WO2018211597A1 - アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ - Google Patents

アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ Download PDF

Info

Publication number
WO2018211597A1
WO2018211597A1 PCT/JP2017/018398 JP2017018398W WO2018211597A1 WO 2018211597 A1 WO2018211597 A1 WO 2018211597A1 JP 2017018398 W JP2017018398 W JP 2017018398W WO 2018211597 A1 WO2018211597 A1 WO 2018211597A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna element
antennas
dipole
frequency band
Prior art date
Application number
PCT/JP2017/018398
Other languages
English (en)
French (fr)
Inventor
琳 王
智之 曽我
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to CN201780090797.0A priority Critical patent/CN110622352B/zh
Priority to PCT/JP2017/018398 priority patent/WO2018211597A1/ja
Priority to US16/613,798 priority patent/US11336031B2/en
Priority to JP2019518641A priority patent/JP6771790B2/ja
Publication of WO2018211597A1 publication Critical patent/WO2018211597A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention relates to an antenna, an array antenna, a sector antenna, and a dipole antenna.
  • a base station antenna for mobile communication As a base station antenna for mobile communication, a plurality of sector antennas that radiate radio waves for each sector (area) set corresponding to the direction in which radio waves are radiated are used in combination.
  • the sector antenna an array antenna in which radiating elements (antenna elements) such as a dipole antenna are arranged in an array is used.
  • Patent Document 1 describes a broadband polarization antenna including a reflector provided with 2 or 4 slits for improving the separation characteristic by 2 dB to 6 dB, and a separation member for improving the separation characteristic in the antenna array. Yes.
  • An object of the present invention is to provide a polarization sharing antenna or the like in which the amount of polarization coupling between antenna elements that transmit and receive mutually different polarized waves is reduced.
  • an antenna to which the present invention is applied includes a reflecting member having a flat surface, and a first antenna element that is provided on the flat surface of the reflecting member and transmits / receives a first polarized wave.
  • the first antenna element is provided close to one end of the first antenna element, and is provided close to the planar portion of the reflecting member, and transmits and receives a second polarized radio wave different from the first polarized wave.
  • Conductive conductor provided near one end of the first antenna element and one end of the second antenna element in the vicinity of the intersection of the two antenna elements and the first antenna element and the second antenna element. A sex member.
  • the third antenna element is provided for the planar portion of the reflecting member and transmits / receives the first polarized wave
  • the third antenna is provided for the planar portion of the reflecting member.
  • the first antenna element is provided close to one end of the element, and a fourth antenna element that transmits and receives a radio wave of the second polarization, and the vicinity of an intersection that extends the third antenna element and the fourth antenna element, respectively.
  • another conductive member provided in the vicinity of one end of the third antenna element and one end of the fourth antenna element, and the other end of the fourth antenna element is The other end of the third antenna element is provided close to the other end of the second antenna element, and the other end of the third antenna element is provided close to the other end of the second antenna element.
  • Each of the conductive member and the other conductive member is a rod-like or plate-like member that stands up from the flat portion of the reflecting member, and is connected to the reflecting member in a direct current at one place. It can be. By doing so, the generation of intermodulation distortion and white noise is suppressed.
  • the third antenna is provided with respect to the planar portion of the reflecting member, and has one end close to one end of the first antenna element, and transmits and receives the first polarized radio wave.
  • a fourth antenna element that is provided with respect to the antenna element and the planar portion of the reflecting member and that is provided with one end close to one end of the first antenna element and transmits / receives a second polarized radio wave
  • a conductive member in the vicinity of the intersection of the third antenna element and the fourth antenna element, in proximity to one end of the third antenna element and one end of the fourth antenna element. It can be characterized by being provided. By doing so, the symmetry of the directivity in the horizontal direction and the vertical direction is improved.
  • the conductive member is a rod-like or plate-like member that stands up from the flat portion of the reflecting member, and can be characterized in that it is connected to the reflecting member in a direct current at one place. By doing so, the generation of intermodulation distortion and white noise is suppressed.
  • the array antenna to which the present invention is applied includes a reflecting member having a plane portion, a first antenna element that transmits and receives a first polarized wave in the first frequency band, and A second antenna that has one end adjacent to one end of the first antenna element and transmits and receives radio waves of a second polarization of a first frequency band different from the first polarization of the first frequency band;
  • a fourth antenna element that transmits and receives radio waves of the second polarization in the frequency band, and an end portion of the first antenna element in the vicinity of an intersection that extends the first antenna element and the second antenna element, and First conductive member provided in the vicinity of one end of the second antenna element Second conductive element provided near one end of the third antenna element and one end of the fourth antenna element in the vicinity of the intersection where each of the third antenna element and the fourth antenna element is extended.
  • the other end of the first antenna element and the other end of the fourth antenna element are provided close to each other, and the other end of the second antenna element and the third antenna.
  • a plurality of first antennas provided close to the other end of the element and arranged with respect to the planar portion of the reflecting member, and on the planar portion of the reflecting member along the array of the plurality of first antennas And a plurality of second antennas each arranged to transmit and receive radio waves in a second frequency band higher than the first frequency band.
  • the plurality of second antennas may be arranged so as to overlap the plurality of first antennas with respect to the planar portion of the reflecting member.
  • the interval between the arrangements of the plurality of first antennas may be three times the interval between the arrangements of the plurality of second antennas.
  • the two second antennas are arranged in a region surrounded by the first antenna element, the second antenna element, the third antenna element, and the fourth antenna element in the first antenna. Can be a feature. By doing so, the antennas can be arranged efficiently.
  • the array antenna to which the present invention is applied includes a reflecting member having a plane portion, and a first antenna element that transmits and receives a first polarized wave in the first frequency band.
  • a second antenna element having one end adjacent to one end of the first antenna element and transmitting / receiving a second polarized radio wave in a first frequency band different from the first polarization;
  • a third antenna element having one end adjacent to one end of the first antenna element and transmitting / receiving a first polarized radio wave in the first frequency band; and one end at one end of the first antenna element;
  • a plurality of first antennas arranged with respect to the part, and a second frequency band higher than the first frequency band, arranged along the arrangement of the plurality of first antennas with respect to the planar part of the reflecting member And a plurality of second antennas that respectively transmit and receive the radio waves.
  • radio waves transmitted and received by the plurality of first antennas are polarized in the + 45 ° direction and in the ⁇ 45 ° direction with respect to the arrangement of the plurality of first antennas. can do. By doing so, the amount of coupling between polarizations can be further suppressed.
  • the sector antenna to which the present invention is applied has a first antenna element that transmits and receives a first polarized radio wave, and one end of the first antenna element.
  • a second antenna element that is provided close to and transmits / receives a radio wave of a second polarization different from the first polarization, and an intersection that extends the first antenna element and the second antenna element.
  • a plurality of antennas each including one end of one antenna element and a conductive member provided in proximity to one end of the second antenna element are arranged with respect to the planar portion of the reflecting member including the planar portion
  • the dipole antenna to which the present invention is applied extends toward the flat part of the reflecting member to be attached to the two radiating parts, and supports the two radiating parts, and the reflecting member.
  • Each of the two radiating portions includes a first portion parallel to the planar portion of the reflecting member and a planar portion as the distance from the supporting portion increases. It can be characterized by having a second portion whose distance changes and a third portion that bends and extends from the tip portion of the second portion. By doing in this way, the length of a dipole antenna can be shortened.
  • Such a dipole antenna includes a spacer made of a dielectric material inserted between the base part and the flat part of the reflecting member, and the spacer has a base part holding member for holding the base part.
  • the spacer may be formed of a dielectric inserted between the base portion and the flat portion of the reflecting member, and the spacer may be characterized by a spacer holding member for being held by the reflecting member. By doing in this way, the efficiency of the operation
  • a polarization sharing antenna or the like that reduces the amount of polarization coupling between antenna elements that transmit and receive mutually different polarized waves.
  • FIG. 1 It is a figure which shows an example of the whole structure of the base station antenna of the mobile communication with which 1st Embodiment is applied.
  • (A) is a perspective view of a base station antenna
  • (b) is a figure explaining the installation example of a base station antenna.
  • (A) is a front view of the array antenna (a view on the xy plane), and (b) is a cross-sectional view of the array antenna along the IIB-IIB line of (a) (a view on the xz plane). is there. It is detail drawing of the dipole antenna in an antenna.
  • (A) is a front view
  • (b) is a top view of (a)
  • (c) is a back front view
  • (d) is a side view of (a).
  • (A) is a top view
  • (b) is a front view
  • (c) is a side view
  • (d) is a figure which shows an example of the part which attaches the spacer in the plane part of a reflecting plate. It is a figure explaining an electroconductive member.
  • (A-1) is a top view in the case of a cylinder
  • (a-2) is a front view in the case of a cylinder
  • (a-3) is a bottom view in the case of a cylinder
  • (b-1) is a deformation.
  • a top view in the case of a plate shape is a front view in the case of a plate shape
  • (b-3) is a bottom view in the case of a plate shape.
  • This is a measured value of the amount of coupling between polarized waves in a low frequency band.
  • (A) is a case where the electroconductive member of 1st Embodiment is provided
  • (b) is a case where 1st Embodiment is not employ
  • (A) is a case where the electroconductive member of 1st Embodiment is provided, (b) is a case where 1st Embodiment is not employ
  • (A) is a front view of the array antenna (a view on the xy plane), and
  • (b) is a cross-sectional view of the array antenna along the line VIIIB-VIIIB of (a) (a view on the xz plane). is there.
  • (A) is a front view of the array antenna (a view in the xy plane), and (b) is a cross-sectional view of the array antenna along the IXB-IXB line in (a) (a view in the xz plane). is there.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a base station antenna 1 for mobile communication to which the first embodiment is applied.
  • FIG. 1A is a perspective view of the base station antenna 1
  • FIG. 1B is a diagram illustrating an installation example of the base station antenna 1.
  • the base station antenna 1 includes, for example, a plurality of sector antennas 10-1 to 10-3 held by a steel tower 20 (indicated as sector antennas 10 if not distinguished).
  • Each of the sector antennas 10-1 to 10-3 includes an array antenna 11.
  • the array antenna 11 is covered with a radome 12 that is a cover for protecting against wind and rain. That is, the outside of the sector antennas 10-1 to 10-3 is a radome 12, and the array antenna 11 is housed inside the radome 12.
  • the radome 12 has a cylindrical shape, but may have another shape.
  • the base station antenna 1 transmits and receives radio waves in the cell 2 shown in FIG.
  • the sector antenna 10 is a frequency sharing and polarization sharing antenna that transmits and receives orthogonally polarized radio waves in each of two different frequency bands, as will be described later.
  • two different frequency bands are referred to as a high frequency band and a low frequency band.
  • the frequency designed in the high frequency band is frequency f 0H (wavelength ⁇ 0H )
  • the frequency designed in the low frequency band is frequency f 0L (wavelength ⁇ 0L ).
  • the wavelengths ⁇ 0H and ⁇ 0L are free space wavelengths.
  • the high frequency band is a 2 GHz band
  • the low frequency band is an 800 MHz band.
  • the low frequency band is an example of the first frequency band
  • the high frequency band is an example of the second frequency band.
  • xyz coordinates are set for the sector antenna 10-1. That is, the vertical direction is set to the y direction. Then, as shown in FIG. 2 to be described later, taking the sector antenna 10-1 as an example, the x direction is provided along the plane part 310 of the reflector 300 in the array antenna 11, and z is perpendicular to the plane part 310 of the reflector 300. Set the direction.
  • the x direction is the horizontal direction
  • the y direction is the vertical direction
  • the yz plane is the vertical plane
  • the xz plane is the horizontal plane.
  • the base station antenna 1 transmits and receives radio waves in the cell 2 as shown in FIG.
  • Cell 2 is divided into a plurality of sectors 3-1 to 3-3 (indicated as sector 3 if not distinguished) corresponding to sector antennas 10-1 to 10-3.
  • the sector antennas 10-1 to 10-3 are set so that the direction of the main lobe 13 of radio waves transmitted and received by the respective array antennas 11 is directed to the corresponding sectors 3-1 to 3-3.
  • the base station antenna 1 includes three sector antennas 10-1 to 10-3 and sectors 3-1 to 3-3 corresponding thereto.
  • the number of sector antennas 10 and sectors 3 may be a predetermined number other than three.
  • the sector 3 is configured by dividing the cell 2 into three equal parts (center angle 120 °). However, the sector 3 may not be equally divided, and any one sector 3 may be the other. The sector 3 may be wider or narrower than the sector 3.
  • Each sector antenna 10 is connected to transmission / reception cables 14-1 to 14-4 for transmitting transmission signals and reception signals to the array antenna 11.
  • the transmission / reception cables 14-1 and 14-2 transmit radio wave transmission signals and reception signals of orthogonally polarized waves in a high frequency band.
  • the transmission / reception cables 14-3 and 14-4 transmit a transmission signal and a reception signal of radio waves with mutually orthogonal polarized waves in a low frequency band.
  • the transmission / reception cables 14-1 to 14-4 are connected to a transmission / reception unit (not shown) provided in a base station (not shown) for generating a transmission signal and receiving a reception signal.
  • the transmission / reception cables 14-1 to 14-4 are, for example, coaxial cables. Note that the base station antenna 1, the sector antenna 10, the array antenna 11, and the like can transmit and receive radio waves due to the reversibility of the antenna.
  • the sector antenna 10 is a distribution / combination circuit that distributes / combines transmission / reception signals to / from a plurality of antennas (antennas 100-1 to 100-7, 200-1, 200-2 in FIG. 2 described later) included in the array antenna 11.
  • a phase shifter that varies the phase of the transmission / reception signal between the plurality of antennas may be provided. By changing the phase of the transmission / reception signal between the antennas, the radiation angle of the radio wave (beam) can be tilted (tilted) toward the ground.
  • FIG. 2 is a diagram illustrating an example of the configuration of the array antenna 11 according to the first embodiment.
  • 2A is a front view of the array antenna 11 (a view in the xy plane)
  • FIG. 2B is a cross-sectional view of the array antenna 11 along the line IIB-IIB in FIG. -Z-plane view).
  • the array antenna 11 will be described by taking the sector antenna 10-1 shown in FIG. 1A as an example.
  • the array antenna 11 includes antennas 100-1 to 100-7 that transmit and receive radio waves of orthogonal polarizations in a high frequency band (indicated as antenna 100 if not distinguished), and orthogonal polarizations in a low frequency band.
  • Antennas 200-1 and 200-2 for transmitting and receiving radio waves are provided.
  • the array antenna 11 includes a reflector 300 in which antennas 100-1 to 100-7, 200-1, and 200-2 are arranged on one surface side, and the antenna 100-1 to 100-7 in the y direction. And partition plates 400-1 to 400-8 provided at both ends (in the case of not being distinguished, they are referred to as partition plates 400).
  • the reflection plate 300 is an example of a reflection member.
  • the antennas 100-1 to 100-7 are arranged in the y direction at the center of the reflecting plate 300 in the x direction.
  • the antennas 200-1 and 200-2 are also arranged in the y direction at the center of the reflecting plate 300 in the x direction.
  • the array antenna 11 is for both polarization sharing and frequency sharing.
  • the amount of coupling between polarizations (the amount of coupling between polarizations) is required to be kept low over a wide band.
  • the amount of coupling between polarizations refers to the S parameter S21 between antenna elements (dipole antennas 110a and 110b or dipole antennas 210a, 210b, 210c, and 210d described later) that transmit and receive different polarizations.
  • an antenna (antennas 100-1 to 100-7 in FIG. 1) that transmits and receives radio waves in a high frequency band and an antenna (antenna 200-1 in FIG. 1) that transmits and receives radio waves in a low frequency band. 200-2) is less flexible.
  • a grating lobe may occur in the directivity in the vertical plane (yz plane) of the antenna that transmits and receives radio waves in the high frequency band, or the horizontal plane ( the symmetry of the directivity in the xz plane) may be impaired. That is, the directivity is deteriorated depending on the antenna arrangement. Therefore, it is required that the antenna that transmits / receives radio waves in the high frequency band and the antenna that transmits / receives radio waves in the low frequency band be arranged so as to suppress deterioration of directivity.
  • the base station antenna 1 for mobile communication is required to suppress the occurrence of intermodulation distortion and white noise.
  • the antenna 100 has a cross dipole structure in which two dipole antennas 110a and 110b are arranged so as to cross each other as shown in the antenna 100-1.
  • the dipole antenna 110a transmits / receives a polarized wave inclined by + 45 °
  • the dipole antenna 110b transmits / receives a polarized wave inclined by ⁇ 45 °.
  • a symbol at the center of the dipole antenna 110 indicates a feeding point.
  • the dipole antenna 110 is an example of an antenna element.
  • the antenna 100 are arranged at intervals p H in the y direction.
  • a polarized wave inclined by + 45 ° is an example of the first polarized wave
  • a polarized wave inclined by ⁇ 45 ° is an example of the second polarized wave.
  • the antenna 200 includes four dipole antennas 210a, 210b, 210c, and 210d and two conductive members 220a and 220b.
  • the dipole antennas 210a to 210d have the same structure. Therefore, when they are not distinguished from each other, they are represented as a dipole antenna 210.
  • a symbol at the center of the dipole antenna 210 indicates a feeding point.
  • the dipole antenna 210 is an example of an antenna element.
  • the conductive members 220a and 220b have the same structure. Therefore, when not distinguishing each, it describes with the electroconductive member 220.
  • Dipole antennas 210a and 210b are arranged so that their one ends are close to each other. One end of each of the dipole antennas 210a and 210b is located in the vicinity of an intersection extending the dipole antennas 210a and 210b (intersection of two virtual extension lines provided so as to include the two dipole antennas 210a and 210b, respectively).
  • the electroconductive member 220a provided in the vicinity of the part is provided.
  • the dipole antennas 210c and 210d are arranged so that their one ends are close to each other.
  • One end of each of the dipole antennas 210c and 210d is located in the vicinity of an intersection extending from the dipole antennas 210c and 210d (intersection of two virtual extension lines provided so as to include the two dipole antennas 210c and 210d, respectively).
  • the electroconductive member 220b provided close to the part is provided.
