WO2018179160A1 - アレイアンテナ及びセクタアンテナ - Google Patents

アレイアンテナ及びセクタアンテナ Download PDF

Info

Publication number
WO2018179160A1
WO2018179160A1 PCT/JP2017/012988 JP2017012988W WO2018179160A1 WO 2018179160 A1 WO2018179160 A1 WO 2018179160A1 JP 2017012988 W JP2017012988 W JP 2017012988W WO 2018179160 A1 WO2018179160 A1 WO 2018179160A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
antennas
antenna
partition
coupling
Prior art date
Application number
PCT/JP2017/012988
Other languages
English (en)
French (fr)
Inventor
琳 王
程 楊
Original Assignee
日本電業工作株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電業工作株式会社 filed Critical 日本電業工作株式会社
Priority to PCT/JP2017/012988 priority Critical patent/WO2018179160A1/ja
Priority to US16/497,799 priority patent/US11145968B2/en
Priority to CN201780088628.3A priority patent/CN110462931B/zh
Publication of WO2018179160A1 publication Critical patent/WO2018179160A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/525Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/385Two or more parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present invention relates to an array antenna and a sector antenna.
  • a base station antenna for mobile communication As a base station antenna for mobile communication, a plurality of sector antennas that radiate radio waves for each sector (area) set corresponding to the direction in which radio waves are radiated are used in combination.
  • the sector antenna an array antenna in which radiating elements (antenna elements) such as a dipole antenna are arranged in an array is used.
  • Patent Document 1 discloses a dielectric substrate, a plurality of patch antenna elements provided in a matrix on one surface of the dielectric substrate, a ground electrode disposed on the other surface of the dielectric substrate, and a patch. There is described an antenna having a conductive partition disposed between antenna elements, and the partition is electrically connected to a ground electrode.
  • Patent Document 2 describes a reflector module having two longitudinal walls and at least one transverse wall cast, deep drawn or punched.
  • An object of the present invention is to provide a polarization-sharing array antenna or the like that reduces the amount of polarization coupling between antennas that transmit and receive mutually different polarized waves while suppressing the occurrence of intermodulation distortion and white noise.
  • an array antenna to which the present invention is applied is arranged with a first conductive member having a planar portion and a predetermined first interval from the planar portion of the first conductive member.
  • a plurality of antennas each transmitting and receiving a first polarized radio wave and a second polarized radio wave different from the first polarized wave, and a first conductive layer between adjacent antennas of the plurality of antennas.
  • a second conductive member that is provided at a predetermined second interval from the planar portion of the member and is capacitively coupled to the first conductive member.
  • the second conductive member includes a partition portion having a plane included in a virtual plane intersecting with the planar portion of the first conductive member, and a planar portion of the first conductive member. And a coupling portion having a surface facing the surface. By doing so, the coupling capacity of the coupling portion can be increased.
  • the second conductive member can be characterized in that the coupling portion is provided closer to the first conductive member than the partition portion. By doing so, the coupling capacity of the coupling portion can be further increased.
  • the second conductive member can be characterized in that the coupling portion and the partition portion are configured by bending a conductive material. By doing in this way, the 2nd conductive member can be constituted easily.
  • the first conductive member has a plurality of antennas arranged from the plane portion on the side crossing the direction of the arrangement of the plurality of antennas arranged at a predetermined first interval from the plane portion.
  • the second conductive member has a connection portion facing the upright portion of the first conductive member at the end of the partition portion, and the second conductive member The connecting portion may be fixed to the standing portion of the first conductive member via an insulating material.
  • the radio waves transmitted and received by the plurality of antennas can be characterized by being polarized in the + 45 ° direction and polarized in the ⁇ 45 ° direction with respect to the arrangement of the plurality of antennas. By doing in this way, the amount of coupling between polarization can be controlled more effectively.
  • the sector antenna to which the present invention is applied has a first conductive member having a planar portion and a predetermined first distance from the planar portion of the first conductive member.
  • a plurality of antennas each arranged to transmit and receive a first polarized radio wave and a second polarized radio wave different from the first polarized wave, and for distributing / combining power to the plurality of antennas
  • An array comprising a circuit and a second conductive member provided between adjacent antennas of the plurality of antennas and capacitively coupled with a plane portion of the first conductive member with a predetermined second interval
  • An antenna and a cover that covers the array antenna are provided.
  • a polarization-shared array antenna or the like that reduces the amount of polarization coupling between antennas that transmit and receive mutually different polarized waves while suppressing the occurrence of intermodulation distortion and white noise.
  • FIG. 1 It is a figure which shows an example of the whole structure of the base station antenna of the mobile communication with which 1st Embodiment is applied.
  • (A) is a perspective view of a base station antenna
  • (b) is a figure explaining the installation example of a base station antenna.
  • (A) is a front view of the array antenna (a view on the xy plane), and (b) is a cross-sectional view of the array antenna along the IIB-IIB line of (a) (a view on the xz plane). is there. It is detail drawing of a partition plate.
  • (A) is the front view seen from the z direction
  • (b) is the side view seen from the y direction. This is a measured value of the amount of coupling between polarizations.
  • (A) is the amount of coupling between polarized waves in the first embodiment
  • (b) is the amount of coupling between polarized waves when the first embodiment is not adopted and the partition plate is not provided with a coupling portion.
  • It is a front view of the modification of a partition plate.
  • (A) shows a case where the coupling part is provided on the ⁇ y direction side with respect to the partition part, and (b) shows that the coupling part is provided across the + y direction side and the ⁇ y direction side with respect to the partition part.
  • (C) is a case where the coupling part is provided in a semicircular shape on the + y direction side with respect to the partition part.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a base station antenna 1 for mobile communication to which the first embodiment is applied.
  • FIG. 1A is a perspective view of the base station antenna 1
  • FIG. 1B is a diagram illustrating an installation example of the base station antenna 1.
  • the base station antenna 1 includes, for example, a plurality of sector antennas 10-1 to 10-3 held by a steel tower 20 (indicated as sector antennas 10 if not distinguished). ing.
  • Each of the sector antennas 10-1 to 10-3 includes an array antenna 11.
  • the array antenna 11 is covered with a radome 12 as a cover for protecting it from wind and rain. That is, the outside of the sector antennas 10-1 to 10-3 is a radome 12, and the array antenna 11 is housed inside the radome 12.
  • the radome 12 has a cylindrical shape, but may have another shape.
  • the base station antenna 1 transmits and receives radio waves in the cell 2 shown in FIG.
  • xyz coordinates are set for the sector antenna 10-1. That is, the vertical direction is set to the y direction.
  • the x direction is provided along the plane part 210 of the reflector 200 in the array antenna 11, and z is perpendicular to the plane part 210 of the reflector 200. Set the direction.
  • the base station antenna 1 transmits and receives radio waves in the cell 2 as shown in FIG.
  • Cell 2 is divided into a plurality of sectors 3-1 to 3-3 (indicated as sector 3 if not distinguished) corresponding to sector antennas 10-1 to 10-3.
  • the sector antennas 10-1 to 10-3 are set so that the direction of the main lobe 13 of radio waves transmitted and received by the respective array antennas 11 is directed to the corresponding sectors 3-1 to 3-3.
  • the base station antenna 1 is provided with three sector antennas 10-1 to 10-3 and sectors 3-1 to 3-3 corresponding thereto.
  • the number of sector antennas 10 and sectors 3 may be a predetermined number other than three.
