WO2018212365A1 - 그래핀 제조방법 - Google Patents

그래핀 제조방법 Download PDF

Info

Publication number
WO2018212365A1
WO2018212365A1 PCT/KR2017/005005 KR2017005005W WO2018212365A1 WO 2018212365 A1 WO2018212365 A1 WO 2018212365A1 KR 2017005005 W KR2017005005 W KR 2017005005W WO 2018212365 A1 WO2018212365 A1 WO 2018212365A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
pattern
forming
manufacturing
growth substrate
Prior art date
Application number
PCT/KR2017/005005
Other languages
English (en)
French (fr)
Inventor
김형근
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to PCT/KR2017/005005 priority Critical patent/WO2018212365A1/ko
Priority to US16/310,636 priority patent/US11097950B2/en
Priority to CN201780030204.1A priority patent/CN109257931B/zh
Publication of WO2018212365A1 publication Critical patent/WO2018212365A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/188Preparation by epitaxial growth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/01Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Definitions

  • the present invention relates to a graphene manufacturing method, and more particularly to a graphene manufacturing method that can obtain a high quality excellent graphene by adjusting the domain size and shape of the graphene.
  • Graphene (Graphene), which is in the spotlight recently, is flexible, has a very high electrical conductivity, and is transparent. Therefore, studies are being actively conducted to use it as a transparent and curved electrode or as an electron transport material such as an electron transport layer in an electronic device.
  • the graphene is grown by supplying a reaction source including a carbon source on the metal catalyst and heat treatment at atmospheric pressure in the case of a method of directly growing graphene on the metal catalyst. According to this direct growth method, large area graphene can be produced with relatively high quality.
  • Large-area graphene is a graphene layer grown by combining pieces of graphene grown at various points on a growth substrate to form a single graphene layer. Since the graphene growth point is arbitrarily selected, the large-area graphene thus formed is not grown in the size of each of the grown graphene regions, that is, the graphene domains, and defects occur in portions overlapping with other graphene domains.
  • FIG. 1 is an SEM image of graphene synthesized by the direct growth method. Referring to FIG. 1, the boundary and wrinkles of the graphene domain may be identified, and a large number of predecessors and point defects may be present. The boundaries, wrinkles and defects caused by the collision between the graphene domains adversely affect the electrical properties of the graphene.
  • an object of the present invention is to provide a graphene manufacturing method that can obtain a high quality excellent graphene by adjusting the domain size and shape of the graphene. .
  • Graphene manufacturing method for achieving the above object is a graphene pattern forming step of forming a graphene forming pattern on the graphene growth substrate; And a graphene forming step of forming a graphene layer on a graphene growth substrate on which a graphene formation pattern is formed.
  • Graphene growth substrates include silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, cupronickel And one or more metals or alloys thereof selected from the group consisting of stainless steel and Ge.
  • the graphene formation pattern may be a pattern in which growth of the graphene layer is suppressed.
  • the graphene pattern forming step may be a step performed by irradiating the graphene growth substrate with light.
  • the light irradiation may be performed by irradiating at least one of an IPL (Intensed Pulsed Light) and laser light.
  • IPL Intensed Pulsed Light
  • the graphene forming pattern may be a honeycomb pattern in which a hexagonal pattern is repeated.
  • the graphene layer may have a domain having the same shape as the graphene forming pattern.
  • the graphene is manufactured according to a graphene manufacturing method comprising a hexagonal pattern and a domain of a honeycomb pattern is repeatedly formed. Pins are provided.
  • At least one surface, a graphene forming substrate having a graphene domain control pattern for controlling the graphene domain having a honeycomb shape is formed by repeating the hexagonal pattern is provided.
  • the light irradiation may be performed by irradiating at least one of an IPL (Intensed Pulsed Light) and a laser light.
  • the IPL Intensed Pulsed Light
  • the IPL may be irradiated using a flash lamp or a xenon lamp.
  • Irradiation of the laser light may be irradiated using any one laser selected from Nd: YAG laser, CO 2 laser, argon laser, excimer laser, and diode laser.
  • 1 is an SEM image of graphene synthesized by the direct growth method.
  • 2 to 9 is a view provided for the description of the graphene manufacturing method according to an embodiment of the present invention.
  • FIG. 10 is a view provided for the description of a method for manufacturing a substrate for graphene formation according to another embodiment of the present invention.
  • FIG. 11 is a graphene manufacturing method according to an embodiment of the present invention N.M. SEM image of the graphene formed on the rolled copper foil, Figure 12 is N.M. SEM image of graphene formed on a rolled copper foil.
  • FIG. 13 is an SEM image of graphene formed on SRC rolled copper foil according to a graphene manufacturing method according to an embodiment of the present invention
  • FIG. 14 is an SEM image of graphene formed on SRC rolled copper foil without forming a graphene pattern. .
  • the graphene to be prepared in the present invention is a graphene in which a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule to form a layer or sheet.
  • the carbon atoms covalently linked in the graphene layer form a 6-membered ring as a basic repeating unit, but the graphene layer may further include a 5-membered ring or a 7-membered ring.
  • each of the domains to collide to form a five-membered ring or seven-membered ring such irregular crystal arrangement causes the quality degradation of graphene.
  • the term 'domain of graphene' causes horizontal expansion as graphene grows and crystals grow. When graphene formed at one point meets graphene formed at another point, a boundary is formed at the point where it meets The pin area is called the domain.
  • Graphene appears to be a single layer of covalently bonded carbon atoms (usually sp2 bonds).
  • Graphene may have a variety of structures, such a structure may vary depending on the content of 5-membered and / or 7-membered rings that can be included in the graphene.
  • the graphene may be formed of a single layer of graphene as described above, but it is also possible to form a plurality of layers by stacking them with each other, and the side end portion of the graphene may be saturated with hydrogen atoms.
  • Graphene manufacturing method is a graphene pattern forming step of forming a graphene forming pattern 111 on the graphene growth substrate 110; And a graphene forming step of forming a graphene layer 120 on the graphene growth substrate 110 on which the graphene formation pattern 111 is formed.
  • the graphene pattern forming step of forming the graphene forming pattern 111 on the graphene growth substrate 110 is performed.
  • the graphene growth substrate 110 functions as a base layer for growing graphene, and is not limited to a specific material.
  • the graphene growth substrate 110 is a graphene growth substrate is silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, One or more metals or alloys thereof selected from the group consisting of U, V, Zr, brass, bronze, cupronickel, stainless steel and Ge.
  • the graphene growth substrate 110 may further include a catalyst layer (not shown) that adsorbs carbon well to facilitate the growth of graphene.
  • the catalyst layer is not limited to a specific material and may be formed of the same or different material as the graphene growth substrate 110.
  • the thickness of the catalyst layer is also not limited, and may also be a thin film or a thick film.
  • the graphene forming pattern 111 is a pattern for forming graphene and is a pattern directly formed on the surface of the graphene growth substrate 110.
  • the graphene forming pattern 111 is formed according to the size or shape of graphene desired to be synthesized. Can be. It is most preferable that the graphene has a six-membered ring crystal structure as described above, and in order for the graphene to have a six-membered ring crystal structure, the graphene may collide in a straight line when the graphene domain grows and collides with another graphene domain if possible. It is preferable.
  • the graphene forming pattern 111 may be a honeycomb pattern formed by repeatedly forming a hexagonal pattern. 4 illustrates an enlarged area A of FIG. 3.