  • the other end of the dipole antenna 210a and the other end of the dipole antenna 210d are arranged close to each other. Note that the other end of the dipole antenna 210a and the other end of the dipole antenna 210d are provided close to the antenna 100-1. Similarly, the other end of the dipole antenna 210b and the other end of the dipole antenna 210c are arranged close to each other. Note that the other end of the dipole antenna 210b and the other end of the dipole antenna 210c are provided close to the antenna 100-4.
  • the dipole antennas 210a and 210b and the conductive member 220a, and the dipole antennas 210c and 210d and the conductive member 220b are arranged with respect to an axis provided in the y direction at the center portion in the x direction of the flat portion 310 of the reflector 300. They are provided in a symmetrical positional relationship.
  • the dipole antennas 210a and 210c transmit and receive polarized radio waves inclined by + 45 °.
  • the dipole antennas 210b and 210d transmit and receive polarized radio waves inclined by ⁇ 45 °. Therefore, the directions of polarized waves received by the dipole antennas 210a and 210c and the dipole antennas 210b and 210d are different by 90 °.
  • the pair of dipole antennas 210a and 210c and the pair of dipole antennas 210b and 210d arranged to face each other distribute / synthesize signals with the same isotope amplitude.
  • a pair of ⁇ 45 ° polarization-sharing antennas is formed by combining a conductive member 220b provided near one end of each of the dipole antennas 210c and 210d in the vicinity of the intersection where the dipole antennas 210c and 210d are extended. is doing.
  • the dipole antennas 210a, 210b, 210c, and 210d are disposed on the respective sides of the quadrangle.
  • the quadrangle is a square, and the feeding point of the dipole antenna 210 is preferably at the center of each side.
  • the antennas 200 are arranged at an interval p L in the y direction.
  • proximity means that the proximity is nearer than other parts, and means within 1 ⁇ 4 of the wavelength ⁇ 0L designed in the low frequency band.
  • neighborhood in “provided in the vicinity of the intersection” means within 1 ⁇ 4 of the wavelength ⁇ 0L from the intersection.
  • the conductive member 220 (conductive members 220a and 220b) is a cylinder having a diameter CD and a height CH (see FIG. 5A described later).
  • the conductive member 220 is fixed by a screw (not shown) at one end through a through-hole provided in the flat portion 310 of the reflector 300.
  • the conductive member 220 is preferably connected to the flat portion 310 of the reflector 300 in a direct current manner.
  • the conductive member 220 is made of a conductive material such as aluminum.
  • the conductive member 220 is preferably connected to the flat portion 310 of the reflector 300 at one location. By connecting the conductive member 220 to the flat portion 310 of the reflector 300 at one point (one point), compared to the case where the conductive member 220 is connected at a plurality of points, lines, or planes, intermodulation distortion and white noise are reduced. Occurrence is suppressed.
  • the conductive member 220 may be fixed to the flat portion 310 of the reflector 300 via an insulating material and connected at high frequency by capacitive coupling. In comparison with the case of direct connection, it becomes easier to suppress the occurrence of intermodulation distortion and white noise.
  • the conductive member 220 may be a prism or may be a rod-shaped member having another cross-sectional shape. Further, the conductive member 220 may be a plate-like member as will be described later.
  • the dipole antenna 210a is an example of the first antenna element
  • the dipole antenna 210b is an example of the second antenna element
  • the dipole antenna 210c is an example of the third antenna element
  • the dipole antenna 210d is the fourth antenna element. It is an example.
  • the conductive member 220a is an example of a conductive member or a first conductive member
  • the conductive member 220b is an example of another conductive member or a second conductive member.
  • a conductive member 220 may be disposed.
  • the conductive member 220b in the vicinity of the intersection where the dipole antennas 210b and 210c are extended, the other end of the dipole antenna 210b and the other end of the dipole antenna 210c are close to each other and the same as the conductive member 220b.
  • a conductive member 220 may be disposed.
  • the antenna 200 includes the four dipole antennas 210 and the two conductive members 220. This is to improve the symmetry of the antenna 200 in the horizontal direction and the vertical direction.
  • the antenna 200 does not necessarily include the four dipole antennas 210 and the two conductive members 220. That is, the antenna 200 may include two dipole antennas 210 and one conductive member 220. That is, as shown in the antenna 200-1, the antenna 200 is in the vicinity of the intersection where the dipole antennas 210a and 210b and the dipole antennas 210a and 210b are extended, and close to one end of each of the dipole antennas 210a and 210b.
  • the provided conductive member 220a may be provided.
  • the dipole antenna 210a is an example of a first antenna element
  • the dipole antenna 210b is an example of a second antenna element.
  • the conductive member 220a is an example of a conductive member.
  • the antenna 200 is in the vicinity of the intersection where the dipole antennas 210c and 210d and the dipole antennas 210c and 210d are extended, and in the vicinity of one end of each of the dipole antennas 210c and 210d.
  • the conductive member 220b provided may be provided.
  • the dipole antenna 210c is an example of a first antenna element
  • the dipole antenna 210d is an example of a second antenna element.
  • the conductive member 220b is an example of a conductive member.
  • the length of the dipole antenna depends on the wavelength of radio waves to be transmitted and received, and becomes longer as the wavelength is longer. Therefore, the length DW H dipole antenna 110 of the antenna 100 for transmitting and receiving radio waves of high frequency band is shorter than the length DW L of the dipole antenna 210 of the antenna 200 for transmitting and receiving radio waves of a low frequency band.
  • the length DW L of the dipole antenna 210 length DW H and antenna 200 of the dipole antenna 110, the length between the end when the dipole antenna 110 and the dipole antenna 210 is projected to the plane portion 310 of the reflector 300 Say.
  • the antenna 100 (antennas 100-1 to 100-7) that transmits and receives radio waves in the high frequency band has, for example, a spacing p H so as to suppress the generation of grating lobes in the directivity characteristics in the vertical plane (yz plane). Is set to about 0.8 ⁇ 0H .
  • one antenna 200 (antennas 200-1 and 200-2) for transmitting and receiving radio waves in the low frequency band is arranged for three antennas 100 for transmitting and receiving radio waves in the high frequency band.
  • the antenna 200 for transmitting and receiving a radio wave in a low frequency band has a distance p L set to about 0.7 ⁇ 0L .
  • the position in the y direction between the antenna 100-2 and the antenna 100-3 corresponds to the position in the y direction where the conductive members 220a and 220b of the antenna 200-1 are provided. That is, the dipole antennas 210a, 210b, 210c, and 210d are provided so as to surround the two antennas 100 (antennas 100-2 and 100-3) inside.
  • the antenna 100-1 is provided outside the antenna 200-1 in the ⁇ y direction
  • the antenna 100-4 is provided outside the antenna 200-1 in the + y direction. That is, the antenna 200 is arranged in the y direction so as to repeat the length (interval p H ) of the three antennas 100 in the y direction as a repeating unit (interval).
  • two antennas 100 that transmit and receive radio waves in a high frequency band are arranged in an area surrounded by four dipole antennas 210 arranged on each side of a square that constitutes the antenna 200.
  • One antenna 100 is disposed between the two antennas 200.
  • the total length of the dipole antenna 210 of the antenna 200 is set by the wavelength of radio waves in the low frequency band to be transmitted and received.
  • the dipole antenna 210 has a length DW L by bending an end so as to maintain the relationship between the interval P L and the interval P H. The shape of the dipole antenna 210 will be described later.
  • the reflecting plate 300 includes a flat portion 310 and two upright portions 320-1 and 320-2 that extend in the z direction from the flat portion 310 and extend in the y direction at both end portions on the ⁇ x direction side. Part 320). Further, the reflecting plate 300 has two standing portions 330-1 and 330-2 that stand in the z direction and extend in the y direction from the planar portion 310 between the center of the flat portion 310 and both end portions on the ⁇ x direction side. (In the case of not distinguishing, it is described as a standing part 330).
  • the antennas 100-1 to 100-7 are arranged in the y direction at the interval p H at the central portion in the x direction of the flat portion 310 of the reflector 300.
  • the two upright portions 330-1 and 330-2 are provided so as to sandwich the antennas 100-1 to 100-7 from the x direction and the ⁇ x direction.
  • the antennas 200-1 and 200-2 are arranged in the y direction at an interval p L between the standing part 320-1 and the standing part 330-1.
  • the flat surface portion 310 and the upright portions 320-1 and 320-2 of the reflecting plate 300 may be configured as an integral type by, for example, bending a flat plate, or each may be configured by a separate member, and these may be configured with screws or the like. You may combine and comprise. Further, the plane portion 310 and the upright portions 320-1 and 320-2 may be capacitively coupled via an insulator material.
  • the upright portions 330-1 and 330-2 may be formed of a member different from the flat surface portion 310, and may be configured to be coupled to the flat surface portion 310 of the reflecting plate 300 with a screw or the like. At this time, the plane portion 310 and the upright portions 330-1 and 330-2 may be capacitively coupled via an insulator material. Further, for example, a member provided with upright portions 330-1 and 330-2 at both ends is formed by bending a flat plate or the like, and is superposed on a member provided with upright portions 320-1 and 320-2 at both ends. It is good.
  • the reflector 300 is made of a conductive material such as aluminum.
  • Partition plates 400-1 to 400-8 are provided between two adjacent antennas 100 and at both ends in the y direction in the arrangement of antennas 100-1 to 100-7.
  • the partition plates 400-1 to 400-8 are connected to the flat surface portion 310 so as to stand up from the flat surface portion 310 of the reflection plate 300, like the standing portions 330-1 and 330-2 of the reflection plate 300, and It is connected to the standing parts 330-1 and 330-2.
  • the partition plates 400-1 to 400-8 may be capacitively coupled to the flat portion 310 of the reflection plate 300. Further, the partition plates 400-1 to 400-8 may be capacitively coupled to the upright portions 330-1 and 330-2 of the reflection plate 300.
  • the partition plate 400 is perpendicular to the flat portion 310 of the reflection plate 300, the partition plate 400 may be oblique.
  • the partition plate 400 is made of a conductive material such as aluminum.
  • Standing portions 330-1 and 330-2 of the reflector 300 sandwich the antenna 100 from ⁇ x directions.
  • Partition plate 400 sandwiches antenna 100 from the ⁇ y directions.
  • the antenna 100 is electrically symmetrical in the x direction and the y direction. By doing so, the directivity characteristics in the x direction (horizontal direction) and the y direction (vertical direction) are improved.
  • the width between the standing parts 320-1 and 320-2 is the width RW L and the height of the standing parts 320-1 and 320-2 from the plane part 310. Is the height RH L.
  • the reflecting plate 300 has a width between the standing portions 330-1 and 330-2 of the width RW H , the standing portions 330-1 and 330-2, and the flat portions 310 of the partition plates 400-1 to 400-8.
  • the height is the height RH H.
  • the width RW L is, 0.7 ⁇ 0L
  • RH height L is 0.07 ⁇ 0L.
  • the width RW H is 0.7Ramuda 0H
  • height RH H is 0.15 ⁇ 0H.
  • the radiating portion of the antenna 100 is provided at a distance DH H from the flat portion 310
  • the radiating portion of the antenna 200 is provided at a distance DH L from the flat portion 310.
  • the radiating portion refers to a portion corresponding to the radiating portions 211 and 212 of the dipole antenna 210 shown in FIG.
  • the distance DH H is 0.25 ⁇ 0H
  • the distance DH L is 0.2 ⁇ 0L .
  • FIG. 3 is a detailed view of the dipole antenna 210 in the antenna 200.
  • 3 (a) is a front view
  • FIG. 3 (b) is a top view of FIG. 3 (a)
  • FIG. 3 (c) is a back front view
  • FIG. 3 (d) is a view of FIG. 3 (a). It is a side view.
  • FIGS. 3A and 3B also show the flat portion 310 of the reflector 300.
  • the dipole antenna 210 includes radiating portions 211 and 212, leg portions 213 and 214, and a base portion 215.
  • the dipole antenna 210 includes a power feeding cable 216 and a power feeding plate 217.
  • the dipole antenna 210 includes a spacer 500 between the base portion 215 and the flat portion 310 of the reflecting plate 300. Note that the spacer 500 may not be provided.
  • the radiating portions 211 and 212, the leg portions 213 and 214, and the base portion 215 of the dipole antenna 210 are formed by cutting with a conductive material such as aluminum. In addition, you may comprise by die-casting.
  • the spacer 500 is made of a dielectric material such as tetrafluoroethylene or polyacetal.
  • the power supply cable 216 is a coaxial cable that propagates a transmission signal and a reception signal.
  • the power feeding plate 217 is made of a conductive material such as copper.
  • the dipole antenna 210 will be described with reference to FIG. Since the spacer 500 will be described later, the configuration of the dipole antenna 210 excluding the spacer 500 will be described in detail here.
  • the radiating portion 211 includes a plate-like first portion 211 a that extends in parallel from the leg portion 213 to the planar portion 310 of the reflecting plate 300.
  • a plate-like second portion 211b is provided which is connected to the first portion 211a so that the distance from the flat portion 310 of the reflecting plate 300 gradually decreases.
  • a plate-like third portion 211c extending from the side surface of the tip portion of the second portion 211b toward the flat surface portion 310 side of the reflecting plate 300 is provided.
  • the third part 211c faces the front side, unlike the surfaces of the first part 211a and the second part 211b. That is, the third portion 211c is provided so as to be continuous with the side surface of the distal end portion of the second portion 211b (see FIGS. 3B and 3D).
  • the radiating portion 212 includes a plate-like first portion 212 a extending from the leg portion 214 in parallel to the flat surface portion 310 of the reflecting plate 300.
  • a plate-like second portion 212b is provided which is connected to the first portion 212a and whose distance from the flat portion 310 of the reflecting plate 300 gradually decreases.
  • a plate-like third portion 212c extending from the side surface of the tip portion of the second portion 212b toward the flat surface portion 310 side of the reflecting plate 300 is provided.
  • the surface of the third portion 212c faces the front side. That is, the third portion 212c is provided so as to be continuous with the side surface of the distal end portion of the second portion 212b.
  • the 3rd part 211c and the 3rd part 212c are provided in the same side (front side) (refer FIG.3 (b), (d)). Furthermore, the first portion 212a of the radiating portion 212 is provided with a through hole 212d that is connected to the outer conductor of the power supply cable 216 and passes the inner conductor and a dielectric around the inner conductor.
  • the leg portion 213 has an L-shaped cross section (see FIG. 3B), and one end portion (upper side) is connected to the end portion of the first portion 211 a of the radiating portion 211. That is, the L-shaped cross section of the leg portion 213 is connected to the end portion of the first portion 211a of the radiating portion 211 (the side not connected to the second portion 212b). The other end portion (lower side) of the leg portion 213 is connected to the base portion 215.
  • the leg part 214 is the same as the leg part 213, and one end part (upper side) is connected to the end part of the first part 212 a of the radiating part 212 and the other end part (lower side) is connected to the base part 215. ing. That is, one end portion (upper side) connected to the radiation portions 211 and 212 of the leg portions 213 and 214 is separated. However, the other end portions (lower side) are connected to each other by being connected to the flat surface portion 310 of the reflecting plate 300. That is, the other end portions (lower side) of the leg portions 213 and 214 are connected in a direct current manner.
  • the leg portions 213 and 214 are an example of a support portion.
  • the base part 215 is configured to be fixed to the flat part 310 of the reflection plate 300 with the spacer 500 interposed therebetween. For this reason, on the back surface (reflecting plate 300 side) of the base portion 215, the base portion 215 is flattened with a screw through a through hole (a through hole 513 in FIG. 4A described later) of the spacer 500 with a screw. A screw hole 215a for fixing to the portion 310 is provided. In this way, by connecting the base part 215 and the flat part 310 of the reflector 300 via the spacer 500 made of a dielectric material, the occurrence of intermodulation distortion and white noise from the connection surface is suppressed. .
  • the base 215 includes a through hole 215b through which the power supply cable 216 passes through a through hole of the spacer 500 (a through hole 512 in FIG. 4A described later).
  • a through hole (a through hole 311 in FIG. 4D to be described later) through which the power feeding cable 216 passes is provided in the flat part 310 of the reflection plate 300 to which the base part 215 is fixed.
  • the power feeding cable passes through the through-hole (through-hole 311 in FIG. 4D described later), the through-hole 512 in the spacer 500 and the through-hole 215b in the base 215 from the back surface of the reflector 300. 216 is inserted.
  • the feeding cable 216 that has passed through the through-hole 215 b of the base 215 goes toward the radiating part 212 along the leg part 214.
  • the outer conductor of the feeding cable 216 is connected to the through hole 212d provided in the first portion 212a of the radiating portion 212 by solder or the like.
  • the inner conductor passes through the through hole 212d provided in the first portion 212a of the radiating portion 212 and is connected to one end portion of the power supply plate 217 by solder or the like.
  • the other end portion of the power supply plate 217 is connected to the first portion 211a of the radiating portion 211 by solder or the like.
  • the base part 215 is fitted to a convex part provided in the spacer 500 (protrusions 511a and 511b shown in FIGS. 4A, 4B, and 4C, which will be described later), and the base part 215 is made to be a spacer. Recesses 215 c and 215 d for positioning with respect to 500 are provided.
  • the dipole antenna 210 is configured such that the radiating portions 211 and 212 have bent portions. That is, the bent portions are the second portion 211b and the third portion 211c of the radiating portion 211, and the second portion 212b and the third portion 212c of the radiating portion 212.
  • the length of the dipole antenna 210 which is the distance between the end of the radiating portion 211 and the end of the radiating portion 212, is about 1 ⁇ 2 ⁇ 0L with respect to the wavelength ⁇ 0L of the radio wave.
  • the dipole antenna 210 includes a bent portion, so that the length DW L is shorter than 1 ⁇ 2 ⁇ 0L .
  • the bent portion may be configured such that the length DW L of the dipole antenna 210 is shorter than 1 ⁇ 2 ⁇ 0L . That is, the second portion 211b only needs to be configured so that the distance from the flat surface portion 310 changes, and the third portion 211c only needs to extend from the second portion 211b while being bent. Similarly, the second portion 212b only needs to be configured such that the distance from the flat surface portion 310 is changed, and the third portion 212c only needs to bend and extend from the second portion 212b.
  • dipole antennas 210 dipole antennas 210a, 210b, 210c, 210d
  • the distance between the ends of each dipole antenna 210 is increased, so that adjacent dipole antennas 210 having different polarizations are arranged.
  • the amount of coupling between polarized waves can be kept lower.
  • the second portion 211b and the third portion 211c of the radiating portion 211 that are the bent portions of the dipole antenna 210, and the second portion 212b of the radiating portion 212
  • the length DW L of the dipole antenna 210 the same or changing the length DW L small, the antenna 100 that transmits and receives high frequency band radio waves in the array antenna 11 shown in FIG. It is not necessary to change the arrangement with the antenna 200 that transmits / receives. That is, the array antenna 11 can be easily designed.
  • the antenna 200 that transmits and receives radio waves in the low frequency band is disposed at the end in the ⁇ x direction of the reflector 300 as shown in FIG. Also, a large distance DH L from the plane portion 310 of the reflector 300. Therefore, when the dipole antenna 210 includes the bent portions (second portions 211b and 212b and third portions 211c and 212c) in the radiating portions 211 and 212, the radome 12 becomes small (see FIG. 1A).
  • FIG. 4 is a diagram illustrating the spacer 500.
  • 4 (a) is a top view
  • FIG. 4 (b) is a front view
  • FIG. 4 (c) is a side view
  • FIG. 4 (d) is a portion for attaching the spacer 500 on the flat surface portion 310 of the reflector 300. It is a figure which shows an example.