  • the sector 3 is configured by dividing the cell 2 into three equal parts (center angle 120 °). However, the sector 3 may not be equally divided, and any one sector 3 may be the other. The sector 3 may be wider or narrower than the sector 3.
  • Each sector antenna 10 is connected to transmission / reception cables 14-1 and 14-2 that transmit transmission signals and reception signals to the array antenna 11.
  • the transmission / reception cables 14-1 and 14-2 transmit radio wave transmission signals and reception signals that are orthogonal to each other.
  • the transmission / reception cables 14-1 and 14-2 are connected to a transmission / reception unit (not shown) provided in a base station (not shown) for generating a transmission signal and receiving a reception signal.
  • the transmission / reception cables 14-1 and 14-2 are, for example, coaxial cables. Note that the base station antenna 1, the sector antenna 10, the array antenna 11, and the like can transmit and receive radio waves due to the reversibility of the antenna.
  • the sector antenna 10 is a circuit for distributing / combining power for transmission / reception signals to a plurality of antennas (antennas 100-1, 100-2, 100-3 in FIG. 2 described later) provided in the array antenna 11. Prepare. In addition, you may provide the phase shifter which changes the phase of a transmission / reception signal between several antennas. By changing the phase of the transmission / reception signal between the antennas, the radiation angle of the radio wave (beam) can be tilted (tilted) toward the ground.
  • FIG. 2 is a diagram illustrating an example of the configuration of the array antenna 11 according to the first embodiment.
  • 2A is a front view of the array antenna 11 (a view in the xy plane)
  • FIG. 2B is a cross-sectional view of the array antenna 11 along the line IIB-IIB in FIG. -Z-plane view).
  • the array antenna 11 will be described by taking the sector antenna 10-1 shown in FIG. 1A as an example.
  • the array antenna 11 includes a plurality of (here, three as an example) cross-dipole antennas 100-1 to 100-3 (indicated as antenna 100 if not distinguished), a reflecting plate 200, and a partition plate 300.
  • the antennas 100-1 to 100-3 are arranged in the y direction.
  • the array antenna 11 includes the three antennas 100, the array antenna 11 may include a plurality of antennas 100 other than three.
  • the reflection plate 200 is an example of a first conductive member
  • the partition plate 300 is an example of a second conductive member.
  • the antenna 100 includes a dipole antenna 110 that transmits / receives + 45 ° polarized radio waves and a dipole antenna 120 that transmits / receives ⁇ 45 ° polarized radio waves. Each is fed from the center of the dipole antenna.
  • each power feeding unit of the antenna 100 is connected to a distribution / combination circuit or a phase shifter for each polarization by, for example, a coaxial cable or the like. Distribution / synthesis circuits and phase shifters are connected to the transmission / reception cables 14-1 and 14-2 (see FIG. 1A).
  • the + 45 ° polarization is an example of the first polarization
  • the ⁇ 45 ° polarization is an example of the second polarization.
  • a reflector 200 is disposed with a predetermined distance DP-H from the antenna 100.
  • the reflection plate 200 includes a flat portion 210 and two upstanding portions 220 provided upright from the flat portion 210 at both ends in the x direction. That is, the two upright portions 220 are provided along the antennas 100 arranged in the y direction.
  • the interval DP-H is an example of a first interval.
  • the plane part 210 and the upright part 220 may be configured as an integral type by, for example, bending a flat plate, or may be configured as separate members and connected by screws or the like. . Further, the plane part 210 and the upright part 220 may be capacitively coupled via an insulator material.
  • the reflector 200 is made of a conductive material such as aluminum.
  • Partition plates 300-1 and 300-2 are provided between two antennas 100 adjacent to the array antenna 11 in the y direction.
  • the partition plate 300 includes a partition portion 310 that partitions between two adjacent antennas 100, and two connection portions 320 that are connected to the upright portions 220 of the reflection plate 200 at both ends thereof. And a coupling part 330 facing the flat part 210 of the reflector 200.
  • the partition portion 310 of the partition plate 300 has a surface that is perpendicular to the flat portion 210 of the reflector plate 200 and has a quadrangular shape that extends between the two raised portions 220 of the reflector plate 200.
  • the coupling portion 330 of the partition plate 300 has a quadrangular shape having a surface parallel to the flat portion 210 of the reflection plate 200 and extending in the + y direction with respect to the partition portion 310. Further, the coupling portion 330 of the partition plate 300 and the flat portion 210 of the reflecting plate 200 are opposed to each other at an interval PAR-G (see FIG. 2B).
  • the interval PAR-G is an example of a second interval.
  • the connection part 320 of the partition plate 300 has a planar shape that is bent by 90 ° from the partition part 310.
  • the partition part 310 of the partition plate 300 may not be a surface perpendicular to the flat surface part 210 of the reflection plate 200 but may be an oblique surface. That is, the partition part 310 should just have the surface contained in the virtual plane which cross
  • the coupling portion 330 of the partition plate 300 may not be a plane parallel to the flat portion 210 of the reflection plate 200 but may be an inclined plane.
  • the partition plate 300 is made of a conductive material such as aluminum.
  • the partition plate 300-1 two connecting portions 320 are fixed to the standing portion 220 of the reflecting plate 200 with screws or the like with the spacers 400-1a and 400-1b interposed therebetween.
  • the two connection portions 320 are fixed to the standing portion 220 of the reflection plate 200 with screws or the like with the spacers 400-2a and 400-2b interposed therebetween.
  • the spacer 400 is made of an insulating material such as glass epoxy or polyacetal. The spacer 400 is provided so that the reflecting plate 200 and the partition plate 300 are not connected in a direct current manner.
  • the partition part 310, the connection part 320, and the coupling part 330 in the partition plate 300 are provided so as to be continuous. That is, the coupling portion 330 is configured by bending the end portion in the ⁇ z direction of the partition plate 300 in the + y direction, and the connection portion 320 is configured by bending the end portion in the ⁇ x direction of the partition plate 300 in the + y direction. Has been. With this configuration, the partition plate 300 can be easily manufactured.
  • an adjustment plate 500 having the same shape as that of the partition plate 300 is provided at the end of the reflection plate 200 in the ⁇ y direction.
  • the adjustment plate 500 includes a partition portion 510 similar to the partition portion 310, a connection portion 520 similar to the connection portion 320, and a coupling portion 530 similar to the coupling portion 330.
  • an adjustment plate 600 is provided at the end of the reflection plate 200 in the + y direction.
  • the adjustment plate 600 includes a partition portion 610 similar to the partition portion 310 and a connection portion 620 bent in the opposite direction ( ⁇ y direction) to the connection portion 320.
  • the adjustment plate 500 has a connection portion 520 connected to the upright portion 220 of the reflector 200 via the spacers 400-3a and 400-3b, and the adjustment plate 600 has a connection portion 620.
  • the spacers 400-4a and 400-4b are connected to the standing portion 220 of the reflector 200.
  • Adjustment plates 500 and 600 are provided to maintain symmetry of antenna 100 in the y direction. Therefore, adjustment plates 500 and 600 may be provided in consideration of the influence on the amount of coupling between polarizations. Therefore, the adjustment plates 500 and 600 may not be used and may have other shapes. Note that the amount of coupling between polarizations refers to the transfer function S12 between antennas that transmit and receive different polarizations.
  • the spacer 400 is provided so that the standing part 220 of the reflecting plate 200, the partition plate 300, the adjustment plate 500, and the adjustment plate 600 are not connected in a direct current manner.
  • the upright part 220 of the reflecting plate 200, the partition plate 300, the adjustment plate 500, and the adjustment plate 600 are connected in high frequency by capacitive coupling. Thereby, the generation of white noise can be suppressed without deteriorating the intermodulation distortion characteristics.
  • the spacer 400 is not necessarily required, and may be connected in a direct current manner in view of intermodulation distortion characteristics, white noise characteristics, and the like.
