WO2017171195A1 - 그래핀 비파괴 검사방법 - Google Patents

그래핀 비파괴 검사방법 Download PDF

Info

Publication number
WO2017171195A1
WO2017171195A1 PCT/KR2016/014100 KR2016014100W WO2017171195A1 WO 2017171195 A1 WO2017171195 A1 WO 2017171195A1 KR 2016014100 W KR2016014100 W KR 2016014100W WO 2017171195 A1 WO2017171195 A1 WO 2017171195A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
metal substrate
light
synthesized
oxidized
Prior art date
Application number
PCT/KR2016/014100
Other languages
English (en)
French (fr)
Inventor
김형근
유세현
김예경
김예나
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2017171195A1 publication Critical patent/WO2017171195A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/24Processes or apparatus for obtaining an optical image from holograms using white light, e.g. rainbow holograms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals

Definitions

  • the present invention relates to a non-destructive testing method for graphene, and more specifically, it is possible to test in real time in the graphene synthesis process without damage to graphene and graphene non-destructive test capable of performing an efficient test due to large-area graphene test. It is about a method.
  • Graphene (Graphene), which is in the spotlight recently, is flexible, has a very high electrical conductivity, and is transparent. Therefore, studies are being actively conducted to use it as a transparent and curved electrode or as an electron transport material such as an electron transport layer in an electronic device.
  • the direct growth method is a method of directly growing graphene on a metal catalyst.
  • the graphene is grown by supplying a reaction source including a carbon source on the metal catalyst and performing heat treatment at atmospheric pressure. According to this direct growth method, large area graphene can be produced with relatively high quality.
  • Large-area graphene is a graphene layer that grows and joins pieces of graphene grown at various points on a growth substrate to form a graphene layer. Since the graphene growth point is arbitrarily selected, the large-area graphene formed as described above does not have a constant size of each grown graphene region, that is, the domain of graphene, and defects occur in portions overlapping with other graphene domains.
  • the width, size, and defect ratio of the graphene domain affect the electrical properties of graphene, so it is necessary to investigate defects after graphene is synthesized.
  • An electron microscope such as a transmission electron microscope (TEM) may be used as a method for examining defects of graphene.
  • TEM transmission electron microscope
  • FIG. 1 is a TEM image of graphene defects.
  • the graphene domains and defects observed with an electron microscope have high resolution, a crystal structure can be identified, and quantitative analysis is possible.
  • a separate sample must be prepared, and the analysis area is small, so that large area graphene requires many times of measurement and long inspection time, and requires a professional skill of the inspector.
  • the present invention has been made to solve the above problems, the object of the present invention, it is possible to test in real time in the graphene synthesis process without graphene damage and large-area graphene inspection can be performed efficiently
  • the present invention provides a method for testing nondestructive graphene.
  • the metal substrate is made from the group consisting of Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze and white copper. It may comprise one or more selected metals or alloys thereof.
  • the light may be IPL (Intensed Pulsed Light) light or laser light.
  • the light can be irradiated for a time of 0.1 second to 10 seconds.
  • the region where the metal substrate is oxidized may be a region corresponding to the domain boundary of the synthesized graphene or a defect of the synthesized graphene.
  • the region where the metal substrate is oxidized can be extracted with an optical microscope.
  • the graphene synthesis unit for synthesizing the graphene on a metal substrate; And a graphene defect inspection unit for extracting a region in which the metal substrate is oxidized by light irradiation by irradiating light onto the metal substrate synthesized with graphene.
  • It may further include an information check unit for displaying information about the region of the metal substrate extracted from the graphene defect inspection unit oxidized.
  • a characteristic change capable of changing electrical characteristics by irradiating light to a metal substrate on which graphene is synthesized on a surface, to a domain boundary of the synthesized graphene or to a region corresponding to a defect of the synthesized graphene Positioning the material; And irradiating light onto the metal substrate on which graphene is synthesized.
  • the property change material may be a material oxidized by light irradiation.
  • the property change material may be a material that is reduced by irradiation of light.
  • a characteristic change capable of changing electrical characteristics by irradiating light to a metal substrate on which graphene is synthesized on a surface, to a domain boundary of the synthesized graphene or to a region corresponding to a defect of the synthesized graphene Positioning the material; It is provided with a graphene prepared according to the graphene manufacturing method comprising a; and irradiating light to a metal substrate synthesized with graphene.
  • inspection can be performed without adversely affecting the quality of the graphene, and by introducing an additional configuration in the reaction chamber, the inspection result can be immediately confirmed through an optical microscope, so that large-scale graphene quality inspection can be performed in a short time, and commercialized. Real-time inspection is possible instead of the later process, which is advantageous in terms of time and cost.
  • 1 is a TEM image of graphene defects.
  • FIG 2 and 4 are views provided for the description of the non-destructive inspection method according to an embodiment of the present invention.
  • FIG. 5 is an optical microscope image as a graphene inspection result obtained by a non-destructive inspection method according to another embodiment of the present invention.
  • FIG. 6 is a view showing a part of the graphene non-destructive inspection device including an information confirmation unit according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a case where a property change material is the same as a metal substrate in graphene according to another embodiment of the present invention
  • FIG. 8 is a view illustrating a case where the property change material is an oxide of the same metal as the metal substrate. .
  • Graphene non-destructive testing method of the present embodiment comprises the steps of irradiating light to the metal substrate 110, the graphene 120 is synthesized on the surface; And extracting the region 140 in which the metal substrate 110 is oxidized by the light 130.
  • the graphene nondestructive testing method is a method for inspecting the graphene 120 synthesized on the metal substrate 110.
  • Graphene is formed by forming a layer or a sheet of graphene in which a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule.
  • the carbon atoms covalently linked in the graphene layer form a 6-membered ring as a basic repeating unit, but the graphene layer may further include a 5-membered ring or a 7-membered ring.
  • Graphene appears to be a single layer of covalently bonded carbon atoms (usually sp 2 bonds).
  • Graphene may have a variety of structures, such a structure may vary depending on the content of 5-membered and / or 7-membered rings that can be included in the graphene.
  • the graphene may be composed of a single layer of graphene as described above, but it is also possible to form a plurality of layers by stacking them together with each other, and the side end portion of the graphene may be saturated with hydrogen atoms.
  • Graphene 120 is synthesized on the metal substrate 110.
  • the metal substrate 110 functions as a base layer for growing graphene, and is not limited to a specific material.
  • the metal substrate 110 is made of silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, brass And one or more metals or alloys thereof selected from the group consisting of bronze, copper, copper, stainless steel and Ge.
  • the metal substrate 110 may further include a catalyst layer (not shown) that adsorbs carbon well to facilitate the growth of graphene.
  • the catalyst layer is not limited to a specific material and may be formed of the same or different material as the metal substrate 110.
  • the thickness of the catalyst layer is also not limited, and may also be a thin film or a thick film.
  • Chemical vapor deposition may be used as a method of forming the graphene 120 on the metal substrate 110.