  • the spacer 500 is a member made of a dielectric material for preventing the planar portion 310 of the reflector 300 and the base portion 215 of the dipole antenna 210 from being brought into direct contact with each other.
  • the spacer 500 includes a bottom surface portion 510 and an edge portion 520 rising from the bottom surface portion 510 to one surface (upper surface) side. As shown in FIGS. 4A, 4 ⁇ / b> B, and 4 ⁇ / b> C, the bottom surface portion 510 has protrusions that fit into the recesses 215 c and 215 d of the base portion 215 in order to position the base portion 215 of the dipole antenna 210.
  • Portions 511a and 511b (indicated as convex portions 511 if not distinguished), a through hole 512 for passing the power supply cable 216, and a through hole 513 for passing a screw through the screw hole 215a of the base portion 215 Is provided.
  • the through hole 512 for passing the power supply cable 216 protrudes from the bottom surface portion 510 to the other surface (lower surface) side of the bottom surface portion 510 as an extended portion.
  • the edge portion 520 includes a base portion holding claw 521 that holds the base portion 215 of the dipole antenna 210 and holds the base portion 215 so as to be temporarily fixed on the side rising from the bottom surface portion 510 to the upper surface side. Further, the edge portion 520 holds the spacer 500 so as to temporarily fix the spacer 500 to the flat surface portion 310 of the reflecting plate 300 on the side in contact with the flat surface portion 310 of the reflecting plate 300 on the side opposite to the side rising from the bottom surface portion 510.
  • Spacer holding claws 514a and 514b are provided.
  • the base holding claw 521 is an example of a base holding member
  • the spacer holding claw 514 is an example of a spacer holding member.
  • the spacer 500 By inserting and fitting the convex portions 511a and 511b provided on the spacer 500 into the concave portions 215c and 215d provided on the base portion 215 of the dipole antenna 210, the spacer 500 is placed at a predetermined position on the dipole antenna 210. Is installed. Therefore, even if dimensional variation occurs in the dipole antenna 210 and / or the spacer 500 during production, the positions of the through holes 512 and 513 are suppressed from shifting. Furthermore, since the pedestal 215 of the dipole antenna 210 is temporarily fixed to the spacer 500 by the pedestal holding claws 521, the efficiency of the work of attaching the spacer 500 is dramatically improved.
  • the flat surface portion 310 of the reflector 300 is provided in a portion where the dipole antenna 210 is attached to a through hole 311 through which the feeding cable 216 passes and a screw hole 215 a of the base portion 215 of the dipole antenna 210.
  • the dipole antenna 210 to which the spacer 500 is mounted is fixed to the flat surface portion 310 of the reflector 300, the extended portion of the through hole 512 of the spacer 500 is inserted into the through hole 311 and the spacer of the spacer 500 is inserted into the through holes 313a and 313b.
  • the holding claws 514 a and 514 b are inserted and hooked on the flat surface portion 310 of the reflecting plate 300.
  • a screw is passed through the through-hole 312, and is fixed to the screw hole 215a of the base portion 215 on which the spacer 500 is mounted with the screw.
  • the base portion 215 is fixed to the flat surface of the reflecting plate 300 with one screw. Even if the dipole antenna 210 is fixed to the reflecting plate 300, the dipole antenna 210 can be securely fixed to the reflecting plate 300, and the workability of fixing the dipole antenna 210 to the reflecting plate 300 is also greatly improved. Improve. In addition, by inserting the extended portion of the through hole 512 in the spacer 500 into the through hole 311 of the reflector 300, the end of the through hole 311 is prevented from damaging the power supply cable 216.
  • the spacer 500 by attaching the spacer 500 to the base 215 of the dipole antenna 210 and fixing it to the flat surface 310 of the reflector 300, the occurrence of intermodulation distortion and white noise is suppressed without deteriorating workability.
  • the number of the convex parts 511, the number of the base part holding claws 521, and the number of the spacer holding claws 514 may not be the above numbers. These numbers can be changed as appropriate.
  • FIG. 5 is a diagram illustrating the conductive member 220.
  • 5A-1 is a top view in the case of a cylinder
  • FIG. 5A-2 is a front view in the case of a cylinder
  • FIG. 5A-3 is a bottom view in the case of a cylinder
  • FIG. (B-1) is a top view in the case of a plate shape as a modification
  • FIG. 5 (b-2) is a front view in the case of a plate shape
  • FIG. 5 (b-3) is a case of a plate shape. It is a bottom view.
  • FIGS. 1 is a top view in the case of a cylinder
  • FIG. 5A-2 is a front view in the case of a cylinder
  • FIG. 5A-3 is a bottom view in the case of a cylinder
  • FIG. (B-1) is a top view in the case of a plate shape as a modification
  • FIG. 5 (b-2) is a front view in the case of a plate shape
  • the conductive member 220 is a cylinder having a diameter CD and a height CH, which is an example of a rod shape. Then, as shown in FIGS. 5A-2 and 5A-3, a screw hole 221 for fixing to the flat portion 310 of the reflector 300 is provided at one end of the conductive member 220.
  • the conductive member 220 is connected in a DC manner to the screw inserted from the back side of the flat surface portion 310 of the reflector 300 through the screw hole 221. That is, the conductive member 220 is connected to the flat portion 310 of the reflector 300 at a direct current in one place. Thereby, generation
  • the concave portion (without reference numeral) shown in the top view of FIG. 5A-1 is a groove for inserting the blade edge of the screw driver when fixing the conductive member.
  • the conductive member 220 does not have to include a recess.
  • the conductive member 220 has a diameter CD of 9 mm and a height CH of 50 mm.
  • the diameter CD and the height CH may be adjusted according to the required amount of coupling between polarizations.
  • the conductive member 220 may be a prism or may be a rod-shaped member having another cross-sectional shape.
  • the conductive member 220 as a modification is a plate having a width CW, a thickness CT, and a height CH, and is an example of a plate shape. . 5 (b-2) and 5 (b-3), a screw hole 221 for fixing to the flat surface portion 310 of the reflector 300 is provided on one side surface portion of the conductive member 220. Therefore, the conductive member 220 is connected to the flat portion 310 of the reflector 300 at a direct current in one place.
  • FIG. 6 shows measured values of the amount of coupling between polarized waves in a low frequency band radio wave.
  • FIG. 6A shows a case where the conductive member 220 according to the first embodiment is provided
  • FIG. 6B shows a case where the first embodiment is not adopted and the conductive member 220 is not provided.
  • the horizontal axis represents normalized frequency (f / f 0L )
  • the vertical axis represents the amount of coupling between polarizations (dB). It should be noted that the frequency f 0L is set to 800MHz band.
  • the amount of coupling between polarizations shown here is such that the numerical array antenna 11 shown as an example above transmits / receives ⁇ 45 ° -polarized radio waves to / from the dipole antenna 210a that transmits / receives + 45 ° -polarized radio waves in each antenna 200. This is the S parameter S21 measured with respect to the dipole antenna 210b.
  • the maximum value of the amount of coupling between polarizations in the first embodiment shown in FIG. 6A is about ⁇ 28 dB.
  • the maximum value of the coupling amount between polarizations is about ⁇ 22 dB. That is, in the first embodiment, with the maximum value of the polarization coupling amount is approximately 6dB improvement, over a wide band of 1.15f / f 0L from 0.85f / f 0L, polarization coupling amount is suppressed low I understand that
  • FIG. 7 is a diagram for explaining the effect of the conductive member 220.
  • FIG. 7A shows the case where the conductive member 220a of the first embodiment is provided, and FIG. 7B shows the case where the first embodiment is not adopted and the conductive member 220 is not provided.
  • FIG. 7A shows the dipole antennas 210a and 210b and the conductive member 220a extracted from the antenna 200-1 shown in FIG. 7A and 7B, the current excited by the dipole antenna 210a is indicated by a solid line, and the current excited by the dipole antenna 210b is indicated by a dotted line.
  • the conductive member 220a when the conductive member 220a according to the first embodiment is provided, the conductive member is generated by the current excited by the dipole antenna 210a and the current excited by the dipole antenna 210b. Current also flows through 220a. However, since one end of the conductive member 220a is short-circuited to the flat portion 310 of the reflector 300, a shielding effect is generated by the conductive member 220a.
  • FIG. 7B when the first embodiment is not adopted and the conductive member 220 is not provided, the current excited in the dipole antenna 210a is directly coupled to the dipole antenna 210b. . Similarly, the current excited in the dipole antenna 210b is directly coupled to the dipole antenna 210a.
  • the conductive member 220 shields the radio waves from each other and suppresses the influence of each other, it is considered that the amount of coupling between polarizations can be suppressed low.
  • a plurality of antennas 100 that transmit and receive radio waves in a high frequency band are arranged at the center in the x direction of the reflector 300, and a plurality of antennas 200 that transmit and receive radio waves in a low frequency band. Are arranged on both sides of the arrangement of the plurality of antennas 100.
  • a plurality of antennas 200 that transmit and receive a radio wave in a low frequency band are arranged in the central portion in the x direction of the reflector 300 and a plurality of antennas 100 that transmit and receive a radio wave in a high frequency band.
  • FIG. 8 is a diagram illustrating an example of the configuration of the array antenna 15 according to the second embodiment.
  • 8A is a front view of the array antenna 15 (a view in the xy plane)
  • FIG. 8B is a cross-sectional view of the array antenna 15 along the line VIIIB-VIIIB in FIG. 8A. -Z-plane view).
  • the array antenna 11 will be described by taking the sector antenna 10-1 shown in FIG. 1A as an example.
  • the array antenna 15 includes antennas 100-1 to 100-10 and 100-11 to 100-20 that transmit and receive orthogonally polarized radio waves in a high frequency band (referred to as antenna 100 if not distinguished).
  • Antennas 200-1 to 200-3 that transmit and receive radio waves of orthogonally polarized waves in a low frequency band (referred to as antenna 200 if not distinguished).
  • the antennas 200-1 to 200-3 are arranged at a distance p L in the y direction at the center of the reflecting plate 300 in the x direction.
  • the antennas 100-1 to 100-10 are arranged on the left side ( ⁇ x direction side) of the arrangement of the antennas 200-1 to 200-3 with a spacing p H in the y direction.
  • Antennas 100-11 ⁇ 100-20 are arranged at intervals p H in the y direction to the right (+ x direction) of the array antennas 200-1 to 200-3.
  • the reflecting plate 300 includes a flat surface portion 310 and two upright portions 320-1 and 320 extending in the y direction from the flat surface portion 310 at both ends in the ⁇ x direction. -2. Further, the reflecting plate 300 has two standing portions 330-1 and 330-2 that stand in the z direction and extend in the y direction from the planar portion 310 between the center of the flat portion 310 and both ends on the ⁇ x direction side. Is provided.
  • the antennas 200-1 to 200-3 are provided between the standing part 330-1 and the standing part 330-2.
  • the antennas 100-1 to 100-10 are arranged between the standing part 320-1 and the standing part 330-1, and the antennas 100-11 to 100-20 include the standing part 320-2 and the standing part 330-2.
  • a partition plate 400 is provided between the antennas 100-1 to 100-10 and 100-11 to 100-20 in the same manner as in the first embodiment.
  • the reference numerals for the individual partition plates are omitted. Since the antenna 100 is the same as that of the first embodiment, description thereof is omitted.
  • the antenna 200 includes four dipole antennas 210a, 210b, 210c, 210d and two conductive members 220a, 220b as shown in the antenna 200-1.
  • the antenna 200-1 is the same as the antenna 200-1 in the first embodiment shown in FIG. 2 rotated by 90 ° around the z-axis.
  • the dipole antennas 210a and 210b are arranged so that their one ends are close to each other.
  • One end of each of the dipole antennas 210a and 210b is located in the vicinity of an intersection extending the dipole antennas 210a and 210b (intersection of two virtual extension lines provided so as to include the two dipole antennas 210a and 210b, respectively).
  • the electroconductive member 220a provided in the vicinity of the part is provided.
  • the dipole antennas 210c and 210d are arranged so that their one ends are close to each other.
  • One end of each of the dipole antennas 210c and 210d is located in the vicinity of an intersection extending from the dipole antennas 210c and 210d (intersection of two virtual extension lines provided so as to include the two dipole antennas 210c and 210d, respectively).
  • the electroconductive member 220b provided close to the part is provided.
  • the other end of the dipole antenna 210a and the other end of the dipole antenna 210d are arranged close to each other.
  • the other end of the dipole antenna 210b and the other end of the dipole antenna 210c are arranged close to each other.
  • the dipole antennas 210b and 210d transmit and receive polarized waves inclined by + 45 °, where the ⁇ y direction is the ground direction.
  • the dipole antennas 210a and 210c transmit and receive polarized radio waves inclined by ⁇ 45 °. Therefore, the directions of polarized waves received by the dipole antennas 210a and 210c and the dipole antennas 210b and 210d are different by 90 °. For this reason, the dipole antennas 210a, 210b, 210c, and 210d are disposed on the respective sides of the quadrangle.
  • the quadrangle is a square, and the feeding point of the dipole antenna 210 is preferably at the center of each side. By doing so, the symmetry of the antenna 200 in the horizontal direction and the vertical direction is improved.
  • the conductive member 220b of the antenna 200-1 is also the conductive member 220a of the antenna 200-2. That is, the array antenna 15 of the second embodiment has fewer conductive members 220 than the array antenna 11 of the first embodiment.
  • the effect that the antenna 200 that transmits and receives radio waves of different polarizations in the low frequency band includes the conductive member 220 is considered to be the same as that of the first embodiment. Therefore, the description is omitted.
  • the antenna 200 for transmitting and receiving radio waves of distance DH L is greater low frequency band from the plane portion 310 in a central portion in the x direction of the reflecting plate 300 is arranged, from the flat portion 310 at both ends
  • An antenna 100 that transmits and receives radio waves in a high frequency band in which the distance DH H is smaller than the distance DH L is disposed. Therefore, the size of the radome 12 is not easily affected by the size of the antenna 200.
  • the dipole antenna 210a is an example of the first antenna element
  • the dipole antenna 210b is an example of the second antenna element
  • the dipole antenna 210c is an example of the third antenna element
  • the dipole antenna 210d is the fourth antenna element. It is an example.
  • the conductive member 220a is an example of a first conductive member
  • the conductive member 220b is an example of a second conductive member.
  • the four dipole antennas 210 included in the antenna 200 are arranged on each side of the quadrangle.
  • the array antenna 16 in the third embodiment four dipole antennas 210 are arranged in a cross shape. Since the other configuration is the same as that of the first embodiment, portions of the array antenna 16 that are different from the array antenna 11 in the first embodiment will be mainly described.
  • FIG. 9 is a diagram illustrating an example of the configuration of the array antenna 16 according to the third embodiment.
  • 9A is a front view of the array antenna 16 (a view in the xy plane)
  • FIG. 9B is a cross-sectional view of the array antenna 16 along the line IXB-IXB in FIG. 9A (x -Z-plane view).
  • the array antenna 16 will be described using the sector antenna 10-1 shown in FIG. 1A as an example.
  • the array antenna 16 includes antennas 100-1 to 100-6 and 100-11 to 100-16 that transmit and receive orthogonally polarized radio waves in a high frequency band (referred to as antenna 100 if not distinguished).
  • Antennas 200-1 and 200-2 for transmitting and receiving radio waves of orthogonally polarized waves in a low frequency band (referred to as antenna 200 if not distinguished).
  • the antennas 200-1 and 200-2 are arranged at a distance p L in the y direction at the center of the reflecting plate 300 in the x direction.
  • the antennas 100-1 to 100-6 are arranged on the left side ( ⁇ x direction side) of the arrangement of the antennas 200-1 and 200-2 with a spacing p H in the y direction.
  • the antennas 100-11 to 100-16 are arranged on the right side (+ x direction side) of the arrangement of the antennas 200-1 and 200-2 with the interval p H in the y direction.
  • the reflecting plate 300 includes a flat surface portion 310 and two upright portions 320-1 and 320 extending in the y direction from the flat surface portion 310 at both ends in the ⁇ x direction. -2. Further, the reflecting plate 300 has two standing portions 330-1 and 330-2 that stand in the z direction and extend in the y direction from the planar portion 310 between the center of the flat portion 310 and both ends on the ⁇ x direction side. Is provided.
  • the antennas 200-1 and 200-2 are provided between the standing part 330-1 and the standing part 330-2.
  • the antennas 100-1 to 100-6 are arranged between the standing part 320-1 and the standing part 330-1, and the antennas 100-11 to 100-16 include the standing part 320-2 and the standing part 330-2.
  • a partition plate 400 is provided between the antennas 100-1 to 100-6 and 100-11 to 100-16 in the same manner as in the first embodiment. In FIG. 9, description of symbols for individual partition plates is omitted. Since the antenna 100 is the same as that of the first embodiment, description thereof is omitted.
  • the antenna 200 includes four dipole antennas 210a, 210b, 210c, 210d and one conductive member 220 as shown in the antenna 200-1.
  • the antenna 200-1 includes two dipole antennas 210a and 210b in the x direction and two dipole antennas 210c and 210d in the -x direction in the antenna 200-1 in the first embodiment shown in FIG. It is the same as the shifted state. In this state, the conductive member 220a and the conductive member 220b are shifted together to form one conductive member 220.
  • each of the dipole antennas 210a, 210b, 210c, and 210d is disposed close to the dipole antenna 210a, 210b, 210c, and 210d. Then, in the vicinity of the intersection where the dipole antennas 210a, 210b, 210c, and 210d are extended (intersection of four virtual extension lines provided so as to include the two dipole antennas 210a, 210b, 210c, and 210d, respectively)
  • a conductive member 220 is provided in the vicinity of one end of each of the antennas 210a, 210b, 210c, and 210d.
  • the symmetry is improved by arranging the four dipole antennas 210 in a cross shape so that their one end portions are close to each other. By arranging in this way, the symmetry of the directivity in the x direction (horizontal direction) and the y direction (vertical direction) is improved.
  • the effect that the antenna 200 that transmits and receives differently polarized radio waves in the low frequency band includes the conductive member 220 is the same as that of the first embodiment. Therefore, the description is omitted.
  • the antenna 200 for transmitting and receiving radio waves of distance DH L is greater low frequency band from the plane portion 310 in a central portion in the x direction of the reflecting plate 300 is disposed.
  • the antennas 100 that transmit and receive radio waves in a high frequency band in which the distance DH H from the plane part 310 is smaller than the distance DH L are disposed at both ends. Therefore, the size of the radome 12 is not easily affected by the size of the antenna 200.
  • the dipole antenna 210a is an example of the first antenna element
  • the dipole antenna 210b is an example of the second antenna element
  • the dipole antenna 210c is an example of the third antenna element
  • the dipole antenna 210d is the fourth antenna element. It is an example.
  • the conductive member 220 is an example of a conductive member.
  • the array antennas 11, 15, and 16 have been described as frequency sharing antennas.
  • the antennas may include only the low-frequency band antenna 200.
  • the designed frequency f 0L (wavelength ⁇ 0L ) of the low frequency band may be set as the designed frequency f 0 (wavelength ⁇ 0 ).
  • the antenna 200 has been described as a dual-polarized antenna that transmits and receives ⁇ 45 ° polarized radio waves.
  • the direction of polarization is not limited to this, and vertical and horizontal polarized radio waves can be transmitted. It may be a polarization sharing antenna that transmits and receives.
  • SYMBOLS 1 Base station antenna, 2 ... Cell, 3-1, 3-1 to 3-3 ... Sector 10, 10-1 to 10-3 ... Sector antenna, 11, 15, 16 ... Array antenna, 12 ... Radome, 13 ... Main lobe, 14-1 to 14-4 ... transmission / reception cable, 20 ... steel tower, 100, 100-1 to 100-10, 100-11 to 100-20 ... antenna, 110, 110a, 110b ... dipole antenna, 200, 200 -1 to 200-3 ... antenna, 210, 210a, 210b, 210c, 210d ... dipole antenna, 211a, 212a ... first part, 211b, 212b ... second part, 211c, 212c ...