  • direct connection is expressed as direct connection.
  • spacers 400-1a and 400-1b are provided on the partition plate 300-1
  • spacers 400-2a and 400-2b are provided on the partition plate 300-2
  • spacers 400-3a and 400-2 are provided on the adjustment plate 500.
  • spacers 400-4a and 400-4b are provided on the adjustment plate 600, but spacers 400-1a, 400-2a, 400-3a, 400-4a and spacers 400-1b, 400-2b, 400-3b,
  • Each of 400-4b may be formed continuously to form a single spacer.
  • the reflecting plate 200 has a flat portion 210 having a width REF-W and a standing portion 220 having a height REF-H.
  • the width REF-W of the planar portion 210 0.7Ramuda 0, height REF-H of the upstanding portion 220 is 0.15 ⁇ 0.
  • the distance between the antenna 100 and the reflection plate 200 is DP ⁇ H.
  • the distance DP-H is 1 / 4 ⁇ 0.
  • ⁇ 0 is a free space wavelength with respect to the designed frequency f 0 .
  • the coupling portion 330 of the partition plate 300 and the flat portion 210 of the reflecting plate 200 are opposed to each other with an interval PAR-G, and are not directly connected.
  • the coupling portion 330 of the partition plate 300 and the flat portion 210 of the reflecting plate 200 are connected in a high frequency manner by capacitive coupling. Accordingly, it is possible to obtain a good amount of coupling between polarizations over a wide band as in the case of direct connection while the generation of white noise is suppressed without deterioration of intermodulation distortion characteristics.
  • the reason why a good amount of coupling between polarized waves can be obtained in this manner is that the partition plate 300 reduces the amount of coupling between adjacent antennas 100.
  • spacing PAR-G of the coupling portion 330 of the planar portion 210 and the partition plate 300 of the reflector 200 is 0.02 [lambda] 0.
  • This interval PAR-G may be appropriately adjusted based on the required amount of coupling between polarizations.
  • the antenna is not limited to this, and may be a patch antenna, a slot antenna, or the like.
  • a method is often used in which a single element is used for both polarization by feeding power from two sides having different lengths.
  • slot antennas slot antennas that transmit and receive radio waves with different polarizations may be provided, respectively.
  • the antenna can be used as a polarization shared antenna. Also good.
  • FIG. 3 is a detailed view of the partition plate 300.
  • FIG. 3A is a front view seen from the + z direction
  • FIG. 3B is a side view seen from the + y direction.
  • the partition plate 300 includes a partition portion 310, two connection portions 320 connected to the standing portions 220 of the reflection plate 200 provided at both ends thereof, and a coupling portion 330 facing the flat portion 210 of the reflection plate 200. I have.
  • the partition plate 300 is configured by bending a plate-like conductive material.
  • the coupling portion 330 has a quadrangular shape that is bent in the + y direction with respect to the partition portion 310.
  • the connection portion 320 of the partition plate 300 has a quadrangular shape that is bent in the + y direction with respect to the partition portion 310. As shown in FIG. 3B, the partition portion 310 is notched at the end in the ⁇ x direction in the ⁇ z direction, but may not be notched. Here, the partition portion 310 of the partition plate 300 has a height PAR-H in the z direction. Further, the coupling portion 330 of the partition plate 300 has a width PAR-W in the x direction and a depth PAR-D in the y direction.
  • bond part 330 of the partition plate 300 is arrange
  • bond part 330 of the partition plate 300 and the plane part 210 of the reflecting plate 200 are arranged. Are coupled with each other, and a good inter-polarization coupling characteristic can be obtained over a wide band as in the case of direct connection as described later.
  • the height PAR-H of the partition portion 310 is 0.1 ⁇ 0
  • the width PAR-W of the coupling portion 330 is 0.4 ⁇ 0
  • the depth PAR-D is 0.1 ⁇ 0 .
  • these dimensions are not necessarily limited to this, and may be appropriately adjusted based on a required frequency band, a required amount of coupling between polarizations, and the like.
  • FIG. 4 shows measured values of the amount of coupling between polarizations.
  • FIG. 4A shows the amount of coupling between polarized waves in the first embodiment
  • FIG. 4B shows the deviation in the case where the first embodiment is not adopted and the partition plate 300 is not provided with the coupling portion 330.
  • the amount of coupling between waves. 4A and 4B the horizontal axis represents the normalized frequency (f / f 0 ), and the vertical axis represents the amount of coupling between polarizations (dB). Note that the frequency f 0 is set to the 2 GHz band.
  • the amount of coupling between polarizations shown here is such that, in the array antenna 11 having the numerical values shown as an example above, a -45 ° polarized radio wave is transmitted / received to / from the dipole antenna 110 that transmits / receives + 45 ° polarized radio waves in each antenna 100.
  • This is a transfer function S12 measured with respect to the dipole antenna 120.
  • the maximum value of the amount of coupling between polarizations in the first embodiment shown in FIG. 4A is about ⁇ 26 dB.
  • the maximum value of the amount of coupling between polarizations is about ⁇ 20 dB. That is, in the first embodiment, it is understood that the maximum value of the amount of coupling between polarizations is improved by about 6 dB, and the amount of coupling between polarizations is kept low over a wide band.
  • the partition plate 300 includes the coupling portion 330, thereby increasing the amount of high-frequency coupling between the partition plate 300 and the planar portion 210 of the reflecting plate 200. As a result, the partition plate 300 and the planar portion 210 of the reflecting plate 200 This shows that the same effect as when directly connecting can be obtained.
  • FIG. 5 is a front view of a modified example of the partition plate 300.
  • 5A shows a case where the coupling portion 330 is provided on the ⁇ y direction side with respect to the partition portion 310
  • FIG. 5B shows a case where the coupling portion 330 is on the + y direction side with respect to the partition portion 310 and ⁇ y direction
  • 5C is a case where the coupling part 330 is provided in a semicircular shape on the + y direction side with respect to the partition part 310 when provided across the direction side.
  • the side view of these partition plates 300 is the same as that of FIG.3 (b).
  • the coupling portion 330 provided on the partition plate 300 is provided in a square shape in the + y direction with respect to the partition portion 310.
  • the coupling portion 330 is provided in the ⁇ y direction with respect to the partition portion 310, and is provided in the direction opposite to that of the first embodiment.
  • the partition plate 300 shown in FIG. 5B is different from the first embodiment in that the coupling portion 330 (the coupling portions 330-a and 330-b) is in the + y direction and ⁇ y with respect to the partition portion 310. It is provided on both sides of the direction.
  • the coupling portion 330-a is made of a sheet metal as an integral structure with the partition portion 310, and the coupling portion 330-b produced as another member is screwed to the partition portion 310 or the coupling portion 330-a.
  • the coupling portion 330 has a semicircular shape. As described above, the shape and the position of the coupling portion 330 in the partition plate 300 may be any shape as long as the planar portion 210 of the reflection plate and the partition plate 300 can be capacitively coupled.
  • the dual-polarized antenna has been described as a dual-polarized antenna that transmits and receives ⁇ 45-degree polarized radio waves.
  • the polarization direction is not limited to this, and the vertical polarization antenna and the horizontal polarization antenna are also used. It may be a polarization sharing antenna that combines antennas.
  • a parasitic element may be provided as appropriate for improving the directivity.
  • power may be supplied with a phase difference of 90 degrees between two intersecting polarized antennas.
  • the circularly polarized wave characteristics can be improved by using the partition plate 300 described in this embodiment and the other embodiments.
  • SYMBOLS 1 Base station antenna, 2 ... Cell, 3-1, 3-1 to 3-3 ... Sector 10, 10-1 to 10-3 ... Sector antenna, 11 ... Array antenna, 12 ... Radome, 13 ... Main lobe, 14 -1, 14-2 ... transmission / reception cable, 20 ... steel tower, 100, 100-1 to 100-3 ... antenna, 110, 120 ... dipole antenna, 200 ... reflector, 210 ... plane part, 220 ... standing part, 300, 300-1, 300-2, 300-3 ... partition plate, 310 ... partition part, 320 ... connection part, 330, 330-a, 330-b ... coupling part, 400, 400-1a, 400-2a, 400- 3a, 400-4a, 400-1b, 400-2b, 400-3b, 400-4b ... spacer, 500, 600 ... adjustment plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