  • the chemical vapor deposition method is a high temperature chemical vapor deposition (RTCVD), inductively coupled plasma chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition (LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD) Or chemical vapor deposition (PECVD).
  • RTCVD high temperature chemical vapor deposition
  • ICP-CVD inductively coupled plasma chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • APCVD atmospheric pressure chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • PECVD chemical vapor deposition
  • the surface of the metal substrate 110 is grown by supplying a reaction gas including a carbon source to the metal substrate 110 and heat-treating at atmospheric pressure to grow graphene.
  • Graphene 120 may be formed on the substrate.
  • the heat treatment temperature may be 300 °C to 2,000 °C.
  • the metal substrate 110 is reacted with the carbon source at high temperature and atmospheric pressure so that an appropriate amount of carbon is dissolved or adsorbed on the metal substrate 110, and then the carbon atoms included in the metal substrate 110 are crystallized on the surface. As a result, a graphene crystal structure is formed.
  • the number of layers of the graphene 120 may be controlled by adjusting the type and thickness of the metal substrate 110 (including the catalyst layer), the reaction time, the cooling rate, the reaction gas concentration, and the like.
  • the carbon source may be, for example, carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
  • the carbon components present in the carbon source combine to form a hexagonal plate crystal structure on the surface of the metal substrate 110.
  • Graphene 120 is synthesized.
  • the light irradiation is performed on the metal substrate 110 synthesized with the graphene 120 on the surface thus prepared for inspection.
  • Irradiating light 130 in the present specification is a process for oxidizing the metal substrate 110. Accordingly, when the light 130 is irradiated onto the metal substrate 110 on which the graphene 120 is synthesized on the surface and the oxidation of the surface of the metal substrate 110 is confirmed, the graphene 120 is formed on the surface of the metal substrate 110.
  • the graphene 120 may be inspected because there is a possibility that there is no growth, defects, or oxidation of the metal substrate 110 occurs in the domain boundary region.
  • Irradiation of light 130 may be performed by irradiating IPL (Intensed Pulsed Light) or laser light.
  • the IPL irradiation forms a pattern in a desired shape on the graphene growth substrate 110.
  • IPL means light of a wide band of 350nm to 1200nm, it can be irradiated using a flash lamp or xenon lamp (xenon lamp).
  • IPL irradiation has the advantage of being able to heat only a portion of the instantaneously without damaging the substrate by irradiating light in a pulsed form at high speed.
  • the IPL may concentrate the heat at the domain boundary or the defect portion of the graphene, so that the oxidation of the metal substrate 110 may proceed in a short time.
  • Irradiation of the laser light may be irradiated using any one selected from among Nd: YAG laser, CO 2 laser, argon laser, excimer laser and diode laser.
  • the region 140 in which the metal substrate 110 is oxidized may be formed by the light 130 due to the boundary of the domain 121 of the graphene or a point defect or a line defect of the graphene 120. 110 is an oxidized region.
  • the metal substrate 110 is oxidized in the region 140 in which the metal substrate 110 is oxidized, as shown in FIG. 4, since graphene 120 is not formed, oxidation occurs due to light 130 irradiation in an area where the metal substrate 110 is exposed to the outside. to be.
  • the metal substrate 110 is oxidized through the domain boundary or the defect portion of the graphene 120.
  • the generated metal oxide is applied to the irradiation time, that is, as the oxidation time continues. It can be observed with an optical microscope and shows a big change in volume or color.
  • the light can be irradiated for a time of 0.1 second to 10 seconds.
  • 5 is an optical microscope image as a graphene inspection result obtained by a non-destructive inspection method according to another embodiment of the present invention.
  • 5 is an image obtained by oxidizing a metal substrate synthesized with graphene on the surface by performing light irradiation using a xenon lamp.
  • the graphene domain may be measured by an optical microscope at about 5 ⁇ m.
  • the metal substrate When light irradiation is performed on a metal substrate having graphene synthesized on its surface according to the above-described graphene nondestructive testing method, the metal substrate is oxidized according to light irradiation and the oxidized region is detected to detect defects of graphene and based on the same. You can evaluate the quality of graphene.
  • the graphene synthesis unit for synthesizing the graphene on a metal substrate; And a graphene defect inspection unit that detects a region in which the metal substrate is oxidized by light irradiation by irradiating light onto the metal substrate on which graphene is synthesized.
  • Graphene defect inspection unit may include an optical microscope.
  • the graphene non-destructive inspection device can synthesize graphene in a reactor for synthesizing graphene, oxidize a metal substrate corresponding to a defective portion of graphene by irradiating light, and detect the oxidized region.
  • the test apparatus can be implemented integrally with a reactor for synthesizing graphene.
  • the graphene non-destructive inspection device may further include an information confirmation unit detected by the graphene defect inspection unit, information on the region where the metal substrate is oxidized.
  • 6 is a view showing a part of the graphene non-destructive inspection device including an information confirmation unit according to another embodiment of the present invention.
  • an information checking unit 370 may be further installed outside the graphene synthesis reactor to identify an oxidation region of the metal substrate through an optical microscope. Therefore, it is possible to perform from the graphene synthesis to the inspection and inspection result confirmation is possible real-time inspection and confirmation.
  • FIG. 7 is a diagram illustrating a case where a property change material is the same as a metal substrate in graphene according to another embodiment of the present invention
  • FIG. 8 is a view illustrating a case where the property change material is an oxide of the same metal as the metal substrate.
  • a region corresponding to a domain boundary of the synthesized graphene 220 or a defect of the synthesized graphene 110 on the metal substrate 210 having the graphene 220 synthesized on the surface thereof Positioning a changeable material capable of changing an electrical property by irradiation of light at the; And irradiating light onto the metal substrate on which the graphene 220 is synthesized.
  • a graphene manufacturing method is provided, and graphene by the graphene manufacturing method is also provided.
  • the property change material is placed on the domain boundary of the synthesized graphene or a region corresponding to the defect of the synthesized graphene, and irradiated with light. Accordingly, the characteristic change material 250 is changed in electrical characteristics by the irradiation of light.
  • the property change material may be a material oxidized by irradiation of light (FIG. 7).
  • the property change material may be a material reduced by irradiation of light (FIG. 8).
  • the property change material when the property change material is the same metal as the metal substrate 210, the property change material is oxidized by light irradiation to be converted into the metal oxide 250.
  • the property change material when the property change material is a metal oxide of the same metal as the metal substrate 210, the property change material may be reduced to become the metal 260 according to light irradiation.
  • the characteristic change material is changed to a metal oxide, the metal oxide is filled at the domain boundary or defect in the graphene 220, and when the characteristic change material is a metal, the metal oxide is filled with the metal. Accordingly, the graphene finally manufactured may be filled with other materials such as metal oxides or metals to prevent problems caused by the defects.
  • the graphene defects are filled with metal oxides, so the graphene defects are angstroms in size, so the metal oxides do not affect the conductivity of graphene.
  • a metal is filled in the defect of graphene, it will have an advantageous effect on the conductivity of graphene.
  • the property change materials that fill the defects of graphene whether it is oxidized or reduced by light irradiation, the difficulty of filling the final properties of graphene or property change materials with defects of graphene, The choice can be made by considering whether the defect can be filled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Mathematical Physics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

