其非显示区域SA3,可以改善第四显示基板的非显示区域SA3漏光的问题,因此,以形成图7B所示的第四显示基板为例,在步骤1中,可以为图9A所示的掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小α设定初始值。示例性地,第二透光区域的大小可以为掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域在平行于纸面的左右方向上的尺寸。又示例性地,第二透光区域的大小还可以为掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域在垂直于纸面方向上的尺寸。
在另一些实施例中,如图7D和7E所示,在第四显示基板的非显示区域 SA3,当黑色光刻胶为正性光刻胶时,凹坑H的凹陷深度为中间小两边大。虽然未给出第四显示基板的俯视图,但根据图7D可以理解的是,凹坑H的形状为沿非显示区域SA3的与显示区域AA3相邻的侧边延伸的长条形,且在与显示区域AA3的一侧相邻的非显示区域SA3(例如图7A中与显示区域AA3的位于x负方向的一侧相邻的非显示区域SA3a)中,黑矩阵可以仅具有一个长条形的凹坑H。根据图7E可以理解的是,凹坑H的形状可以为长条形、圆形或其他形状,此时凹坑的数量可以不止一个。因此在步骤1中,可以为图9C和图9D所示的掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小α设定初始值。示例性地,第二透光区域的大小可以为掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域在平行于纸面的左右方向上的尺寸。又示例性地,第二透光区域的大小还可以为掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域在垂直于纸面方向上的尺寸。
掩膜板与第一区域对应的透光区域的大小,根据客户对透过率的要求等进行常规设计。
步骤2:使用所述掩膜板制备所述显示基板的样品,使用所述显示基板的样品制备调光子面板的样品。
使用上述掩膜板,执行上述S101~S104,制备显示基板的样品。在一些实施例中,也可以执行上述S101~S105来制备显示基板的样品。或者,还可以在执行上述S101~S105之后,继续在平坦层OC远离衬底基板的表面上制作隔垫物。将该显示基板的样品与对置基板的样品对盒,形成调光子面板的样品。
步骤3:检测所述调光子面板的样品的周边区盒厚和显示区盒厚。
步骤4:判断所述周边区盒厚和所述显示区盒厚的差值的绝对值是否大于预设值;当所述周边区盒厚和所述显示区盒厚的差值的绝对值大于预设值时,调整所述初始值的大小并返回执行步骤2至步骤4,直到周边区盒厚和显示区盒厚的差值的绝对值小于或等于预设值时结束。
在一些实施例中,平坦层的厚度设置为1.3um,平坦层对应于非显示区域的部分与平坦层对应于显示区域的部分之间的段差可达0.4um。为了减小该段差,从而减小盒厚差异,将预设值设为0.05um~0.1um的范围内。例如,该预设值可以为0.05um、0.06um、0.07um、0.08um、0.09um或0.1um。在一些实施例中,将该预设值确定为0.1um。若检测到周边区的盒厚与显示区的盒厚的差值为0.3um,这表明周边区的盒厚偏高,凹坑的深度较小,可增大掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小的初始值;若检测到 周边区的盒厚与显示区的盒厚的差值为-0.3um,表明周边区的盒厚偏低,凹坑的深度过大,可减小掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小的初始值。
在调整上述初始值后,重复执行步骤2至步骤4,直到周边区的盒厚与显示区的盒厚的差值的绝对值小于0.1um,表明凹坑的深度是合适的,此时掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小可有效减小上述段差。因此,将最后一次执行步骤2至步骤4时,即,当周边区盒厚和显示区盒厚的差值的绝对值小于或等于预设值时,掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小确定为掩膜板最终的第二透光区域的大小。
图12提供了一个对比实施例,具体为相关技术中使用半曝光掩模板在黑色光刻胶中形成凹坑的示意图。对于图12中使用半曝光掩膜板形成的凹坑,其内壁中靠近该凹坑的边沿的部分(也可以称为该凹坑的边缘,例如图12中的虚线框内所示)呈大致直线式的断崖状。因此,如上文所述,相比于对于图12中使用半曝光掩膜板形成的凹坑,本公开实施例中的凹坑的边缘处不易撕裂,良品率更高。此外,相关技术中使用半曝光掩模板形成凹坑时,大大增加了掩模板的成本。尤其是在大世代线的曝光产线上,半曝光掩模板的成本会更加高昂。而使用本公开实施例提供的图8所示的制备方法,则会大大降低掩模板的成本。
本公开一些实施例还提供一种掩膜板,所述掩模板为上文任一实施例提供的显示基板的制备方法中所使用的掩模板,例如图9A~图9D中所示的掩模板。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种显示基板,具有显示区域和非显示区域,所述显示基板包括:
    衬底基板;和
    位于所述衬底基板上的黑矩阵,所述黑矩阵包括位于所述显示区域的第一部分和位于所述非显示区域的第二部分;
    所述黑矩阵的第一部分上设置有开口;
    所述黑矩阵的第二部分上设置有凹坑。
  2. 根据权利要求1所述的显示基板,其中,
    所述凹坑的内壁中靠近所述凹坑的边沿的部分为弧形或大致的弧形。
  3. 根据权利要求1~2任一项所述的显示基板,其中,所述黑矩阵由负性光刻胶材料形成,所述凹坑的形状为长条形,所述凹坑沿所述非显示区域的与所述显示区域相邻的侧边延伸,并且,在所述凹坑的宽度方向上,所述凹坑的凹陷深度为中间大两边小。
  4. 根据权利要求1~3任一项所述的显示基板,其中,
    所述黑矩阵由负性光刻胶材料形成,所述凹坑的凹陷深度为中间大外围小。
  5. 根据权利要求1~2任一项所述的显示基板,其中,所述黑矩阵由正性光刻胶材料形成,所述凹坑的形状为长条形,所述凹坑沿所述非显示区域的与所述显示区域相邻的侧边延伸,并且,在所述凹坑的宽度方向上,所述凹坑的的凹陷深度为中间小两边大,或者,从中间到两边先增大再减小。
  6. 根据权利要求1、2和5中任一项所述的显示基板,其中,
    所述黑矩阵由正性光刻胶材料形成,所述凹坑的凹陷深度为中间小外围大,或者,从中间到外围先增大再减小。
  7. 根据权利要求1~6任一项所述的显示基板,其中,所述显示基板还包括:位于所述黑矩阵上的平坦层;
    在所述显示基板的所述非显示区域,所述平坦层的一部分位于所述凹坑中;
    在所述显示基板的所述显示区域,所述平坦层的一部分位于所述开口中。
  8. 一种液晶面板,包括如权利要求1~7任一项所述的显示基板、与所述显示基板相对设置的对置基板、以及位于所述显示基板和所述对置基板之间的液晶层。
  9. 一种双盒液晶显示面板,包括显示子面板和调光子面板;
    所述调光子面板为如权利要求8所述的液晶面板。
  10. 一种显示装置,包括如权利要求9所述的双盒液晶显示面板或权利要求8所述的液晶面板。
  11. 一种显示基板的制备方法,包括:
    在衬底基板上形成黑矩阵;
    其中,所述显示基板具有显示区域和非显示区域,所述黑矩阵包括位于所述显示区域的第一部分和位于所述非显示区域的第二部分,所述黑矩阵的第一部分上设置有开口,所述黑矩阵的第二部分上设置有凹坑。
  12. 根据权利要求11所述的显示基板的制备方法,包括:
    在衬底基板上涂覆黑色光刻胶;
    使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准;
    基于对准后的掩膜板对涂覆的所述黑色光刻胶进行曝光;
    对曝光后的所述黑色光刻胶进行显影,以在所述衬底基板上形成黑矩阵。
  13. 根据权利要求12所述的显示基板的制备方法,其中,所述黑色光刻胶为负性光刻胶;所述掩膜板具有第一透光区域、第二透光区域和遮光区域;
    所述使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准包括:
    将所述遮光区域至少与待形成的黑矩阵的第一部分中的开口对应,将所述第一透光区域与所述待形成的黑矩阵的第一部分中开口以外的部分对应,将所述第二透光区域与待形成的黑矩阵的第二部分中的凹坑对应;
    基于对准后的掩膜板对涂覆的所述黑色光刻胶进行曝光的步骤包括:对所述掩膜板的第一透光区域和第二透光区域对应的黑色光刻胶进行曝光;
    对曝光后的所述黑色光刻胶进行显影的步骤包括:
    去除被所述掩膜板的遮光区域遮挡而未被曝光的黑色光刻胶,以形成所述开口;保留通过所述掩膜板的第一透光区域而被曝光的黑色光刻胶,以形成黑矩阵的第一部分中开口以外的部分;并且,去除通过所述掩膜板的第二透光区域而被曝光的黑色光刻胶中的一部分,以形成黑矩阵的第二部分中的凹坑。
  14. 根据权利要求12所述的显示基板的制备方法,其中,所述黑色光刻胶为正性光刻胶;所述掩膜板具有第一透光区域、第二透光区域和遮光区域;
    所述使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准包括:
    将所述第一透光区域与所述待形成的黑矩阵的第一部分中的开口对应,将所述第二透光区域与待形成的黑矩阵的第二部分中的凹坑对应,将所述遮光区域至少与待形成的黑矩阵的第一部分中开口以外的部分对应;
    基于对准后的掩膜板对涂覆的所述黑色光刻胶进行曝光的步骤包括:
    对所述掩膜板的第一透光区域和第二透光区域对应的黑色光刻胶进行曝光;
    对曝光后的所述黑色光刻胶进行显影的步骤包括:
    去除通过所述掩膜板的第一透光区域而被曝光的黑色光刻胶,以形成所述开口;保留被所述掩膜板的遮光区域遮挡而未被曝光的黑色光刻胶,以形成黑矩阵的第一部分中开口以外的部分;并且,去除通过所述掩膜板的第二透光区域而被曝光的黑色光刻胶中的一部分,以形成黑矩阵的第二部分中的凹坑。
  15. 根据权利要求12~14任一项所述的显示基板的制备方法,其中, 使掩膜板与涂覆有所述黑色光刻胶的衬底基板对准的步骤之前,所述显示基板的制备方法还包括:
    确定所述掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小,以控制所述凹坑的凹陷深度。
  16. 根据权利要求15所述的显示基板的制备方法,其中,确定所述掩膜板与待形成的黑矩阵的第二部分对应的第二透光区域的大小包括:
    为所述掩膜板与所述待形成的黑矩阵的第二部分对应的第二透光区域的大小设定初始值;
    使用所述掩膜板制备所述显示基板的样品,使用所述显示基板的样品制备调光子面板的样品;
    检测所述调光子面板的样品的周边区盒厚和显示区盒厚;
    判断所述周边区盒厚和所述显示区盒厚的差值的绝对值是否大于预设值;
    当所述周边区盒厚和所述显示区盒厚的差值的绝对值大于预设值时,调整所述初始值的大小并返回执行使用所述掩膜板制备所述显示基板的样品,使用所述显示基板的样品制备调光子面板的样品的步骤,直到所述周边区盒厚和所述显示区盒厚的差值的绝对值小于或等于所述预设值时结束;
    所述掩膜板与所述待形成的黑矩阵的第二部分对应的第二透光区域的大小为当所述周边区盒厚和所述显示区盒厚的差值的绝对值小于或等于所述预设值时所述初始值的大小。
  17. 根据权利要求16所述的显示基板的制备方法,其中,所述预设值位于0.05um~0.1um的范围内。
  18. 根据权利要求11~17任一项所述的显示基板的制备方法,其特征在于,所述方法还包括:
    在所述黑矩阵远离所述衬底基板的表面涂覆平坦层材料,在所述显示基板的所述非显示区域所述平坦层材料流入所述凹坑中,在所述显示基板的所述显示区域所述平坦层材料流入所述开口中;
    所述平坦层材料固化形成平坦层。
  19. 一种掩膜板,其特征在于,所述掩膜板为权利要求12~18任一项所述的方法中使用的掩膜板。
PCT/CN2021/101504 2020-06-22 2021-06-22 显示基板及其制备方法、面板、显示装置及掩膜板 WO2021259247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575550.1A CN111610657A (zh) 2020-06-22 2020-06-22 显示基板的制备方法和显示基板、显示面板、显示装置
CN202010575550.1 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021259247A1 true WO2021259247A1 (zh) 2021-12-30