Abstract

アンテナは、平面部を有する反射部材と、反射部材の平面部に対して設けられ、第1の偏波の電波を送受信する第1のアンテナ素子と、反射部材の平面部に対して、第1のアンテナ素子の一端部に、一端部が近接して設けられ、第1の偏波と異なる第2の偏波の電波を送受信する第2のアンテナ素子と、第1のアンテナ素子及び第2のアンテナ素子を延長した交点の近傍に、第1のアンテナ素子の一端部及び第2のアンテナ素子の一端部に近接して設けられた導電性部材と、を備える。

Description

アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ
 本発明は、アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナに関する。
 移動体通信の基地局アンテナには、電波が放射される方向に対応して設定されたセクタ(領域)毎に電波を放射するセクタアンテナが複数組み合わせて用いられている。セクタアンテナには、ダイポールアンテナなどの放射素子(アンテナ素子)をアレイ状に並べたアレイアンテナが用いられている。
 特許文献1には、分離特性を2dB~6dB改善する2又は4のスリットが設けられた反射板と、アンテナアレイにおける分離特性を改善する分離部材とを備えた広帯域の偏波アンテナが記載されている。
中国特許出願公開第103647138号明細書
 ところでアレイアンテナには、セクタアンテナの通信品質の向上/通信容量の増大を狙って、互いに異なる偏波の送受信が可能な偏波共用のアンテナが用いられることがある。そして、各偏波を送受信するアンテナ素子間の偏波結合量が広帯域にわたって低く抑えられていることが求められている。
 本発明の目的は、互いに異なる偏波を送受信するアンテナ素子間の偏波結合量を低減した偏波共用のアンテナ等を提供することにある。
 かかる目的のもと、本発明が適用されるアンテナは、平面部を有する反射部材と、反射部材の平面部に対して設けられ、第1の偏波の電波を送受信する第1のアンテナ素子と、反射部材の平面部に対して設けられるとともに、第1のアンテナ素子の一端部に、一端部が近接して設けられ、第1の偏波と異なる第2の偏波の電波を送受信する第2のアンテナ素子と、第1のアンテナ素子及び第2のアンテナ素子を延長した交点の近傍に、第1のアンテナ素子の一端部及び第2のアンテナ素子の一端部に近接して設けられた導電性部材と、を備える。
 このようなアンテナにおいて、反射部材の平面部に対して設けられ、第1の偏波の電波を送受信する第3のアンテナ素子と、反射部材の平面部に対して設けられるとともに、第3のアンテナ素子の一端部に、一端部が近接して設けられ、第2の偏波の電波を送受信する第4のアンテナ素子と、第3のアンテナ素子及び第4のアンテナ素子をそれぞれ延長した交点の近傍に、第3のアンテナ素子の一端部及び第4のアンテナ素子の一端部に近接して設けられた他の導電性部材と、をさらに備え、第4のアンテナ素子の他端部は、第1のアンテナ素子の他端部と近接し、第3のアンテナ素子の他端部は、第2のアンテナ素子の他端部と近接して設けられていることを特徴とすることができる。
 このようにすることで、水平方向及び垂直方向の指向特性の対称性が向上する。
 また、導電性部材及び他の導電性部材のそれぞれは、反射部材の平面部から起立する棒状又は板状の部材であって、反射部材に一か所で直流的に接続されていることを特徴とすることができる。
 このようにすることで、相互変調歪やホワイトノイズの発生が抑制される。
 このようなアンテナにおいて、反射部材の平面部に対して設けられるとともに、第1のアンテナ素子の一端部に、一端部が近接して設けられ、第1の偏波の電波を送受信する第3のアンテナ素子と、反射部材の平面部に対して設けられるとともに、第1のアンテナ素子の一端部に、一端部が近接して設けられ、第2の偏波の電波を送受信する第4のアンテナ素子と、をさらに備え、第3のアンテナ素子及び第4のアンテナ素子を延長した交点の近傍に、第3のアンテナ素子の一端部と第4のアンテナ素子の一端部に近接して導電性部材が設けられていることを特徴とすることができる。
 このようにすることで、水平方向及び垂直方向の指向特性の対称性が向上する。
 また、導電性部材は、反射部材の平面部から起立する棒状又は板状の部材であって、反射部材に一か所で直流的に接続されていることを特徴とすることができる。
 このようにすることで、相互変調歪やホワイトノイズの発生が抑制される。
 また、他の観点から捉えると、本発明が適用されるアレイアンテナは、平面部を有する反射部材と、第1の周波数帯の第1の偏波の電波を送受信する第1のアンテナ素子と、第1のアンテナ素子の一端部に、一端部が近接して設けられて第1の周波数帯の第1の偏波と異なる第1の周波数帯の第2の偏波の電波を送受信する第2のアンテナ素子と、第1の周波数帯の第1の偏波の電波を送受信する第3のアンテナ素子と、第3のアンテナ素子の一端部に、一端部が近接して設けられて第1の周波数帯の第2の偏波の電波を送受信する第4のアンテナ素子と、第1のアンテナ素子及び第2のアンテナ素子のそれぞれを延長した交点の近傍に、第1のアンテナ素子の一端部及び第2のアンテナ素子の一端部に近接して設けられた第1の導電性部材と、第3のアンテナ素子及び第4のアンテナ素子のそれぞれを延長した交点の近傍に、第3のアンテナ素子の一端部及び第4のアンテナ素子の一端部に近接して設けられた第2の導電性部材と、をそれぞれが備え、第1のアンテナ素子の他端部と第4のアンテナ素子の他端部とが近接して設けられ、第2のアンテナ素子の他端部と第3のアンテナ素子の他端部とが近接して設けられ、反射部材の平面部に対して配列された複数の第1のアンテナと、複数の第1のアンテナの配列に沿って、反射部材の平面部に対して配列され、第1の周波数帯より高い第2の周波数帯の電波をそれぞれが送受信する複数の第2のアンテナと、を備える。
 このようなアレイアンテナにおいて、複数の第2のアンテナの配列は、反射部材の平面部に対して複数の第1のアンテナの配列と重ねて配置されていることを特徴とすることができる。
 このようにすることで、周波数共用のアレイアンテナを小型にできる。
 また、複数の第1のアンテナの配列の間隔は、複数の第2のアンテナの配列の間隔の3倍であることを特徴とすることができる。
 そして、第1のアンテナにおける第1のアンテナ素子、第2のアンテナ素子、第3のアンテナ素子及び第4のアンテナ素子によって囲まれた領域に、二つの第2のアンテナが配置されていることを特徴とすることができる。
 このようにすることで、アンテナを効率よく配列できる。
 また、さらに他の観点から捉えると、本発明が適用されるアレイアンテナは、平面部を有する反射部材と、第1の周波数帯の第1の偏波の電波を送受信する第1のアンテナ素子と、第1のアンテナ素子の一端部に一端部が近接して設けられて第1の偏波と異なる第1の周波数帯の第2の偏波の電波を送受信する第2のアンテナ素子と、第1のアンテナ素子の一端部に一端部が近接して設けられて第1の周波数帯の第1の偏波の電波を送受信する第3のアンテナ素子と、第1のアンテナ素子の一端部に一端部が近接して設けられて第1の周波数帯の第2の偏波の電波を送受信する第4のアンテナ素子と、第1のアンテナ素子、第2のアンテナ素子、第3のアンテナ素子及び第4のアンテナ素子を延長した交点の近傍に、第1のアンテナ素子の一端部、第2のアンテナ素子の一端部、第3のアンテナ素子の一端部及び第4のアンテナ素子の一端部に近接して設けられた導電性部材と、をそれぞれが備え、反射部材の平面部に対して配列された複数の第1のアンテナと、複数の第1のアンテナの配列に沿って、反射部材の平面部に対して配列され、第1の周波数帯より高い第2の周波数帯の電波をそれぞれが送受信する複数の第2のアンテナと、を備える。
 このようなアレイアンテナは、複数の第1のアンテナの送受信する電波は、複数の第1のアンテナの配列に対して+45°方向の偏波及び-45°方向の偏波であることを特徴とすることができる。
 このようにすることで、偏波間結合量がより低く抑えられる。
 また、さらに他の観点から捉えると、本発明が適用されるセクタアンテナは、第1の偏波の電波を送受信する第1のアンテナ素子と、第1のアンテナ素子の一端部に、一端部が近接して設けられ、第1の偏波と異なる第2の偏波の電波を送受信する第2のアンテナ素子と、第1のアンテナ素子及び第2のアンテナ素子を延長した交点の近傍に、第1のアンテナ素子の一端部及び第2のアンテナ素子の一端部に近接して設けられた導電性部材と、をそれぞれが備える複数のアンテナが、平面部を備える反射部材の平面部に対して配列されたアレイアンテナと、アレイアンテナを覆うカバーと、を備える。
 さらに他の観点から捉えると、本発明が適用されるダイポールアンテナは、二つの放射部と取り付けられる反射部材の平面部に向けて延びて、二つの放射部を支持する支持部と、反射部材の平面部に対して支持部を保持する台部と、を備え、二つの放射部のそれぞれは、反射部材の平面部に平行な第1の部分と、支持部から離れるにしたがって、平面部との距離が変化する第2の部分と、第2の部分の先端部分から曲がって延びる第3の部分とを有することを特徴とすることができる。
 このようにすることで、ダイポールアンテナの長さを短くすることができる。
 このようなダイポールアンテナは、台部と反射部材の平面部との間に挿入される誘電体で構成されたスペーサを備え、スペーサは、台部を保持するための台部保持部材を有することを特徴とすることができる。
 このようにすることで、スペーサを装着させる作業の効率が向上する。
 さらに、台部と反射部材の平面部との間に挿入される誘電体で構成されたスペーサを備え、スペーサは、反射部材に保持されるためのスペーサ保持部材を特徴とすることができる。
 このようにすることで、ダイポールアンテナを反射板に固定する作業の効率が向上する。
 本発明によれば、互いに異なる偏波を送受信するアンテナ素子間の偏波結合量を低減した偏波共用のアンテナ等を提供できる。
第1の実施の形態が適用される移動体通信の基地局アンテナの全体構成の一例を示す図である。(a)は、基地局アンテナの斜視図、(b)は、基地局アンテナの設置例を説明する図である。 第1の実施の形態におけるアレイアンテナの構成の一例を示す図である。(a)は、アレイアンテナの正面図(x-y面での図)、(b)は、(a)のIIB-IIB線でのアレイアンテナの断面図(x-z面での図)である。 アンテナにおけるダイポールアンテナの詳細図である。(a)は、正面図、(b)は、(a)の上面図、(c)は、裏正面図、(d)は、(a)の側面図である。 スペーサを説明する図である。(a)は、上面図、(b)は、正面図、(c)は、側面図、(d)は、反射板の平面部におけるスペーサを取り付ける部分の一例を示す図である。 導電性部材を説明する図である。(a-1)は、円柱の場合の上面図、(a-2)は、円柱の場合の正面図、(a-3)は、円柱の場合の底面図、(b-1)は、変形例である板状の場合の上面図、(b-2)は、板状の場合の正面図、(b-3)は、板状の場合の底面図である。 低周波数帯の電波における偏波間結合量の測定値である。(a)は、第1の実施の形態の導電性部材を備える場合、(b)は、第1の実施の形態を採用せず、導電性部材を備えない場合である。 導電性部材の効果を説明する図である。(a)は、第1の実施の形態の導電性部材を備える場合、(b)は、第1の実施の形態を採用せず、導電性部材を備えない場合である。 第2の実施の形態におけるアレイアンテナの構成の一例を示す図である。(a)は、アレイアンテナの正面図(x-y面での図)、(b)は、(a)のVIIIB-VIIIB線でのアレイアンテナの断面図(x-z面での図)である。 第3の実施の形態におけるアレイアンテナの構成の一例を示す図である。(a)は、アレイアンテナの正面図(x-y面での図)、(b)は、(a)のIXB-IXB線でのアレイアンテナの断面図(x-z面での図)である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[第1の実施の形態]
<基地局アンテナ1>
 図1は、第1の実施の形態が適用される移動体通信の基地局アンテナ1の全体構成の一例を示す図である。図1(a)は、基地局アンテナ1の斜視図、図1(b)は、基地局アンテナ1の設置例を説明する図である。
 基地局アンテナ1は、図1(a)に示すように、例えば鉄塔20に保持された複数のセクタアンテナ10-1~10-3(区別しない場合は、セクタアンテナ10と表記する。)を備える。セクタアンテナ10-1~10-3は、それぞれがアレイアンテナ11を備える。そして、アレイアンテナ11は、風雨などから保護するためのカバーであるレドーム12で覆われている。すなわち、セクタアンテナ10-1~10-3の外側はレドーム12であって、レドーム12の内部にアレイアンテナ11が収納されている。図1(a)では、レドーム12は、円筒状としたが、他の形状であってもよい。基地局アンテナ1は、図1(b)に示すセル2内において電波の送受信を行う。
 セクタアンテナ10は、後述するように異なる二つの周波数帯のそれぞれにおいて直交する偏波の電波を送受信する周波数共用且つ偏波共用アンテナである。ここで異なる二つの周波数帯を高周波数帯及び低周波数帯と表記する。なお、高周波数帯において設計する周波数を周波数f0H(波長λ0H)、低周波数帯において設計する周波数を周波数f0L(波長λ0L)とする。なお、波長λ0H、λ0Lは自由空間波長である。例えば、高周波数帯は、2GHz帯、低周波数帯は、800MHz帯である。
 低周波数数帯が第1の周波数帯の一例、高周波数帯が第2の周波数帯の一例である。
 ここでは、図1(a)に示すように、セクタアンテナ10-1に対して、xyz座標を設定する。つまり、上下方向をy方向に設定する。そして、後述する図2に示すように、セクタアンテナ10-1を例にとり、アレイアンテナ11における反射板300の平面部310に沿ってx方向を設け、反射板300の平面部310に垂直にz方向を設定する。
 x方向が水平方向、y方向が垂直方向、y-z面が垂直面、x-z面が水平面である。
 基地局アンテナ1は、図1(b)に示すように、セル2内において電波の送受信を行う。セル2は、セクタアンテナ10-1~10-3に対応して複数のセクタ3-1~3-3(区別しない場合は、セクタ3と表記する。)に分割されている。そして、セクタアンテナ10-1~10-3は、それぞれのアレイアンテナ11が送受信する電波のメインローブ13の方向が、対応するセクタ3-1~3-3に向くように設定されている。
 なお、図1では、基地局アンテナ1は、3個のセクタアンテナ10-1~10-3及びこれらに対応するセクタ3-1~3-3を備えるとした。しかし、セクタアンテナ10及びセクタ3は、3以外の予め定められた個数であってよい。また、図1(b)では、セクタ3は、セル2を3等分に分割(中心角120°)して構成されているが、等分でなくともよく、いずれか1つのセクタ3が他のセクタ3に比べ広く又は狭く構成されていてもよい。
 それぞれのセクタアンテナ10は、アレイアンテナ11に送信信号及び受信信号を伝送する送受信ケーブル14-1~14-4に接続されている。なお、送受信ケーブル14-1、14-2は、高周波数帯の互いに直交する偏波の電波の送信信号及び受信信号を伝送する。送受信ケーブル14-3、14-4は、低周波数帯の互いに直交する偏波の電波の送信信号及び受信信号を伝送する。
 送受信ケーブル14-1~14-4は、基地局(不図示)内に設けられた送信信号の生成及び受信信号を受信する送受信部(不図示)に接続されている。送受信ケーブル14-1~14-4は、例えば同軸ケーブルである。
 なお、基地局アンテナ1、セクタアンテナ10、アレイアンテナ11などは、アンテナの可逆性により、電波を送信及び受信することができる。
 セクタアンテナ10は、アレイアンテナ11が備える複数のアンテナ(後述する図2のアンテナ100-1~100-7、200-1、200-2)に対して送受信信号を分配/合成する分配/合成回路、及び、複数のアンテナ間において送受信信号の位相を異ならせる移相器を備えてもよい。アンテナ間において、送受信信号の位相を異ならせることで、電波(ビーム)の放射角度を地上方向に傾ける(チルトさせる)ことができる。
<アレイアンテナ11>
 図2は、第1の実施の形態におけるアレイアンテナ11の構成の一例を示す図である。図2(a)は、アレイアンテナ11の正面図(x-y面での図)、図2(b)は、図2(a)のIIB-IIB線でのアレイアンテナ11の断面図(x-z面での図)である。ここでは、図1(a)に示したセクタアンテナ10-1を例にして、アレイアンテナ11を説明する。
 アレイアンテナ11は、高周波数帯の互いに直交する偏波の電波を送受信するアンテナ100-1~100-7(区別しない場合は、アンテナ100と表記する。)と、低周波数帯の互いに直交する偏波の電波を送受信するアンテナ200-1、200-2(区別しない場合は、アンテナ200と表記する。)とを備える。
 さらに、アレイアンテナ11は、一方の面側にアンテナ100-1~100-7、200-1、200-2が配列された反射板300と、アンテナ100-1~100-7のy方向における間及び両端部に設けられた仕切り板400-1~400-8(区別しない場合は、仕切り板400と表記する。)とを備える。
 反射板300は、反射部材の一例である。
 アンテナ100-1~100-7は、反射板300のx方向の中央部において、y方向に配列されている。
 アンテナ200-1、200-2も、反射板300のx方向の中央部において、y方向に配列されている。
 すなわち、アレイアンテナ11は、偏波共用及び周波数共用である。
 偏波共用のアレイアンテナにおいては、偏波間の結合量(偏波間結合量)が広帯域にわたって低く抑えられることが求められる。なお、偏波間結合量とは、異なる偏波をそれぞれが送受信するアンテナ素子(後述するダイポールアンテナ110a、110b又はダイポールアンテナ210a、210b、210c、210d)間におけるSパラメータS21をいう。
 また、周波数共用のアレイアンテナにおいては、高周波帯の電波を送受信するアンテナ(図1におけるアンテナ100-1~100-7)と低周波帯の電波を送受信するアンテナ(図1におけるアンテナ200-1、200-2)との配置の自由度が少なくなる。このため、アンテナの配置によっては、高周波帯の電波を送受信するアンテナの垂直面(y-z面)内の指向特性にグレーティングローブが発生したり、低周波帯の電波を送受信するアンテナにおける水平面(x-z面)内の指向特性の対称性が損なわれたりする。つまり、アンテナの配置によって指向特性が劣化する。よって、高周波帯の電波を送受信するアンテナと低周波帯の電波を送受信するアンテナとは、指向特性の劣化が抑制されるように配置されることが求められる。
 さらに、移動体通信の基地局アンテナ1には、相互変調歪やホワイトノイズの発生を低く抑えることが求められる。
 アンテナ100は、アンテナ100-1に示すように、二つのダイポールアンテナ110a、110bを交差(クロス)して配置したクロスダイポール構造である。-y方向を大地の方向としたとき、ダイポールアンテナ110aが、+45°傾いた偏波の電波を送受信し、ダイポールアンテナ110bが、-45°傾いた偏波の電波を送受信する。
 なお、ダイポールアンテナ110a、110bを区別しない場合は、ダイポールアンテナ110と表記する。ダイポールアンテナ110の中心の記号は、給電点を示す。ダイポールアンテナ110は、アンテナ素子の一例である。
 そして、アンテナ100は、y方向に間隔pで配列されている。
 +45°傾いた偏波が第1の偏波の一例、-45°傾いた偏波が第2の偏波の一例である。
 アンテナ200は、アンテナ200-1に示すように、四つのダイポールアンテナ210a、210b、210c、210dと二つの導電性部材220a、220bとを備える。なお、ダイポールアンテナ210a~210dは、同じ構造を有している。よって、それぞれを区別しない場合は、ダイポールアンテナ210と表記する。ダイポールアンテナ210の中心の記号は、給電点を示す。ダイポールアンテナ210は、アンテナ素子の一例である。
 また、導電性部材220a、220bは、同じ構造を有している。よって、それぞれを区別しない場合は、導電性部材220と表記する。
 ダイポールアンテナ210a、210bは、それぞれの一端部が近接して配置されている。そして、ダイポールアンテナ210a、210bを延長した交点(二つのダイポールアンテナ210a、210bをそれぞれが含むように設けた仮想的な二つの延長線の交点)の近傍に、ダイポールアンテナ210a、210bのそれぞれの一端部に近接して設けられた導電性部材220aを備える。
 また、ダイポールアンテナ210c、210dは、それぞれの一端部が近接して配置されている。そして、ダイポールアンテナ210c、210dを延長した交点(二つのダイポールアンテナ210c、210dをそれぞれが含むように設けた仮想的な二つの延長線の交点)の近傍に、ダイポールアンテナ210c、210dのそれぞれの一端部に近接して設けられた導電性部材220bを備える。
 そして、ダイポールアンテナ210aの他端部とダイポールアンテナ210dの他端部とは、互いに近接して配置されている。なお、ダイポールアンテナ210aの他端部とダイポールアンテナ210dの他端部とは、アンテナ100-1に近接して設けられている。
 同様に、ダイポールアンテナ210bの他端部とダイポールアンテナ210cの他端部とは、互いに近接して配置されている。なお、ダイポールアンテナ210bの他端部とダイポールアンテナ210cの他端部とは、アンテナ100-4に近接して設けられている。
 さらに、ダイポールアンテナ210a、210b及び導電性部材220aと、ダイポールアンテナ210c、210d及び導電性部材220bとは、反射板300の平面部310のx方向の中央部においてy方向に設けた軸に対して対称の位置関係に設けられている。
 -y方向を大地の方向としたとき、ダイポールアンテナ210a、210cが、+45°傾いた偏波の電波を送受信する。そして、ダイポールアンテナ210b、210dが、-45°傾いた偏波の電波を送受信する。よって、ダイポールアンテナ210a、210cとダイポールアンテナ210b、210dとが受信する偏波の向きは、90°異なる。
 そして、対向して配置されているダイポールアンテナ210a、210cの組と、ダイポールアンテナ210b、210dの組とは、それぞれ同位相同振幅で信号が分配/合成される。
 つまり、四つのダイポールアンテナ210a、210b、210c、210dと、ダイポールアンテナ210a、210bを延長した交点の近傍に、ダイポールアンテナ210a、210bのそれぞれの一端部に近接して設けた導電性部材220aと、ダイポールアンテナ210c、210dを延長した交点の近傍に、ダイポールアンテナ210c、210dのそれぞれの一端部に近接して設けた導電性部材220bとを合わせて、一組の±45°偏波共用アンテナを構成している。
 このため、ダイポールアンテナ210a、210b、210c、210dは、四角形のそれぞれの辺に配置されている。なお、四角形は正方形であって、それぞれの辺の中心にダイポールアンテナ210の給電点があることがよい。
 四つのダイポールアンテナ210a、210b、210c、210dを、正方形のそれぞれの辺に対応する位置に配置することで、水平方向(x方向)及び垂直方向(y方向)の対称性がよくなり、水平面(x-z面)内及び垂直面(y-z面)内の指向特性の対称性が向上する。
 アンテナ200(アンテナ200-1、200-2)は、y方向に間隔pで配列されている。
 ここで、「近接して設けた」における近接とは、他の部分より近い距離にあることであって、低周波数帯において設計する波長λ0Lの1/4以内をいう。
 そして、「交点の近傍に設けた」における近傍とは、交点から波長λ0Lの1/4以内をいう。
 導電性部材220(導電性部材220a、220b)は、図2(b)に示すように、直径CD、高さCHの円柱である(後述する図5(a)参照)。そして、導電性部材220は、一端部が反射板300の平面部310に設けられた貫通孔を介して、ネジによりにより固定されている(不図示)。そして、導電性部材220は、反射板300の平面部310に直流的に接続されていることがよい。
 導電性部材220は、例えばアルミニウムなどの導電性材料で構成されている。
 導電性部材220は、反射板300の平面部310に一か所で接続されていることがよい。導電性部材220が反射板300の平面部310に一か所(一点)で接続されることにより、複数個所や線状又は面状で接続される場合に比べて、相互変調歪やホワイトノイズの発生が抑制される。
 なお、導電性部材220は、反射板300の平面部310に対して絶縁体材料を介して固定され、容量結合により高周波的に接続されてもよい。直接接続される場合に比べて、相互変調歪やホワイトノイズの発生の抑制が容易になる。
 なお、導電性部材220は、角柱であってもよく、他の断面形状を有する棒状の部材であってもよい。また、導電性部材220は、後述するように、板状の部材であってもよい。
 なお、ダイポールアンテナ210aが第1のアンテナ素子の一例、ダイポールアンテナ210bが第2のアンテナ素子の一例、ダイポールアンテナ210cが第3のアンテナ素子の一例、及び、ダイポールアンテナ210dが第4のアンテナ素子の一例である。そして、導電性部材220aが導電性部材又は第1の導電性部材の一例、導電性部材220bが他の導電性部材又は第2の導電性部材の一例である。
 なお、導電性部材220aの代わりに、ダイポールアンテナ210a、210dを延長した交点の近傍に、ダイポールアンテナ210aの他端部とダイポールアンテナ210dの他端部とに近接させて導電性部材220aと同様な導電性部材220を配置してもよい。同様に、導電性部材220bの代わりに、ダイポールアンテナ210b、210cを延長した交点の近傍に、ダイポールアンテナ210bの他端部とダイポールアンテナ210cの他端部に近接させて導電性部材220bと同様な導電性部材220を配置してもよい。
 上記においては、アンテナ200は、四つのダイポールアンテナ210と二つの導電性部材220とを備えるとした。これは、アンテナ200の水平方向及び垂直方向の対称性をよくするためである。
 しかし、アンテナ200は、必ずしも四つのダイポールアンテナ210と二つの導電性部材220とを備えなくともよい。すなわち、アンテナ200は、二つのダイポールアンテナ210と一つの導電性部材220とを備えていてもよい。つまり、アンテナ200は、アンテナ200-1に示すように、ダイポールアンテナ210a、210bと、ダイポールアンテナ210a、210bをそれぞれ延長した交点の近傍に、ダイポールアンテナ210a、210bのそれぞれの一端部に近接して設けた導電性部材220aとを備えるとしてもよい。この場合、ダイポールアンテナ210aが第1のアンテナ素子の一例、ダイポールアンテナ210bが第2のアンテナ素子の一例である。そして、導電性部材220aが導電性部材の一例である。
 また、アンテナ200は、アンテナ200-1に示すように、ダイポールアンテナ210c、210dと、ダイポールアンテナ210c、210dをそれぞれ延長した交点の近傍に、ダイポールアンテナ210c、210dのそれぞれの一端部に近接して設けた導電性部材220bとを備えるとしてもよい。この場合、ダイポールアンテナ210cが第1のアンテナ素子の一例、ダイポールアンテナ210dが第2のアンテナ素子の一例である。そして、導電性部材220bが導電性部材の一例である。
 ダイポールアンテナの長さは、送受信する電波の波長に依存し、波長が長いほど長くなる。よって、高周波数帯の電波を送受信するアンテナ100のダイポールアンテナ110の長さDWは、低周波数帯の電波を送受信するアンテナ200のダイポールアンテナ210の長さDWに比べて短い。なお、ダイポールアンテナ110の長さDW及びアンテナ200のダイポールアンテナ210の長さDWは、ダイポールアンテナ110及びダイポールアンテナ210が反射板300の平面部310に投影された場合における端間の長さをいう。
 高周波数帯の電波を送受信するアンテナ100(アンテナ100-1~100-7)は、垂直面(y-z面)内の指向特性におけるグレーティングローブの発生を抑制するように、例えば、間隔pを約0.8λ0Hに設定して配列されている。
 これに対して、低周波数帯の電波を送受信するアンテナ200(アンテナ200-1、200-2)は、高周波数帯の電波を送受信するアンテナ100の3個分に対して1個が配列されている。すなわち、アンテナ200の配列の間隔pは、アンテナ100の配列の間隔pの3倍(p=3×p)である。例えば、低周波数帯の電波を送受信するアンテナ200は、間隔pが約0.7λ0Lに設定されている。
 つまり、アンテナ100-2とアンテナ100-3との間のy方向における位置は、アンテナ200-1の導電性部材220a、220bが設けられるy方向の位置に対応する。つまり、ダイポールアンテナ210a、210b、210c、210dは、二つのアンテナ100(アンテナ100-2、100-3)を内側に囲むように設けられている。
 そして、アンテナ200-1の-y方向の外側に、アンテナ100-1が設けられ、アンテナ200-1の+y方向の外側に、アンテナ100-4が設けられている。
 すなわち、アンテナ200は、三つのアンテナ100のy方向の長さ(間隔p)を繰り返し単位(間隔)として繰り返すようにy方向に配置されている。
 つまり、第1の実施の形態では、アンテナ200を構成する正方形のそれぞれの一辺に配置した四つのダイポールアンテナ210で囲まれた領域に、高周波数帯の電波を送受信するアンテナ100を二つ配置し、二つのアンテナ200間に一つのアンテナ100を配置している。
 このように、低周波数帯の電波を送受信するアンテナ200の間隔pを、高周波数帯の電波を送受信するアンテナ100の間隔pの3倍とすることで、それぞれのアンテナから見たときの対称性を維持しつつ、高周波数帯の電波を送受信するアンテナ100の垂直面(y-z面)内の指向特性におけるグレーティングローブの発生が抑制され、良好な指向特性が得られる。
 なお、アンテナ200のダイポールアンテナ210の全長は、送受信する低周波数帯の電波の波長で設定される。そこで、上記の間隔Pと間隔Pとの関係を保持するように、ダイポールアンテナ210は、端部が折り曲げられて、長さDWとなっている。ダイポールアンテナ210の形状については後述する。
 反射板300は、平面部310と、±x方向側の両端部分に平面部310からz方向に起立してy方向に延びる2つの起立部320-1、320-2(区別しない場合は、起立部320と表記する。)を備える。
 さらに、反射板300は、平面部310の中央と±x方向側の両端部分との間に、平面部310からz方向に起立してy方向に延びる2つの起立部330-1、330-2(区別しない場合は、起立部330と表記する。)を備える。
 そして、アンテナ100-1~100-7は、反射板300の平面部310のx方向の中央部分に、間隔pでy方向に配列されている。
 なお、2つの起立部330-1、330-2は、アンテナ100-1~100-7をx方向と-x方向とから挟むように設けられている。
 また、アンテナ200-1、200-2は、起立部320-1と起立部330-1との間において、間隔pでy方向に配列されている。
 反射板300の平面部310と起立部320-1、320-2とは、例えば平板を折り曲げる等により一体型に構成してもよいし、それぞれを別の部材で構成し、それらをネジ等で結合して構成してもよい。また、平面部310と起立部320-1、320-2とは、絶縁体材料を介して容量結合されてもよい。
 そして、起立部330-1、330-2は、平面部310とは別の部材で構成し、反射板300の平面部310にネジ等で結合して構成してもよい。このとき、平面部310と起立部330-1、330-2とは、絶縁体材料を介して容量結合されてもよい。
 さらに、例えば平板を折り曲げる等により両端部分に起立部330-1、330-2を設けた部材を構成し、両端に起立部320-1、320-2を設けた部材と重ね合わせて反射板300としてもよい。
 なお、反射板300の起立部320-1、320-2、330-1、330-2は、平面部310に対して垂直であるとしたが、斜めであってもよい。
 反射板300は、例えばアルミニウムなどの導電性材料で構成されている。
 仕切り板400-1~400-8は、アンテナ100-1~100-7の配列において、隣接する二つのアンテナ100の間及びy方向の両端部に設けられている。仕切り板400-1~400-8は、反射板300の起立部330-1、330-2と同様に、反射板300の平面部310から起立するように、平面部310に接続されるとともに、起立部330-1、330-2に接続される。
 なお、仕切り板400-1~400-8は、反射板300の平面部310に対して容量結合されてもよい。また、仕切り板400-1~400-8は、反射板300の起立部330-1、330-2に対して容量結合されてもよい。
 なお、仕切り板400は、反射板300の平面部310に対して垂直であるとしたが、斜めであってもよい。
 仕切り板400は、例えばアルミニウムなどの導電性材料で構成されている。
 反射板300の起立部330-1、330-2は、アンテナ100を±x方向から挟み込む。仕切り板400は、アンテナ100を±y方向から挟み込む。このようにすることで、アンテナ100が、x方向とy方向とで電気的に対称となるようにしている。このようにすることで、x方向(水平方向)及びy方向(垂直方向)の指向特性が向上する。
 なお、起立部320-1、320-2、330-1、330-2及び仕切り板400-1~400-8の全部又は一部を除いてもよい。
 図2(b)に示すように、反射板300は、起立部320-1、320-2間の幅が、幅RW、起立部320-1、320-2の平面部310からの高さが、高さRHである。また、反射板300は、起立部330-1、330-2間の幅が、幅RW、起立部330-1、330-2及び仕切り板400-1~400-8の平面部310からの高さが、高さRHである。
 例えば、幅RWは、0.7λ0L、高さRHは、0.07λ0Lである。また、幅RWは、0.7λ0H、高さRHは、0.15λ0Hである。
 また、アンテナ100の放射部は、平面部310から距離DHに設けられ、アンテナ200の放射部は、平面部310から距離DHに、設けられている。なお、放射部とは、後述する図3(a)に示すダイポールアンテナ210の放射部211、212に相当する部分をいう。
 例えば、距離DHは、0.25λ0H、距離DHは、0.2λ0Lである。
 これらの寸法及び起立部330-1、330-2の反射板300の平面部310における位置等は、要求されるアレイアンテナ11の指向特性等により適宜変更可能である。
<ダイポールアンテナ210>
 図3は、アンテナ200におけるダイポールアンテナ210の詳細図である。図3(a)は、正面図、図3(b)は、図3(a)の上面図、図3(c)は、裏正面図、図3(d)は、図3(a)の側面図である。
 図3(a)、(b)には、反射板300の平面部310を合わせて示している。
 図3(a)に示すように、ダイポールアンテナ210は、放射部211、212と、脚部213、214と、台部215とを備える。また、ダイポールアンテナ210は、給電ケーブル216と、給電板217とを備える。さらに、ダイポールアンテナ210は、台部215と反射板300の平面部310との間に、スペーサ500を備える。なお、スペーサ500を備えなくてもよい。
 ダイポールアンテナ210の放射部211、212、脚部213、214及び台部215は、例えばアルミニウムなどの導電性材料により削り出しにより構成されている。なお、ダイキャストで構成してもよい。
 スペーサ500は、テトラフルオロエチレンや、ポリアセタールなどの誘電体材料で構成されている。
 給電ケーブル216は、送信信号及び受信信号を伝搬する同軸ケーブルである。
 給電板217は、銅などの導電性材料で構成されている。
 図3(a)を中心に、ダイポールアンテナ210を説明する。なお、スペーサ500については後述するので、ここではスペーサ500を除いたダイポールアンテナ210の構成を詳細に説明する。
 放射部211は、脚部213から反射板300の平面部310に平行に延びる、板状の第1の部分211aを備える。そして、第1の部分211aに連なって、反射板300の平面部310との距離が徐々に小さくなる、板状の第2の部分211bを備える。さらに、第2の部分211bの先端部分の側面から、反射板300の平面部310側に向かって延びる、板状の第3の部分211cを備える。ここで、第3の部分211cは、第1の部分211a及び第2の部分211bの表面が上側を向いているのと異なり、正面側を向いている。すなわち、第3の部分211cは、第2の部分211bの先端部の側面に連なるように設けられている(図3(b)、(d)参照)。
 放射部212は、脚部214から反射板300の平面部310に平行に延びる、板状の第1の部分212aを備える。そして、第1の部分212aに連なって、反射板300の平面部310との距離が徐々に小さくなる、板状の第2の部分212bを備える。さらに、第2の部分212bの先端部分の側面から、反射板300の平面部310側に向かって延びる、板状の第3の部分212cを備える。ここで、第3の部分212cは、第3の部分211cと同様に、表面が正面側を向いている。すなわち、第3の部分212cは、第2の部分212bの先端部の側面に連なるように設けられている。そして、第3の部分211cと第3の部分212cとは、同じ側(正面側)に設けられている(図3(b)、(d)参照)。
 さらに、放射部212の第1の部分212aには、給電ケーブル216の外導体と接続されるとともに、内導体及び内導体の周囲の誘電体を通す貫通孔212dが設けられている。
 脚部213は、断面がL字状(図3(b)参照)であって、一端部(上側)が放射部211の第1の部分211aの端部に接続されている。つまり、脚部213のL字状の断面が、放射部211の第1の部分211aの端部(第2の部分212bと接続されていない側)と接続されている。そして、脚部213は、他端部(下側)が台部215に接続されている。
 脚部214は、脚部213と同様であって、一端部(上側)が放射部212の第1の部分212aの端部に接続され、他端部(下側)が台部215に接続されている。
 つまり、脚部213、214の放射部211、212と接続される一端部(上側)は、分離している。しかし、他端部(下側)は、反射板300の平面部310に接続されることで、互いに接続されている。つまり、脚部213、214の他端部(下側)は、直流的に接続されている。
 脚部213、214は、支持部の一例である。
 台部215は、スペーサ500を挟んで反射板300の平面部310に固定されるように構成されている。このため、台部215の裏面(反射板300側)には、スペーサ500の貫通孔(後述する図4(a)の貫通孔513)を介して、ネジで台部215を反射板300の平面部310に固定するためのネジ孔215aが設けられている。
 このように、誘電体材料で構成されたスペーサ500を介して台部215と反射板300の平面部310とを接続することにより、接続面からの相互変調歪やホワイトノイズの発生が抑制される。
 さらに、台部215は、スペーサ500の貫通孔(後述する図4(a)の貫通孔512)を介して、給電ケーブル216を通過させる貫通孔215bを備える。なお、台部215が固定される反射板300の平面部310には、給電ケーブル216を通過させる貫通孔(後述する図4(d)の貫通孔311)が設けられている。
 つまり、反射板300の裏面から反射板300の平面部310の貫通孔(後述する図4(d)の貫通孔311)、スペーサ500の貫通孔512及び台部215の貫通孔215bを通じて、給電ケーブル216が挿入される。
 台部215の貫通孔215bを通過した給電ケーブル216は、脚部214に沿って、放射部212に向かう。
 そして、給電ケーブル216の外導体が、放射部212の第1の部分212aに設けられた貫通孔212dにハンダなどにより接続される。そして、内導体が、放射部212の第1の部分212aに設けられた貫通孔212dを通過して、給電板217の一端部にハンダなどにより接続される。そして、給電板217の他端部が放射部211の第1の部分211aにハンダなどにより接続される。
 さらに、台部215は、スペーサ500に設けられた凸部(後述する図4(a)、(b)、(c)に示す凸部511a、511b)と嵌合して、台部215をスペーサ500に対して位置決めする凹部215c、215dを備える。
 以上説明したように、ダイポールアンテナ210は、放射部211、212は折り曲げ部を有するように構成されている。つまり、折り曲げ部とは、放射部211の第2の部分211b及び第3の部分211c、放射部212の第2の部分212b及び第3の部分212cである。
 折り曲げ部を備えない場合、放射部211の端と放射部212の端との間の距離であるダイポールアンテナ210の長さは、電波の波長λ0Lに対して約1/2λ0Lである。
 しかし、図3に示すように、ダイポールアンテナ210は、折り曲げ部を備えることで、長さDWは、1/2λ0Lより短くなる。
 逆に言えば、折り曲げ部は、ダイポールアンテナ210の長さDWが、1/2λ0Lより短くなるように構成されればよい。つまり、第2の部分211bは、平面部310との距離が変化するように構成されていればよく、第3の部分211cは、第2の部分211bから曲がって延びていればよい。同様に、第2の部分212bは、平面部310との距離が変化するように構成されていればよく、第3の部分212cは、第2の部分212bから曲がって延びていればよい。
 これにより、4個のダイポールアンテナ210(ダイポールアンテナ210a、210b、210c、210d)を配置した場合、それぞれのダイポールアンテナ210の端間の距離が遠くなるため、隣接する異なる偏波のダイポールアンテナ210間の偏波間結合量がより低く抑えられる。
 そして、低周波数帯において設計する周波数f0Lが変更されても、ダイポールアンテナ210の折り曲げ部である放射部211の第2の部分211b及び第3の部分211c、放射部212の第2の部分212b及び第3の部分212cの長さを調整することにより、予め定められた周波数帯に整合をとることができる。さらに、ダイポールアンテナ210の長さDWを同じ又は長さDWの変更を小さくすることにより、図2に示したアレイアンテナ11における高周波数帯の電波を送受信するアンテナ100と低周波数帯の電波を送受信するアンテナ200との配列を変更することを要しない。すなわち、アレイアンテナ11の設計が容易になる。
 さらに、低周波数帯の電波を送受信するアンテナ200は、図2(a)に示したように、反射板300の±x方向における端部に配置される。また、反射板300の平面部310からの距離DHも大きい。よって、ダイポールアンテナ210が放射部211、212に折り曲げ部(第2の部分211b、212b、第3の部分211c、212c)を備えることで、レドーム12が小さくなる(図1(a)参照)。
<スペーサ500>
 図4は、スペーサ500を説明する図である。図4(a)は、上面図、図4(b)は、正面図、図4(c)は、側面図、図4(d)は、反射板300の平面部310におけるスペーサ500を取り付ける部分の一例を示す図である。
 スペーサ500は、反射板300の平面部310とダイポールアンテナ210の台部215とを直接接触させて導通させることを抑制するための、誘電体で構成された部材である。
 スペーサ500は、底面部510と底面部510から一方の面(上面)側に立ち上がる縁部520とを備える。
 図4(a)、(b)、(c)に示すように、底面部510には、ダイポールアンテナ210の台部215を位置決めするために、台部215の凹部215c、215dと嵌合する凸部511a、511b(区別しない場合は凸部511と表記する。)と、給電ケーブル216を通すための貫通孔512と、台部215のネジ孔215aに対してネジを通すための貫通孔513とを備える。なお、給電ケーブル216を通すための貫通孔512は、周囲が延長部分として、底面部510から底面部510の他方の面(下面)側に張り出している。
 縁部520は、底面部510から上面側に立ち上がる側に、ダイポールアンテナ210の台部215を保持し、仮固定されるように保持する台部保持爪521を備える。また、縁部520は、底面部510から立ち上がる側の反対側の反射板300の平面部310と接する側に、反射板300の平面部310にスペーサ500を仮固定するようにスペーサ500を保持するスペーサ保持爪514a、514b(区別しない場合はスペーサ保持爪514と表記する。)を備える。
 台部保持爪521は、台部保持部材の一例、スペーサ保持爪514は、スペーサ保持部材の一例である。
 ダイポールアンテナ210の台部215に設けられた凹部215c、215dにスペーサ500に設けられた凸部511a、511bをそれぞれ挿入して嵌合させることによって、ダイポールアンテナ210の予め定められた位置にスペーサ500が装着される。よって、生産時に、ダイポールアンテナ210及び/又はスペーサ500に寸法のばらつきが生じたとしても、貫通孔512、513の位置がずれることが抑制される。さらに、台部保持爪521によって、ダイポールアンテナ210の台部215がスペーサ500に仮固定されるため、スペーサ500を装着させる作業の効率が飛躍的に向上する。
 図4(d)に示すように、反射板300の平面部310は、ダイポールアンテナ210を取り付ける部分に、給電ケーブル216を貫通させる貫通孔311と、ダイポールアンテナ210の台部215のネジ孔215aにネジを挿入してダイポールアンテナ210を反射板300に取り付ける貫通孔312と、スペーサ500を仮固定するように保持するためにスペーサ500のスペーサ保持爪514a、514bが挿入される貫通孔313a、313b(区別しない場合は、貫通孔313と表記する。)が設けられている。
 次に、ダイポールアンテナ210の反射板300への取り付け方法を説明する。
 スペーサ500が装着されたダイポールアンテナ210を、反射板300の平面部310へ固定する際、スペーサ500の貫通孔512の延長部分を貫通孔311へ挿入し、貫通孔313a、313bにスペーサ500のスペーサ保持爪514a、514bを挿入して反射板300の平面部310に引っ掛ける。そして、貫通孔312にネジを通して、ネジによってスペーサ500が装着された台部215のネジ孔215aに固定する。
 このとき、スペーサ500のスペーサ保持爪514a、514bは、反射板300の平面部310に設けられた貫通孔313a、313bに引っ掛けられているため、一つのネジで台部215を反射板300の平面部310に固定しても、回転や位置ずれ等が生じにくく、ダイポールアンテナ210を反射板300に対して確実に固定することができるとともに、ダイポールアンテナ210を反射板300に固定する作業性も飛躍的に向上する。
 また、スペーサ500における貫通孔512の延長部分を、反射板300の貫通孔311に挿入することで、貫通孔311の端部によって、給電ケーブル216を傷つけることが抑制される。
 このように、ダイポールアンテナ210の台部215にスペーサ500を装着し、反射板300の平面部310に固定することによって、作業性を悪化させることなく、相互変調歪やホワイトノイズの発生が抑制される。
 なお、凸部511の数や、台部保持爪521の数、そしてスペーサ保持爪514の数は、上記の数でなくともよい。これらの数は、適宜変更可能である。
<導電性部材220>
 図5は、導電性部材220を説明する図である。図5(a-1)は、円柱の場合の上面図、図5(a-2)は、円柱の場合の正面図、図5(a-3)は、円柱の場合の底面図、図5(b-1)は、変形例である板状の場合の上面図、図5(b-2)は、板状の場合の正面図、図5(b-3)は、板状の場合の底面図である。
 図5(a-1)、(a-2)に示すように、導電性部材220は、直径CD、高さCHの円柱であって、棒状の一例である。そして、図5(a-2)、(a-3)に示すように、導電性部材220の一端部に反射板300の平面部310に固定するためのネジ孔221が設けられている。導電性部材220は、このネジ孔221を介して、反射板300の平面部310の裏面側から差し込まれたネジによりに直流的に接続される。すなわち、導電性部材220は、一か所で反射板300の平面部310に直流的に接続される。これにより、相互変調歪やホワイトノイズの発生を低く抑えることができる。
 図5(a-1)の上面図に示す凹部(符号無し)は、導電性部材を固定する際に、スクリュードライバの刃先を挿入するための溝である。なお、導電性部材220は、凹部を備えなくてもよい。
 例えば、導電性部材220は、直径CDが9mm、高さCHが50mmである。要求される偏波間結合量により、直径CD及び高さCHを調整すればよい。
 なお、前述したように、導電性部材220は、角柱であってもよく、他の断面形状を有する棒状の部材であってもよい。
 図5(b-1)、(b-2)に示すように、変形例である導電性部材220は、幅CW、厚さCT、高さCHの板であって、板状の一例である。そして、図5(b-2)、(b-3)に示すように、導電性部材220の一側面部に反射板300の平面部310に固定するためのネジ孔221が設けられている。よって、導電性部材220は、一か所で反射板300の平面部310に直流的に接続される。
<偏波間結合量>
 図6は、低周波数帯の電波における偏波間結合量の測定値である。図6(a)は、第1の実施の形態の導電性部材220を備える場合、図6(b)は、第1の実施の形態を採用せず、導電性部材220を備えない場合である。図6(a)、(b)において、横軸は正規化された周波数(f/f0L)、縦軸は偏波間結合量(dB)である。なお、周波数f0Lは、800MHz帯に設定されている。
 ここで示す偏波間結合量は、上記において例として示した数値のアレイアンテナ11において、各アンテナ200における+45°偏波の電波を送受信するダイポールアンテナ210aと、-45°偏波の電波を送受信するダイポールアンテナ210bとの間において測定したSパラメータS21である。
 図6(a)に示す第1の実施の形態における偏波間結合量の最大値は、約-28dB程度である。これに対し、図6(b)に示す第1の実施の形態を採用せず、導電性部材220を備えない場合の偏波間結合量の最大値は、約-22dBである。すなわち、第1の実施の形態では、偏波間結合量の最大値が約6dB改善されるとともに、0.85f/f0Lから1.15f/f0Lの広帯域にわたって、偏波間結合量が低く抑えられていることが分かる。
 図7は、導電性部材220の効果を説明する図である。図7(a)は、第1の実施の形態の導電性部材220aを備える場合、図7(b)は、第1の実施の形態を採用せず、導電性部材220を備えない場合である。図7(a)は、図2に示したアンテナ200-1におけるダイポールアンテナ210a、210b及び導電性部材220aの部分を取り出して示している。そして、図7(a)、(b)において、ダイポールアンテナ210aによって励振された電流を実線で示し、ダイポールアンテナ210bによって励振された電流を点線で示す。
 図7(a)に示すように、第1の実施の形態の導電性部材220aを備える場合は、ダイポールアンテナ210aによって励振された電流、及び、ダイポールアンテナ210bによって励振された電流によって、導電性部材220aにも電流が流れる。しかし、導電性部材220aの一端部が反射板300の平面部310に短絡しているため、導電性部材220aにより遮蔽効果が発生する。
 一方、図7(b)に示すように、第1の実施の形態を採用せず、導電性部材220を備えない場合は、ダイポールアンテナ210aに励振された電流は、直接ダイポールアンテナ210bに結合する。また同様に、ダイポールアンテナ210bに励振された電流は、直接ダイポールアンテナ210aに結合する。
 このように、導電性部材220は、互いの電波を遮蔽し、互いに影響することを抑制するため、偏波間結合量が低く抑えられると考えられる。
 このとき、互いに異なる偏波の電波を送受信するアンテナ200をそれぞれが含むように設けた仮想的な二つの延長線の交点の近傍に、導電性部材220を設けることにより、偏波における電界の振動方向が交差する部分で電波が遮蔽されることになり、偏波間結合量がより効果的に低く抑えられると考えられる。
[第2の実施の形態]
 第1の実施の形態におけるアレイアンテナ11では、高周波数帯の電波を送受信する複数のアンテナ100が反射板300のx方向における中央部に配列され、低周波数帯の電波を送受信する複数のアンテナ200が複数のアンテナ100の配列の両側に配列されていた。
 第2の実施の形態におけるアレイアンテナ15では、低周波数帯の電波を送受信する複数のアンテナ200が反射板300のx方向における中央部に配列され、高周波数帯の電波を送受信する複数のアンテナ100が複数のアンテナ200のx方向における両側に配列されている。
 他の構成は、第1の実施の形態と同様であるので、アレイアンテナ15の第1の実施の形態におけるアレイアンテナ11と異なる部分を主に説明する。
<アレイアンテナ15>
 図8は、第2の実施の形態におけるアレイアンテナ15の構成の一例を示す図である。図8(a)は、アレイアンテナ15の正面図(x-y面での図)、図8(b)は、図8(a)のVIIIB-VIIIB線でのアレイアンテナ15の断面図(x-z面での図)である。ここでも、図1(a)に示したセクタアンテナ10-1を例にして、アレイアンテナ11を説明する。
 アレイアンテナ15は、高周波数帯の互いに直交する偏波の電波を送受信するアンテナ100-1~100-10、100-11~100-20(区別しない場合は、アンテナ100と表記する。)と、低周波数帯の互いに直交する偏波の電波を送受信するアンテナ200-1~200-3(区別しない場合は、アンテナ200と表記する。)とを備える。
 アンテナ200-1~200-3は、反射板300のx方向の中央部において、y方向に間隔pで配列されている。
 アンテナ100-1~100-10は、アンテナ200-1~200-3の配列の左側(-x方向側)にy方向に間隔pで配列されている。
 アンテナ100-11~100-20は、アンテナ200-1~200-3の配列の右側(+x方向側)にy方向に間隔pで配列されている。
 ここでも、アンテナ200の配列の間隔pは、アンテナ100の配列の間隔pの3倍(p=3×p)に設定されている。
 反射板300は、第1の実施の形態と同様に、平面部310と、±x方向の両端部に平面部310からz方向に起立してy方向に延びる2つの起立部320-1、320-2を備える。さらに、反射板300は、平面部310の中央と±x方向側の両端部との間に、平面部310からz方向に起立してy方向に延びる2つの起立部330-1、330-2を備える。
 アンテナ200-1~200-3は、起立部330-1と起立部330-2との間に設けられている。
 アンテナ100-1~100-10は、起立部320-1と起立部330-1との間に配列され、アンテナ100-11~100-20は、起立部320-2と起立部330-2との間に配列されている。
 なお、アンテナ100-1~100-10、100-11~100-20におけるアンテナ100間には、第1の実施の形態と同様に、仕切り板400が設けられている。なお、図6では、個々の仕切り板についての符号の記載を省略する。
 アンテナ100は、第1の実施の形態と同様であるので、説明を省略する。
 アンテナ200は、アンテナ200-1に示すように、四つのダイポールアンテナ210a、210b、210c、210d及び二つの導電性部材220a、220bを備える。なお、アンテナ200-1は、図2に示した第1の実施の形態におけるアンテナ200-1をz軸の周りに90°回転させた状態と同じである。
 つまり、ダイポールアンテナ210a、210bは、それぞれの一端部が近接して配置されている。そして、ダイポールアンテナ210a、210bを延長した交点(二つのダイポールアンテナ210a、210bをそれぞれが含むように設けた仮想的な二つの延長線の交点)の近傍に、ダイポールアンテナ210a、210bのそれぞれの一端部に近接して設けられた導電性部材220aを備える。
 また、ダイポールアンテナ210c、210dは、それぞれの一端部が近接して配置されている。そして、ダイポールアンテナ210c、210dを延長した交点(二つのダイポールアンテナ210c、210dをそれぞれが含むように設けた仮想的な二つの延長線の交点)の近傍に、ダイポールアンテナ210c、210dのそれぞれの一端部に近接して設けられた導電性部材220bを備える。
 そして、ダイポールアンテナ210aの他端部とダイポールアンテナ210dの他端部とは、互いに近接して配置されている。
 同様に、ダイポールアンテナ210bの他端部とダイポールアンテナ210cの他端部とは、互いに近接して配置されている。
 -y方向を大地の方向としたとき、ダイポールアンテナ210b、210dが、+45°傾いた偏波の電波を送受信する。そして、ダイポールアンテナ210a、210cが、-45°傾いた偏波の電波を送受信する。よって、ダイポールアンテナ210a、210cとダイポールアンテナ210b、210dとが受信する偏波の向きは、90°異なる。
 このため、ダイポールアンテナ210a、210b、210c、210dは、四角形のそれぞれの辺に配置されている。なお、四角形は正方形であって、それぞれの辺の中心にダイポールアンテナ210の給電点があることがよい。
 このようにすることで、アンテナ200の水平方向及び垂直方向の対称性がよくなる。
 なお、第2の実施の形態では、アンテナ200-1における導電性部材220bは、アンテナ200-2の導電性部材220aでもある。すなわち、第2の実施の形態のアレイアンテナ15は、導電性部材220の数が、第1の実施の形態のアレイアンテナ11に比べて、少ない。
 第2の実施の形態においても、低周波数帯の互いに異なる偏波の電波を送受信するアンテナ200が導電性部材220を備える効果は、第1の実施の形態と同じであると考えられる。よって、説明を省略する。
 第2の実施の形態では、反射板300のx方向における中央部に平面部310からの距離DHが大きい低周波数帯の電波を送受信するアンテナ200が配置され、両端部に平面部310からの距離DHが距離DHに比べて小さい高周波数帯の電波を送受信するアンテナ100が配置される。よって、レドーム12の大きさが、アンテナ200の大きさの影響を受けにくい。
 なお、ダイポールアンテナ210aが第1のアンテナ素子の一例、ダイポールアンテナ210bが第2のアンテナ素子の一例、ダイポールアンテナ210cが第3のアンテナ素子の一例、及び、ダイポールアンテナ210dが第4のアンテナ素子の一例である。そして、導電性部材220aが第1の導電性部材の一例、導電性部材220bが第2の導電性部材の一例である。
[第3の実施の形態]
 第1の実施の形態及び第2の実施の形態では、アンテナ200が備える四つのダイポールアンテナ210が、四角形のそれぞれの辺に配置されていた。
 第3の実施の形態におけるアレイアンテナ16では、四つのダイポールアンテナ210が十字状に配置されている。
 他の構成は、第1の実施の形態と同様であるので、アレイアンテナ16の第1の実施の形態におけるアレイアンテナ11と異なる部分を主に説明する。
<アレイアンテナ16>
 図9は、第3の実施の形態におけるアレイアンテナ16の構成の一例を示す図である。図9(a)は、アレイアンテナ16の正面図(x-y面での図)、図9(b)は、図9(a)のIXB-IXB線でのアレイアンテナ16の断面図(x-z面での図)である。ここでも、図1(a)に示したセクタアンテナ10-1を例にして、アレイアンテナ16を説明する。
 アレイアンテナ16は、高周波数帯の互いに直交する偏波の電波を送受信するアンテナ100-1~100-6、100-11~100-16(区別しない場合は、アンテナ100と表記する。)と、低周波数帯の互いに直交する偏波の電波を送受信するアンテナ200-1、200-2(区別しない場合は、アンテナ200と表記する。)とを備える。
 アンテナ200-1、200-2は、反射板300のx方向の中央部において、y方向に間隔pで配列されている。
 アンテナ100-1~100-6は、アンテナ200-1、200-2の配列の左側(-x方向側)にy方向に間隔pで配列されている。
 アンテナ100-11~100-16は、アンテナ200-1、200-2の配列の右側(+x方向側)にy方向に間隔pで配列されている。
 ここでも、アンテナ200の配列の間隔pは、アンテナ100の配列の間隔pの3倍(p=3×p)に設定されている。
 反射板300は、第1の実施の形態と同様に、平面部310と、±x方向の両端部に平面部310からz方向に起立してy方向に延びる2つの起立部320-1、320-2を備える。さらに、反射板300は、平面部310の中央と±x方向側の両端部との間に、平面部310からz方向に起立してy方向に延びる2つの起立部330-1、330-2を備える。
 アンテナ200-1、200-2は、起立部330-1と起立部330-2との間に設けられている。
 アンテナ100-1~100-6は、起立部320-1と起立部330-1との間に配列され、アンテナ100-11~100-16は、起立部320-2と起立部330-2との間に配列されている。
 なお、アンテナ100-1~100-6、100-11~100-16におけるアンテナ100間には、第1の実施の形態と同様に、仕切り板400が設けられている。なお、図9では、個々の仕切り板についての符号の記載を省略する。
 アンテナ100は、第1の実施の形態と同様であるので、説明を省略する。
 アンテナ200は、アンテナ200-1に示すように、四つのダイポールアンテナ210a、210b、210c、210d及び一つの導電性部材220を備える。なお、アンテナ200-1は、図2に示した第1の実施の形態におけるアンテナ200-1において、二つのダイポールアンテナ210a、210bをx方向に、二つのダイポールアンテナ210c、210dを-x方向にずらした状態と同じである。そして、導電性部材220aと導電性部材220bとを、合わせてずらして一つの導電性部材220とした状態である。
 つまり、ダイポールアンテナ210a、210b、210c、210dは、それぞれの一端部が近接して配置されている。そして、ダイポールアンテナ210a、210b、210c、210dを延長した交点(二つのダイポールアンテナ210a、210b、210c、210dをそれぞれが含むように設けた仮想的な四つの延長線の交点)の近傍に、ダイポールアンテナ210a、210b、210c、210dのそれぞれの一端部に近接して設けられた導電性部材220を備える。
 四つのダイポールアンテナ210をそれぞれの一端部が互いに近接するように十字状に配置することで、対称性がよくなる。このように配置することで、x方向(水平方向)及びy方向(垂直方向)の指向特性の対称性が改善される。
 第3の実施の形態においても、低周波数帯の互いに異なる偏波の電波を送受信するアンテナ200が導電性部材220を備える効果は、第1の実施の形態と同じであると考えられる。よって、説明を省略する。
 第3の実施の形態では、第2の実施の形態と同様に、反射板300のx方向における中央部に平面部310からの距離DHが大きい低周波数帯の電波を送受信するアンテナ200が配置され、両端部に平面部310からの距離DHが距離DHに比べて小さい高周波数帯の電波を送受信するアンテナ100が配置される。よって、レドーム12の大きさが、アンテナ200の大きさの影響を受けにくい。
 なお、ダイポールアンテナ210aが第1のアンテナ素子の一例、ダイポールアンテナ210bが第2のアンテナ素子の一例、ダイポールアンテナ210cが第3のアンテナ素子の一例、及び、ダイポールアンテナ210dが第4のアンテナ素子の一例である。そして、導電性部材220が導電性部材の一例である。
 本明細書では、アレイアンテナ11、15、16を周波数共用アンテナとして説明したが、低周波数帯のアンテナ200のみを備えたアンテナとしてもよい。この場合、低周波数帯の設計する周波数f0L(波長λ0L)を、設計する周波数f(波長λ)とすればよい。
 また、本明細書では、アンテナ200を、±45°偏波の電波を送受信する偏波共用アンテナとして説明したが、偏波の向きはこれに限らず、垂直偏波及び水平偏波の電波を送受信する偏波共用アンテナであってもよい。
1…基地局アンテナ、2…セル、3、3-1~3-3…セクタ、10、10-1~10-3…セクタアンテナ、11、15、16…アレイアンテナ、12…レドーム、13…メインローブ、14-1~14-4…送受信ケーブル、20…鉄塔、100、100-1~100-10、100-11~100-20…アンテナ、110、110a、110b…ダイポールアンテナ、200、200-1~200-3…アンテナ、210、210a、210b、210c、210d…ダイポールアンテナ、211a、212a…第1の部分、211b、212b…第2の部分、211c、212c…第3の部分、213、214…脚部、215…台部、216…給電ケーブル、217…給電板、220、220a、220b…導電性部材、300…反射板、310…平面部、320、320-1、320-2…起立部、330、330-1、330-2…起立部、400、400-1~400-8…仕切り板、500…スペーサ、510…底面部、514、514a、514b…スペーサ保持爪、520…縁部、521…台部保持爪

