WO2018211924A1 - 有機電子デバイスの製造方法 - Google Patents

有機電子デバイスの製造方法 Download PDF

Info

Publication number
WO2018211924A1
WO2018211924A1 PCT/JP2018/016642 JP2018016642W WO2018211924A1 WO 2018211924 A1 WO2018211924 A1 WO 2018211924A1 JP 2018016642 W JP2018016642 W JP 2018016642W WO 2018211924 A1 WO2018211924 A1 WO 2018211924A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing member
protective film
organic
sealing
substrate
Prior art date
Application number
PCT/JP2018/016642
Other languages
English (en)
French (fr)
Inventor
匡哉 下河原
進一 森島
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to US16/613,722 priority Critical patent/US10964920B2/en
Priority to JP2018557067A priority patent/JP6488062B1/ja
Priority to CN201880032049.1A priority patent/CN110637505A/zh
Priority to EP18801639.8A priority patent/EP3627972A4/en
Priority to KR1020197033786A priority patent/KR20200006545A/ko
Publication of WO2018211924A1 publication Critical patent/WO2018211924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/811Controlling the atmosphere during processing

Definitions

  • the present invention relates to a method for manufacturing an organic electronic device.
  • the organic electronic device has a device base material in which a first electrode, a device function part (including an organic layer), and a second electrode are provided in this order on a substrate, and a sealing member that seals the device function part.
  • a sealing member for example, a member obtained by laminating an adhesive layer (resin composition layer) on a sealing substrate (support) as described in Patent Document 1 is known. Such a sealing member is bonded to the device substrate via an adhesive layer.
  • a protective film is provided on the adhesive layer of the sealing member until the sealing member is bonded to the device substrate. Since the sealing member is for preventing deterioration of the organic layer of the device function unit due to moisture, it is preferable that the sealing member itself is also dehydrated.
  • the sealing member provided with the protective film is dehydrated using infrared rays, and the ambient atmosphere of the sealing member with protective film being dehydrated is set to a predetermined dew point.
  • the fact that it is set is disclosed.
  • the sealing member with the protective film since water is discharged from the sealing member with the protective film when the sealing member with the protective film is dehydrated, the dew point of the ambient atmosphere of the sealing member with the protective film deteriorates from the predetermined dew point, and the protective film There is a possibility that moisture is hardly released from the attached sealing member. Therefore, there is a possibility that the sealing member with the protective film cannot be sufficiently dehydrated.
  • the sealing member with the protective film may be deformed by, for example, bubbles generated due to the release of moisture from the adhesive layer.
  • the present invention can suppress the deformation of the sealing member with the protective film due to the bubbles in the dehydrating step of the sealing member with the protective film, and can more reliably dehydrate the sealing member with the protective film. It aims at providing the manufacturing method of an organic electronic device.
  • An organic electronic device manufacturing method includes a device base material that forms a device base material in which a first electrode, a device function unit including an organic layer, and a second electrode are sequentially provided on a substrate.
  • the above-mentioned protection under a pressure of 1000 Pa or more while conveying the forming member and the sealing member with the protective film laminated with the protective film through the adhesive layer to the sealing member laminated with the adhesive layer on the sealing substrate.
  • an atmospheric gas having a dew point of ⁇ 40 ° C. or lower is caused to flow from the downstream side to the upstream side in the transport direction of the sealing member with the protective film.
  • an atmospheric gas having a dew point of ⁇ 40 ° C. or lower is allowed to flow from the downstream side to the upstream side in the conveying direction of the sealing member with the protective film. If dehydration is performed while transporting the sealing member with the protective film, moisture is released as the sealing member with the protective film is transported, so that the moisture content of the downstream sealing member with the protective film is lower. Therefore, if an atmospheric gas having a dew point of ⁇ 40 ° C. or lower is flowed from the downstream side to the upstream side, the moisture released from the sealing member with the protective film is surrounded around the sealing member with the protective film having a low moisture content. Atmospheric gas that is not affected by the flow.
  • the dew point of the ambient atmosphere of the sealing member with the protective film that has undergone the dehydration step from the start of the dehydration step to the end of the sealing member bonding step is ⁇ 40 ° C. or less.
  • the dehydrated state (water content) Etc.) can be bonded to the device substrate.
  • the manufacturing method of the organic electronic device which concerns on one Embodiment conveys the said sealing member with a protective film toward the winding-up part after the said dehydration process, and the said sealing member with a protective film is conveyed in the said winding-up part.
  • a winding process may be provided, and in the winding process, an atmospheric gas having a dew point of ⁇ 40 ° C. or lower may be flowed from the downstream side to the upstream side in the transport direction of the sealing member with the protective film.
  • the sealing member with the protective film is dehydrated in a heating chamber, and in the winding step, the protection member is provided in a winding chamber provided at a stage subsequent to the heating chamber and having an atmosphere with a dew point of ⁇ 40 ° C. or lower. You may wind up the sealing member with a film.
  • the deformation of the sealing member with the protective film due to bubbles can be suppressed, and the sealing member with the protective film can be more reliably dehydrated.
  • a method for manufacturing an organic electronic device can be provided.
  • FIG. 1 is a side view of a sealing member with a protective film according to an embodiment.
  • FIG. 2 is a flowchart showing a method of manufacturing an organic EL device (organic electronic device) using the sealing member with a protective film shown in FIG.
  • FIG. 3 is a cross-sectional view illustrating an example of a configuration of a device substrate included in an organic EL device to be manufactured.
  • FIG. 4 is a drawing for explaining the preparation step shown in FIG.
  • FIG. 5 is a drawing for explaining a sealing member bonding step in the method for manufacturing an organic EL device (organic electronic device).
  • FIG. 1 is a side view of a sealing member 10 with a protective film used for manufacturing an organic EL device (organic electronic device) according to an embodiment.
  • FIG. 1 schematically shows a configuration of a sealing member 10 with a protective film.
  • the sealing member with a protective film 10 includes a sealing member 20 and a protective film 30.
  • the sealing member 10 with the protective film may have a strip shape or a single wafer shape.
  • the sealing member 10 with a protective film exhibits a strip shape.
  • the sealing member 20 is a member for preventing deterioration of the organic layer included in the organic EL device.
  • the sealing member 20 includes a sealing substrate 21, an adhesive layer 22, and a resin film 23.
  • the sealing substrate 21 has a moisture barrier function.
  • An example of the water permeability of the sealing substrate 21 is 5 ⁇ 10 ⁇ 5 g / (m 2 ⁇ 24 hr) or less in an environment of a temperature of 40 ° C. and a humidity of 90% RH.
  • the sealing substrate 21 may have a gas barrier function.
  • Examples of the sealing substrate 21 include a metal foil, a barrier film having a barrier functional layer formed on one side or both sides of a transparent plastic film, a thin film glass having flexibility, and a metal having a barrier property on the plastic film. Examples include laminated films.
  • An example of the thickness of the sealing substrate 21 is 10 ⁇ m to 300 ⁇ m.
  • the metal foil is preferably a copper foil, an aluminum foil, or a stainless steel foil from the viewpoint of barrier properties.
  • the thickness of the metal foil is preferably as thick as possible from the viewpoint of suppressing pinholes, but is preferably 10 ⁇ m to 50 ⁇ m from the viewpoint of flexibility.
  • the adhesive layer 22 is laminated on one surface of the sealing substrate 21.
  • the adhesive layer 22 is a layer arranged to adhere at least two adjacent layers to each other.
  • the adhesive layer 22 should just have the thickness which can embed the part which should be sealed with the sealing member 20 in an organic EL device.
  • An example of the thickness of the adhesive layer 22 is 5 ⁇ m to 100 ⁇ m.
  • Examples of the material of the adhesive layer 22 include a photocurable or thermosetting acrylate resin, a photocurable or thermosetting epoxy resin, and the like.
  • Other commonly used resin films that can be fused with an impulse sealer such as ethylene vinyl acetate copolymer (EVA), polypropylene (PP) film, polyethylene (PE) film, polybutadiene film and the like as the adhesive layer 22 Can be used.
  • EVA ethylene vinyl acetate copolymer
  • PP polypropylene
  • PE polyethylene
  • polybutadiene film and the like can be used.
  • a thermoplastic resin can also be used as the material of the adhesive layer 22, and examples thereof include olefin elastomers, styrene elastomers, and butadiene elastomers.
  • the adhesive layer 22 may contain a hygroscopic agent.
  • the hygroscopic agent is an agent that absorbs moisture, but may absorb oxygen or the like in addition to moisture.
  • the moisture absorption rate of the hygroscopic agent is preferably 1 wt% / hr or more in an environment of a temperature of 24 ° C. and a humidity of 55% RH.
  • the resin film 23 is laminated on the other surface of the sealing substrate 21 (the surface opposite to the surface in contact with the adhesive layer 22).
  • Examples of the material of the resin film 23 include polyethylene terephthalate (PET) and polyimide (PI).
  • PET polyethylene terephthalate
  • PI polyimide
  • FIG. 1 the sealing member 20 including the resin film 23 is illustrated, but the sealing member 20 does not include the resin film 23 as long as the sealing member 20 includes the sealing substrate 21 and the adhesive layer 22. Also good.
  • the protective film 30 is laminated on the surface of the adhesive layer 22 opposite to the surface in contact with the sealing substrate 21. That is, the protective film 30 is laminated on the sealing member 20 via the adhesive layer 22.
  • the protective film 30 is a member for preventing dust from adhering to the adhesive layer 22 and preventing the adhesive layer 22 from adhering to a later-described transport roll R until the organic EL device is manufactured.
  • the protective film 30 may be a release film that can be peeled from the adhesive layer 22.
  • Examples of the material of the protective film 30 include polyethylene naphthalate (PEN), PET, PP, PE, PI, cycloolefin polymer, cycloolefin copolymer, and the like.
  • Examples of the thickness of the protective film 30 include 9 ⁇ m to 50 ⁇ m.
  • a coating layer may be formed on the surface of the protective film 30 that contacts the adhesive layer 22.
  • the material of the coating layer are a silicone resin release agent, a fluorine release agent, an alkyd release agent, an acrylic release agent, and the like.
  • the manufacturing method of an organic EL device includes a device substrate forming step S10, a preparation step S20 for the sealing member 10 with a protective film, and a sealing member bonding step S30.
  • the case where the organic EL device to be manufactured is a bottom emission type will be described.
  • the organic EL device may be a top emission type.
  • an anode (first electrode) 42, an organic EL part (device function part including an organic layer) 43, and a cathode (second electrode) 44 are formed on the substrate 41. Are sequentially laminated to form the device substrate 40.
  • the device substrate 40 will be described.
  • the substrate 41 is translucent to light (including visible light having a wavelength of 400 nm to 800 nm) emitted from the organic EL device to be manufactured.
  • substrate 41 used for manufacture of an organic EL device exhibits strip
  • An example of the thickness of the substrate 41 is 30 ⁇ m to 700 ⁇ m.
  • the substrate 41 is preferably a flexible substrate.
  • the flexibility is a property that allows the substrate to be bent without being sheared or broken even when a predetermined force is applied to the substrate.
  • An example of the substrate 41 is a plastic film or a polymer film.
  • the substrate 41 may further include a barrier layer having a moisture barrier function.
  • the barrier layer may have a function of barriering gas (for example, oxygen) in addition to the function of barriering moisture.
  • the anode 42 is provided on the substrate 41.
  • an electrode having optical transparency is used.
  • the electrode exhibiting light transmittance a thin film of metal oxide, metal sulfide, metal or the like having high electrical conductivity can be used, and a thin film having high light transmittance is preferably used.
  • the anode 42 may have a network structure made of a conductor (for example, metal).
  • the thickness of the anode 42 can be determined in consideration of light transmittance, electrical conductivity, and the like.
  • the thickness of the anode 42 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the material of the anode 42 include indium oxide, zinc oxide, tin oxide, indium tin oxide (Indium Tin Oxide: abbreviated as ITO), indium zinc oxide (Indium Zinc Oxide: abbreviated as IZO), gold, platinum, silver, and copper. Among these, ITO, IZO, or tin oxide is preferable.
  • the anode 42 can be formed as a thin film made of the exemplified materials.
  • organic substances such as polyaniline and derivatives thereof, polythiophene and derivatives thereof may be used. In this case, the anode 42 can be formed as a transparent conductive film.