アレイアンテナは、平面部を有する第1の導電性部材と、第1の導電性部材と予め定められた第1の間隔を設けて平面部に配列され、第1の偏波の電波と第1の偏波と異なる第2の偏波の電波とをそれぞれが送受信する複数のアンテナと、複数のアンテナの隣接するアンテナ間に、第1の導電性部材の平面部と予め定められた第2の間隔を隔てて設けられ、第1の導電性部材と容量結合する第2の導電性部材と、を備える。

Description

アレイアンテナ及びセクタアンテナ
 本発明は、アレイアンテナ及びセクタアンテナに関する。
 移動体通信の基地局アンテナには、電波が放射される方向に対応して設定されたセクタ(領域)毎に電波を放射するセクタアンテナが複数組み合わせて用いられている。セクタアンテナには、ダイポールアンテナなどの放射素子(アンテナ素子)をアレイ状に並べたアレイアンテナが用いられている。
 特許文献1には、誘電体基板と、誘電体基板の一方の面上にマトリクス状に設けられる複数個のパッチアンテナ素子と、誘電体基板の他方の面上に配置される接地電極と、パッチアンテナ素子の間に配置される導電性の隔壁とを有し、隔壁が接地電極と電気的に接続されているアンテナが記載されている。
 特許文献2には、鋳造、もしくは深絞り、もしくは打ち出された、二つの縦方向の壁と少なくとも一つの横断する壁を有する反射板モジュールが記載されている。
特開2006-121406号公報 国際公開第2004/091042号
 ところでアレイアンテナには、セクタアンテナの通信品質の向上/通信容量の増大を狙って、互いに異なる偏波の送受信が可能な偏波共用のアンテナが用いられることがある。そして、各偏波を送受信するアンテナ間の偏波結合量が広帯域にわたって低く抑えられていることが求められている。同時に、相互変調歪やホワイトノイズの発生が低く抑えられていることが求められている。
 本発明の目的は、相互変調歪やホワイトノイズの発生を低く抑えつつ、互いに異なる偏波を送受信するアンテナ間の偏波結合量を低減した偏波共用のアレイアンテナ等を提供することにある。
 かかる目的のもと、本発明が適用されるアレイアンテナは、平面部を有する第1の導電性部材と、第1の導電性部材の平面部と予め定められた第1の間隔を設けて配列され、第1の偏波の電波と第1の偏波と異なる第2の偏波の電波とをそれぞれが送受信する複数のアンテナと、複数のアンテナの隣接するアンテナ間に、第1の導電性部材の平面部と予め定められた第2の間隔を隔てて設けられ、第1の導電性部材と容量結合する第2の導電性部材と、を備える。
 このようなアレイアンテナにおいて、第2の導電性部材は、第1の導電性部材の平面部と交差する仮想的な平面に含まれる面を有する仕切り部と、第1の導電性部材の平面部に対向する面を有する結合部と、を備えることを特徴とすることができる。このようにすることで、結合部の結合容量を大きくすることができる。
 また、第2の導電性部材は、結合部が、仕切り部より第1の導電性部材側に設けられていることを特徴とすることができる。このようにすることで、結合部の結合容量をより大きくできる。
 さらに、第2の導電性部材は、結合部と仕切り部とが、導電性材料が折り曲げられて構成されていることを特徴とすることができる。このようにすることで、第2の導電性部材が容易に構成できる。
 さらにまた、第1の導電性部材は、平面部と予め定められた第1の間隔を設けて配列された複数のアンテナの配列の方向と交差する側に、平面部から複数のアンテナが配列された側に起立した起立部を有し、第2の導電性部材は、仕切り部の端部に、第1の導電性部材の起立部と対向する接続部を有し、第2の導電性部材の接続部は、絶縁体材料を介して第1の導電性部材の起立部に固定されていることを特徴とすることができる。このようにすることで、相互変調歪やホワイトノイズの発生がより抑制できる。
 そして、複数のアンテナの送受信する電波は、複数のアンテナの配列に対して+45°方向の偏波及び-45°方向の偏波であることを特徴とすることができる。このようにすることで、偏波間結合量がより効果的に抑制できる。
 また、他の観点から捉えると、本発明が適用されるセクタアンテナは、平面部を有する第1の導電性部材と、第1の導電性部材の平面部と予め定められた第1の間隔を設けて配列され、第1の偏波の電波と第1の偏波と異なる第2の偏波の電波とをそれぞれが送受信する複数のアンテナと、複数のアンテナに電力を分配/合成するための回路と、複数のアンテナの隣接するアンテナ間に設けられ、第1の導電性部材の平面部と予め定められた第2の間隔を隔てて容量結合する第2の導電性部材と、を備えるアレイアンテナと、アレイアンテナを覆うカバーと、を備える。
 本発明によれば、相互変調歪やホワイトノイズの発生を低く抑えつつ、互いに異なる偏波を送受信するアンテナ間の偏波結合量を低減した偏波共用のアレイアンテナ等を提供できる。
第1の実施の形態が適用される移動体通信の基地局アンテナの全体構成の一例を示す図である。(a)は、基地局アンテナの斜視図、(b)は、基地局アンテナの設置例を説明する図である。 第1の実施の形態におけるアレイアンテナの構成の一例を示す図である。(a)は、アレイアンテナの正面図(x-y面での図)、(b)は、(a)のIIB-IIB線でのアレイアンテナの断面図(x-z面での図)である。 仕切り板の詳細図である。(a)は、z方向から見た正面図、(b)は、y方向から見た側面図である。 偏波間結合量の測定値である。(a)は、第1の実施の形態における偏波間結合量、(b)は、第1の実施の形態を採用せず、仕切り板に結合部を備えない場合の偏波間結合量である。 仕切り板の変形例の正面図である。(a)は、結合部が仕切り部に対して-y方向側に設けられた場合、(b)は、結合部が仕切り部に対して+y方向側と-y方向側とにまたがって設けられた場合、(c)は、結合部が仕切り部に対して+y方向側に半円状に設けられた場合である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[第1の実施の形態]
<基地局アンテナ1>
 図1は、第1の実施の形態が適用される移動体通信の基地局アンテナ1の全体構成の一例を示す図である。図1(a)は、基地局アンテナ1の斜視図、図1(b)は、基地局アンテナ1の設置例を説明する図である。