Claims (15)

  1.  平面部を有する反射部材と、
     前記反射部材の前記平面部に対して設けられ、第1の偏波の電波を送受信する第1のアンテナ素子と、
     前記反射部材の前記平面部に対して設けられるとともに、前記第1のアンテナ素子の一端部に、一端部が近接して設けられ、前記第1の偏波と異なる第2の偏波の電波を送受信する第2のアンテナ素子と、
     前記第1のアンテナ素子及び前記第2のアンテナ素子をそれぞれ延長した交点の近傍に、当該第1のアンテナ素子の一端部及び当該第2のアンテナ素子の一端部に近接して設けられた導電性部材と、
    を備えるアンテナ。
  2.  前記反射部材の前記平面部に対して設けられ、前記第1の偏波の電波を送受信する第3のアンテナ素子と、
     前記反射部材の前記平面部に対して設けられるとともに、前記第3のアンテナ素子の一端部に、一端部が近接して設けられ、前記第2の偏波の電波を送受信する第4のアンテナ素子と、
     前記第3のアンテナ素子及び前記第4のアンテナ素子をそれぞれ延長した交点の近傍に、当該第3のアンテナ素子の一端部及び当該第4のアンテナ素子の一端部に近接して設けられた他の導電性部材と、をさらに備え、
     前記第4のアンテナ素子の他端部は、前記第1のアンテナ素子の他端部と近接し、前記第3のアンテナ素子の他端部は、前記第2のアンテナ素子の他端部と近接して設けられていることを特徴とする請求項1に記載のアンテナ。
  3.  前記導電性部材及び前記他の導電性部材のそれぞれは、
     前記反射部材の前記平面部から起立する棒状又は板状の部材であって、
     前記反射部材に一か所で直流的に接続されていることを特徴とする請求項2に記載のアンテナ。
  4.  前記反射部材の前記平面部に対して設けられるとともに、前記第1のアンテナ素子の一端部に、一端部が近接して設けられ、前記第1の偏波の電波を送受信する第3のアンテナ素子と、
     前記反射部材の前記平面部に対して設けられるとともに、前記第1のアンテナ素子の一端部に、一端部が近接して設けられ、前記第2の偏波の電波を送受信する第4のアンテナ素子と、をさらに備え、
     前記第3のアンテナ素子及び前記第4のアンテナ素子をそれぞれ延長した交点の近傍に、当該第3のアンテナ素子の一端部と当該第4のアンテナ素子の一端部に近接して前記導電性部材が設けられていることを特徴とする請求項1に記載のアンテナ。
  5.  前記導電性部材は、
     前記反射部材の前記平面部から起立する棒状又は板状の部材であって、
     前記反射部材に一か所で直流的に接続されていることを特徴とする請求項1又は4に記載のアンテナ。
  6.  平面部を有する反射部材と、
     第1の周波数帯の第1の偏波の電波を送受信する第1のアンテナ素子と、当該第1のアンテナ素子の一端部に、一端部が近接して設けられて当該第1の周波数帯の第1の偏波と異なる当該第1の周波数帯の第2の偏波の電波を送受信する第2のアンテナ素子と、当該第1の周波数帯の第1の偏波の電波を送受信する第3のアンテナ素子と、当該第3のアンテナ素子の一端部に、一端部が近接して設けられて当該第1の周波数帯の第2の偏波の電波を送受信する第4のアンテナ素子と、当該第1のアンテナ素子及び当該第2のアンテナ素子のそれぞれを延長した交点の近傍に、当該第1のアンテナ素子の一端部及び当該第2のアンテナ素子の一端部に近接して設けられた第1の導電性部材と、当該第3のアンテナ素子及び当該第4のアンテナ素子のそれぞれを延長した交点の近傍に、当該第3のアンテナ素子の一端部及び当該第4のアンテナ素子の一端部に近接して設けられた第2の導電性部材と、をそれぞれが備え、当該第1のアンテナ素子の他端部と当該第4のアンテナ素子の他端部とが近接して設けられ、当該第2のアンテナ素子の他端部と当該第3のアンテナ素子の他端部とが近接して設けられ、前記反射部材の前記平面部に対して配列された複数の第1のアンテナと、
     複数の前記第1のアンテナの配列に沿って、前記反射部材の前記平面部に対して配列され、前記第1の周波数帯より高い第2の周波数帯の電波をそれぞれが送受信する複数の第2のアンテナと、
    を備えるアレイアンテナ。
  7.  複数の前記第2のアンテナの配列は、前記反射部材の前記平面部に対して複数の前記第1のアンテナの配列と重ねて配置されていることを特徴とする請求項6に記載のアレイアンテナ。
  8.  複数の前記第1のアンテナの配列の間隔は、複数の前記第2のアンテナの配列の間隔の3倍であることを特徴とする請求項6又は7に記載のアレイアンテナ。
  9.  前記第1のアンテナにおける前記第1のアンテナ素子、前記第2のアンテナ素子、前記第3のアンテナ素子及び前記第4のアンテナ素子によって囲まれた領域に、二つの前記第2のアンテナが配置されていることを特徴とする請求項6乃至8のいずれか1項に記載のアレイアンテナ。
  10.  平面部を有する反射部材と、
     第1の周波数帯の第1の偏波の電波を送受信する第1のアンテナ素子と、当該第1のアンテナ素子の一端部に一端部が近接して設けられて当該第1の偏波と異なる当該第1の周波数帯の第2の偏波の電波を送受信する第2のアンテナ素子と、当該第1のアンテナ素子の一端部に一端部が近接して設けられて当該第1の周波数帯の第1の偏波の電波を送受信する第3のアンテナ素子と、当該第1のアンテナ素子の一端部に一端部が近接して設けられて当該第1の周波数帯の当該第2の偏波の電波を送受信する第4のアンテナ素子と、当該第1のアンテナ素子、当該第2のアンテナ素子、当該第3のアンテナ素子及び当該第4のアンテナ素子を延長した交点の近傍に、当該第1のアンテナ素子の一端部、当該第2のアンテナ素子の一端部、当該第3のアンテナ素子の一端部及び当該第4のアンテナ素子の一端部に近接して設けられた導電性部材と、をそれぞれが備え、前記反射部材の前記平面部に対して配列された複数の第1のアンテナと、
     複数の前記第1のアンテナの配列に沿って、前記反射部材の前記平面部に対して配列され、前記第1の周波数帯より高い第2の周波数帯の電波をそれぞれが送受信する複数の第2のアンテナと、
    を備えるアレイアンテナ。
  11.  複数の前記第1のアンテナの送受信する電波は、複数の当該第1のアンテナの配列に対して+45°方向の偏波及び-45°方向の偏波であることを特徴とする請求項6乃至10のいずれか1項に記載のアレイアンテナ。
  12.  第1の偏波の電波を送受信する第1のアンテナ素子と、当該第1のアンテナ素子の一端部に、一端部が近接して設けられ、当該第1の偏波と異なる第2の偏波の電波を送受信する第2のアンテナ素子と、当該第1のアンテナ素子及び当該第2のアンテナ素子を延長した交点の近傍に、当該第1のアンテナ素子の一端部及び当該第2のアンテナ素子の一端部に近接して設けられた導電性部材と、をそれぞれが備える複数のアンテナが、平面部を備える反射部材の当該平面部に対して配列されたアレイアンテナと、
     前記アレイアンテナを覆うカバーと、
    を備えるセクタアンテナ。
  13.  二つの放射部と、
     取り付けられる反射部材の平面部に向けて延びて、二つの前記放射部を支持する支持部と、
     前記反射部材の前記平面部に対して前記支持部を保持する台部と、を備え、
     二つの前記放射部のそれぞれは、前記反射部材の前記平面部に平行な第1の部分と、前記支持部から離れるにしたがって、当該平面部との距離が変化する第2の部分と、当該第2の部分の先端部分から曲がって延びる第3の部分とを有することを特徴とするダイポールアンテナ。
  14.  前記台部と前記反射部材の前記平面部との間に挿入される誘電体で構成されたスペーサを備え、
     前記スペーサは、前記台部を保持するための台部保持部材を有することを特徴とする請求項13に記載のダイポールアンテナ。
  15.  前記台部と前記反射部材の前記平面部との間に挿入される誘電体で構成されたスペーサを備え、
     前記スペーサは、前記反射部材に保持されるためのスペーサ保持部材を備えることを特徴とする請求項13に記載のダイポールアンテナ。
PCT/JP2017/018398 2017-05-16 2017-05-16 アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ WO2018211597A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780090797.0A CN110622352B (zh) 2017-05-16 2017-05-16 阵列天线
PCT/JP2017/018398 WO2018211597A1 (ja) 2017-05-16 2017-05-16 アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ
US16/613,798 US11336031B2 (en) 2017-05-16 2017-05-16 Antenna, array antenna, sector antenna, and dipole antenna
JP2019518641A JP6771790B2 (ja) 2017-05-16 2017-05-16 アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018398 WO2018211597A1 (ja) 2017-05-16 2017-05-16 アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ

Publications (1)

Publication Number Publication Date
WO2018211597A1 true WO2018211597A1 (ja) 2018-11-22

Family

ID=64273494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018398 WO2018211597A1 (ja) 2017-05-16 2017-05-16 アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ

Country Status (4)

Country Link
US (1) US11336031B2 (ja)
JP (1) JP6771790B2 (ja)
CN (1) CN110622352B (ja)
WO (1) WO2018211597A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3460906B1 (en) * 2017-09-20 2023-05-03 Alcatel-Lucent Shanghai Bell Co., Ltd. Wireless telecommunication network antenna
WO2019116970A1 (ja) * 2017-12-12 2019-06-20 株式会社村田製作所 高周波モジュールおよび通信装置
EP4044372A4 (en) * 2019-09-27 2023-11-01 KMW Inc. QUADRUPLE POLARIZATION ANTENNA MODULE PROVIDES TIME POLARIZATION ISOLATION
US11411321B2 (en) 2019-12-05 2022-08-09 Qualcomm Incorporated Broadband antenna system
JP7007024B2 (ja) * 2020-03-27 2022-01-24 Necプラットフォームズ株式会社 アンテナ装置
US11450964B2 (en) 2020-09-09 2022-09-20 Qualcomm Incorporated Antenna assembly with a conductive cage
CN112768895B (zh) * 2020-12-29 2022-05-03 华南理工大学 天线、低频振子及辐射单元

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150319A (ja) * 1996-11-18 1998-06-02 Nippon Dengiyou Kosaku Kk 反射板付ダイポ−ルアンテナ
JP2002026629A (ja) * 2000-07-05 2002-01-25 Anten Corp 45度偏波ダイバーシティアンテナ
JP2002111358A (ja) * 2000-08-11 2002-04-12 Andrew Corp 二重極性型放射装置にて使用される放射要素及び極性チャネル間の隔離方法
JP2002538648A (ja) * 1999-02-24 2002-11-12 ノキア ネットワークス オサケ ユキチュア アンテナ間における相互干渉を抑圧するための装置
JP2003504925A (ja) * 1999-07-08 2003-02-04 カトライン−ベルケ・カーゲー アンテナ
JP2004023797A (ja) * 2002-06-19 2004-01-22 Andrew Corp 折り返しダイポールアンテナ
JP2009200776A (ja) * 2008-02-21 2009-09-03 Denki Kogyo Co Ltd 偏波ダイバーシチアンテナ
JP2012503405A (ja) * 2008-09-22 2012-02-02 ケーエムダブリュ・インコーポレーテッド 移動通信基地局用二重帯域二重偏波アンテナ
WO2014136543A1 (ja) * 2013-03-05 2014-09-12 三菱電機株式会社 アンテナ装置の設置方法及びアンテナ装置
JP2015033018A (ja) * 2013-08-02 2015-02-16 日本電業工作株式会社 アンテナ及びセクタアンテナ
JP2015507382A (ja) * 2011-11-15 2015-03-05 アルカテル−ルーセント 広帯域アンテナ
JP2016534598A (ja) * 2013-11-05 2016-11-04 ケーエムダブリュ・インコーポレーテッド 多重帯域多重偏波無線通信アンテナ
JP2017505075A (ja) * 2014-01-31 2017-02-09 クインテル テクノロジー リミテッド ビーム幅制御を伴うアンテナシステム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2676433Y (zh) 2004-01-08 2005-02-02 广州杰赛科技股份有限公司 一种应用在基站天线上的双极化振子
KR101711150B1 (ko) * 2011-01-31 2017-03-03 주식회사 케이엠더블유 이동통신 기지국용 이중편파 안테나 및 이를 이용한 다중대역 안테나 시스템
CN102723577B (zh) * 2012-05-18 2014-08-13 京信通信系统(中国)有限公司 宽频带环状双极化辐射单元及阵列天线
JP5745582B2 (ja) 2013-09-02 2015-07-08 日本電業工作株式会社 アンテナ及びセクタアンテナ
CN103647138B (zh) 2013-11-19 2016-08-17 广州杰赛科技股份有限公司 宽频双极化天线
EP3120416B1 (en) 2014-03-17 2023-01-11 Quintel Cayman Limited Compact antenna array using virtual rotation of radiating vectors
CN206116609U (zh) 2016-08-30 2017-04-19 广东通宇通讯股份有限公司 一种分体式超宽频双极化辐射单元及基站天线
KR101750336B1 (ko) * 2017-03-31 2017-06-23 주식회사 감마누 다중대역 기지국 안테나
BR112019022839A2 (pt) * 2017-05-04 2021-03-30 Huawei Technologies Co., Ltd. Elemento irradiante polarizado duplo e antena

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150319A (ja) * 1996-11-18 1998-06-02 Nippon Dengiyou Kosaku Kk 反射板付ダイポ−ルアンテナ
JP2002538648A (ja) * 1999-02-24 2002-11-12 ノキア ネットワークス オサケ ユキチュア アンテナ間における相互干渉を抑圧するための装置
JP2003504925A (ja) * 1999-07-08 2003-02-04 カトライン−ベルケ・カーゲー アンテナ
JP2002026629A (ja) * 2000-07-05 2002-01-25 Anten Corp 45度偏波ダイバーシティアンテナ
JP2002111358A (ja) * 2000-08-11 2002-04-12 Andrew Corp 二重極性型放射装置にて使用される放射要素及び極性チャネル間の隔離方法
JP2004023797A (ja) * 2002-06-19 2004-01-22 Andrew Corp 折り返しダイポールアンテナ
JP2009200776A (ja) * 2008-02-21 2009-09-03 Denki Kogyo Co Ltd 偏波ダイバーシチアンテナ
JP2012503405A (ja) * 2008-09-22 2012-02-02 ケーエムダブリュ・インコーポレーテッド 移動通信基地局用二重帯域二重偏波アンテナ
JP2015507382A (ja) * 2011-11-15 2015-03-05 アルカテル−ルーセント 広帯域アンテナ
WO2014136543A1 (ja) * 2013-03-05 2014-09-12 三菱電機株式会社 アンテナ装置の設置方法及びアンテナ装置
JP2015033018A (ja) * 2013-08-02 2015-02-16 日本電業工作株式会社 アンテナ及びセクタアンテナ
JP2016534598A (ja) * 2013-11-05 2016-11-04 ケーエムダブリュ・インコーポレーテッド 多重帯域多重偏波無線通信アンテナ
JP2017505075A (ja) * 2014-01-31 2017-02-09 クインテル テクノロジー リミテッド ビーム幅制御を伴うアンテナシステム

Also Published As

Publication number Publication date
CN110622352A (zh) 2019-12-27
US11336031B2 (en) 2022-05-17
JP6771790B2 (ja) 2020-10-21
US20200176892A1 (en) 2020-06-04
CN110622352B (zh) 2021-05-07
JPWO2018211597A1 (ja) 2020-03-19

Similar Documents

Publication Publication Date Title
WO2018211597A1 (ja) アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ
JP6766180B2 (ja) アンテナアレイ内の相互結合を低減するための装置および方法
TWI581503B (zh) Dual Polarization Array Antenna and Its Radiation Unit
JP5312598B2 (ja) 移動通信基地局用二重帯域二重偏波アンテナ
JP4890618B2 (ja) 移動通信基地局用二重帯域二重偏波アンテナ
JP5745582B2 (ja) アンテナ及びセクタアンテナ
US11955738B2 (en) Antenna
EP2337153B1 (en) Slot array antenna and radar apparatus
JP5060588B2 (ja) 偏波ダイバーシチアンテナ
JP2015111763A (ja) 偏波ダイバーシチ用アンテナ及び無線通信装置
JP5432055B2 (ja) 偏波共用八木型アンテナ
JP4579186B2 (ja) アンテナ装置
TW201411935A (zh) 陣列天線及其圓極化天線
WO2015133458A1 (ja) アレイアンテナ及びセクタアンテナ
CN117477213A (zh) 一种贴壁天线
JP3804878B2 (ja) 偏波共用アンテナ
EP3544115B1 (en) Balanced dipole unit and broadband omnidirectional collinear array antenna
WO2015159871A1 (ja) アンテナ及びセクタアンテナ
KR20110088177A (ko) 하이브리드 다이폴과 이를 이용한 이중편파 배열안테나 장치
JP6536950B2 (ja) アンテナ装置
JP7016554B2 (ja) アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ
WO2018179160A1 (ja) アレイアンテナ及びセクタアンテナ
KR20120086842A (ko) 다중 밴드의 다이폴 소자 배열을 갖는 기지국 안테나
WO2022138856A1 (ja) パッチアンテナ及び車載用アンテナ装置
WO2022138582A1 (ja) パッチアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909904

Country of ref document: EP

Kind code of ref document: A1