  • the graphene formation pattern 111 may be formed by light irradiation on the graphene growth substrate.
  • the graphene growth substrate in the present invention may affect a very thin graphene layer In the region irradiated with light 110 itself, the graphene growth substrate 110 is oxidized to pattern the graphene to inhibit the growth of graphene.
  • the light irradiation may be performed by irradiating at least one of an IPL (Intensed Pulsed Light) and laser light.
  • IPL Intensed Pulsed Light
  • the IPL irradiation forms a pattern in a desired shape on the graphene growth substrate 110.
  • IPL means light of a wide band of 350nm to 1200nm, it can be irradiated using a flash lamp or xenon lamp (xenon lamp).
  • IPL irradiation has the advantage of being able to heat only a portion of the instantaneously without damaging the substrate by irradiating light in a pulsed form at high speed.
  • IPL can focus light on domain boundaries or defects of graphene, and thus light irradiation can be performed in a short time.
  • Irradiation of the laser light may be irradiated using any one laser selected from Nd: YAG laser, CO 2 laser, argon laser, excimer laser, and diode laser.
  • FIG. 5 is a cross-sectional view taken along line BB ′ of FIG. 4. Referring to FIG. 5, it can be seen that light irradiation is performed on the graphene growth substrate 110 to form a V-shaped light irradiation site, and the light irradiation site is for forming hexagonal graphene as shown in FIG. 4.
  • the pattern 111 is constituted.
  • a graphene layer is formed on the graphene growth substrate 110 on which the hexagonal graphene pattern 111 is formed.
  • Chemical vapor deposition (CVD) may be used as a method of forming the graphene layer 120 on the graphene growth substrate 110.
  • the chemical vapor deposition method is a high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD) ) Or chemical vapor deposition (PECVD).
  • the reaction gas including a carbon source is supplied to the graphene growth substrate 110 at normal pressure.
  • the graphene layer 120 may be formed by growing the graphene by heat treatment.
  • the heat treatment temperature may be 300 °C to 2,000 °C.
  • the graphene growth substrate 110 is reacted with a carbon source at high temperature and normal pressure so that an appropriate amount of carbon is dissolved or adsorbed on the graphene growth substrate 110, and then the graphene growth substrate 110 is included in the graphene growth substrate 110.
  • the carbon atoms crystallize on the surface to form graphene crystal structures.
  • the number of layers of the graphene layer 120 may be adjusted by adjusting the type and thickness of the graphene growth substrate 110 (including the catalyst layer), the reaction time, the cooling rate, the reaction gas concentration, and the like.
  • the carbon source may be, for example, carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
  • the reaction gas containing the carbon source When the reaction gas containing the carbon source is supplied to the gas phase and heat treated by a heat source capable of controlling temperature, the carbon components present in the carbon source are combined to form a hexagonal plate-like structure on the surface of the graphene growth substrate 110. Graphene is synthesized.
  • the graphene is formed from the center of the graphene formation pattern 111 to the graphene formation pattern 111 according to the graphene growth direction 121 in the graphene formation pattern 111. It can be seen that it is grown.
  • the shape or size of the domain of graphene is controlled by the graphene forming pattern 111 as shown in FIG. Referring to FIG. 7, the graphene layer 120 is formed along the graphene growth direction 121 based on the center of the graphene formation pattern 111, and the graphene formation pattern 111 is formed on the graphene formation pattern 111. Growth was inhibited.
  • region C which is a region where two adjacent graphene domains meet each other in FIG. 6B, is enlarged.
  • the upper graphene domain is called the first graphene domain 122
  • the lower graphene domain is the second graphene domain 123
  • the first graphene domain 122 and the second graphene domain 123 The graphene domain boundary 124 is formed to grow and meet.
  • the graphene layer 120 is not formed in the graphene forming pattern 111 region. However, the graphene layer 120 is formed on the metal rather than the graphene layer 120. This means that the nuclear growth of graphene does not occur due to light irradiation. Therefore, when the graphene layer is implemented as a multilayer, a case where the grown graphene covers the region of the graphene formation pattern 111 may occur.
  • the graphene crystals 125 are positioned in the six-membered ring in the first graphene domain 122.
  • the graphene forming pattern 111 is formed to form a graphene forming pattern 111. Promoting the growth of the graphene in the (111) and the graphene growth in the graphene formation pattern 111 region to suppress the first graphene domain 122 and the second graphene domain 123 as shown in FIG. This meeting boundary can be met by a vertical line.
  • the graphene crystal at the graphene domain boundary 124 is likely to be a six-membered ring and the generation of a five-membered ring or a seven-membered ring is minimized, thereby forming a high quality graphene layer.
  • the graphene 200 having the graphene layer 120 formed as described above is illustrated in FIG. 9.
  • Each graphene domain is implemented in a hexagonal shape shows the shape of the graphene forming pattern 111 is transferred.
  • the graphene pattern forming step of forming a graphene forming pattern on the graphene growth substrate; And a graphene forming step of forming a graphene layer on a graphene growth substrate on which a graphene formation pattern is formed.
  • the graphene is manufactured according to a graphene manufacturing method comprising a hexagonal pattern and a domain of a honeycomb pattern is repeatedly formed. Pins are provided.
  • the graphene growth substrate 110 may be removed. Removal of the graphene growth substrate 110 may be performed using a roll to roll apparatus including a chamber containing an etching solution for selectively removing the graphene growth substrate 110. Etching solution may be selected according to the type of the graphene growth substrate 110, for example, hydrogen fluoride (HF), BOE (Buffered Oxide Etch), ferric chloride (FeCl 3 ) solution, or second nitrate Iron (Fe (NO 3 ) 3 ) solution.
  • HF hydrogen fluoride
  • BOE Bouffered Oxide Etch
  • FeCl 3 ferric chloride
  • Fe (NO 3 ) 3 ) solution second nitrate Iron
  • the method comprises: placing a mask corresponding to the graphene forming pattern on the graphene growth substrate; And irradiating light from an upper portion of the mask.
  • a mask 140 having a honeycomb shape is formed on the graphene growth substrate 110 by repeating a hexagonal pattern having the same shape as the graphene forming pattern 111.
  • the graphene growth substrate 110 is irradiated with light in the form of the mask 140 to form a graphene forming pattern 111.
  • a graphene forming substrate having a graphene domain control pattern for controlling the graphene domain having a honeycomb shape formed by repeating a hexagonal pattern on at least one surface thereof is provided.
  • FIG. 11 is a graphene manufacturing method according to an embodiment of the present invention N.M. SEM image of the graphene formed on the rolled copper foil
  • Figure 12 is N.M. SEM image of the graphene formed on the rolled copper foil
  • Figure 13 is an SEM image of the graphene formed on the SRC rolled copper foil according to the graphene manufacturing method according to an embodiment of the present invention
  • Figure 14 without forming a graphene pattern SEM image of graphene formed on SRC rolled copper foil.
  • N.M. in FIGS. 11 and 13 Graphene patterns using a 532 nm Nd: YAG laser are produced on the rolled copper foil and the SRC rolled copper foil.
  • a black portion on the graphene surface is a portion on which graphene is grown, and defects such as boundaries or wrinkles between graphene domains are not seen.
  • the graphene surface of FIG. 12 grown on the same copper foil has a distinct boundary between graphene domains, and thus, when the pattern is not formed on the surface of the copper foil as in the present invention, it can be seen that a defect occurs in the grown graphene. .
  • the graphene is grown using a graphene formation pattern, and graphene domains having the same shape as the graphene formation pattern are formed to control the shape and size of the graphene domain. As a result, defects or damages can be minimized to obtain high quality graphene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