 基地局アンテナ1は、図1(a)に示すように、例えば鉄塔20に保持された複数のセクタアンテナ10-1~10-3(区別しない場合は、セクタアンテナ10と表記する。)を備えている。セクタアンテナ10-1~10-3は、それぞれがアレイアンテナ11を備えている。そして、アレイアンテナ11は、風雨などから保護するためのカバーとしてのレドーム12で覆われている。すなわち、セクタアンテナ10-1~10-3の外側はレドーム12であって、レドーム12の内部にアレイアンテナ11が収納されている。ここでは、レドーム12は、円筒状としたが、他の形状であってもよい。基地局アンテナ1は、図1(b)に示すセル2内において電波の送受信を行う。
 なお、図1(a)に示すように、セクタアンテナ10-1に対して、xyz座標を設定する。つまり、上下方向をy方向に設定する。そして、後述する図2に示すように、セクタアンテナ10-1を例にとり、アレイアンテナ11における反射板200の平面部210に沿ってx方向を設け、反射板200の平面部210に垂直にz方向を設定する。
 基地局アンテナ1は、図1(b)に示すように、セル2内において電波の送受信を行う。セル2は、セクタアンテナ10-1~10-3に対応して複数のセクタ3-1~3-3(区別しない場合は、セクタ3と表記する。)に分割されている。そして、セクタアンテナ10-1~10-3は、それぞれのアレイアンテナ11が送受信する電波のメインローブ13の方向が、対応するセクタ3-1~3-3に向くように設定されている。
 なお、図1では、基地局アンテナ1は、3個のセクタアンテナ10-1~10-3及びこれらに対応するセクタ3-1~3-3を備えているとした。しかし、セクタアンテナ10及びセクタ3は、3以外の予め定められた個数であってよい。また、図1(b)では、セクタ3は、セル2を3等分に分割(中心角120°)して構成されているが、等分でなくともよく、いずれか1つのセクタ3が他のセクタ3に比べ広く又は狭く構成されていてもよい。
 それぞれのセクタアンテナ10は、アレイアンテナ11に送信信号及び受信信号を伝送する送受信ケーブル14-1、14-2に接続されている。なお、送受信ケーブル14-1、14-2はそれぞれが互いに直交する偏波の電波の送信信号及び受信信号を伝送する。
 送受信ケーブル14-1、14-2は、基地局(不図示)内に設けられた送信信号の生成及び受信信号を受信する送受信部(不図示)に接続されている。送受信ケーブル14-1、14-2は、例えば同軸ケーブルである。
 なお、基地局アンテナ1、セクタアンテナ10、アレイアンテナ11などは、アンテナの可逆性により、電波を送信及び受信することができる。
 セクタアンテナ10は、アレイアンテナ11が備える複数のアンテナ(後述する図2のアンテナ100-1、100-2、100-3)に対して送受信信号のための電力を分配/合成するための回路を備える。
 なお、複数のアンテナ間において送受信信号の位相を異ならせる移相器を備えてもよい。アンテナ間において、送受信信号の位相を異ならせることで、電波(ビーム)の放射角度を地上方向に傾ける(チルトさせる)ことができる。
<アレイアンテナ11>
 図2は、第1の実施の形態におけるアレイアンテナ11の構成の一例を示す図である。図2(a)は、アレイアンテナ11の正面図(x-y面での図)、図2(b)は、図2(a)のIIB-IIB線でのアレイアンテナ11の断面図(x-z面での図)である。ここでは、図1(a)に示したセクタアンテナ10-1を例にして、アレイアンテナ11を説明する。
 アレイアンテナ11は、複数(ここでは一例として3個)のクロスダイポール構造のアンテナ100-1~100-3(区別しない場合は、アンテナ100と表記する。)と、反射板200と、仕切り板300-1、300-2(区別しない場合は、仕切り板300と表記する。)と、スペーサ400-1a~400-4a、400-1b~400-4b(区別しない場合は、スペーサ400と表記する。)と、調整板500、600とを備えている。
 アンテナ100-1~100-3は、y方向に配列されている。
 なお、アレイアンテナ11は、3個のアンテナ100を備えるとしたが、3個以外の複数のアンテナ100を備えてもよい。
 ここで、反射板200は、第1の導電性部材の一例であり、仕切り板300は、第2の導電性部材の一例である。
 図2(a)のアンテナ100-1に示すように、アンテナ100は、+45°偏波の電波を送受信するダイポールアンテナ110と、-45°偏波の電波を送受信するダイポールアンテナ120とで構成されており、それぞれダイポールアンテナの中央部から給電されている。ここでは図示しないが、アンテナ100のそれぞれの給電部は、偏波毎に例えば同軸ケーブル等で分配/合成回路や移相器に接続されている。そして、分配/合成回路や移相器が、送受信ケーブル14-1、14-2(図1(a)参照)に接続されている。
 ここで、+45°偏波が第1の偏波の一例であり、-45°偏波が第2の偏波の一例である。
 アンテナ100から予め定められた間隔DP-Hを設けて反射板200が配置されている。反射板200は、平面部210と、x方向の両端に平面部210から起立して設けられた2つの起立部220とで構成されている。つまり、2つの起立部220は、y方向に配列されたアンテナ100に沿って設けられている。なお、間隔DP-Hは、第1の間隔の一例である。
 なお、平面部210と起立部220とは、例えば平板を折り曲げるなどにより一体型に構成してもよいし、それぞれを別の部材で構成し、それらをネジ等で結合して構成してもよい。また、平面部210と起立部220とは、絶縁体材料を介して容量結合されてもよい。
 反射板200は、例えばアルミニウムなどの導電性材料で構成されている。
 アレイアンテナ11のy方向に隣接する二つのアンテナ100の間には、仕切り板300-1、300-2が設けられている。
 仕切り板300は、仕切り板300-1に示すように、隣接する二つのアンテナ100の間を仕切る仕切り部310と、その両端部に反射板200の起立部220と接続される2つの接続部320と、反射板200の平面部210と対向する結合部330とを備えている。
 ここでは、仕切り板300の仕切り部310は、反射板200の平面部210に対して垂直な面を有し、反射板200の2つの起立部220間に延びた四角形状である。