그래핀 손상없이 그래핀 합성과정에서 실시간으로 검사가 가능하고 대면적 그래핀 검사가 가능하여 효율적인 검사를 수행할 수 있는 그래핀 비파괴 검사방법이 제안된다. 본 발명에 따른 그래핀 비파괴 검사방법은 표면에 그래핀이 합성된 금속기판에 광을 조사하는 단계 및 광에 의해 금속기판이 산화된 영역을 추출하는 단계를 포함한다.

Description

그래핀 비파괴 검사방법
본 발명은 그래핀 비파괴 검사방법에 관한 것으로, 더욱 상세하게는 그래핀 손상없이 그래핀 합성과정에서 실시간으로 검사가 가능하고 대면적 그래핀 검사가 가능하여 효율적인 검사를 수행할 수 있는 그래핀 비파괴 검사방법에 관한 것이다.
최근 각광받고 있는 그래핀(Graphene)은 유연하고 전기 전도도가 매우 높으며 투명하기 때문에, 투명하고 휘어지는 전극으로 사용하거나 전자 소자에서 전자 수송층과 같은 전자 전송 물질로 활용하려는 연구가 활발히 진행되고 있다.
그래핀 기반의 필름의 대량 생산을 위해서는 그래핀을 합성함에 있어 온도, 합성 속도, 대면적 합성 가능 여부 등과 같은 기준들이 고려되어야 한다. 이와 관련하여, 종래 그래핀을 합성하는 방법은 다양할 수 있으나, 통상적으로는 박리법(일명 스카치 테치프법) 또는 금속 촉매상에 그래핀을 직접 성장시키는 직접성장법이 이용되고 있다.
그런데, 박리법(exfolidation)의 경우에는, 기본적으로 우연에 기대하는 공정으로 스카치 테이프로 기판 위에 증착하는 과정에서 그래핀과 여러층의 그래파이트가 쉽게 부셔지면서 그래핀과 그래파이트 조각들이 기판위에 무질서하게 섞이는 문제점이 있었다.
직접성장법은 금속 촉매 상에 그래핀을 직접 성장시키는 방법인데, 이 경우에는 금속 촉매 상에 탄소 소스를 포함하는 반응소스를 공급하고 상압에서 열처리함으로써 그래핀을 성장시키게 된다. 이러한 직접성장법에 따르면, 대면적 그래핀을 비교적 고품질로 생산할 수 있다.
대면적 그래핀은 성장기판상에서 임의의 여러 지점에서 성장된 그래핀 조각들이 성장하다 합쳐져 하나의 그래핀층을 형성한다. 이렇게 형성된 대면적 그래핀은 그래핀 성장지점이 임의로 선택되므로 각각 성장된 그래핀 영역, 즉 그래핀의 도메인의 크기가 일정하지 않고, 다른 그래핀 도메인과 겹치는 부분에서 결함이 발생한다.
그래핀 도메인의 폭, 크기 및 결함비율은 그래핀의 전기적 특성에 영향을 미치므로 그래핀이 합성된 후에 결함을 조사할 필요가 있다. 그래핀의 결함을 검사할 수 있는 방법으로는 투과전자현미경(Transmission Electron Microscope, TEM)과 같은 전자현미경을 이용할 수 있다.
도 1은 그래핀 결함의 TEM이미지이다. 도면에서 확인할 수 있듯, 전자현미경으로 관찰한 그래핀 도메인 및 결함은 해상도가 높고, 결정구조를 파악할 수 있으며 정량분석이 가능하다. 그러나, TEM이미지를 얻기 위하여 별도의 시료를 준비하여야 하고, 분석영역이 작아 대면적 그래핀의 경우 여러번 측정 및 긴 검사시간이 소요되고 검사자의 전문적 숙련도를 요구하므로 검사가 복잡하다는 단점이 있다.
따라서, 그래핀 결함검사를 보다 용이하게 수행할 수 있는 기술개발에 대한 요청이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 그래핀 손상없이 그래핀 합성과정에서 실시간으로 검사가 가능하고 대면적 그래핀 검사가 가능하여 효율적인 검사를 수행할 수 있는 그래핀 비파괴 검사방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 그래핀 비파괴 검사방법은 표면에 그래핀이 합성된 금속기판에 광을 조사하는 단계; 및 광에 의해 금속기판이 산화된 영역을 추출하는 단계;를 포함한다.
금속기판은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동 및 백동으로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다.
광은 IPL(Intensed Pulsed Light, 백색단파장) 광 또는 레이저광일 수 있다.
광은 0.1초 내지 10초의 시간동안 조사될 수 있다.
금속기판이 산화된 영역은 합성된 그래핀의 도메인 경계 또는 합성된 그래핀의 결함에 대응하는 영역일 수 있다.
금속기판이 산화된 영역은 광학현미경으로 추출될 수 있다.
본 발명의 다른 측면에 따르면, 금속기판 상에 그래핀을 합성하는 그래핀 합성부; 및 그래핀이 합성된 금속기판에 광을 조사하여 광 조사에 의해 금속기판이 산화된 영역을 추출하는 그래핀 결함검사부;를 포함하는 그래핀 비파괴 검사장치가 제공된다.
그래핀 결함검사부에서 추출된 금속기판이 산화된 영역에 대한 정보가 나타나는 정보확인부;를 더 포함할 수 있다.