  • the anode 42 can be formed by a dry film forming method, a plating method, a coating method, or the like.
  • the dry film forming method include a vacuum deposition method, a sputtering method, an ion plating method, and a CVD method.
  • the coating method for example, inkjet printing method, slit coating method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, spray coating method, screen printing method, flexographic printing method, offset Examples thereof include a printing method and a nozzle printing method, and among these, an inkjet printing method is preferable.
  • the organic EL unit 43 is a functional unit that contributes to light emission of the organic EL device such as charge transfer and charge recombination according to the voltage applied to the anode 42 and the cathode 44.
  • the organic EL unit 43 has an organic layer such as a light emitting layer.
  • the light emitting layer is a functional layer having a function of emitting light (including visible light).
  • the light emitting layer is usually composed of an organic substance that mainly emits at least one of fluorescence and phosphorescence, or an organic substance and a dopant material that assists the organic substance. Therefore, the light emitting layer is an organic layer.
  • the dopant material is added, for example, in order to improve the light emission efficiency or change the light emission wavelength.
  • the organic substance may be a low molecular compound or a high molecular compound.
  • the thickness of the light emitting layer is, for example, 2 nm to 200 nm.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, and the like as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, and quinoline.
  • Examples include metal complexes having a structure as a ligand, such as iridium complexes, metal complexes having a light emission from a triplet excited state such as platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, Examples include benzothiazole zinc complex, azomethyl zinc complex, porphyrin zinc complex, phenanthroline europium complex and the like.
  • Polymer material As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. Things.
  • Dopant material examples include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like.
  • the light emitting layer can be formed by a dry film forming method, a coating method, or the like. Examples of the dry film forming method and the coating method are the same as those of the anode 42.
  • the light emitting layer is preferably formed by an ink jet printing method.
  • the organic EL unit 43 may have various functional layers in addition to the light emitting layer.
  • Examples of the functional layer disposed between the anode 42 and the light emitting layer are a hole injection layer and a hole transport layer.
  • Examples of the functional layer disposed between the cathode 44 and the light emitting layer are an electron injection layer and an electron transport layer.
  • the electron injection layer may be a part of the cathode 44.
  • These functional layers may be organic layers containing organic substances.
  • An example of the layer configuration of the organic EL unit 43 is shown below.
  • the anode and the cathode are also shown in parentheses in order to show the positional relationship between the anode 42, the cathode 44, and various functional layers.
  • the hole injection layer is a functional layer having a function of improving the hole injection efficiency from the anode to the light emitting layer.
  • the hole transport layer is a functional layer having a function of improving the hole injection efficiency from the portion closer to the anode to the light emitting layer among the anode, the hole injection layer, or the hole transport layer.
  • An electron carrying layer is a functional layer which has a function which improves the electron injection efficiency to the light emitting layer from the part nearer to a cathode among a cathode, an electron injection layer, or an electron carrying layer.
  • the electron injection layer is a functional layer having a function of improving the electron injection efficiency from the cathode to the light emitting layer.
  • a known material can be used as a material of a functional layer (for example, a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, etc.) other than the light emitting layer of the organic EL unit 43.
  • the thickness of the functional layer included in the organic EL unit 43 varies depending on the material used, and is set in consideration of electrical conductivity, durability, and the like.
  • Functional layers other than the light emitting layer included in the organic EL portion 43 can also be formed by the same method as that for the light emitting layer.
  • the cathode 44 is provided on the organic EL unit 43.
  • the thickness of the cathode 44 varies depending on the material used, and is set in consideration of electrical conductivity, durability, and the like.
  • the thickness of the cathode 44 is usually 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • the material of the cathode 44 is from the light emitting layer of the organic EL unit 43 so that light from the organic EL unit 43 (specifically, light from the light emitting layer) is reflected by the cathode 44 and travels to the anode 42 side.
  • a material having a high reflectance with respect to light (particularly visible light) is preferable.
  • the material of the cathode 44 include alkali metals, alkaline earth metals, transition metals, and Group 13 metals of the periodic table.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like may be used as the cathode 44.
  • Examples of the method for forming the cathode 44 include an inkjet method, a slit coater method, a gravure printing method, a screen printing method, a spray coating method, and other coating methods, a vacuum deposition method, a sputtering method, and a laminating method for thermocompression bonding a metal thin film. Can be mentioned.
  • the anode 42 and the organic EL are respectively formed on a plurality of device formation regions virtually set on the substrate 41 while the belt-like substrate 41 is conveyed in the longitudinal direction by a roll-to-roll method.
  • the device substrate 40 is formed by sequentially laminating the portion 43 and the cathode 44.
  • the anode 42, the organic EL part 43, and the cathode 44 can be formed by the method described above.
  • each layer may be formed in order from the anode 42 side.
  • preparatory process S20 (henceforth preparatory process S20) of sealing member 10 with a protective film
  • sealing member 10 with a protective film is spin-dry
  • the preparation process S20 includes an unwinding process S21, a dehydrating process S22, and a winding process S23.
  • FIG. 4 is a drawing for explaining the preparation step S20 for a sealing member with a protective film.
  • the sealing member 10 with a protective film is schematically shown by a thick solid line.
  • the resin film 23 may contact the conveyance roll R.
  • unwinding process In unwinding process S21, as shown in FIG. 4, after setting sealing member 10 with a protective film in roll form to unwinding part 61 arranged in unwinding room 51, sealing member 10 with a protective film Unwind.
  • the unrolled sealing member 10 with the protective film is transported to the heating chamber 52 by the transport roll R.
  • the unwinding chamber 51 and the heating chamber 52 may be connected by a connecting portion 54 or may be directly connected.
  • dehydration heat dehydration
  • dehydration is performed by heating the sealing member 10 with the protective film conveyed from the unwind chamber 51 with infrared rays while being conveyed by the conveyance roll R.
  • the sealing member 10 with the protective film is heated and dehydrated by irradiating the sealing member 10 with the protective film with infrared rays from the infrared irradiation unit 56 disposed on the conveyance path of the sealing member 10 with the protective film.
  • the infrared irradiation unit 56 only needs to have a configuration capable of outputting infrared rays used for heat dehydration.
  • An example of the infrared irradiation unit 56 is an infrared heater.
  • the infrared irradiation part 56 may be arrange
  • the infrared ray irradiated to the sealing member 10 with a protective film is preferably a mid-infrared ray (wavelength of 1.8 ⁇ m to 3.0 ⁇ m) including an absorption wavelength of water in order to efficiently heat and dehydrate the sealing member 10 with a protective film.
  • the heating temperature (surface temperature of the sealing member 10 with a protective film) and the heating time during the dehydration step S22 are adjusted according to the member used in the sealing member 10 with a protective film.
  • the inside of the heating chamber 52 is dehydrated by heating the sealing member 10 with the protective film under a pressure of 1000 Pa or more.
  • Atmospheric gas G1 is flowed.
  • an atmosphere gas G ⁇ b> 1 supply port 52 a is provided on the winding chamber 53 side described later, and the atmosphere gas G ⁇ b> 1 exhaust port 52 b is provided on the unwind chamber 51 side.
  • the atmosphere gas G1 is a gas for creating an atmosphere (environment) for performing the dehydration step S22.
  • the atmospheric gas G1 include dry air, nitrogen, and argon.
  • the protective film-equipped sealing member 10 that has been heat-dehydrated in the heating chamber 52 is wound in a roll shape by the winding portion 62 in the winding chamber 53 that is provided at the subsequent stage of the heating chamber 52.
  • the protective film-equipped sealing member 10 transported from the heating chamber 52 is transported toward the winding portion 62 by the transport roll R.
  • the heating chamber 52 and the winding chamber 53 may be connected by a connecting portion 55, or they may be directly connected.
  • the winding step S23 is performed by adjusting the dew point of the ambient atmosphere of the sealing member 10 with the protective film to ⁇ 40 ° C. or lower.
  • the ambient atmosphere of the sealing member 10 with the protective film is preferably a dew point of ⁇ 70 ° C. or less.
  • a dew point of ⁇ 40 ° C. or less (preferably a dew point of ⁇ 70) from the downstream side (winding portion 62 side) to the upstream side (opposite side of the winding portion 62 in the transport direction) in the transport direction of the sealing member 10 with the protective film.
  • the winding step S23 may be performed while flowing the atmospheric gas G2 at a temperature equal to or lower than 0.degree.
  • the atmosphere gas G ⁇ b> 2 flows as described above by providing an air supply port 53 a for the atmospheric gas G ⁇ b> 2 on the winding portion 62 side, and the inlet of the sealing member 10 with the protective film from the heating chamber 52.
  • This can be realized by providing an exhaust port 53b on the side.
  • An example of the atmospheric gas G2 is the same as that of the atmospheric gas G1.
  • the atmospheric gases G1, G2 can be the same gas.
  • the winding step S23 is preferably performed under higher pressure conditions than the dehydration step S22, that is, under a pressure exceeding 1000 Pa.
  • the sealing member 10 with the protective film wound up in a roll shape is stored in an atmosphere having a dew point of ⁇ 40 ° C. or lower, preferably a dew point of ⁇ 70 ° C. or lower, and the next sealing member
  • the sealing member with the protective film up to the unwinding chamber where the unwinding part of the sealing member 10 with the protective film for carrying out the bonding step S30, specifically the sealing member bonding step S30 for carrying out the sealing member bonding step S30 is arranged.
  • the sealing member 10 with a roll-shaped protective film may be accommodated in a sealed container in which the atmosphere is maintained, and the sealed container may be transported to the place where the sealing member bonding step S30 is performed.
  • the organic EL device manufacturing method includes sealing with a protective film in an atmosphere having a dew point of ⁇ 40 ° C. or lower, preferably a dew point of ⁇ 70 ° C. or lower, between the winding step S23 and the sealing member bonding step S30. It may have a transporting process (or storing process) for transporting the member 10 while storing it.
  • sealing member bonding process S30 the protective film 30 is peeled from the sealing member 10 with a protective film that has undergone the dehydration process S22, and the sealing member 20 is attached to the device base via the adhesive layer 22 as shown in FIG. By bonding to the material 40, an organic EL device is obtained.
  • Sealing member bonding process S30 may be implemented by a roll-to-roll system, conveying the sealing member 10 with a protective film, and the device base material 40 to a longitudinal direction, respectively.
  • the heat-dehydrated roll-shaped sealing member 10 with the protective film is set in the unwinding portion disposed in the unwinding chamber of the sealing member 10 with the protective film for the sealing member bonding step S30.
  • the unwinding chamber is preferably an atmosphere having a dew point of ⁇ 40 ° C. or lower, more preferably a dew point of ⁇ 70 ° C. or lower.
  • the sealing member 20 obtained by peeling the protective film 30 from the sealing member 10 with the protective film is continuously bonded to the device substrate 40 being transported in the longitudinal direction while being transported in the longitudinal direction. .
  • the thickness of the sealing member 20 and the device substrate 40 in the state where the adhesive layer 22 of the sealing member 20 is opposed to the device substrate 40 as shown in FIG. The sealing member 20 is bonded to the device substrate 40 by pressing and heating in the direction.
  • the device base material 40 transported in the longitudinal direction may be the device base material 40 that has been transported continuously after the formation of the cathode 44 in the device base material formation step S10, or the cathode 44 is formed. After the device substrate 40 once wound in a roll shape is set in the unwinding part 61 for the device substrate 40, the device substrate 40 unwound may be used.
  • sealing member bonding process S30 is implemented on the conditions whose dew point of the surrounding atmosphere of the sealing member 10 with a protective film is -40 degrees C or less.