 仕切り板300の結合部330は、反射板200の平面部210に対して平行な面を有し、仕切り部310に対して+y方向に延びた四角形状である。そして、仕切り板300の結合部330と反射板200の平面部210とは、間隔PAR-Gで対向している(図2(b)参照)。なお、間隔PAR-Gは、第2の間隔の一例である。
 また、仕切り板300の接続部320は、仕切り部310から90°に折り曲がった面状である。
 なお、仕切り板300の仕切り部310は、反射板200の平面部210に対して垂直な面でなく、斜めの面であってもよい。すなわち、仕切り部310は、平面部210と交差する仮想的な平面に含まれる面を有すればよい。また、仕切り板300の結合部330は、反射板200の平面部210に対して平行な面でなく、斜めに傾斜した面であってもよい。
 仕切り板300は、例えばアルミニウムなどの導電性材料で構成されている。
 仕切り板300-1は、2つの接続部320がそれぞれスペーサ400-1a及び400-1bをはさんで、反射板200の起立部220にネジ等で固定されている。仕切り板300-2は、2つの接続部320がそれぞれスペーサ400-2a及び400-2bをはさんで、反射板200の起立部220にネジ等で固定されている。
 スペーサ400は、例えば絶縁体材料であるガラスエポキシやポリアセタール等の樹脂で構成されている。
 スペーサ400は、反射板200と仕切り板300とが直流的に接続されないように設けられている。
 ここでは、仕切り板300における仕切り部310、接続部320及び結合部330は、連続するように設けられている。つまり、結合部330は、仕切り板300の-z方向の端部が+y方向に折り曲げられて構成され、接続部320は、仕切り板300の±x方向の端部が+y方向に折り曲げられて構成されている。このように構成することで、仕切り板300の製造が容易になる。
 なお、反射板200の-y方向の端部には、仕切り板300と同様な形状の調整板500が設けられている。調整板500は、仕切り部310と同様な仕切り部510、接続部320と同様な接続部520、結合部330と同様な結合部530を備えている。
 また、反射板200の+y方向の端部には、調整板600が設けられている。調整板600は、仕切り部310と同様な仕切り部610、接続部320と逆向き(-y方向)に折り曲げられた接続部620を備えている。
 そして、仕切り板300と同様に、調整板500は、接続部520がスペーサ400-3a、400-3bを介して、反射板200の起立部220に接続され、調整板600は、接続部620がスペーサ400-4a、400-4bを介して、反射板200の起立部220に接続されている。
 調整板500、600は、アンテナ100のy方向における対称性を保持するために設けられている。よって、調整板500、600は、偏波間結合量への影響を考慮して設ければよい。よって、調整板500、600は、用いなくてもよく、他の形状としてもよい。
 なお、偏波間結合量とは、異なる偏波を送受信するアンテナ間における伝達関数S12をいう。
 スペーサ400は、反射板200の起立部220と、仕切り板300、調整板500、調整板600とが直流的に接続されないように設けられたものである。なお、反射板200の起立部220と仕切り板300、調整板500、調整板600とは、容量結合により高周波的に接続されている。これにより、相互変調歪特性が劣化することなく、ホワイトノイズの発生が抑えられる。
 ただし、このスペーサ400は必ずしも必要なものではなく、相互変調歪特性やホワイトノイズ特性等を鑑みて、直流的に接続してもよい。ここでは、直流的に接続することを直接接続すると表現する。
 また、第1の実施の形態では、仕切り板300-1にスペーサ400-1a、400-1b、仕切り板300-2にスペーサ400-2a、400-2b、調整板500にスペーサ400-3a、400-3b、調整板600にスペーサ400-4a、400-4bを設けたが、スペーサ400-1a、400-2a、400-3a、400-4a及びスペーサ400-1b、400-2b、400-3b、400-4bをそれぞれ連続して構成し、一枚のスペーサとしてもよい。
 反射板200は、図2(b)に示すように、平面部210が幅REF-W、起立部220が高さREF-Hである。例えば、平面部210の幅REF-Wは0.7λ、起立部220の高さREF-Hは0.15λである。
 また、アンテナ100と反射板200とは、間隔DP-Hである。例えば、間隔DP-Hは、1/4λである。なお、λは、設計する周波数fに対する自由空間波長である。
 これらの寸法は、要求されるアレイアンテナ11の指向特性等により適宜変更可能である。
 仕切り板300の結合部330と反射板200の平面部210とは間隔PAR-Gをあけて対向しており、直接接続されていない。なお、仕切り板300の結合部330と反射板200の平面部210とは、容量結合により高周波的に接続されている。したがって、相互変調歪特性が劣化することなく、ホワイトノイズの発生が抑えられたまま、直接接続された時と同様に広帯域にわたって良好な偏波間結合量を得ることができる。
 このように良好な偏波間結合量が得られる要因は、仕切り板300によって、隣接するアンテナ100間の結合量が減ることにも起因する。例えば、反射板200の平面部210と仕切り板300の結合部330との間隔PAR-Gは、0.02λである。この間隔PAR-Gは、要求される偏波間結合量等に基づいて適宜調整すればよい。
 なお、第1の実施の形態ではアンテナ100としてダイポールアンテナを示したが、アンテナはこれに限らず、パッチアンテナやスロットアンテナ等の形態であってもよい。
 例えば矩形パッチアンテナの場合、長さが異なる2辺からそれぞれ給電することで、1素子で偏波共用のアンテナとする方法がよく用いられている。
 また、スロットアンテナの場合、異なる偏波の電波を送受信するスロットアンテナをそれぞれ設けてもよく、十字形状のクロススロットアンテナを用いて、異なる2点からそれぞれ給電することで、偏波共用のアンテナとしてもよい。
 図3は、仕切り板300の詳細図である。図3(a)は、+z方向から見た正面図、図3(b)は、+y方向から見た側面図である。仕切り板300は、仕切り部310と、その両端部に設けられた反射板200の起立部220と接続される2つの接続部320と、反射板200の平面部210と対向する結合部330とを備えている。