본 발명의 또다른 측면에 따르면, 표면에 그래핀이 합성된 금속기판에, 합성된 그래핀의 도메인 경계 또는 합성된 그래핀의 결함에 대응하는 영역에 광의 조사에 의한 전기적 특성변화가 가능한 특성변화물질을 위치시키는 단계; 및 그래핀이 합성된 금속기판에 광을 조사하는 단계;를 포함하는 그래핀 제조방법이 제공된다. 여기서, 특성변화물질은 광의 조사에 의해 산화되는 물질일 수 있다. 또는 특성변화물질은 광의 조사에 의해 환원되는 물질일 수 있다.
본 발명의 또다른 측면에 따르면, 표면에 그래핀이 합성된 금속기판에, 합성된 그래핀의 도메인 경계 또는 합성된 그래핀의 결함에 대응하는 영역에 광의 조사에 의한 전기적 특성변화가 가능한 특성변화물질을 위치시키는 단계; 및 그래핀이 합성된 금속기판에 광을 조사하는 단계;를 포함하는 그래핀 제조방법에 따라 제조된 그래핀이 제공된다.
이상 설명한 바와 같이, 본 발명의 실시예들에 따른 그래핀 비파괴 검사방법을 이용하면, 그래핀을 손상시키지 않고서도 검사가 가능하고, 별도의 소자형태로 제작할 필요가 없어 간단한 방법으로 그래핀의 검사가 가능한 효과가 있다.
또한, 그래핀의 품질에 불리한 영향 없이 검사가 가능하고, 반응챔버 내에 추가적인 구성을 도입하여 바로 광학현미경을 통해 검사결과를 확인할 수 있어 대면적 그래핀의 품질검사를 단시간에 수행할 수 있고, 제품화 후에 추가되는 공정이 아닌 실시간 검사가 가능하여 시간 및 비용면에서 유리한 효과가 있다.
아울러, 합성된 그래핀의 도메인 경계 또는 합성된 그래핀의 결함에 대응하는 영역에 광의 조사에 의한 전기적 특성변화가 가능한 특성변화물질을 위치시켜 광소자를 통해 그래핀 검사가 더욱 용이하거나 그래핀 결함 치유가 가능하여 보다 고품질의 그래핀을 얻을 수 있는 효과가 있다.
도 1은 그래핀 결함의 TEM이미지이다.
도 2 및 도 4는 본 발명의 일실시예에 따른 비파괴 검사방법의 설명에 제공되는 도면들이다.
도 5는 본 발명의 다른 실시예에 따른 비파괴 검사방법에 의해 획득한 그래핀 검사결과로서의 광학현미경 이미지이다.
도 6은 본 발명의 또다른 실시예에 따른 정보확인부를 포함하는 그래핀 비파괴 검사장치의 일부를 도시한 도면이다.
도 7는 본 발명의 다른 실시예에 따른 그래핀에서 특성변화물질이 금속기판과 동일한 경우를 도시한 도면이고, 도 8은 특성변화물질이 금속기판과 동일한 금속의 산화물인 경우를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시형태를 설명한다. 그러나, 본 발명의 실시형태는 여러가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 본 발명의 실시형태는 당업계에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 첨부된 도면에서 특정 패턴을 갖도록 도시되거나 소정두께를 갖는 구성요소가 있을 수 있으나, 이는 설명 또는 구별의 편의를 위한 것이므로 특정패턴 및 소정두께를 갖는다고 하여도 본 발명이 도시된 구성요소에 대한 특징만으로 한정되는 것은 아니다.
도 2 및 도 4는 본 발명의 일실시예에 따른 그래핀 비파괴 검사방법의 설명에 제공되는 도면들이다. 본 실시예의 그래핀 비파괴 검사방법은 표면에 그래핀(120)이 합성된 금속기판(110)에 광을 조사하는 단계; 및 광(130)에 의해 금속기판(110)이 산화된 영역(140)을 추출하는 단계;를 포함한다.
본 발명에 따른 그래핀 비파괴 검사방법은 금속기판(110) 상에 합성된 그래핀(120)을 검사하는 방법이다. 그래핀은 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 그래핀이 층 또는 시트 형태를 형성한 것이다. 그래핀층 내부에서 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6원환을 형성하나, 그래핀층은 5 원환 또는 7 원환을 더 포함하는 것도 가능하다. 특히, 그래핀의 도메인 경계에서 그래핀의 성장방향이 다른 경우, 각각의 도메인이 충돌하여 5원환이나 7원환을 형성하기로 하고 이러한 비규칙적 결정배열은 그래핀의 품질저하의 원인이 된다. 그래핀의 도메인이라는 용어는 그래핀이 성장하여 결정이 증가하게 되면서 수평팽창이 일어나는데, 어느 한 지점에서 형성된 그래핀과 이와 다른 지점에서 형성된 그래핀이 만나게 되면 만나는 지점에서 경계가 형성되고 경계 내의 그래핀 영역을 도메인이라고 한다.
그래핀은 서로 공유 결합된 탄소원자들(통상 sp2 결합)의 단일층으로서 보이게 된다. 그래핀은 다양한 구조를 가질 수 있으며, 이와 같은 구조는 그래핀 내에 포함될 수 있는 5 원환 및/또는 7 원환의 함량에 따라 달라질 수 있다. 그래핀은 상술한 바와 같은 그래핀의 단일층으로 이루어질 수 있으나, 이들이 여러개 서로 적층되어 복수층을 형성하는 것도 가능하며, 통상 상기 그래핀의 측면 말단부는 수소원자로 포화될 수있다.