그래핀의 도메인 크기 및 형상을 조절하여 고품질의 우수한 특성의 그래핀을 얻을 수 있는 그래핀 제조방법이 제안된다. 본 발명에 따른 그래핀 제조방법은 그래핀 성장기판에 그래핀 형성용 패턴을 형성하는 그래핀패턴형성단계; 및 그래핀 형성용 패턴이 형성된 그래핀 성장기판 상에 그래핀층을 형성하는 그래핀형성단계;를 포함한다.

Description

그래핀 제조방법
본 발명은 그래핀 제조방법에 관한 것으로, 더욱 상세하게는 그래핀의 도메인 크기 및 형상을 조절하여 고품질의 우수한 특성의 그래핀을 얻을 수 있는 그래핀 제조방법에 관한 것이다.
최근 각광받고 있는 그래핀(Graphene)은 유연하고 전기 전도도가 매우 높으며 투명하기 때문에, 투명하고 휘어지는 전극으로 사용하거나 전자 소자에서 전자 수송층과 같은 전자 전송 물질로 활용하려는 연구가 활발히 진행되고 있다.
그래핀 기반의 필름의 대량 생산을 위해서는 그래핀을 합성함에 있어 온도, 합성 속도, 대면적 합성 가능 여부 등과 같은 기준들이 고려되어야 한다. 이와 관련하여, 종래 그래핀을 합성하는 방법은 다양할 수 있으나, 통상적으로는 박리법(일명 스카치 테치프법) 또는 금속 촉매상에 그래핀을 직접 성장시키는 직접성장법이 이용되고 있다.
그런데, 박리법(exfolidation)의 경우에는, 기본적으로 우연에 기대하는 공정으로 스카치 테이프로 기판 위에 증착하는 과정에서 그래핀과 여러층의 그래파이트가 쉽게 부셔지면서 그래핀과 그래파이트 조각들이 기판위에 무질서하게 섞이는 문제점이 있었다.
직접성장법은 금속 촉매 상에 그래핀을 직접 성장시키는 방법의 경우에는 금속 촉매 상에 탄소 소스를 포함하는 반응소스를 공급하고 상압에서 열처리함으로써 그래핀을 성장시키게 된다. 이러한 직접성장법에 따르면, 대면적 그래핀을 비교적 고품질로 생산할 수 있다.
대면적 그래핀은 성장기판상에서 임의의 여러 지점에서 성장된 그래핀 조각들이 성장하다 합쳐져 하나의 그래핀층을 형성된다. 이렇게 형성된 대면적 그래핀은 그래핀 성장지점이 임의로 선택되므로 각각 성장된 그래핀 영역, 즉 그래핀의 도메인의 크기가 일정하지 않고, 다른 그래핀 도메인과 겹치는 부분에서 결함이 발생한다.
도 1은 직접성장법에 의해 합성된 그래핀의 SEM이미지이다. 도 1을 참조하면, 그래핀 도메인의 경계(boundary)와 주름(wrinkle)을 확인할 수 있고, 선결함 및 점결함도 다수 존재하는 것을 알 수 있다. 이러한 그래핀 도메인간의 충돌로 인한 경계, 주름 및 점결함 들은 그래핀의 전기적 특성에 악영향을 미치게 된다.
따라서, 그래핀 합성시 결함을 최소화하여 우수한 특성의 대면적 그래핀을 제조할 수 있는 기술개발에 대한 요청이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 그래핀의 도메인 크기 및 형상을 조절하여 고품질의 우수한 특성의 그래핀을 얻을 수 있는 그래핀 제조방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 그래핀 제조방법은 그래핀 성장기판에 그래핀 형성용 패턴을 형성하는 그래핀패턴형성단계; 및 그래핀 형성용 패턴이 형성된 그래핀 성장기판 상에 그래핀층을 형성하는 그래핀형성단계;를 포함한다.
그래핀 성장기판은 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다.
그래핀 형성용 패턴은 그래핀층의 성장이 억제되는 패턴일 수 있다.
그래핀패턴형성단계는 그래핀 성장기판을 광조사하여 수행되는 단계일 수 있다. 광조사는 IPL(Intensed Pulsed Light, 백색단파장) 및 레이저광 중 적어도 하나를 조사하여 수행될 수 있다.
그래핀 형성용 패턴은 육각형 패턴이 반복되는 허니콤(honey) 패턴일 수 있다.
그래핀층은 그래핀 형성용 패턴과 동일한 형상의 도메인을 가질 수 있다.
본 발명의 다른 측면에 따르면, 그래핀 성장기판에 그래핀 형성용 패턴을 형성하는 그래핀패턴형성단계; 및 그래핀 형성용 패턴이 형성된 그래핀 성장기판 상에 그래핀층을 형성하는 그래핀형성단계;를 포함하는 그래핀 제조방법에 따라 제조되고, 육각형 패턴이 반복되어 형성된 허니콤 패턴의 도메인을 갖는 그래핀이 제공된다.
본 발명의 또다른 측면에 따르면, 적어도 일표면에, 육각형 패턴이 반복되어 형성된 허니콤 형상을 갖는 그래핀 도메인을 제어하기 위한 그래핀 도메인 제어용 패턴이 형성된 그래핀 형성용 기판이 제공된다.
본 발명의 또다른 측면에 따르면, 그래핀 성장기판의 상부에 그래핀 형성용 패턴에 대응하는 마스크를 위치시키는 단계; 및 마스크의 상부에서 광을 조사하는 단계;를 포함하는 그래핀 형성용 기판 제조방법이 제공된다.