 ここでは、仕切り板300は、前述したように、板状の導電性材料が折り曲げられて構成されている。結合部330は、仕切り部310に対し、+y方向に折り曲げられた四角形状である。そして、仕切り板300の接続部320は、仕切り部310に対し+y方向に折り曲げられた四角形状である。
 なお、図3(b)に示すように、仕切り部310は、-z方向における±x方向の端部を切り欠いているが、切り欠かなくともよい。
 ここで、仕切り板300の仕切り部310は、z方向が高さPAR-Hである。また、仕切り板300の結合部330は、x方向が幅PAR-W、y方向が奥行きPAR-Dである。
 隣接するアンテナ100の間に仕切り部310を設けることで、+45°偏波の電波を送受信するダイポールアンテナ110と、-45°偏波の電波を送受信するダイポールアンテナ120との間の偏波間結合量が改善されるが、この効果は仕切り板300と、平面部210とが直接接続されたときに最大となる。しかしながら、直接接続するとその接続部分から相互変調歪や、ホワイトノイズが発生することがある。
 それに対して、第1の実施の形態では仕切り板300の結合部330を反射板200の平面部210に対向して配置することで、仕切り板300の結合部330と反射板200の平面部210とが容量結合され、後述するように直接接続したときと同様に広帯域わたって良好な偏波間結合特性を得ることができる。
 なお、第1の実施の形態では仕切り部310の高さPAR-Hを0.1λ、結合部330の幅PAR-Wを0.4λ、奥行きPAR-Dを0.1λとしている。ただし、これらの寸法は必ずしもこれに限るものではなく、必要となる周波数帯域や要求される偏波間結合量等に基づいて適宜調整すればよい。
 図4は、偏波間結合量の測定値である。図4(a)は、第1の実施の形態における偏波間結合量、図4(b)は、第1の実施の形態を採用せず、仕切り板300に結合部330を備えない場合の偏波間結合量である。図4(a)、(b)において、横軸は正規化された周波数(f/f)、縦軸は偏波間結合量(dB)である。なお、周波数fは、2GHz帯に設定されている。
 ここで示す偏波間結合量は、上記において例として示した数値のアレイアンテナ11において、各アンテナ100における+45°偏波の電波を送受信するダイポールアンテナ110と、-45°偏波の電波を送受信するダイポールアンテナ120との間において測定した伝達関数S12である。
 図4(a)に示す第1の実施の形態における偏波間結合量の最大値は、約-26dB程度である。これに対し、図4(b)に示す第1の実施の形態を採用しない場合(仕切り板300に結合部330を備えない場合)の偏波間結合量の最大値は、約-20dBである。すなわち、第1の実施の形態では、偏波間結合量の最大値が約6dB改善されるとともに、広帯域にわたって偏波間結合量が低く抑えられていることが分かる。
 これは、仕切り板300が結合部330を備えることで、仕切り板300と反射板200の平面部210との高周波的な結合量が増加した結果、仕切り板300と反射板200の平面部210とを直接接続した時と同等の効果が得られることを表している。
[他の実施の形態]
 ここでは、仕切り板300の変形例を説明する。他の構成は、第1の実施の形態と同様であるので、同様な部分の説明を省略し、異なる部分を説明する。
 図5は、仕切り板300の変形例の正面図である。図5(a)は、結合部330が仕切り部310に対して-y方向側に設けられた場合、図5(b)は、結合部330が仕切り部310に対して+y方向側と-y方向側とにまたがって設けられた場合、図5(c)は、結合部330が仕切り部310に対して+y方向側に半円板状に設けられた場合である。なお、これらの仕切り板300の側面図は、図3(b)と同様である。
 図3(a)に示したように、第1の実施の形態では、仕切り板300に設けられた結合部330は、仕切り部310に対して+y方向に四角形状に設けられていた。
 図5(a)に示す仕切り板300は、結合部330が仕切り部310に対して-y方向に設けられており、第1の実施の形態と反対の方向に設けられている。
 また、図5(b)に示す仕切り板300は、第1の実施の形態とは異なり、結合部330(結合部330-a、330-b)が仕切り部310に対して+y方向及び-y方向の両側に設けられている。この場合、例えば結合部330-aを仕切り部310と一体の構造として板金で構成し、別の部材として制作した結合部330-bを仕切り部310や結合部330-aとねじ止めするなどして構成すればよい。
 さらに、図5(c)に示す仕切り板300は、結合部330が半円板状である。
 このように、仕切り板300における結合部330の形状や設ける位置等は、反射板の平面部210と仕切り板300が容量結合できる構造であれば、いかなる形状であってもよい。
 なお、本明細書では偏波共用アンテナとして±45度偏波の電波を送受信する偏波共用アンテナとして説明を行ったが、偏波の向きはこれに限らず、垂直偏波アンテナと水平偏波アンテナを組み合わせた偏波共用アンテナであってもよい。
 また、指向特性の改善等のために、無給電素子を適宜設けてもよい。
 また、円偏波の電波を送受信するアレイアンテナを構成する際、二つの交差する偏波のアンテナに90度の位相差を付けて給電することがあるが、そのようなケースにおいても、第1の実施の形態及び他の実施の形態で説明した仕切り板300を用いることで円偏波特性を改善することができる。
1…基地局アンテナ、2…セル、3、3-1~3-3…セクタ、10、10-1~10-3…セクタアンテナ、11…アレイアンテナ、12…レドーム、13…メインローブ、14-1、14-2…送受信ケーブル、20…鉄塔、100、100-1~100-3…アンテナ、110、120…ダイポールアンテナ、200…反射板、210…平面部、220…起立部、300、300-1、300-2、300-3…仕切り板、310…仕切り部、320…接続部、330、330-a、330-b…結合部、400、400-1a、400-2a、400-3a、400-4a、400-1b、400-2b、400-3b、400-4b…スペーサ、500、600…調整板