그래핀 성장 시 어느 하나의 도메인과 인접한 다른 도메인이 만나게 되면, 도메인의 충돌에 따라 충돌한 경계면이 형성되는데, 임의의 방향으로 성장하는 도메인 간에는 가장 안정적인 6원환 이외에도 5원환 및 7원환과 같이 안정적이지 않은 결정이 형성되기도 하고, 그래핀이 성장되지 않는 등 결함이 발생하게 된다. 이러한 결함은 그래핀의 품질을 결정하는 주요 원인이 되므로 본 발명에서는 이를 검사한다.
그래핀(120)은 금속기판(110) 상에서 합성된다. 금속기판(110)은 그래핀을 성장시키기 위한 베이스(seed layer)로 기능하는 것으로, 특정 재료로 한정되지 않는다. 예를 들어 금속기판(110)은 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동, 백동, 스테인리스 스틸 및 Ge로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함할 수 있다.
금속기판(110)은 그래핀의 성장을 용이하게 하기 위하여 탄소를 잘 흡착하는 촉매층(미도시)을 더 포함할 수 있다. 촉매층은 특정 재료로 한정되지 않으며, 금속기판(110)과 동일 또는 상이한 물질로 형성될 수 있다. 한편, 상기 촉매층의 두께 역시 제한되지 않으며, 형태 역시 박막이나 후막일 수 있다.
금속기판(110) 상에 그래핀(120)을 형성시키는 방법으로는 화학기상증착법(CVD, Chemical Vapor Deposition)이 이용될 수 있다. 여기에서 화학기상증착법은 고온화학기상증착(RTCVD), 유도결합플라즈마 화학기상증착(ICP-CVD), 저압 화학기상증착(LPCVD), 상압화학기상증착(APCVD), 금속 유기화학기상증착(MOCVD) 또는 화학기상증착(PECVD) 등이 있다.
상세하게는 금속기판(110)을 반응기에 넣은 후, 금속기판(110)에 카본 소스(carbon source)를 포함하는 반응가스를 공급하고 상압에서 열처리하여 그래핀을 성장시킴으로써 금속기판(110)의 표면에 그래핀(120)을 형성할 수 있다.
여기에서 열처리 온도는 300℃ 내지 2,000℃ 일 수 있다. 이와 같이 금속기판(110)을 고온 및 상압에서 카본 소스와 반응시켜 적절한 양의 탄소가 금속기판(110)에 녹아들어가거나 흡착되도록 하고, 이후 금속기판(110)에 포함되던 탄소원자들이 표면에서 결정화됨으로써 그래핀 결정 구조를 형성하게 된다.
한편, 상술한 공정에 있어 금속기판(110)의 종류 및 두께(촉매층을 포함함), 반응시간, 냉각속도, 반응 가스 농도 등을 조절함으로써 그래핀(120)의 층수를 조절할 수 있다.
카본 소스는 예를 들어 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등이 있을 수 있다.
카본 소스를 포함하는 반응 가스를 기상으로 공급하면서, 온도를 제어할 수 있는 열원에 의해 열처리하면 카본 소스에 존재하는 탄소 성분들이 결합하여 금속기판(110) 표면에서 6각형의 판상 결정구조를 형성하면서 그래핀(120)이 합성된다.
이렇게 제조된 표면에 그래핀(120)이 합성된 금속기판(110)에는 검사를 위하여 광조사가 수행된다. 본 명세서에서 광(130)을 조사하는 단계는 금속기판(110)을 산화시키기 위한 공정이다. 따라서, 표면에 그래핀(120)이 합성된 금속기판(110)에 광(130)을 조사시키고 금속기판(110) 표면의 산화여부를 확인하면 금속기판(110)의 표면에서 그래핀(120)이 성장하지 않거나 결함이 발생하였거나 도메인 경계 영역에서 금속기판(110)의 산화가 발생하였을 가능성이 있으므로 그래핀(120)을 검사할 수 있다.
광(130)조사는 IPL(Intensed Pulsed Light, 백색단파장) 또는 레이저광을 조사하여 수행될 수 있다. IPL 조사를 통해 그래핀 성장기판(110)에 원하는 형상으로 패턴을 형성하게 된다. IPL은 350nm 내지 1200nm의 넓은 대역의 광을 의미하며, 플래시 램프 또는 제논 램프(xenon lamp)를 이용하여 조사할 수 있다. IPL 조사는 빠른 속도로 펄스 형식으로 광을 조사하여 기판을 손상시키지 않고 순간적으로 일부분만을 가열시킬 수 있는 장점을 갖는다. 또한, IPL은 특히 그래핀의 도메인 경계나 결함부위에 열을 집중시켜 단시간에 금속기판(110)의 산화가 진행될 수 있다.
레이저광의 조사는 Nd:YAG 레이저, CO2 레이저, 아르곤 레이저, 엑시머 레이저 및 다이오드 레이저 중 선택된 어느 하나의 레이저를 이용하여 조사될 수 있다.
도 3에는 표면에 그래핀(120)이 합성된 금속기판(110)에 광(130)을 조사시킨 후 금속기판(110)이 산화된 것이 나타나 있다. 금속기판(110)이 산화된 영역(140)은 그래핀의 도메인(121) 경계나, 그래핀(120)의 점결함(point defect) 또는 선결함(line defect)에 광(130)로 인하여 금속기판(110)이 산화된 영역이다.