광조사는 IPL(Intensed Pulsed Light, 백색단파장) 및 레이저광 중 적어도 하나를 조사하여 수행될 수 있는데, IPL(Intensed Pulsed Light, 백색단파장) 조사는 플래시 램프 또는 제논 램프를 이용하여 조사될 수 있고, 레이저광의 조사는 Nd:YAG 레이저, CO2 레이저, 아르곤 레이저, 엑시머 레이저 및 다이오드 레이저 중 선택된 어느 하나의 레이저를 이용하여 조사될 수 있다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따른 그래핀 제조방법을 이용하면, 효과적인 방법으로 그래핀의 도메인의 크기 및 형상을 조절할 수 있어서 그래핀의 결함을 최소화하여 우수한 특성의 그래핀을 제조할 수 있는 효과가 있다.
도 1은 직접성장법에 의해 합성된 그래핀의 SEM이미지이다.
도 2 내지 도 9는 본 발명의 일실시예에 따른 그래핀 제조방법의 설명에 제공되는 도면이다.
도 10은 본 발명의 다른 실시예에 따른 그래핀 형성용 기판 제조방법의 설명에 제공되는 도면이다.
도 11은 본 발명의 일실시예에 따른 그래핀 제조방법에 따라 N.M. 압연동박 상에 형성된 그래핀의 SEM이미지이고, 도 12는 그래핀패턴형성없이 N.M. 압연동박 상에 형성된 그래핀의 SEM이미지이다.
도 13은 본 발명의 일실시예에 따른 그래핀 제조방법에 따라 SRC 압연동박 상에 형성된 그래핀의 SEM이미지이고, 도 14는 그래핀패턴형성없이 SRC 압연동박 상에 형성된 그래핀의 SEM이미지이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.
본 발명에서 제조하고자 하는 그래핀은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 그래핀이 층 또는 시트 형태를 형성한 것이다. 그래핀층 내부에서 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 그래핀층은 5 원환 또는 7 원환을 더 포함하는 것도 가능하다. 특히, 그래핀의 도메인 경계에서 그래핀의 성장방향이 다른 경우, 각각의 도메인이 충돌하여 5원환이나 7원환을 형성하기로 하고 이러한 비규칙적 결정배열은 그래핀의 품질저하의 원인이 된다. 그래핀의 도메인이라는 용어는 그래핀이 성장하여 결정이 증가하게 되면서 수평팽창이 일어나는데, 어느 한 지점에서 형성된 그래핀과 이와 다른 지점에서 형성된 그래핀이 만나게 되면 만나는 지점에서 경계가 형성되고 경계내의 그래핀 영역을 도메인이라고 한다.
그래핀은 서로 공유 결합된 탄소원자들(통상 sp2 결합)의 단일층으로서 보이게 된다. 그래핀은 다양한 구조를 가질 수 있으며, 이와 같은 구조는 그래핀 내에 포함될 수 있는 5 원환 및/또는 7 원환의 함량에 따라 달라질 수 있다. 그래핀은 상술한 바와 같은 그래핀의 단일층으로 이루어질 수 있으나, 이들이 여러개 서로 적층되어 복수층을 형성하는 것도 가능하며, 통상 상기 그래핀의 측면 말단부는 수소원자로 포화될 수있다.
도 2 내지 도 9는 본 발명의 일실시예에 따른 그래핀 제조방법의 설명에 제공되는 도면이다. 본 실시예에 따른 그래핀 제조방법은 그래핀 성장기판(110)에 그래핀 형성용 패턴(111)을 형성하는 그래핀패턴형성단계; 및 그래핀 형성용 패턴(111)이 형성된 그래핀 성장기판(110) 상에 그래핀층(120)을 형성하는 그래핀형성단계;를 포함한다.
도 2를 참조하면, 그래핀 성장기판(110)에 먼저 그래핀 형성용 패턴(111)을 형성하는 그래핀패턴형성단계가 수행된다.
그래핀 성장기판(110)은 그래핀을 성장시키기 위한 베이스(seed layer)로 기능하는 것으로, 특정 재료로 한정되지 않는다. 예를 들어 그래핀 성장기판(110)은 그래핀 성장기판은 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다.
그래핀 성장기판(110)은 그래핀의 성장을 용이하게 하기 위하여 탄소를 잘 흡착하는 촉매층(미도시)을 더 포함할 수 있다. 촉매층은 특정 재료로 한정되지 않으며, 그래핀 성장기판(110)과 동일 또는 상이한 물질로 형성될 수 있다. 한편, 상기 촉매층의 두께 역시 제한되지 않으며, 형태 역시 박막이나 후막일 수 있다.
그래핀 형성용 패턴(111)은 그래핀을 형성하기 위한 패턴으로서, 그래핀 성장기판(110) 표면에 직접 형성된 패턴이다. 그래핀 성장기판(110) 상에 그래핀이 형성되는 경우, 그래핀 형성용 패턴(111)에 따라 형성되기 때문에 그래핀 형성용 패턴(111)은 합성하기 원하는 그래핀의 크기나 형상에 따라 형성될 수 있다. 그래핀은 전술한 바와 같이 6원환의 결정구조를 갖는 것이 가장 바람직하고, 이렇게 그래핀이 6원환 결정구조를 갖기 위해서는 가능하면 그래핀 도메인이 성장하면서 타 그래핀 도메인과 충돌할 때 직선으로 충돌하는 것이 바람직하다. 따라서, 도 3에서와 같이 그래핀 형성용 패턴(111)은 육각형 패턴이 반복하여 형성된 허니콤(honey) 패턴일 수 있다. 도 4에는 도 3의 A영역이 확대되어 나타나있다.