  • the device base material 40 is schematically illustrated in a simplified manner.
  • the anode 42 and the cathode 44 are each a sealing member so that a voltage can be applied to the anode 42 and the cathode 44.
  • a part of each of the anode 42 and the cathode 44 can be extracted from the anode 20.
  • an electrode part that is provided corresponding to each of the anode 42 and the cathode 44 and a part of which is disposed outside the sealing member 20 is formed on the substrate 41, and the anode 42 and the cathode 44 are You may form so that it may electrically connect with a corresponding electrode part.
  • the organic EL device is formed for every device formation area by passing sealing member bonding process S30. Therefore, the manufacturing method of an organic EL device may include a singulation step of dividing the substrate 41 that has undergone the sealing member bonding step S30 into each device formation region. In the individualization step, the substrate 41 is divided for each device formation region, so that an organic EL device having a product size can be obtained.
  • the sealing member 20 can be bonded to the device substrate 40 by removing moisture from the sealing member 20. Therefore, good sealing performance can be realized, and deterioration due to moisture of the organic layer in the organic EL device can be suppressed.
  • dehydration step S22 since the moisture in the sealing member 10 with the protective film is directly heated using infrared rays, the heat dehydration can be performed efficiently. Furthermore, dehydration process S22 is easy to implement, conveying the sealing member 10 with a protective film by utilizing infrared rays. Therefore, the time required for the dehydration step S22 can be shortened, and as a result, the productivity of the organic EL device can be improved.
  • the sealing member 10 with the protective film is heated and dehydrated, moisture is released from the sealing member 10 with the protective film into the heating chamber 52.
  • the present inventors have found that the dew point in the heating chamber 52 is deteriorated from the initially assumed dew point due to the released moisture, and the sealing member 10 with the protective film may not be dehydrated to a desired moisture content.
  • the sealing substrate 21 does not contain moisture in the sealing member 10 with the protective film.
  • the volume of the moisture-containing portion in the sealing member 10 with the protective film corresponds to the total volume of the protective film 30, the adhesive layer 22, and the resin film 23.
  • the thickness of the protective film 30 is 12 ⁇ m
  • the thickness of the adhesive layer 22 is 30 ⁇ m
  • the thickness of the resin film 23 is 38 ⁇ m
  • the thickness of the moisture-containing portion is 80 ⁇ m. Therefore, when the length of the sealing member 10 with the protective film is 25 m and the width is 600 mm, the volume of the moisture-containing portion is 1.2.
  • the protective film with a sealing member containing the maximum amount of discharged water, the initial dew point is set at -70 ° C. (vapor density 0.0028 g / m 3), and heated and dehydrated at the heating chamber 52 having a volume of 6 m 3 Assuming that, the dew point worsens to at least ⁇ 24 ° C. (vapor density: 0.6 g / m 3 ).
  • the sealing member 10 with the protective film is heated and dehydrated while being transported in the heating chamber 52, for example, the dew point is deteriorated on the downstream side in the transport direction. In this case, it becomes difficult for moisture to be released from the sealing member 10 with the protective film on the downstream side of the heating chamber 52, and as a result, there is a possibility that dehydration cannot be achieved to a desired moisture content.
  • the atmospheric gas G1 having a dew point of ⁇ 40 ° C. or less is introduced from the downstream side in the transport direction of the sealing member 10 with the protective film, and the upstream It is flowing toward the side. If it dehydrates, conveying the sealing member 10 with a protective film, a water
  • the atmospheric gas G1 that is not affected by the released moisture flows around the sealing member 10 with the protective film having a low moisture content. Furthermore, the moisture released from the sealing member 10 with the protective film flows and is discharged to the upstream side according to the flow of the atmospheric gas G1. As a result, since the sealing member 10 with the protective film can be dehydrated while reducing the influence of moisture released from the sealing member 10 with the protective film, the sealing with the protective film having a desired moisture content can be efficiently performed in the dehydration step S22. The stop member 10 is obtained.
  • the ambient atmosphere of the sealing member 10 with the protective film is adjusted to a dew point of ⁇ 40 ° C. or lower from the start of the dehydration step S22 to the end of the sealing member bonding step S30. Yes.
  • the deterioration of the moisture content of the sealing member 10 with the protective film dehydrated in the dehydration step S22 can be prevented, and the sealing member 20 having the content dehydrated in the dehydration step S22 can be bonded to the device substrate 40.
  • the organic EL device for example, moisture permeation from the sealing member 20 into the organic layer is suppressed, and good sealing performance can be realized.
  • the ambient atmosphere of the sealing member 10 with the protective film is adjusted to, for example, a dew point of ⁇ 40 ° C. or lower (preferably a dew point of ⁇ 70 ° C. or lower) in the winding step S23, the sealing with the protective film is performed in the winding step S23. Deterioration of the moisture content of the member 10 can be prevented. Also in the winding step S23, if an atmospheric gas G2 having a dew point of ⁇ 40 ° C. or less (preferably, a dew point of ⁇ 70 ° C. or less) is flowed from the downstream side to the upstream side in the conveying direction of the sealing member 10 with the protective film, dehydration is performed. It is easy to maintain the moisture content of the sealing member 10 with the protective film wound in a roll shape at a desired moisture content.
  • a dew point of ⁇ 40 ° C. or lower preferably a dew point of ⁇ 70 ° C. or lower
  • the sealing member 10 with the protective film is heated and dehydrated.
  • the protective film 30 is laminated
  • bubbles are generated, for example, deformation of the sealing member with a protective film 10 such as deformation of the sealing substrate 21 and peeling of the protective film 30 is likely to occur due to the bubbles.
  • the dehydration step S22 is performed under a pressure of 1000 Pa or more. Under such pressure, moisture is released without forming the bubbles. Therefore, the manufacturing method of the organic EL device can prevent deformation of the sealing member 10 with the protective film such as deformation of the sealing substrate 21 due to bubbles and peeling of the protective film 30 from the adhesive layer 22 in the dehydration step S22. . Since deformation of the sealing substrate 21 in the dehydration step S22 is suppressed, when the sealing member 20 is bonded to the device substrate 40, the organic EL portion 43 is reliably sealed, and good sealing performance Can be realized.
  • the upper limit of the pressure in the heating chamber 52 in the dehydration step S22 may be a pressure at which moisture can be released from the sealing member 10 with the protective film.
  • the upper limit of the pressure in the heating chamber 52 is less than the saturated water vapor pressure at the surface temperature of the sealing member 10 with the protective film.
  • Example 1 the sealing member 10 with a protective film cut out to 10 cm square was prepared.
  • the sealing member with a protective film 10 was provided with a sealing substrate 21, an adhesive layer 22, and a protective film 30. Specifically, the adhesive layer 22 was laminated on the sealing substrate 21, and the protective film 30 was further laminated on the adhesive layer 22.
  • the sealing substrate 21 was a 35 ⁇ m thick copper foil (CF-T8G-STD-35 manufactured by Fukuda Metal Foil Powder Co., Ltd.).
  • the adhesive layer 22 was 30 ⁇ m thick.
  • PET25TP01 manufactured by Panac Co., Ltd. was used, and the thickness of the protective film 30 was 25 ⁇ m.
  • the prepared sealing member 10 with protective film was irradiated with infrared rays under atmospheric pressure in a heating furnace (heating chamber), and the sealing member 10 with protective film was heated and dehydrated at a temperature of 160 ° C. As a result, no bubbles were observed between the protective film 30 and the adhesive layer 22 during heat dehydration.
  • Example 2 In Experimental Example 2, the same sealing member 10 with a protective film as in Experimental Example 1 was prepared. The sealing member 10 with the protective film was heat dehydrated under the same conditions as in Experimental Example 1 except that the pressure in the heating furnace (heating chamber) was reduced to 1000 Pa. As a result, no bubbles were observed between the protective film 30 and the adhesive layer 22 during heat dehydration.
  • Comparative Experiment Example 1 In Comparative Experimental Example 1, the same sealing member 10 with a protective film as in Experimental Example 1 was prepared. The sealing member 10 with the protective film was heated and dehydrated under the same conditions as in Experimental Example 1 except that the pressure in the heating furnace (heating chamber) was reduced to 1 ⁇ 10 ⁇ 5 Pa. As a result, bubbles were generated between the protective film 30 and the adhesive layer 22 during heat dehydration.
  • Example 3 In Example 3, the same sealing member 10 with the protective film as in Experimental Example 1 was heated and dehydrated under the same conditions as in Experimental Example 1. As a result, as in Experimental Example 1, generation of bubbles was not observed between the protective film 30 and the adhesive layer 22 during heat dehydration.
  • the sealing member 10 with the protective film that had been heat-dehydrated as described above was left to stand in an atmosphere with a dew point of ⁇ 70 ° C. for 1 hour and stored. Then, the sealing member 20 (laminated body of the sealing base material 21 and the contact bonding layer 22) obtained by peeling the protective film 30 was bonded to the device base material 40, and the light emission test was done. As a result, there were few dark spots (non-light-emitting part), and favorable sealing performance was obtained.
  • the configuration of the organic EL unit 43 included in the device substrate 40 used in Experimental Example 1 was the configuration example (g).
  • Example 4 In Experimental Example 4, the same sealing member 10 with a protective film as in Experimental Example 1 was prepared. This sealing member 10 with a protective film was dehydrated by heating under the same conditions as in Experimental Example 2. As a result, as in Experimental Example 2, no bubbles were observed between the protective film 30 and the adhesive layer 22 during heat dehydration.
  • the sealing member 10 with the protective film that had been heat-dehydrated as described above was left to stand for 1 hour in an atmosphere with a dew point of ⁇ 70 ° C. and stored. Then, the same sealing member 20 as Experimental Example 1 obtained by peeling off the protective film 30 was bonded to the device substrate 40, and a light emission test was performed. As a result, there were few dark spots (non-light-emitting part), and favorable sealing performance was obtained.
  • the configuration of the device substrate 40 was the same as in Experimental Example 1.
  • the sealing member with the protective film may be in a sheet shape.
  • the device base material (or the substrate included in the device base material) may be a single wafer.
  • the air supply port and the exhaust port may not be provided in each of the heating chamber for performing the dehydration process and the winding chamber for performing the winding process.
  • an air supply port may be provided on the winding side in the processing chamber and an exhaust port may be provided on the unwinding side in the processing chamber.
  • An unwinding step may also be performed in the processing chamber.
  • the preparation process of the sealing member with a protective film including the unwinding process and the winding process has been described.
  • the preparation process of the sealing member with the protective film may not include at least one of the unwinding process and the winding process.
  • the method of dehydrating the sealing member with the protective film is not limited to the method using infrared rays.
  • the sealing member bonding step may be performed continuously while continuously transporting the dehydrated sealing film-attached sealing member.
  • the transport path of the sealing member with the protective film from the dehydration step to the sealing member with the protective film may be set to an atmosphere with a dew point of ⁇ 40 ° C.
  • the organic EL device manufactured by the method for manufacturing an organic EL device is not limited to a form that emits light from the substrate side, and can also be applied to an organic EL device that emits light from the opposite side of the substrate.
  • the first electrode and the second electrode of the device substrate are the anode and the cathode
  • the first electrode may be a cathode
  • the second electrode may be an anode.
  • the present invention is also applicable to organic electronic devices other than organic EL devices, such as organic solar cells, organic photodetectors, and organic transistors.
  • SYMBOLS 10 Sealing member with protective film, 20 ... Sealing member, 21 ... Sealing base material, 22 ... Adhesive layer, 23 ... Resin film, 30 ... Protective film, 40 ... Device base material, 41 ... Substrate, 42 ... Anode (1st electrode), 43 ... Organic EL part (device function part), 44 ... Cathode (2nd electrode), 52 ... Heating chamber, 53 ... Winding chamber, 56 ... Infrared irradiation part, G1, G2 ... Atmospheric gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一実施形態に係る有機電子デバイスの製造方法は、デバイス基材形成工程と、封止部材20に保護フィルム30が積層された保護フィルム付き封止部材10を搬送しながら、1000Pa以上の圧力下で保護フィルム付き封止部材を脱水する脱水工程と、脱水工程を経た保護フィルム付き封止部材から保護フィルム30を剥離して封止部材20をデバイス基材に貼合する封止部材貼合工程と、を備え、脱水工程では、保護フィルム付き封止部材の搬送方向において下流側から上流側に、露点-40℃以下の雰囲気ガスG1を流す。

Description

有機電子デバイスの製造方法
 本発明は、有機電子デバイスの製造方法に関する。
 有機電子デバイスは、第1電極、デバイス機能部(有機層含む)及び第2電極がこの順に基板に設けられたデバイス基材と、上記デバイス機能部を封止する封止部材とを有する。封止部材としては、例えば特許文献1に記載されているような封止基材(支持体)に接着層(樹脂組成物層)が積層されたものが知られている。このような封止部材は、接着層を介してデバイス基材に貼合される。特許文献1に記載の技術では、封止部材がデバイス基材に貼合されるまで、封止部材の接着層には保護フィルム(カバーフィルム)が設けられている。封止部材は、デバイス機能部が有する有機層の水分による劣化を防止するためのものであることから、封止部材自体も脱水されていることが好ましい。
国際公開第2016/152756号
 特許文献1では、保護フィルムが設けられた封止部材(保護フィルム付き封止部材)を、赤外線を利用して脱水するとともに、脱水中の保護フィルム付き封止部材の周囲雰囲気を所定の露点に設定する旨が開示されている。しかしながら、保護フィルム付き封止部材を脱水する際、保護フィルム付き封止部材から水分が排出されるので、保護フィルム付き封止部材の周囲雰囲気の露点は、上記所定の露点から悪化し、保護フィルム付き封止部材から水分が放出されにくくなるおそれがある。そのため、保護フィルム付き封止部材が十分に脱水できないおそれがある。保護フィルム付き封止部材を脱水すると、例えば接着層からの水分放出に起因して発生した気泡によって、保護フィルム付き封止部材の変形が生じる場合がある。
 そこで、本発明は、保護フィルム付き封止部材の脱水工程において、気泡に起因した保護フィルム付き封止部材の変形を抑制可能であるとともに、保護フィルム付き封止部材をより確実に脱水し得る、有機電子デバイスの製造方法を提供することを目的とする。
 本発明の一側面に係る有機電子デバイスの製造方法は、基板上に第1電極と、有機層を含むデバイス機能部と、第2電極とが順に設けられたデバイス基材を形成するデバイス基材形成工程と、封止基材に接着層が積層された封止部材に上記接着層を介して保護フィルムが積層された保護フィルム付き封止部材を搬送しながら、1000Pa以上の圧力下で上記保護フィルム付き封止部材を脱水する脱水工程と、上記脱水工程を経た上記保護フィルム付き封止部材から上記保護フィルムを剥離して、上記接着層を介して上記封止部材を上記デバイス基材に貼合する封止部材貼合工程と、を備え、上記脱水工程では、上記保護フィルム付き封止部材の搬送方向において下流側から上流側に、露点-40℃以下の雰囲気ガスを流す。
 脱水工程では、保護フィルム付き封止部材の搬送方向において、下流側から上流側に向けて露点-40℃以下の雰囲気ガスを流している。保護フィルム付き封止部材を搬送しながら脱水すれば、保護フィルム付き封止部材が搬送されるにつれて水分が放出されるため、下流側の保護フィルム付き封止部材ほど含水率が低い。そのため、下流側から上流側に向けて露点-40℃以下の雰囲気ガスを流していれば、含水率が低い保護フィルム付き封止部材の周囲には、保護フィルム付き封止部材から放出された水分の影響を受けていない雰囲気ガスが流れる。その結果、保護フィルム付き封止部材から放出された水分の影響を低減しながら、保護フィルム付き封止部材を脱水でき、脱水工程で、効率よく所望の含水率の保護フィルム付き封止部材を得ることができる。下流側から上流側に向けて露点-40℃以下の雰囲気ガスを流すことで、保護フィルム付き封止部材の周囲の雰囲気の露点の変動を抑え、一定の露点を保つことができる。更に、脱水工程を1000Pa以上の圧力下で実施しているので、保護フィルム付き封止部材内の水分放出時に気泡が形成されず、気泡に起因した保護フィルム付き封止部材の変形も抑制できる。
 上記脱水工程開始から上記封止部材貼合工程終了までの間における上記脱水工程を経た上記保護フィルム付き封止部材の周囲雰囲気の露点が-40℃以下であることが好ましい。
 上記脱水工程開始から上記封止部材貼合工程終了までの間における上記脱水工程を経た上記封止部材の周囲雰囲気が露点-40℃以下であることにより、脱水工程で脱水された状態(含水率等)がほぼ維持された封止部材をデバイス基材に貼合可能である。
 一実施形態に係る有機電子デバイスの製造方法は、上記脱水工程の後に、巻取り部に向けて上記保護フィルム付き封止部材を搬送し、上記巻取り部で、上記保護フィルム付き封止部材を巻き取る巻取り工程を備え、上記巻取り工程では、上記保護フィルム付き封止部材の搬送方向において下流側から上流側に向けて露点-40℃以下の雰囲気ガスを流してもよい。
 上記脱水工程では、上記保護フィルム付き封止部材を加熱室内で脱水し、上記巻取り工程では、上記加熱室の後段に設けられており露点-40℃以下の雰囲気の巻取り室内で、上記保護フィルム付き封止部材を巻き取ってもよい。
 本発明によれば、保護フィルム付き封止部材の脱水工程において、気泡に起因した保護フィルム付き封止部材の変形を抑制可能であるとともに、保護フィルム付き封止部材をより確実に脱水し得る、有機電子デバイスの製造方法を提供できる。
図1は、一実施形態に係る保護フィルム付き封止部材の側面図である。 図2は、図1に示した保護フィルム付き封止部材を用いた有機ELデバイス(有機電子デバイス)の製造方法を示すフローチャートである。 図3は、製造されるべき有機ELデバイスが有するデバイス基材の構成の一例を示す断面図である。 図4は、図2に示した準備工程を説明するための図面である。 図5は、有機ELデバイス(有機電子デバイス)の製造方法における封止部材貼合工程を説明するための図面である。
 以下、本発明の実施形態を図面を参照しながら説明する。同一の要素には同一の符号を付し、重複する説明は省略する。図面の寸法比率は、説明のものと必ずしも一致していない。
 図1は、一実施形態に係る有機ELデバイス(有機電子デバイス)の製造に使用する保護フィルム付き封止部材10の側面図である。図1は、保護フィルム付き封止部材10の構成を概略的に示している。保護フィルム付き封止部材10は、封止部材20と、保護フィルム30とを備える。保護フィルム付き封止部材10は、帯状でもよいし、枚葉状でもよい。以下、断らない限り、保護フィルム付き封止部材10は、帯状を呈する。
 封止部材20は、有機ELデバイスに含まれる有機層の劣化を防止するための部材である。封止部材20は、封止基材21と、接着層22と、樹脂フィルム23とを有する。
 封止基材21は、水分バリア機能を有する。封止基材21の水分透過率の例は、温度40℃、湿度90%RHの環境下で5×10-5g/(m・24hr)以下である。封止基材21は、ガスバリア機能を有してもよい。封止基材21の例としては、金属箔、透明なプラスチックフィルムの片面又はその両面にバリア機能層を形成したバリアフィルム、或いはフレキシブル性を有する薄膜ガラス、プラスチックフィルム上にバリア性を有する金属を積層させたフィルム等が挙げられる。封止基材21の厚さの例は、10μm~300μmである。金属箔としては、バリア性の観点から、銅箔、アルミニウム箔、又はステンレス箔が好ましい。封止基材21が金属箔である場合、金属箔の厚さとしては、ピンホール抑制の観点から厚い程好ましいが、フレキシブル性の観点も考慮すると10μm~50μmが好ましい。
 接着層22は、封止基材21の一方の面に積層されている。接着層22は、隣接する少なくも2層を互いに接着するために配置される層である。接着層22は、有機ELデバイスにおける封止部材20で封止すべき部分を埋設可能な厚さを有していればよい。接着層22の厚さの例は、5μm~100μmである。
 接着層22の材料の例は、光硬化性又は熱硬化性のアクリレート樹脂、光硬化性又は熱硬化性のエポキシ樹脂等が挙げられる。その他一般に使用されるインパルスシーラーで融着可能な樹脂フィルム、例えばエチレン酢酸ビニルコポリマー(EVA)、ポリプロピレン(PP)フィルム、ポリエチレン(PE)フィルム、ポリブタジエンフィルム等の熱融着性フィルムを接着層22として使用できる。熱可塑性樹脂も接着層22の材料に使用でき、例えば、オレフィン系エラストマーやスチレン系エラストマー、ブタジエン系エラストマー等が挙げられる。
 接着層22は吸湿剤を含んでもよい。吸湿剤は、水分を吸収する剤であるが、水分の他に、酸素等を吸収してもよい。吸湿剤の吸湿速度は、温度24℃、湿度55%RHの環境下において、1wt%/hr以上であることが好ましい。
 樹脂フィルム23は、封止基材21の他方の面(接着層22と接する面と反対側の面)に積層されている。樹脂フィルム23の材料としては、例えばポリエチレンテレフタレート(PET)、ポリイミド(PI)などが挙げられる。図1では、樹脂フィルム23を備えた封止部材20を例示しているが、封止部材20は、封止基材21と接着層22とを備えていれば、樹脂フィルム23を備えなくてもよい。
 保護フィルム30は、接着層22のうち封止基材21と接する面と反対側の面に積層されている。すなわち、保護フィルム30は、接着層22を介して封止部材20に積層されている。保護フィルム30は、有機ELデバイスが製造されるまでに、接着層22へのゴミ付着の防止、及び、接着層22の後述する搬送ロールRへの付着を防止するための部材である。保護フィルム30は、接着層22から剥離可能な剥離フィルムであり得る。
 保護フィルム30の材料の例としては、ポリエチレンナフタレート(PEN)、PET、PP、PE、PI、シクロオレフィンポリマー、シクロオレフィンコポリマー等が挙げられる。保護フィルム30の厚さの例としては、9μm~50μmが挙げられる。
 保護フィルム30の接着層22と接する面には、コーティング層が形成されてもよい。コーティング層の材料の例は、シリコーン樹脂系離型剤、フッ素系離型剤、アルキド系離型剤、アクリル系離型剤等である。
 次に、図1に示した保護フィルム付き封止部材10を用いた有機ELデバイスの製造方法の一例を説明する。図2に示したように、有機ELデバイスの製造方法は、デバイス基材形成工程S10と、保護フィルム付き封止部材10の準備工程S20と、封止部材貼合工程S30とを備える。断らない限り、製造すべき有機ELデバイスがボトムエミッション型の場合を説明するが、有機ELデバイスはトップエミッション型でもよい。
 [デバイス基材形成工程]
 デバイス基材形成工程S10では、図3に示したように、基板41上に、陽極(第1電極)42、有機EL部(有機層を含むデバイス機能部)43及び陰極(第2電極)44を順に積層することによってデバイス基材40を形成する。デバイス基材40を説明する。
 [基板]
 基板41は、製造する有機ELデバイスが出射する光(波長400nm~800nmの可視光を含む)に対して透光性を有する。本実施形態において、有機ELデバイスの製造に使用する基板41は帯状を呈する。基板41の厚さの例は、30μm~700μmである。
 基板41としては、可撓性を有する基板が好ましい。可撓性とは、基板に所定の力を加えても剪断したり破断したりすることがなく、基板を撓めることが可能な性質である。基板41の例はプラスチックフィルム又は高分子フィルムである。基板41は、水分バリア機能を有するバリア層を更に有してもよい。バリア層は、水分をバリアする機能に加えて、ガス(例えば酸素)をバリアする機能を有してもよい。
 [陽極]
 陽極42は、基板41上に設けられている。陽極42には、光透過性を示す電極が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物及び金属等の薄膜を用いることができ、光透過率の高い薄膜が好適に用いられる。陽極42は、導電体(例えば金属)からなるネットワーク構造を有してもよい。陽極42の厚さは、光の透過性、電気伝導度等を考慮して決定され得る。陽極42の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 陽極42の材料としては、例えば酸化インジウム、酸化亜鉛、酸化スズ、インジウム錫酸化物(Indium Tin Oxide:略称ITO)、インジウム亜鉛酸化物(Indium Zinc Oxide:略称IZO)、金、白金、銀、銅等が挙げられ、これらの中でもITO、IZO、又は酸化スズが好ましい。陽極42は、例示した材料からなる薄膜として形成され得る。陽極42の材料には、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機物を用いてもよい。この場合、陽極42は、透明導電膜として形成され得る。
 陽極42は、ドライ成膜法、メッキ法、塗布法などにより形成され得る。ドライ成膜法としては、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、CVD法などが挙げられる。塗布法としては、例えば、インクジェット印刷法、スリットコート法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法及びノズル印刷法等が挙げられ、これらの中でもインクジェット印刷法が好ましい。
 [有機EL部]
 有機EL部43は、陽極42及び陰極44に印加された電圧に応じて、電荷の移動及び電荷の再結合などの有機ELデバイスの発光に寄与する機能部である。有機EL部43は、発光層等の有機層を有する。
 発光層は、光(可視光を含む)を発する機能を有する機能層である。発光層は、通常、主として蛍光及びりん光の少なくとも一方を発光する有機物、又はこの有機物とこれを補助するドーパント材料とから構成される。従って、発光層は有機層である。ドーパント材料は、例えば発光効率の向上や、発光波長を変化させるために加えられる。上記有機物は、低分子化合物でも高分子化合物でもよい。発光層の厚さは、例えば2nm~200nmである。
 主として蛍光及びりん光の少なくとも一方を発光する有機物としては、例えば以下の色素系材料、金属錯体系材料及び高分子系材料が挙げられる。
 (色素系材料)
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などが挙げられる。
 (金属錯体系材料)
 金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、又はAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体が挙げられ、例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などが挙げられる。
 (高分子系材料)
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどが挙げられる。
 (ドーパント材料)
 ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどが挙げられる。
 発光層は、ドライ成膜法、塗布法などによって形成され得る。ドライ成膜法及び塗布法の例は、陽極42の場合と同様である。発光層は、好ましくは、インクジェット印刷法で形成される。
 有機EL部43は、発光層の他、種々の機能層を有してもよい。陽極42と発光層との間に配置される機能層の例は、正孔注入層、正孔輸送層などである。陰極44と発光層との間に配置される機能層の例は、電子注入層、電子輸送層などである。電子注入層は、陰極44の一部であってもよい。これらの機能層は、有機物を含む有機層であってもよい。
 有機EL部43の層構成の例を以下に示す。下記層構成の例では、陽極42と陰極44と各種機能層の配置関係を示すために、陽極及び陰極も括弧書きで記載している。
(a)(陽極)/発光層/(陰極)
(b)(陽極)/正孔注入層/発光層/(陰極)
(c)(陽極)/正孔注入層/発光層/電子注入層/(陰極)
(d)(陽極)/正孔注入層/発光層/電子輸送層/電子注入層/(陰極)
(e)(陽極)/正孔注入層/正孔輸送層/発光層/(陰極)
(f)(陽極)/正孔注入層/正孔輸送層/発光層/電子注入層/(陰極)
(g)(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/(陰極)
(h)(陽極)/発光層/電子注入層/(陰極)
(i)(陽極)/発光層/電子輸送層/電子注入層/(陰極)
 記号「/」は、記号「/」の両側の層同士が接合していることを意味している。
 正孔注入層は、陽極から発光層への正孔注入効率を向上させる機能を有する機能層である。正孔輸送層は、陽極、正孔注入層又は正孔輸送層のうち陽極により近い部分から発光層への正孔注入効率を向上させる機能を有する機能層である。電子輸送層は、陰極、電子注入層又は電子輸送層のうち陰極により近い部分から発光層への電子注入効率を向上させる機能を有する機能層である。電子注入層は、陰極から発光層への電子注入効率を向上させる機能を有する機能層である。
 有機EL部43が有する発光層以外の機能層(例えば、正孔注入層、正孔輸送層、電子注入層、電子輸送層など)の材料には公知の材料が用いられ得る。有機EL部43が有する機能層の厚さは、用いる材料によって最適値が異なり、電気伝導度、耐久性等を考慮して設定される。有機EL部43が有する発光層以外の機能層も発光層と同様の方法で形成され得る。
 [陰極]
 陰極44は、有機EL部43上に設けられている。陰極44の厚さは、用いる材料によって最適値が異なり、電気伝導度、耐久性等を考慮して設定される。陰極44の厚さは、通常、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
 有機EL部43からの光(具体的には、発光層からの光)が陰極44で反射して陽極42側に進むように、陰極44の材料は、有機EL部43が有する発光層からの光(特に可視光)に対して反射率の高い材料が好ましい。陰極44の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属及び周期表の第13族金属等が挙げられる。陰極44として、導電性金属酸化物及び導電性有機物等からなる透明導電性電極を用いてもよい。
 陰極44の形成方法としては、例えば、インクジェット法、スリットコーター法、グラビア印刷法、スクリーン印刷法、スプレーコーター法等の塗布法、真空蒸着法、スパッタリング法、金属薄膜を熱圧着するラミネート法等を挙げることができる。
 デバイス基材形成工程S10では、帯状の基板41を、ロールツーロール方式で長手方向に搬送しながら、基板41上に仮想的に設定された複数のデバイス形成領域上に、それぞれ陽極42、有機EL部43及び陰極44を順次積層することによってデバイス基材40を形成する。陽極42、有機EL部43及び陰極44は、前述した方法で形成され得る。有機EL部43が多層構造を有する場合は、陽極42側から順に各層を形成すればよい。
 [保護フィルム付き封止部材の準備工程]
 保護フィルム付き封止部材10の準備工程S20(以下、準備工程S20と称する)では、ロールツーロール方式で、保護フィルム付き封止部材10を脱水する。図2に示したように、準備工程S20は、巻出し工程S21と、脱水工程S22と、巻取り工程S23とを有する。
 図4は、保護フィルム付き封止部材の準備工程S20を説明する図面である。図4では、保護フィルム付き封止部材10を模式的に太い実線で示している。準備工程S20では、搬送ロールRで保護フィルム付き封止部材10をその長手方向に搬送しながら脱水を行う。本実施形態では、保護フィルム付き封止部材10を、保護フィルム30が搬送ロールRに接するように搬送するが、樹脂フィルム23が搬送ロールRに接してもよい。
 (巻出し工程)