금속기판(110)이 산화된 영역(140)은 도 4에서와 같이 그래핀(120)이 형성되지 않아 금속기판(110)이 외부로 노출된 영역에 광(130)조사로 인한 산화가 발생한 영역이다. 광(130)을 조사하게 되면, 그래핀(120)의 도메인 경계나 결함 부위를 통해 금속기판(110)의 산화를 일으키게 되는데, 생성된 금속산화물은 광조사의 적용시간, 즉 산화시간이 지속될수록 광학현미경으로 관찰이 가능한 수준으로 부피나 색상에 큰 변화를 나타낸다. 광은 0.1초 내지 10초의 시간동안 조사될 수 있다.
도 5는 본 발명의 다른 실시예에 따른 비파괴 검사방법에 의해 획득한 그래핀 검사결과로서의 광학현미경 이미지이다. 도 5에서는 제논램프를 이용하여 광조사를 수행하여 표면에 그래핀이 합성된 금속기판을 산화시켜 얻은 이미지이다. 도 5에서는 그래핀의 도메인이 약 5㎛ 정도로 광학현미경으로도 측정이 가능하다.
이상 설명한 그래핀 비파괴 검사방법에 따라 표면에 그래핀이 합성된 금속기판에 광조사를 수행하면, 광의 조사에 따라 금속기판이 산화되고 이렇게 산화된 영역을 검출하여 그래핀의 결함을 검출하고 이를 기반으로 그래핀의 품질을 평가할 수 있다.
본 발명의 다른 측면에 따르면, 금속기판 상에 그래핀을 합성하는 그래핀 합성부; 및 그래핀이 합성된 금속기판에 광을 조사하여 광조사에 의해 금속기판이 산화된 영역을 검출하는 그래핀 결함검사부;를 포함하는 그래핀 비파괴 검사장치(미도시)가 제공된다. 그래핀 결함검사부는 광학현미경;을 포함할 수 있다.
본 발명에 따른 그래핀 비파괴 검사장치는 그래핀을 합성하는 반응기에서 그래핀을 합성하고, 광을 조사하여 그래핀의 결함부분에 대응하는 금속기판을 산화시키고, 이러한 산화된 영역을 검출할 수 있다. 본 검사장치는 그래핀을 합성하는 반응기와 일체형으로 구현될 수 있다.
따라서, 본 발명에 따르면, 그래핀을 합성하는 반응기에 냉각부와 그래핀 결함검사부의 기능을 함께 구현하여 그래핀 합성부터 검사까지 하나의 프로세스에 따라 수행할 수 있어 효율적인 합성 및 검사가 가능하다.
이러한 그래핀 비파괴 검사장치는 그래핀 결함검사부에서 검출된, 금속기판이 산화된 영역에 대한 정보가 나타나는 정보확인부;를 더 포함할 수 있다. 도 6은 본 발명의 또다른 실시예에 따른 정보확인부를 포함하는 그래핀 비파괴 검사장치의 일부를 도시한 도면이다. 도 6에서 그래핀 합성 반응기의 외부에 광학현미경을 통하여 금속기판의 산화영역을 확인할 수 있는 정보확인부(370)가 더 설치될 수 있다. 따라서, 그래핀 합성부터 검사 및 검사결과 확인까지 수행할 수 있어 실시간 검사 및 확인이 가능하다.
도 7는 본 발명의 다른 실시예에 따른 그래핀에서 특성변화물질이 금속기판과 동일한 경우를 도시한 도면이고, 도 8은 특성변화물질이 금속기판과 동일한 금속의 산화물인 경우를 도시한 도면이다. 본 발명의 다른 실시예에 따르면, 표면에 그래핀(220)이 합성된 금속기판(210)에, 합성된 그래핀(220)의 도메인 경계 또는 합성된 그래핀(110)의 결함에 대응하는 영역에 광의 조사에 의한 전기적 특성변화가 가능한 특성변화물질을 위치시키는 단계; 및 그래핀(220)이 합성된 금속기판에 광을 조사하는 단계;를 포함하는 그래핀 제조방법이 제공되고, 이러한 그래핀 제조방법에 의한 그래핀도 제공된다.
본 발명에서는 합성된 그래핀의 도메인 경계 또는 합성된 그래핀의 결함에 대응하는 영역에 특성변화물질을 위치시키고, 광을 조사한다. 이에 따라 특성변화물질(250)은 광의 조사에 의해 전기적 특성이 변화된다. 여기서, 특성변화물질은 광의 조사에 의해 산화되는 물질일 수 있다(도 7). 또는 특성변화물질은 광의 조사에 의해 환원되는 물질일 수 있다(도 8).
예를 들어, 특성변화물질이 금속기판(210)과 동일한 금속인 경우라면, 광의 조사에 의해 산화되어 금속산화물(250)로 변화된다. 또는 특성변화물질이 금속기판(210)과 동일한 금속의 금속산화물인 경우, 광의 조사에 따라 환원되어 금속(260)이 될 수 있다. 특성변화물질이 금속산화물로 변화된 경우, 그래핀(220) 내의 도메인 경계 또는 결함에 금속산화물이 채워지게 되고, 특성변화물질이 금속인 경우 금속으로 채워지게 된다. 따라서, 최종적으로 제조되는 그래핀은 결함이 금속산화물이나 금속 등 다른물질로 채워지게 되어 결함으로 인해 발생되는 문제를 방지할 수 있다.
그래핀의 결함에 금속산화물이 채워지는 경우에도 그래핀의 결함은 옹스트롱(Å)단위의 크기이므로 금속산화물이 그래핀의 전도성에 영향을 미치지 않는다. 또한, 그래핀의 결함에 금속이 채워지는 경우에는 그래핀의 전도성에 유리한 영향을 미칠 것이다. 그래핀의 결함을 채우는 특성변화물질 중 광조사에 의해 산화되는 물질인지 환원되는 물질인지는 그래핀의 최종 물성이나 특성변화물질을 그래핀의 결함에 채우는 공정의 난이도 및 광조사시 효과적으로 그래핀의 결함을 채울 수 있는지 등을 고려하여 선택할 수 있다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (12)