이러한 그래핀 형성용 패턴(111)은 그래핀 성장기판에 광조사하여 형성될 수 있다. 그래핀 형성용 패턴(111) 형성시 그래핀 성장기판(110)에 다른 물질을 도포하여 패턴층을 더 형성하는 경우에는 두께가 매우 얇은 그래핀층에 영향을 미칠 수 있으므로 본 발명에서는 그래핀 성장기판(110) 자체를 광조사하여 광이 조사된 영역에서는 그래핀 성장기판(110)이 산화되어 그래핀의 성장을 억제할 수 있도록 하여 패턴화한다.
광조사는 IPL(Intensed Pulsed Light, 백색단파장) 및 레이저광 중 적어도 하나를 조사하여 수행될 수 있다. IPL 조사를 통해 그래핀 성장기판(110)에 원하는 형상으로 패턴을 형성하게 된다. IPL은 350nm 내지 1200nm의 넓은 대역의 광을 의미하며, 플래시 램프 또는 제논 램프(xenon lamp)를 이용하여 조사할 수 있다. IPL 조사는 빠른 속도로 펄스 형식으로 광을 조사하여 기판을 손상시키지 않고 순간적으로 일부분만을 가열시킬 수 있는 장점을 갖는다. 또한, IPL은 특히 그래핀의 도메인 경계나 결함부위에 열을 집중시켜 단시간에 광조사가 수행될 수 있다.
레이저광의 조사는 Nd:YAG 레이저, CO2 레이저, 아르곤 레이저, 엑시머 레이저 및 다이오드 레이저 중 선택된 어느 하나의 레이저를 이용하여 조사될 수 있다.
도 5에는 도 4의 B-B'의 단면이 도시되어 있다. 도 5를 참조하면, 그래핀 성장기판(110) 상에 광조사가 수행되어 V자 형태의 광조사부위가 형성된 것을 알 수 있고, 이러한 광조사부위는 도 4와 같은 육각형 형상의 그래핀 형성용 패턴(111)을 구성한다.
이러한 육각형형상의 그래핀 형성용 패턴(111)이 형성된 그래핀 성장기판(110) 상에 그래핀층을 형성한다. 그래핀 성장기판(110) 상에 그래핀층(120)을 형성시키는 방법으로는 화학기상증착법(CVD, Chemical Vapor Deposition)이 이용될 수 있다. 여기에서 상기 화학기상증착법은 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD) 등이 있다.
상세하게는 그래핀 형성용 패턴(111)이 형성된 그래핀 성장기판(110)을 반응기에 넣은 후, 그래핀 성장기판(110)에 탄소 소스(carbon source)를 포함하는 반응가스를 공급하고 상압에서 열처리하여 그래핀을 성장시킴으로써 그래핀층(120)을 형성할 수 있다.
여기에서 열처리 온도는 300℃ 내지 2,000℃ 일 수 있다. 이와 같이 그래핀 성장기판(110)을 고온 및 상압에서 탄소 소스와 반응시켜 적절한 양의 탄소가 그래핀 성장기판(110)에 녹아들어가거나 흡착되도록 하고, 이후 그래핀 성장기판(110)에 포함되던 탄소원자들이 표면에서 결정화됨으로써 그래핀 결정 구조를 형성하게 된다.
한편, 상술한 공정에 있어 그래핀 성장기판(110)의 종류 및 두께(촉매층을 포함함), 반응시간, 냉각속도, 반응 가스 농도 등을 조절함으로써 그래핀층(120)의 층수를 조절할 수 있다.
카본 소스는 예를 들어 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등이 있을 수 있다.
탄소 소스를 포함하는 반응 가스를 기상으로 공급하면서, 온도를 제어할 수 있는 열원에 의해 열처리하면 탄소 소스에 존재하는 탄소 성분들이 결합하여 그래핀 성장기판(110) 표면에서 6 각형의 판상 구조를 형성하면서 그래핀이 합성된다.
도 6(a)를 참조하면, 그래핀 형성용 패턴(111)내에서 그래핀 형성용 패턴(111)의 중심에서부터 그래핀 성장방향(121)에 따라 그래핀 형성용 패턴(111)까지 그래핀이 성장되는 것을 알 수 있다.
이렇게 그래핀 형성용 패턴(111) 내에서 그래핀이 형성되면 도 6(b)와 같이 그래핀 형성용 패턴(111)에 의해 그래핀의 도메인의 형상이나 크기가 제어된다. 도 7을 참조하면, 그래핀 형성용 패턴(111)의 중심을 기준으로 그래핀 성장방향(121)에 따라 그래핀층(120)이 형성되었고, 그래핀 형성용 패턴(111) 영역에는 그래핀의 성장이 억제되었다.
도 8에는 도 6(b)에서 근접한 두개의 그래핀 도메인이 서로 만나게 되는 영역인 C영역이 확대되어 있다. 상부의 그래핀 도메인을 제1그래핀 도메인(122)이라 하고, 하부의 그래핀 도메인을 제2그래핀 도메인(123)이라면, 제1그래핀 도메인(122) 및 제2그래핀 도메인(123)가 성장하다 만나게 되는 그래핀 도메인 경계(124)가 형성된다. 도 7에서는 그래핀층(120)이 그래핀 형성용 패턴(111) 영역에는 형성되지 않는 것으로 도시하였으나, 이는 그래핀층(120)이 형성되지 않는다기 보다는 그래핀 형성용 패턴(111) 영역은 금속에의 광조사로 인하여 그래핀의 핵성장이 일어나지 않는다는 것을 의미한다. 따라서, 그래핀층이 다층으로 구현되는 경우에는 성장된 그래핀이 그래핀 형성용 패턴(111) 영역을 덮는 경우가 발생될 수 있다.