 巻出し工程S21では、図4に示したように、巻出し室51内に配置された巻出し部61にロール状の保護フィルム付き封止部材10をセットした後、保護フィルム付き封止部材10を巻き出す。巻き出された保護フィルム付き封止部材10は、搬送ロールRで加熱室52に搬送される。巻出し室51と加熱室52とは連結部54で連結されていてもよいし、直接連結されていてもよい。
 (脱水工程)
 脱水工程S22では、巻出し室51から搬送されてきた保護フィルム付き封止部材10を搬送ロールRで搬送しながら赤外線で加熱することで脱水(加熱脱水)する。具体的には、保護フィルム付き封止部材10の搬送経路上に配置された赤外線照射部56から保護フィルム付き封止部材10に赤外線を照射して保護フィルム付き封止部材10を加熱脱水する。
 赤外線照射部56は、加熱脱水に使用する赤外線を出力可能な構成を有していればよい。赤外線照射部56の例は赤外線ヒータである。赤外線照射部56は、例えば保護フィルム30側から保護フィルム付き封止部材10に赤外線を照射するように、保護フィルム付き封止部材10に対して配置され得る。
 保護フィルム付き封止部材10に照射する赤外線は、保護フィルム付き封止部材10を効率的に加熱脱水するために水の吸収波長を含む中赤外線(波長1.8μm~3.0μm)が好ましい。脱水工程S22時の加熱温度(保護フィルム付き封止部材10の表面温度)や加熱時間は、保護フィルム付き封止部材10で用いる部材に応じて、調整される。
 脱水工程S22では、加熱室52内を1000Pa以上の圧力下で保護フィルム付き封止部材10の加熱脱水を実施する。
 更に、脱水工程S22では、保護フィルム付き封止部材10の搬送方向において下流側(図4の構成では巻取り部62側)から上流側(図4の構成では巻出し部61側)に向けて雰囲気ガスG1を流す。これは、例えば、図4に示したように、加熱室52において、後述する巻取り室53側に雰囲気ガスG1の給気口52aを設け、巻出し室51側に雰囲気ガスG1の排気口52bを設けることで実現され得る。雰囲気ガスG1とは、脱水工程S22を実施する雰囲気(環境)を作るためのガスである。雰囲気ガスG1の例は、ドライエアー、窒素及びアルゴンを含む。
 (巻取り工程)
 巻取り工程S23では、加熱室52で加熱脱水された保護フィルム付き封止部材10を、加熱室52の後段に設けられた巻取り室53内の巻取り部62でロール状に巻き取る。巻取り室53内では、加熱室52から搬送されてきた保護フィルム付き封止部材10を搬送ロールRで巻取り部62に向けて搬送する。加熱室52と巻取り室53とは連結部55で連結されてもよいし、それらが直接連結されていてもよい。
 一実施形態において、保護フィルム付き封止部材10の周囲雰囲気の露点を-40℃以下に調整して、巻取り工程S23を実施する。保護フィルム付き封止部材10の周囲雰囲気は、露点-70℃以下であることが好ましい。例えば、保護フィルム付き封止部材10の搬送方向において、下流側(巻取り部62側)から上流側(搬送方向において巻取り部62と反対側)に露点-40℃以下(好ましくは露点-70℃以下)の雰囲気ガスG2を流しながら巻取り工程S23を実施すればよい。このような雰囲気ガスG2の流れは、例えば、巻取り室53において、巻取り部62側に雰囲気ガスG2の給気口53aを設け、加熱室52からの保護フィルム付き封止部材10の搬入口側に排気口53bを設けることで実現され得る。雰囲気ガスG2の例は、雰囲気ガスG1と同様である。雰囲気ガスG1,G2は同じガスであり得る。
 巻取り工程S23は、脱水工程S22よりも高い圧力条件下、すなわち1000Paを超える圧力下で実施されることが好ましい。
 巻取り工程S23の実施後、ロール状に巻き取られた保護フィルム付き封止部材10を、露点-40℃以下、好ましくは露点-70℃以下の雰囲気下で保管しながら、次の封止部材貼合工程S30の実施場所、具体的には、封止部材貼合工程S30を実施するための保護フィルム付き封止部材10の巻出し部が配置された巻出し室まで保護フィルム付き封止部材10を運搬する。例えば上記雰囲気が維持された密閉容器内に、ロール状の保護フィルム付き封止部材10を収容し、当該密閉容器を、封止部材貼合工程S30の実施場所まで運搬すればよい。したがって、有機ELデバイスの製造方法は、巻取り工程S23と、封止部材貼合工程S30との間に、露点-40℃以下、好ましくは露点-70℃以下の雰囲気下で保護フィルム付き封止部材10を保管しながら運搬する運搬工程(又は保管工程)を有し得る。
 [封止部材貼合工程]
 封止部材貼合工程S30では、脱水工程S22を経た保護フィルム付き封止部材10から保護フィルム30を剥離し、図5に示したように、接着層22を介して封止部材20をデバイス基材40に貼合することによって、有機ELデバイスを得る。封止部材貼合工程S30は、保護フィルム付き封止部材10及びデバイス基材40をそれぞれ長手方向に搬送しながらロールツーロール方式で実施され得る。
 具体的には、封止部材貼合工程S30用の保護フィルム付き封止部材10の巻出し室に配置された巻出し部に、加熱脱水されたロール状の保護フィルム付き封止部材10をセットする。巻出し室は、露点-40℃以下の雰囲気であることが好ましく、より好ましくは露点-70℃以下である。その後、保護フィルム付き封止部材10を巻き出して、長手方向に搬送しながら連続的に保護フィルム付き封止部材10から保護フィルム30を剥離する。
 次いで、保護フィルム付き封止部材10から保護フィルム30を剥離して得られた封止部材20を長手方向に搬送しながら、長手方向に搬送されているデバイス基材40に連続的に貼合する。具体的には、例えば、封止部材20の接着層22を、図5に示したように、デバイス基材40と対向させた状態で、封止部材20とデバイス基材40とをその厚さ方向に加圧及び加熱することによって、封止部材20をデバイス基材40に貼合する。
 長手方向に搬送されているデバイス基材40は、デバイス基材形成工程S10において陰極44を形成した後に引き続いて連続的に搬送されてきたデバイス基材40であってもよいし、陰極44を形成した後に一旦ロール状に巻き取られたデバイス基材40を、デバイス基材40用の巻出し部61にセットした後に、巻き出されたデバイス基材40であってもよい。
 封止部材貼合工程S30は、保護フィルム付き封止部材10の周囲雰囲気の露点が-40℃以下である条件下で実施されることが好ましい。
 図3及び図5では、デバイス基材40を簡略化して模式的に図示しているが、陽極42及び陰極44のそれぞれは、陽極42及び陰極44に電圧を印加可能なように、封止部材20から陽極42及び陰極44それぞれの一部が引き出され得るように構成され得る。或いは、陽極42及び陰極44それぞれに対応して設けられているとともに、一部が封止部材20の外側に配置される電極部を基板41上に形成しておき、陽極42及び陰極44を、対応する電極部と電気的に接続するように形成しておいてもよい。
 封止部材貼合工程S30を経ることで、デバイス形成領域毎に有機ELデバイスが形成されている。よって、有機ELデバイスの製造方法は、封止部材貼合工程S30を経た基板41をデバイス形成領域毎に個片化する個片化工程を備えてもよい。個片化工程で、基板41がデバイス形成領域毎に分割されることで、製品サイズの有機ELデバイスが得られる。
 上記有機ELデバイスの製造方法では、脱水工程S22を有することから、封止部材20の水分を除去して、デバイス基材40に封止部材20を貼合できる。そのため、良好な封止性能を実現可能であり、有機ELデバイス内の有機層の水分による劣化を抑制できる。
 脱水工程S22では、赤外線を利用して保護フィルム付き封止部材10内の水分を直接加熱することから、加熱脱水を効率的に実施できる。更に、赤外線を利用することで、保護フィルム付き封止部材10を搬送しながら脱水工程S22を実施し易い。よって、脱水工程S22に要する時間を短縮でき、結果として、有機ELデバイスの生産性の向上を図れる。
 ところで、脱水工程S22では、保護フィルム付き封止部材10を加熱脱水していることから、加熱室52内には保護フィルム付き封止部材10から水分が放出される。本発明者らは、この放出された水分によって加熱室52内の露点が当初想定した露点より悪化し、所望の含水率まで保護フィルム付き封止部材10を脱水できないおそれがあることを見出した。
 具体的な数値を挙げて上記露点の悪化を説明する。保護フィルム付き封止部材10において封止基材21が水分を含まないと仮定する。この場合、保護フィルム付き封止部材10のうち水分含有部の体積は、保護フィルム30、接着層22及び樹脂フィルム23それぞれの体積の合計に相当する。保護フィルム30の厚さを12μmとし、接着層22の厚さを30μmとし、樹脂フィルム23の厚さを38μmとした場合、上記水分含有部の厚さは80μmである。よって、保護フィルム付き封止部材10の長さを25mとし、幅を600mmとすると、水分含有部の体積は、1.2.×10-3(=25m×80μm×600mm)である。そして、上記水分含有部における含水率を0.3質量%とした場合、保護フィルム付き封止部材10が加熱脱水された場合の最大放出水分量は、3.6g(=0.3質量%×(1.2×10-3)m×1000kg/m)である。上記最大放出水分量を含む保護フィルム付き封止部材を、初期露点が-70℃(蒸気密度0.0028g/m)に設定された、6mの容積を有する加熱室52内で加熱脱水したと仮定した場合、露点は少なくとも-24℃(蒸気密度:0.6g/m)まで悪化する。
 したがって、保護フィルム付き封止部材10を加熱室52で搬送しながら加熱脱水する場合、例えば、搬送方向において下流側では、露点が悪化している。この場合、加熱室52の下流側において保護フィルム付き封止部材10から水分が放出されにくくなり、結果として、所望の含水率まで脱水が実現できないおそれがある。
 これに対して、本実施形態の有機ELデバイスの製造方法の脱水工程S22では、保護フィルム付き封止部材10の搬送方向において、露点-40℃以下の雰囲気ガスG1を下流側から導入し、上流側に向けて流している。保護フィルム付き封止部材10を搬送しながら脱水すれば、保護フィルム付き封止部材10が搬送されるにつれて水分が放出され、下流側の保護フィルム付き封止部材10ほど含水率が低い。そのため、下流側から露点-40℃以下の雰囲気ガスG1を導入すれば、含水率が低い保護フィルム付き封止部材10の周囲には、放出水分の影響を受けていない雰囲気ガスG1が流れる。更に、保護フィルム付き封止部材10から放出された水分は、雰囲気ガスG1の流れに応じて上流側に流れ排出される。その結果、保護フィルム付き封止部材10から放出された水分の影響を低減しながら、保護フィルム付き封止部材10を脱水できるので、脱水工程S22で、効率よく所望の含水率の保護フィルム付き封止部材10が得られる。
 露点-40℃以下の雰囲気ガスG1を下流側から導入し、上流側に向けて流すことで、保護フィルム付き封止部材の周囲雰囲気の露点の変動を抑え、一定の露点を保つことができる。
 上記有機ELデバイスの製造方法の一実施形態では、脱水工程S22開始から封止部材貼合工程S30終了までの間、保護フィルム付き封止部材10の周囲雰囲気が露点-40℃以下に調整されている。これにより、脱水工程S22で脱水された保護フィルム付き封止部材10の含水率の悪化を防止でき、脱水工程S22で脱水された含有率である封止部材20をデバイス基材40に貼合できる。その結果、有機ELデバイスにおいて、例えば封止部材20から有機層への水分の浸入が抑制され、良好な封止性能が実現され得る。
 巻取り工程S23において保護フィルム付き封止部材10の周囲雰囲気を、例えば露点が-40℃以下(好ましくは露点-70℃以下)に調整しておけば、巻取り工程S23において保護フィルム付き封止部材10の含水率の悪化を防止できる。巻取り工程S23でも、保護フィルム付き封止部材10の搬送方向において、下流側から上流側に向けて露点-40℃以下(好ましくは、露点-70℃以下)の雰囲気ガスG2を流せば、脱水されロール状に巻かれた保護フィルム付き封止部材10の含水率を所望の含水率に維持しやすい。
 本実施形態の有機ELデバイスの製造方法では、保護フィルム付き封止部材10を加熱脱水している。この場合、保護フィルム30が接着層22上に積層されていることから、保護フィルム付き封止部材10の加熱により放出される水分に起因して気泡が生じるおそれがある。気泡が生じると、その気泡によって、例えば、封止基材21の変形、保護フィルム30の剥離などの保護フィルム付き封止部材10の変形が生じ易い。
 これに対して、本実施形態では、1000Pa以上の圧力下で脱水工程S22を実施している。このような圧力下では、水分は上記気泡を形成せずに放出される。よって、上記有機ELデバイスの製造方法は、脱水工程S22において、気泡による封止基材21の変形、保護フィルム30の接着層22からの剥離などの保護フィルム付き封止部材10の変形を防止できる。脱水工程S22での封止基材21の変形が抑制されるので、封止部材20をデバイス基材40に貼合した際に、有機EL部43が確実に封止され、良好な封止性能を実現できる。脱水工程S22での保護フィルム30の接着層22からの剥離を防止できるので、接着層22が搬送ロールRに付着することない。そのため、保護フィルム付き封止部材10の搬送を止める必要もなく、有機ELデバイスの生産性の向上を図れる。脱水工程S22での加熱室52内の圧力の上限は、保護フィルム付き封止部材10から水分の放出が可能な圧力であればよい。例えば、加熱室52内の圧力の上限は、保護フィルム付き封止部材10の表面温度における飽和水蒸気圧未満である。
 次に、実験例1,実験例2、実験例3、実験例4及び比較実験例1を説明する。重複する説明を省略するために、実験例及び比較実験例ともに、これまでの説明の構成要素に対応する構成要素には同様の符号を付す。
 [実験例1]
 実施例1では、10cm角に切り出した保護フィルム付き封止部材10を準備した。保護フィルム付き封止部材10は、封止基材21と、接着層22と、保護フィルム30とを備えていた。具体的には、封止基材21上に接着層22が積層され、その接着層22上に更に保護フィルム30が積層されていた。
 封止基材21は、35μm厚の銅箔(福田金属箔粉工業株式会社製 CF-T8G-STD-35)であった。接着層22は30μm厚であった。保護フィルム30には、パナック株式会社製PET25TP01を使用し、保護フィルム30の厚さは25μmであった。
 準備した上記保護フィルム付き封止部材10に、加熱炉(加熱室)内において、大気圧下で赤外線照射し、160℃の温度で上記保護フィルム付き封止部材10を加熱脱水した。その結果、加熱脱水時に、保護フィルム30と接着層22との間に気泡の発生は見られなかった。
 [実験例2]
 実験例2では、実験例1と同じ保護フィルム付き封止部材10を準備した。この保護フィルム付き封止部材10を、加熱炉(加熱室)内の圧力を1000Paに減圧した点以外は、実験例1と同じ条件で、加熱脱水した。その結果、加熱脱水時に、保護フィルム30と接着層22との間に気泡の発生は見られなかった。
 [比較実験例1]
 比較実験例1では、実験例1と同じ保護フィルム付き封止部材10を準備した。この保護フィルム付き封止部材10を、加熱炉(加熱室)内を1×10―5Paに減圧した点以外は、実験例1と同じ条件で、加熱脱水した。その結果、加熱脱水時に、保護フィルム30と接着層22との間に気泡が発生した。
 上記実験例1、実験例2及び比較実験例1における保護フィルム付き封止部材10の加熱脱水(脱水工程)の実験結果より、1000Pa以上の圧力下で、保護フィルム付き封止部材10を加熱脱水することで、気泡発生を抑制できた。
 [実験例3]
 実施例3では、実験例1と同じ保護フィルム付き封止部材10を、実験例1と同じ条件で加熱脱水した。その結果、実験例1と同様に、加熱脱水時に、保護フィルム30と接着層22との間に気泡の発生は見られなかった。
 実験例3では、上記のように加熱脱水した保護フィルム付き封止部材10を露点-70℃の雰囲気下で1時間静置して保管した。その後、保護フィルム30を剥離して得られる封止部材20(封止基材21と接着層22の積層体)をデバイス基材40に貼合し、発光試験を行った。その結果、ダークスポット(非発光部)が少なく、良好な封止性能が得られた。実験例1で使用したデバイス基材40が有する有機EL部43の構成は、上記構成例(g)であった。
 [実験例4]
 実験例4では、実験例1と同じ保護フィルム付き封止部材10を準備した。この保護フィルム付き封止部材10を、実験例2と同じ条件で、加熱脱水した。その結果、実験例2と同様に、加熱脱水時に、保護フィルム30と接着層22との間に気泡の発生は見られなかった。
 実験例4でも、上記のように加熱脱水した保護フィルム付き封止部材10を露点-70℃の雰囲気下で1時間静置して保管した。その後、保護フィルム30を剥離して得られる実験例1と同じ封止部材20をデバイス基材40に貼合し、発光試験を行った。その結果、ダークスポット(非発光部)が少なく、良好な封止性能が得られた。デバイス基材40の構成は、実験例1と同様であった。
 以上、本発明の種々の実施形態を説明した。しかしながら、本発明は、例示した種々の実施形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 保護フィルム付き封止部材が帯状である場合を例にして説明したが、保護フィルム付き封止部材は、枚葉状であってもよい。同様に、デバイス基材(又はデバイス基材が有する基板)も枚葉状であってもよい。
 図4に示したように、脱水工程を実施する加熱室及び巻取り工程を実施する巻取り室のそれぞれに給気口及び排気口が設けられていなくてもよい。例えば、加熱工程及び巻取り工程を一つの処理室で実施する場合、その処理室における巻取り側に給気口を設け、処理室における巻出し側に排気口を設けてあればよい。上記処理室で、巻出し工程も実施してもよい。
 巻出し工程及び巻取り工程を含む保護フィルム付き封止部材の準備工程を説明した。しかしながら、保護フィルム付き封止部材の準備工程は、巻出し工程及び巻取り工程の少なくとも一方を備えなくてもよい。
 本実施形態の脱水工程S22では、保護フィルム付き封止部材を赤外線で加熱脱水する場合について説明したが、保護フィルム付き封止部材を脱水する方法は、赤外線を用いる方法に限定されない。例えば、保護フィルム付き封止部材に熱風を当てて脱水する方法を実施してもよい。
 脱水工程の後、加熱脱水された保護フィルム付き封止部材を巻取り室で一旦巻き取る形態を説明した。しかしながら、脱水工程の後、脱水された保護フィルム付き封止部材をそのまま連続搬送しながら、続けて封止部材貼合工程を実施してもよい。この場合、脱水工程から保護フィルム付き封止部材までの保護フィルム付き封止部材の搬送経路を露点が-40℃の雰囲気にしておけばよい。
 有機ELデバイスの製造方法で製造される有機ELデバイスは、基板側から光を発する形態に限定されず、基板と反対側から光を発する有機ELデバイスにも適用可能である。デバイス基材の第1電極及び第2電極が陽極及び陰極である形態を説明したが、第1電極が陰極で、第2電極が陽極であってもよい。本発明は、有機ELデバイス以外の有機電子デバイス、例えば、有機太陽電池、有機フォトディテクタ、有機トランジスタなどにも適用可能である。
 10…保護フィルム付き封止部材、20…封止部材、21…封止基材、22…接着層、23…樹脂フィルム、30…保護フィルム、40…デバイス基材、41…基板、42…陽極(第1電極)、43…有機EL部(デバイス機能部)、44…陰極(第2電極)、52…加熱室、53…巻取り室、56…赤外線照射部、G1,G2…雰囲気ガス。