  1. 표면에 그래핀이 합성된 금속기판에 광을 조사하는 단계; 및
    상기 광에 의해 상기 금속기판이 산화된 영역을 추출하는 단계;를 포함하는 그래핀 비파괴 검사방법.
  2. 청구항 1에 있어서,
    상기 금속기판은
    Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동, 청동 및 백동으로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 이들의 합금을 포함하는 것인 그래핀 비파괴 검사방법.
  3. 청구항 1에 있어서,
    상기 광은 IPL(Intensed Pulsed Light, 백색단파장) 광 또는 레이저광인 그래핀 비파괴 검사방법.
  4. 청구항 1에 있어서,
    상기 광은 0.1초 내지 10초의 시간동안 조사되는 것인 그래핀 비파괴 검사방법.
  5. 청구항 1에 있어서,
    상기 금속기판이 산화된 영역은 상기 합성된 그래핀의 도메인 경계 또는 상기 합성된 그래핀의 결함에 대응하는 영역인 것인 그래핀 비파괴 검사방법.
  6. 청구항 1에 있어서,
    상기 금속기판이 산화된 영역은 광학현미경으로 추출되는 것인 그래핀 비파괴 검사방법.
  7. 금속기판 상에 그래핀을 합성하는 그래핀 합성부; 및
    상기 그래핀이 합성된 금속기판에 광을 조사하여 상기 광 조사에 의해 상기 금속기판이 산화된 영역을 추출하는 그래핀 결함검사부;를 포함하는 그래핀 비파괴 검사장치.
  8. 청구항 7에 있어서,
    상기 그래핀 결함검사부에서 추출된 금속기판이 산화된 영역에 대한 정보가 나타나는 정보확인부;를 더 포함하는 것인 그래핀 비파괴 검사장치.
  9. 표면에 그래핀이 합성된 금속기판에, 상기 합성된 그래핀의 도메인 경계 또는 상기 합성된 그래핀의 결함에 대응하는 영역에 광의 조사에 의한 전기적 특성변화가 가능한 특성변화물질을 위치시키는 단계; 및
    상기 그래핀이 합성된 금속기판에 광을 조사하는 단계;를 포함하는 그래핀 제조방법.
  10. 청구항 9에 있어서,
    상기 특성변화물질은 광의 조사에 의해 산화되는 물질인 그래핀 제조방법.
  11. 청구항 9에 있어서,
    상기 특성변화물질은 광의 조사에 의해 환원되는 물질인 그래핀 제조방법.
  12. 청구항 9에 따른 그래핀 제조방법에 따라 제조된 그래핀.
PCT/KR2016/014100 2016-03-31 2016-12-02 그래핀 비파괴 검사방법 WO2017171195A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160039029A KR102170863B1 (ko) 2016-03-31 2016-03-31 그래핀 비파괴 검사방법
KR10-2016-0039029 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017171195A1 true WO2017171195A1 (ko) 2017-10-05

Family

ID=59964855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014100 WO2017171195A1 (ko) 2016-03-31 2016-12-02 그래핀 비파괴 검사방법

Country Status (2)

Country Link
KR (1) KR102170863B1 (ko)
WO (1) WO2017171195A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986176A (zh) * 2021-02-06 2021-06-18 西北大学 一种石墨烯薄膜的质量检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238149B1 (ko) * 2020-06-03 2021-04-08 한화에어로스페이스 주식회사 그래핀의 합성 품질을 검사하는 방법 및 시스템
KR102464089B1 (ko) * 2020-12-29 2022-11-09 서울대학교 산학협력단 그래핀의 품질 평가 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292373A1 (en) * 2010-05-26 2011-12-01 Applied Materials, Inc. Thin film monitoring device and method
KR20130099600A (ko) * 2012-02-29 2013-09-06 삼성테크윈 주식회사 그래핀 시트 품질 검사 장치 및 방법
KR20130114617A (ko) * 2012-04-09 2013-10-18 삼성테크윈 주식회사 그래핀 기판 검사 장치 및 그 방법
KR20130142794A (ko) * 2012-06-20 2013-12-30 삼성전자주식회사 그래핀 및 그래핀 바운더리 분석 장치 및 분석 방법
KR20150098406A (ko) * 2014-02-20 2015-08-28 한양대학교 산학협력단 그래핀의 전도성 검사 장치 및 검사 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110292373A1 (en) * 2010-05-26 2011-12-01 Applied Materials, Inc. Thin film monitoring device and method
KR20130099600A (ko) * 2012-02-29 2013-09-06 삼성테크윈 주식회사 그래핀 시트 품질 검사 장치 및 방법
KR20130114617A (ko) * 2012-04-09 2013-10-18 삼성테크윈 주식회사 그래핀 기판 검사 장치 및 그 방법
KR20130142794A (ko) * 2012-06-20 2013-12-30 삼성전자주식회사 그래핀 및 그래핀 바운더리 분석 장치 및 분석 방법
KR20150098406A (ko) * 2014-02-20 2015-08-28 한양대학교 산학협력단 그래핀의 전도성 검사 장치 및 검사 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986176A (zh) * 2021-02-06 2021-06-18 西北大学 一种石墨烯薄膜的质量检测方法

Also Published As

Publication number Publication date
KR102170863B1 (ko) 2020-10-28
KR20170112242A (ko) 2017-10-12

Similar Documents

Publication Publication Date Title
WO2017171195A1 (ko) 그래핀 비파괴 검사방법
US11060185B2 (en) Graphene synthesis
Rupprechter A surface science approach to ambient pressure catalytic reactions
Pan et al. CVD synthesis of Cu 2 O films for catalytic application
Biswas et al. Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures
Rago et al. Carbon nanotubes, directly grown on supporting surfaces, improve neuronal activity in hippocampal neuronal networks
Chu et al. Growth of twisted bilayer graphene through two-stage chemical vapor deposition
Tian et al. Synthesis of AAB‐stacked single‐crystal graphene/hBN/graphene trilayer van der Waals heterostructures by in situ CVD
WO2017211996A1 (en) 2-dimensional nano-gap break-junction electrode structure, method of fabrication thereof; and biomolecule detection apparatus comprising said electrode structure
Venhryn et al. Obtaining, structure and gas sensor properties of nanopowder metal oxides
Noh et al. Reversible oxygen‐driven nickel oxide structural transition on the nickel (1 1 1) surface at near‐ambient pressure
Vivas et al. Chemical vapor deposition graphene transfer onto asymmetric PMMA support
KR101768366B1 (ko) 그래핀 비파괴 검사방법
KR101916517B1 (ko) 그래핀 제조방법
Page et al. Ultra-violet photoelectron spectroscopy studies of gas adsorption on transition metals
Dhaouadi et al. Graphene synthesis by electromagnetic induction heating of oxygen-rich copper foils
Glaser et al. The growth of epitaxial VN (1 1 1) nanolayer surfaces
Bignardi et al. Microscopic characterisation of suspended graphene grown by chemical vapour deposition
Romani et al. Incorporation of boron atoms on graphene grown by chemical vapor deposition using triisopropyl borate as a single precursor
EP3764160A1 (en) Pellicle including graphite film
WO2014137057A1 (ko) 그래핀의 결정립 경계 탐지 방법 및 이러한 방법을 사용하는 장치
Qi et al. Growth of vertically aligned ZnO nanowire arrays using bilayered metal catalysts
Gao et al. Basic mechanisms of Al interaction with the ZnO surface
Mikmeková et al. Very low energy electron microscopy of graphene flakes
Thodkar et al. Probing the Intrinsic Strain in Suspended Graphene Films Using Electron and Optical Microscopy

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897215

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897215

Country of ref document: EP

Kind code of ref document: A1