제1그래핀 도메인(122) 내부에는 그래핀 결정(125)이 6원환으로 위치하는데, 본 발명에 따른 그래핀 제조방법에 따르면, 그래핀 형성용 패턴(111)을 형성하여 그래핀 형성용 패턴(111) 내부에서 그래핀의 성장을 촉진하고 그래핀 형성용 패턴(111) 영역에서는 그래핀 성장을 억제하여 도 8에서와 같이 제1그래핀 도메인(122) 및 제2그래핀 도메인(123)이 만나는 경계가 수직선으로 만나게 될 수 있다. 따라서, 그래핀 도메인 경계(124)에서 그래핀 결정은 6원환일 가능성이 높고 5원환이나 7원환의 발생이 최소화되어 고품질 그래핀층 형성이 가능하다.
이렇게 형성된 그래핀층(120)이 형성된 그래핀(200) 도 9에 도시되어 있다. 각각의 그래핀 도메인은 육각형 형태로 구현되어 그래핀 형성용 패턴(111)의 형상이 전사된 모습을 보인다. 본 발명의 다른 측면에 따르면, 그래핀 성장기판에 그래핀 형성용 패턴을 형성하는 그래핀패턴형성단계; 및 그래핀 형성용 패턴이 형성된 그래핀 성장기판 상에 그래핀층을 형성하는 그래핀형성단계;를 포함하는 그래핀 제조방법에 따라 제조되고, 육각형 패턴이 반복되어 형성된 허니콤 패턴의 도메인을 갖는 그래핀이 제공된다.
그래핀층(120) 형성 후에 그래핀 성장기판(110)은 제거될 수 있다. 그래핀 성장기판(110)의 제거는 그래핀 성장기판(110)를 선택적으로 제거하는 에칭용액이 담긴 챔버를 포함하는 롤투롤(Roll to Roll) 장치를 이용하여 이루어질 수 있다. 에칭용액은 그래핀 성장기판(110)의 종류에 따라 대응되어 선택될 수 있으며, 예로는 불화수소(HF), BOE(Buffered Oxide Etch), 염화 제2철(FeCl3) 용액, 또는 질산 제2철(Fe(NO3)3) 용액이 있다.
도 10은 본 발명의 다른 실시예에 따른 그래핀 형성용 기판 제조방법의 설명에 제공되는 도면이다. 본 실시예에 따르면, 그래핀 성장기판의 상부에 그래핀 형성용 패턴에 대응하는 마스크를 위치시키는 단계; 및 마스크의 상부에서 광을 조사하는 단계;를 포함하는 그래핀 형성용 기판 제조방법이 제공된다.
그래핀 형성용 기판을 제조하기 위하여 그래핀 성장기판(110) 상에 그래핀 형성용 패턴(111)과 동일한 형상을 갖는 육각형 패턴이 반복되어 형성된 허니콤 형상을 갖는 마스크(140)가 위치하게 되고, 마스크(140)의 상부에서 광조사(150)를 수행하면, 그래핀 성장기판(110)에는 마스크(140)의 형태대로 광을 조사하여 그래핀 형성용 패턴(111)이 형성된다.
본 발명의 또다른 측면에 따르면, 적어도 일표면에, 육각형 패턴이 반복되어 형성된 허니콤 형상을 갖는, 그래핀 도메인을 제어하기 위한 그래핀 도메인 제어용 패턴이 형성된 그래핀 형성용 기판이 제공된다.
도 11은 본 발명의 일실시예에 따른 그래핀 제조방법에 따라 N.M. 압연동박 상에 형성된 그래핀의 SEM이미지이고, 도 12는 그래핀패턴형성없이 N.M. 압연동박 상에 형성된 그래핀의 SEM이미지이고, 도 13은 본 발명의 일실시예에 따른 그래핀 제조방법에 따라 SRC 압연동박 상에 형성된 그래핀의 SEM이미지이며, 도 14는 그래핀패턴형성없이 SRC 압연동박 상에 형성된 그래핀의 SEM이미지이다. 도 11 및 도 13에서의 N.M. 압연동박 및 SRC 압연동박 상에는 532nm Nd:YAG 레이저를 이용한 그래핀패턴이 생성되어 있다.
도 11을 참조하면, 그래핀 표면에 검게 표시된 부분이 그래핀이 성장된 부분으로서, 그래핀 도메인간의 경계나 주름 등의 결함이 보이지 않는다. 이에 반해 동일한 동박에 성장된 도 12의 그래핀 표면에는 그래핀 도메인간의 경계가 뚜렷이 보여 본 발명과 같이 동박의 표면에 패턴이 형성되지 않는 경우, 성장된 그래핀에 결함이 발생함을 알 수 있다.
도 13에 도시된 그래핀의 경우에도 도 11의 그래핀과 유사하게, 그래핀 도메인간의 경계나 주름과 같은 결함없이 균일하게 그래핀이 성장한 것을 확인할 수 있으나, 동일한 동박에 형성된 그래핀의 표면이 도시된 도 14의 경우, 그래핀의 도메인 크기가 일정하지 않고, 도메인 경계와 함께 주름이 명확히 나타나 저품질 그래핀이 획득되었음을 알 수 있다.
상술한 바와 같이, 본 발명의 실시예들에서 그래핀 형성용 패턴을 이용하여 그래핀을 성장시키고, 그래핀 형성용 패턴과 동일한 형상의 그래핀 도메인이 형성되어 그래핀 도메인의 형상 및 크기를 조절할 수 있어서 결함이나 손상이 최소화되어 높은 품질을 나타내는 그래핀을 얻을 수 있다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (12)