Claims (4)

  1.  基板上に第1電極と、有機層を含むデバイス機能部と、第2電極とが順に設けられたデバイス基材を形成するデバイス基材形成工程と、
     封止基材に接着層が積層された封止部材に前記接着層を介して保護フィルムが積層された保護フィルム付き封止部材を搬送しながら、1000Pa以上の圧力下で前記保護フィルム付き封止部材を脱水する脱水工程と、
     前記脱水工程を経た前記保護フィルム付き封止部材から前記保護フィルムを剥離して、前記接着層を介して前記封止部材を前記デバイス基材に貼合する封止部材貼合工程と、
    を備え、
     前記脱水工程では、前記保護フィルム付き封止部材の搬送方向において下流側から上流側に、露点-40℃以下の雰囲気ガスを流す、
    有機電子デバイスの製造方法。
  2.  前記脱水工程開始から前記封止部材貼合工程終了までの間における前記脱水工程を経た前記保護フィルム付き封止部材の周囲雰囲気の露点が-40℃以下である、
    請求項1に記載の有機電子デバイスの製造方法。
  3.  前記脱水工程の後に、巻取り部に向けて前記保護フィルム付き封止部材を搬送し、前記巻取り部で、前記保護フィルム付き封止部材を巻き取る巻取り工程を備え、前記巻取り工程では、前記保護フィルム付き封止部材の搬送方向において下流側から上流側に向けて露点-40℃以下の雰囲気ガスを流す、
    請求項1又は2に記載の有機電子デバイスの製造方法。
  4.  前記脱水工程では、前記保護フィルム付き封止部材を加熱室内で脱水し、
     前記巻取り工程では、前記加熱室の後段に設けられており露点-40℃以下の雰囲気の巻取り室内で、前記保護フィルム付き封止部材を巻き取る、
    請求項3に記載の有機電子デバイスの製造方法。
PCT/JP2018/016642 2017-05-17 2018-04-24 有機電子デバイスの製造方法 WO2018211924A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/613,722 US10964920B2 (en) 2017-05-17 2018-04-24 Method for producing organic electronic device
JP2018557067A JP6488062B1 (ja) 2017-05-17 2018-04-24 有機電子デバイスの製造方法
CN201880032049.1A CN110637505A (zh) 2017-05-17 2018-04-24 有机电子器件的制造方法
EP18801639.8A EP3627972A4 (en) 2017-05-17 2018-04-24 METHOD OF MANUFACTURING AN ORGANIC ELECTRONIC DEVICE
KR1020197033786A KR20200006545A (ko) 2017-05-17 2018-04-24 유기 전자 디바이스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-098301 2017-05-17
JP2017098301 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018211924A1 true WO2018211924A1 (ja) 2018-11-22

Family

ID=64273648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016642 WO2018211924A1 (ja) 2017-05-17 2018-04-24 有機電子デバイスの製造方法

Country Status (6)

Country Link
US (1) US10964920B2 (ja)
EP (1) EP3627972A4 (ja)
JP (1) JP6488062B1 (ja)
KR (1) KR20200006545A (ja)
CN (1) CN110637505A (ja)
WO (1) WO2018211924A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575115B2 (en) * 2019-07-15 2023-02-07 GM Global Technology Operations LLC Method and apparatus for pyrolyzing an electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246625A (ja) * 1985-08-26 1987-02-28 Fuji Photo Film Co Ltd セルロ−ストリアセテ−トフイルムの乾燥方法
JP2003113317A (ja) * 2001-10-04 2003-04-18 Konica Corp 光学フィルム及びそれを用いた偏光板と表示装置と紫外線吸収性ポリマー
JP2015125875A (ja) * 2013-12-26 2015-07-06 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルの製造方法
WO2015198991A1 (ja) * 2014-06-27 2015-12-30 富士フイルム株式会社 電子デバイスの製造方法および複合フィルム
WO2016152756A1 (ja) 2015-03-20 2016-09-29 味の素株式会社 封止体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545301B2 (ja) * 2009-10-28 2014-07-09 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルの製造方法、有機エレクトロルミネッセンスパネル
JP5578180B2 (ja) * 2009-11-11 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルの製造方法とこれを用いて製造された有機エレクトロルミネッセンスパネル
EP2563096A4 (en) 2010-04-21 2015-04-22 Konica Minolta Holdings Inc METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT PANEL AND ORGANIC ELECTROLUMINESCENCE PANEL MADE USING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6246625A (ja) * 1985-08-26 1987-02-28 Fuji Photo Film Co Ltd セルロ−ストリアセテ−トフイルムの乾燥方法
JP2003113317A (ja) * 2001-10-04 2003-04-18 Konica Corp 光学フィルム及びそれを用いた偏光板と表示装置と紫外線吸収性ポリマー
JP2015125875A (ja) * 2013-12-26 2015-07-06 コニカミノルタ株式会社 有機エレクトロルミネッセンスパネルの製造方法
WO2015198991A1 (ja) * 2014-06-27 2015-12-30 富士フイルム株式会社 電子デバイスの製造方法および複合フィルム
WO2016152756A1 (ja) 2015-03-20 2016-09-29 味の素株式会社 封止体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627972A4

Also Published As

Publication number Publication date
CN110637505A (zh) 2019-12-31
EP3627972A4 (en) 2021-01-27
JP6488062B1 (ja) 2019-03-20
KR20200006545A (ko) 2020-01-20
EP3627972A1 (en) 2020-03-25
JPWO2018211924A1 (ja) 2019-06-27
US20200075902A1 (en) 2020-03-05
US10964920B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2017057241A1 (ja) 有機el素子及び有機el素子の製造方法
JP6461271B1 (ja) 有機電子デバイスの製造方法
JP6488062B1 (ja) 有機電子デバイスの製造方法
JP6501856B1 (ja) 有機電子デバイスの製造方法
JP2017212127A (ja) 有機デバイスの製造方法
WO2019107505A1 (ja) 電子デバイスの製造方法
WO2017130955A1 (ja) 有機el素子
JP6129938B1 (ja) 有機デバイスの製造方法及び有機デバイス用基板
US10403858B2 (en) Method for manufacturing organic electronic device and method for manufacturing sealing member
WO2017154575A1 (ja) 有機デバイスの製造方法
JP2017212143A (ja) 有機電子デバイスの製造方法
JP6723149B2 (ja) 保護フィルム付き封止部材、保護フィルム付き封止部材の製造方法及び有機電子デバイスの製造方法
JP6781568B2 (ja) 有機電子デバイスの製造方法
JP2022050218A (ja) 有機電子デバイスの製造方法
WO2018230602A1 (ja) 有機電子デバイスの製造方法
WO2017119322A1 (ja) 有機デバイスの製造方法およびロール
JP2019003943A (ja) 有機電子デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018557067

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033786

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018801639

Country of ref document: EP

Effective date: 20191217