Family

ID=72200856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101504 WO2021259247A1 (zh) 2020-06-22 2021-06-22 显示基板及其制备方法、面板、显示装置及掩膜板

Country Status (2)

Country Link
CN (1) CN111610657A (zh)
WO (1) WO2021259247A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374753A (zh) * 2021-12-31 2022-04-19 厦门天马微电子有限公司 一种显示面板和显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111610657A (zh) * 2020-06-22 2020-09-01 京东方科技集团股份有限公司 显示基板的制备方法和显示基板、显示面板、显示装置
CN113867039A (zh) * 2021-09-24 2021-12-31 信利(惠州)智能显示有限公司 一种改善Mono-TFT的边框区盒厚不均的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263417A (zh) * 2005-09-30 2008-09-10 夏普株式会社 液晶显示装置和电视接收机
CN103941460A (zh) * 2013-07-29 2014-07-23 武汉天马微电子有限公司 一种彩色滤光基板、制造方法及液晶显示面板
CN106444131A (zh) * 2015-08-06 2017-02-22 中华映管股份有限公司 显示面板
CN106597728A (zh) * 2016-12-16 2017-04-26 深圳市华星光电技术有限公司 彩膜基板及液晶显示面板
CN206946152U (zh) * 2017-08-02 2018-01-30 京东方科技集团股份有限公司 显示面板和显示装置
US20180259818A1 (en) * 2017-03-09 2018-09-13 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device
US20180341132A1 (en) * 2017-05-26 2018-11-29 Japan Display Inc. Display device
CN109991770A (zh) * 2017-12-29 2019-07-09 瀚宇彩晶股份有限公司 显示面板及其制造方法
CN110596936A (zh) * 2019-08-02 2019-12-20 南京中电熊猫平板显示科技有限公司 一种彩膜基板及其制造方法
CN111061086A (zh) * 2019-12-31 2020-04-24 厦门天马微电子有限公司 彩膜基板、显示面板和显示装置
CN111596486A (zh) * 2020-06-22 2020-08-28 成都中电熊猫显示科技有限公司 基板及其制作方法、显示面板
CN111610657A (zh) * 2020-06-22 2020-09-01 京东方科技集团股份有限公司 显示基板的制备方法和显示基板、显示面板、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402071A (zh) * 2011-12-02 2012-04-04 深圳市华星光电技术有限公司 液晶显示装置的基板、液晶显示装置及其制造方法
JP6282847B2 (ja) * 2013-11-19 2018-02-21 Hoya株式会社 フォトマスク及び該フォトマスクを用いた基板の製造方法
CN108037609A (zh) * 2017-11-03 2018-05-15 惠科股份有限公司 一种显示面板及其制作方法
US10495920B2 (en) * 2017-11-29 2019-12-03 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Color filter substrate and method of manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263417A (zh) * 2005-09-30 2008-09-10 夏普株式会社 液晶显示装置和电视接收机
CN103941460A (zh) * 2013-07-29 2014-07-23 武汉天马微电子有限公司 一种彩色滤光基板、制造方法及液晶显示面板
CN106444131A (zh) * 2015-08-06 2017-02-22 中华映管股份有限公司 显示面板
CN106597728A (zh) * 2016-12-16 2017-04-26 深圳市华星光电技术有限公司 彩膜基板及液晶显示面板
US20180259818A1 (en) * 2017-03-09 2018-09-13 Panasonic Liquid Crystal Display Co., Ltd. Liquid crystal display device
US20180341132A1 (en) * 2017-05-26 2018-11-29 Japan Display Inc. Display device
CN206946152U (zh) * 2017-08-02 2018-01-30 京东方科技集团股份有限公司 显示面板和显示装置
CN109991770A (zh) * 2017-12-29 2019-07-09 瀚宇彩晶股份有限公司 显示面板及其制造方法
CN110596936A (zh) * 2019-08-02 2019-12-20 南京中电熊猫平板显示科技有限公司 一种彩膜基板及其制造方法
CN111061086A (zh) * 2019-12-31 2020-04-24 厦门天马微电子有限公司 彩膜基板、显示面板和显示装置
CN111596486A (zh) * 2020-06-22 2020-08-28 成都中电熊猫显示科技有限公司 基板及其制作方法、显示面板
CN111610657A (zh) * 2020-06-22 2020-09-01 京东方科技集团股份有限公司 显示基板的制备方法和显示基板、显示面板、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374753A (zh) * 2021-12-31 2022-04-19 厦门天马微电子有限公司 一种显示面板和显示装置

Also Published As

Publication number Publication date
CN111610657A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2021259247A1 (zh) 显示基板及其制备方法、面板、显示装置及掩膜板
US7557891B2 (en) Liquid crystal display device and method for fabricating the same
US7440048B2 (en) Method of forming a color filter having various thicknesses and a transflective LCD with the color filter
WO2019179047A1 (zh) 柔性液晶显示面板的制作方法
US7880854B2 (en) Panel and method for manufacturing the same
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
US20050134763A1 (en) Liquid crystal display device and method of fabricating the same
US20020075443A1 (en) Liquid crystal display device
WO2019061724A1 (zh) Bps型阵列基板及其制作方法
US20100091234A1 (en) Liquid Crystal Display Device
WO2018176629A1 (zh) 显示面板及其制造方法
CN107688254B (zh) Coa型液晶显示面板及其制作方法
JP2008129193A (ja) 液晶表示装置およびその製造方法
WO2017128576A1 (zh) Ltps显示面板及其制作方法
JP4601269B2 (ja) 液晶表示装置及びその製造方法
CN100489616C (zh) 液晶显示器装置及其制造方法
CN107450224B (zh) Coa型阵列基板的制备方法
WO2018171079A1 (zh) 主动开关阵列基板及其制造方法与显示面板
WO2018214198A1 (zh) 具有一体式黑色矩阵与光阻间隔物的液晶面板的制作方法及光罩
TW200422725A (en) Substrate for electro-optical device, method of manufacturing substrate for electro-optical device, electro-optical device and electronic apparatus
US20180275466A1 (en) Display panel and lcd panel and lcd apparatus using the same
JP4725170B2 (ja) カラーフィルタの製造方法および液晶表示装置
EP2520973A1 (en) Color filter substrate and producing process and device for manufacturing the same
TWI291764B (en) Liquid crystal display device and manufacturing process thereof
KR100617036B1 (ko) 액정표시장치의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829051

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21829051

Country of ref document: EP

Kind code of ref document: A1