  1. 그래핀 성장기판에 그래핀 형성용 패턴을 형성하는 그래핀패턴형성단계; 및
    상기 그래핀 형성용 패턴이 형성된 그래핀 성장기판 상에 그래핀층을 형성하는 그래핀형성단계;를 포함하는 그래핀 제조방법.
  2. 청구항 1에 있어서,
    상기 그래핀 성장기판은
    실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함하는 것인 그래핀 제조방법.
  3. 청구항 1에 있어서,
    상기 그래핀 형성용 패턴은
    상기 그래핀층의 성장이 억제되는 패턴인 것을 특징으로 하는 그래핀 제조방법.
  4. 청구항 1에 있어서,
    상기 그래핀패턴형성단계는
    상기 그래핀 성장기판에 광을 조사하여 수행되는 단계인 것을 특징으로 하는 그래핀 제조방법.
  5. 청구항 4에 있어서,
    상기 광의 조사는 IPL(Intensed Pulsed Light, 백색단파장) 및 레이저광 중 적어도 하나를 조사하여 수행되는 것인 그래핀 제조방법.
  6. 청구항 1에 있어서,
    상기 그래핀 형성용 패턴은
    육각형 패턴이 반복되는 허니콤(honey) 패턴인 것을 특징으로 하는 그래핀 제조방법.
  7. 청구항 1에 있어서,
    상기 그래핀층은 상기 그래핀 형성용 패턴과 동일한 형상의 도메인을 갖는 것을 특징으로 하는 그래핀 제조방법.
  8. 청구항 1의 그래핀 제조방법에 따라 제조되고, 육각형 패턴이 반복되어 형성된 허니콤 패턴의 도메인을 갖는 그래핀.
  9. 적어도 일표면에, 육각형 패턴이 반복되어 형성된 허니콤 형상을 갖는 그래핀 도메인을 제어하기 위한 그래핀 도메인 제어용 패턴이 형성된 그래핀 형성용 기판.
  10. 그래핀 성장기판의 상부에 그래핀 형성용 패턴에 대응하는 마스크를 위치시키는 단계; 및
    상기 마스크의 상부에서 광을 조사하는 단계;를 포함하는 그래핀 형성용 기판 제조방법.
  11. 청구항 10에 있어서,
    상기 광의 조사는 IPL(Intensed Pulsed Light, 백색단파장) 및 레이저광 중 적어도 하나를 조사하여 수행되는 것인 그래핀 형성용 기판 제조방법.
  12. 청구항 11에 있어서,
    상기 IPL(Intensed Pulsed Light, 백색단파장) 조사는 플래시 램프 또는 제논 램프를 이용하여 조사되고,
    상기 레이저광의 조사는 Nd:YAG 레이저, CO2 레이저, 아르곤 레이저, 엑시머 레이저 및 다이오드 레이저 중 선택된 어느 하나의 레이저를 이용하여 조사되는 것을 특징으로 하는 그래핀 형성용 기판 제조방법.
PCT/KR2017/005005 2017-05-15 2017-05-15 그래핀 제조방법 WO2018212365A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/KR2017/005005 WO2018212365A1 (ko) 2017-05-15 2017-05-15 그래핀 제조방법
US16/310,636 US11097950B2 (en) 2017-05-15 2017-05-15 Graphene fabrication method
CN201780030204.1A CN109257931B (zh) 2017-05-15 2017-05-15 石墨烯制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/005005 WO2018212365A1 (ko) 2017-05-15 2017-05-15 그래핀 제조방법

Publications (1)

Publication Number Publication Date
WO2018212365A1 true WO2018212365A1 (ko) 2018-11-22

Family

ID=64273911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005005 WO2018212365A1 (ko) 2017-05-15 2017-05-15 그래핀 제조방법

Country Status (3)

Country Link
US (1) US11097950B2 (ko)
CN (1) CN109257931B (ko)
WO (1) WO2018212365A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594068A (zh) * 2018-12-26 2019-04-09 郑州师范学院 一种贵金属负载石墨烯材料的制备方法
CN110217783A (zh) * 2019-06-28 2019-09-10 宁波大学 一种石墨烯图案的制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210069474A (ko) * 2019-12-03 2021-06-11 삼성전자주식회사 그래핀의 형성방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120111400A (ko) * 2011-03-31 2012-10-10 삼성전자주식회사 3차원 그래핀 구조체, 그의 제조방법 및 전사방법
KR20150094284A (ko) * 2014-02-11 2015-08-19 광주과학기술원 패턴화된 그래핀의 직접 성장 방법 및 그를 이용하여 제조된 그래핀
US20150376778A1 (en) * 2013-02-01 2015-12-31 Solan, LLC Graphene growth on sidewalls of patterned substrate
US20160115032A1 (en) * 2013-05-08 2016-04-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Graphene with very high charge carrier mobility and preparation thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0749428A (ja) * 1993-08-04 1995-02-21 Fujitsu Ltd 光導波路の製造方法
US20100129617A1 (en) * 2008-11-21 2010-05-27 Corrigan Thomas R Laser ablation tooling via sparse patterned masks
US8772181B2 (en) * 2011-02-28 2014-07-08 Japan Science And Technology Agency Method for producing graphene, graphene produced on substrate, and graphene on substrate
US20120241069A1 (en) * 2011-03-22 2012-09-27 Massachusetts Institute Of Technology Direct Synthesis of Patterned Graphene by Deposition
CN103378001B (zh) * 2012-04-23 2016-06-29 中芯国际集成电路制造(上海)有限公司 图案化的石墨烯的形成方法
US20140065359A1 (en) * 2012-08-30 2014-03-06 Jawaharial Nehru Centre for Advanced Scientific Researc Graphene ribbons and methods for their preparation and use
US9688540B2 (en) * 2013-01-15 2017-06-27 Solan, LLC Segmented graphene growth on surfaces of a patterned substrate layer and devices thereof
CN103311386B (zh) * 2013-05-29 2016-09-28 哈尔滨工业大学深圳研究生院 一种避免图形失真的图形化蓝宝石衬底的制备方法
KR101529382B1 (ko) * 2013-07-03 2015-06-16 한양대학교 산학협력단 그래핀 형성 방법 및 그를 이용하여 제조된 그래핀을 포함하는 전자 소자
KR101497955B1 (ko) * 2013-07-25 2015-03-03 한국에너지기술연구원 광투과 후면전극과 이를 이용한 태양전지 및 이들의 제조방법
CN104465462B (zh) * 2014-12-16 2017-06-23 桂林电子科技大学 一种激光刻蚀用于磁控溅射薄膜图案化的制作方法
CN106148909A (zh) * 2015-04-01 2016-11-23 南昌欧菲光学技术有限公司 一种在基材上图案化石墨烯的方法及用于所述方法的模板
CN106315570B (zh) * 2016-08-19 2018-10-19 中国科学院重庆绿色智能技术研究院 一种低温快速生长各种类型图形化三维石墨烯的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120111400A (ko) * 2011-03-31 2012-10-10 삼성전자주식회사 3차원 그래핀 구조체, 그의 제조방법 및 전사방법
US20150376778A1 (en) * 2013-02-01 2015-12-31 Solan, LLC Graphene growth on sidewalls of patterned substrate
US20160115032A1 (en) * 2013-05-08 2016-04-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Graphene with very high charge carrier mobility and preparation thereof
KR20150094284A (ko) * 2014-02-11 2015-08-19 광주과학기술원 패턴화된 그래핀의 직접 성장 방법 및 그를 이용하여 제조된 그래핀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GROBERT, N. ET AL.: "A Novel Route to Aligned Nanotubes and Nanofibres Using Laser -patterned Catalytic Substrates", APPLIED PHYSICS A: MATERIALS SCIENCE & PROCESSING, vol. 70, 21 January 2000 (2000-01-21), pages 175 - 183, XP055558971 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109594068A (zh) * 2018-12-26 2019-04-09 郑州师范学院 一种贵金属负载石墨烯材料的制备方法
CN110217783A (zh) * 2019-06-28 2019-09-10 宁波大学 一种石墨烯图案的制作方法

Also Published As

Publication number Publication date
CN109257931B (zh) 2022-05-03
US20190322532A1 (en) 2019-10-24
US11097950B2 (en) 2021-08-24
CN109257931A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2018212365A1 (ko) 그래핀 제조방법
US10023468B2 (en) High quality large scale single and multilayer graphene production by chemical vapor deposition
US10017852B2 (en) Method for treating graphene sheets for large-scale transfer using free-float method
US10184175B2 (en) Method for synthesizing multilayer graphene
KR101294362B1 (ko) 육방정계 질화붕소층을 포함하는 그래핀 복합필름 제조방법
KR101916517B1 (ko) 그래핀 제조방법
Song et al. Triggering the atomic layers control of hexagonal boron nitride films
KR20170142361A (ko) 그래핀 복합전극 및 이의 제조방법
WO2017171195A1 (ko) 그래핀 비파괴 검사방법
Kim et al. Agglomeration effects of thin metal catalyst on graphene film synthesized by chemical vapor deposition
JP2006069817A (ja) 炭素元素からなる線状構造物質の形成体及び形成方法
US11456358B2 (en) Maskless patterning and control of graphene layers
JP2016026984A (ja) グラファイト膜の製造方法
De Giorgi et al. Carbon nitride films deposited by reactive laser ablation
WO2012036537A2 (ko) 플래쉬 램프 또는 레이저 빔을 이용한 그래핀 제조장치, 제조방법 및 이를 이용하여 제조된 그래핀
KR20180059617A (ko) 그래핀 시트의 제조 방법
KR101308120B1 (ko) 성장 방향이 제어된 그래핀의 제조 방법
Yamagiwa et al. Synthesis of highly aligned carbon nanotubes by one-step liquid-phase process: Effects of carbon sources on morphology of carbon nanotubes
KR102274206B1 (ko) 이중층 그래핀의 제조 방법
WO2020101467A1 (en) Method for forming bernal-stacking graphene layers
Kim et al. Study of ZnO-coated SnO2 nanostructures synthesized by a two-step process
JP2023014561A (ja) 多層グラフェンの製造方法
Takahashi et al. Optical recording characteristics of tin nitride thin films prepared by an atmospheric pressure halide chemical vapor deposition
US20160365415A1 (en) Manufacturing method of graphene device
JP2022185893A (ja) 多層グラフェンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910043

Country of ref document: EP

Kind code of ref document: A1