Claims (7)

  1.  平面部を有する第1の導電性部材と、
     前記第1の導電性部材の前記平面部と予め定められた第1の間隔を設けて配列され、第1の偏波の電波と当該第1の偏波と異なる第2の偏波の電波とをそれぞれが送受信する複数のアンテナと、
     複数の前記アンテナの隣接するアンテナ間に、前記第1の導電性部材の前記平面部と予め定められた第2の間隔を隔てて設けられ、当該第1の導電性部材と容量結合する第2の導電性部材と、
    を備えるアレイアンテナ。
  2.  前記第2の導電性部材は、
     前記第1の導電性部材の前記平面部と交差する仮想的な平面に含まれる面を有する仕切り部と、
     前記第1の導電性部材の前記平面部に対向する面を有する結合部と、
    を備えることを特徴とする請求項1に記載のアレイアンテナ。
  3.  前記第2の導電性部材は、
     前記結合部が、前記仕切り部より前記第1の導電性部材側に設けられている
    ことを特徴とする請求項2に記載のアレイアンテナ。
  4.  前記第2の導電性部材は、
     前記結合部と前記仕切り部とが、導電性材料が折り曲げられて構成されている
    ことを特徴とする請求項2又は3に記載のアレイアンテナ。
  5.  前記第1の導電性部材は、
     前記平面部と予め定められた第1の間隔を設けて配列された複数の前記アンテナの配列の方向と交差する側に、当該平面部から複数の当該アンテナが配列された側に起立した起立部を有し、
     前記第2の導電性部材は、
     前記仕切り部の端部に、前記第1の導電性部材の前記起立部と対向する接続部を有し、
     前記第2の導電性部材の前記接続部は、絶縁体材料を介して前記第1の導電性部材の前記起立部に固定されていることを特徴とする請求項2乃至4のいずれか1項に記載のアレイアンテナ。
  6.  複数の前記アンテナの送受信する電波は、複数の当該アンテナの配列に対して+45°方向の偏波及び-45°方向の偏波であることを特徴とする請求項1乃至5のいずれか1項に記載のアレイアンテナ。
  7.  平面部を有する第1の導電性部材と、当該第1の導電性部材の当該平面部と予め定められた第1の間隔を設けて配列され、第1の偏波の電波と当該第1の偏波と異なる第2の偏波の電波とをそれぞれが送受信する複数のアンテナと、
     複数の前記アンテナに電力を分配/合成するための回路と、
     複数の前記アンテナの隣接するアンテナ間に設けられ、前記第1の導電性部材の前記平面部と予め定められた第2の間隔を隔てて容量結合する第2の導電性部材と、を備えるアレイアンテナと、
     前記アレイアンテナを覆うカバーと、
    を備えるセクタアンテナ。
PCT/JP2017/012988 2017-03-29 2017-03-29 アレイアンテナ及びセクタアンテナ WO2018179160A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/012988 WO2018179160A1 (ja) 2017-03-29 2017-03-29 アレイアンテナ及びセクタアンテナ
US16/497,799 US11145968B2 (en) 2017-03-29 2017-03-29 Array antenna and sector antenna
CN201780088628.3A CN110462931B (zh) 2017-03-29 2017-03-29 阵列天线以及扇形天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/012988 WO2018179160A1 (ja) 2017-03-29 2017-03-29 アレイアンテナ及びセクタアンテナ

Publications (1)

Publication Number Publication Date
WO2018179160A1 true WO2018179160A1 (ja) 2018-10-04

Family

ID=63674360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012988 WO2018179160A1 (ja) 2017-03-29 2017-03-29 アレイアンテナ及びセクタアンテナ

Country Status (3)

Country Link
US (1) US11145968B2 (ja)
CN (1) CN110462931B (ja)
WO (1) WO2018179160A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039994A (en) * 1984-12-20 1991-08-13 The Marconi Company Ltd. Dipole arrays
US6025812A (en) * 1996-07-04 2000-02-15 Kathrein-Werke Kg Antenna array
JP2002538648A (ja) * 1999-02-24 2002-11-12 ノキア ネットワークス オサケ ユキチュア アンテナ間における相互干渉を抑圧するための装置
JP2003504925A (ja) * 1999-07-08 2003-02-04 カトライン−ベルケ・カーゲー アンテナ
JP2006217104A (ja) * 2005-02-02 2006-08-17 Nippon Dengyo Kosaku Co Ltd 4周波数共用アンテナ
JP2015167337A (ja) * 2014-03-04 2015-09-24 日本電業工作株式会社 アレイアンテナ及びセクタアンテナ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19722742C2 (de) 1997-05-30 2002-07-18 Kathrein Werke Kg Dualpolarisierte Antennenanordnung
DE10316787A1 (de) 2003-04-11 2004-11-11 Kathrein-Werke Kg Reflektor, insbesondere für eine Mobilfunk-Antenne
JP2006121406A (ja) 2004-10-21 2006-05-11 Nippon Dengyo Kosaku Co Ltd アレイアンテナ
WO2007097282A1 (ja) * 2006-02-23 2007-08-30 Murata Manufacturing Co., Ltd. アンテナ装置、アレイアンテナ、マルチセクタアンテナ、および高周波送受波装置
FR2966986B1 (fr) * 2010-10-27 2013-07-12 Alcatel Lucent Element rayonnant d'antenne
KR101257093B1 (ko) * 2011-06-10 2013-04-19 엘지전자 주식회사 이동 단말기
JP2017508402A (ja) * 2014-03-17 2017-03-23 クインテル テクノロジー リミテッド 輻射ベクトルの仮想回転を用いたコンパクトなアンテナアレイ
CN106450751A (zh) * 2015-08-06 2017-02-22 哗裕实业股份有限公司 具片状金属群负载的偶极单元及其应用的天线装置
CN105140629A (zh) * 2015-09-21 2015-12-09 江苏亨鑫无线技术有限公司 一种双频天线组阵结构
CN205921070U (zh) * 2016-07-15 2017-02-01 京信通信技术(广州)有限公司 一种低频辐射单元及多频电调天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039994A (en) * 1984-12-20 1991-08-13 The Marconi Company Ltd. Dipole arrays
US6025812A (en) * 1996-07-04 2000-02-15 Kathrein-Werke Kg Antenna array
JP2002538648A (ja) * 1999-02-24 2002-11-12 ノキア ネットワークス オサケ ユキチュア アンテナ間における相互干渉を抑圧するための装置
JP2003504925A (ja) * 1999-07-08 2003-02-04 カトライン−ベルケ・カーゲー アンテナ
JP2006217104A (ja) * 2005-02-02 2006-08-17 Nippon Dengyo Kosaku Co Ltd 4周波数共用アンテナ
JP2015167337A (ja) * 2014-03-04 2015-09-24 日本電業工作株式会社 アレイアンテナ及びセクタアンテナ

Also Published As

Publication number Publication date
CN110462931B (zh) 2021-07-06
US11145968B2 (en) 2021-10-12
CN110462931A (zh) 2019-11-15
US20210126357A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
US11799209B2 (en) Lensed base station antennas
JP5745582B2 (ja) アンテナ及びセクタアンテナ
US6252549B1 (en) Apparatus for receiving and transmitting radio signals
US20040066345A1 (en) Crossed bow tie slot antenna
CN110622352B (zh) 阵列天线
US10658743B2 (en) Antenna array assembly
WO2015133458A1 (ja) アレイアンテナ及びセクタアンテナ
US11374331B1 (en) Base station antenna including Fabrey-Perot cavities
WO2015159871A1 (ja) アンテナ及びセクタアンテナ
US11437736B2 (en) Broadband antenna having polarization dependent output
WO2015016349A1 (ja) アンテナ及びセクタアンテナ
JP6973911B2 (ja) 送受共用平面アンテナ素子および送受共用平面アレーアンテナ
WO2018179160A1 (ja) アレイアンテナ及びセクタアンテナ
JP6536950B2 (ja) アンテナ装置
JP2015080148A (ja) アンテナ及びセクタアンテナ
JP6593645B2 (ja) アンテナ装置
JP2001144532A (ja) アンテナ装置
KR101412128B1 (ko) 급전 케이블의 길이가 대칭으로 구성되는 옴니 안테나
KR20030068846A (ko) 송/수신용 광대역 마이크로스트립 패치 안테나 및 이를배열한 배열 안테나
WO2020016995A1 (ja) アンテナ、アレイアンテナ、セクタアンテナ及びダイポールアンテナ
JP2013110577A (ja) アンテナ、アレイアンテナおよびセクタアンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP