WO2018207869A1 - 車両制御装置 - Google Patents

車両制御装置 Download PDF

Info

Publication number
WO2018207869A1
WO2018207869A1 PCT/JP2018/018113 JP2018018113W WO2018207869A1 WO 2018207869 A1 WO2018207869 A1 WO 2018207869A1 JP 2018018113 W JP2018018113 W JP 2018018113W WO 2018207869 A1 WO2018207869 A1 WO 2018207869A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
gear
gear stage
transmission
current
Prior art date
Application number
PCT/JP2018/018113
Other languages
English (en)
French (fr)
Inventor
達也 大島
西村 伸之
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to DE112018002454.7T priority Critical patent/DE112018002454T5/de
Priority to CN201880031484.2A priority patent/CN110621917B/zh
Priority to US16/613,053 priority patent/US11473674B2/en
Publication of WO2018207869A1 publication Critical patent/WO2018207869A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/663Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/66Road conditions, e.g. slope, slippery
    • F16H2059/666Determining road conditions by using vehicle location or position, e.g. from global navigation systems [GPS]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/022Calculation or estimation of optimal gear ratio, e.g. best ratio for economy drive or performance according driver preference, or to optimise exhaust emissions

Definitions

  • the present disclosure relates to a vehicle control device, and more particularly to a technique for selecting a gear stage of a transmission mounted on a vehicle.
  • AMT automated manual transmission
  • the final driving force of the vehicle depends on the selected gear stage at AMT.
  • the AMT includes a large number of gears, and the meshing resistance may be different at each gear stage.
  • the difference in the meshing resistance at the gear stage affects the fuel consumption in the engine mounted on the vehicle. For this reason, it is considered that there is room for improvement in the gear stage selection technology based on the fuel consumption of the vehicle.
  • An object of the present disclosure is to provide a vehicle control device that can improve a gear selection technique in a vehicle including an automated manual transmission.
  • a vehicle control device is a vehicle control device that controls an operation of a vehicle including a transmission, and the transmission transmits an engine power input via an input shaft without an output shaft.
  • a direct connection gear that directly connects the input shaft and the output shaft, and a normal gear that transmits the power of the engine to the output shaft via the countershaft, wherein the normal gear is the direct connection gear.
  • the vehicle control device includes a travel section determination unit that determines a travel section that has a road gradient different from a current travel section in which the vehicle is traveling, and is ahead of the traveling direction of the vehicle, Estimated based on a current gear stage selection unit that selects a current gear stage that is a gear stage of the transmission in the current running section based on a running resistance, a road gradient in the preceding running section, and a speed of the vehicle Based on the running resistance of the vehicle in the preceding traveling section, a preceding gear stage selecting unit that selects a preceding gear stage that is a gear stage of the transmission in the preceding traveling section, the current gear stage, and the preceding gear stage, And a shift control unit that controls the shift of the gear stage of the transmission.
  • the shift control unit when the current gear stage is the directly coupled gear and the previous gear stage is also the directly coupled gear, the current gear stage selecting unit newly selects a shift up to the overdrive gear. If so, it is selected whether or not to shift up the transmission based on the situation until the vehicle reaches the preceding travel section.
  • the shift control unit is when the current gear stage selection unit newly selects upshifting to an overdrive gear. Even if it exists, you may maintain the gear stage of the said transmission as the said direct connection gear.
  • the shift control unit is a case where the current gear stage selection unit newly selects upshift to an overdrive gear when the travel distance until the vehicle reaches the preceding travel section is within a predetermined distance. Even if it exists, you may maintain the gear stage of the said transmission as the said direct connection gear.
  • the vehicle control device of the present disclosure it is possible to improve the gear stage selection technique in a vehicle including an automated manual transmission.
  • FIG. 1 is a diagram for explaining an outline of a vehicle according to an embodiment.
  • FIG. 2 is a diagram schematically illustrating an internal configuration of the vehicle according to the embodiment.
  • FIG. 3 is a diagram schematically illustrating a functional configuration of the vehicle control device according to the embodiment.
  • FIG. 4 is a diagram schematically illustrating an example of an equal fuel consumption map of the engine according to the embodiment.
  • FIG. 5A is a diagram schematically illustrating an example of an equal fuel consumption map of a directly connected gear.
  • FIG. 5B is a diagram schematically illustrating an example of an equal fuel consumption map of a normal gear.
  • FIG. 1 is a diagram for explaining an outline of a vehicle V according to the embodiment. With reference to FIG. 1, the outline
  • the vehicle V according to the embodiment is a large vehicle having an AMT with an engine such as a diesel engine as a driving force.
  • an arithmetic unit such as an ECU (Electronic Control Unit) installed in a vehicle automatically selects the gear position of the transmission so that the vehicle can overcome the running resistance and improve the fuel efficiency of the vehicle.
  • the gear stage in the vehicle is selected by selecting a gear stage that improves the fuel efficiency of the vehicle from among the gear stages that can generate torque that overcomes the running resistance of the vehicle with reference to the equi-fuel consumption map of the engine. .
  • vehicle acceleration is proportional to the amount of vehicle driving force minus vehicle travel resistance, and inversely proportional to vehicle weight. Therefore, the ECU mounted on the vehicle estimates the running resistance of the vehicle from the driving force of the vehicle, the weight of the vehicle, and the acceleration of the vehicle, and selects a gear that can generate torque that overcomes the running resistance.
  • the ECU estimates the running resistance using the acceleration of the vehicle, the ECU can estimate the running resistance of the vehicle at the current running position, but travels at a position ahead of the current running position. Resistance cannot be estimated.
  • the ECU of the vehicle V according to the embodiment estimates the running resistance at the previous position by acquiring road gradient information ahead of the current running position.
  • the vehicle V according to the embodiment acquires gradient information and estimates the running resistance at the previous position will be described.
  • the vehicle V has a satellite navigation function that acquires position information indicating the current position of the vehicle V based on information received from the navigation satellite. Moreover, the vehicle V holds the gradient information of the road on which the vehicle V travels.
  • the vehicle V may be provided with an autonomous navigation function that acquires the current position of the vehicle V based on the output value of an acceleration sensor or the like without using the reception information from the navigation satellite.
  • the ECU of the vehicle V prefetches road gradient information that the vehicle V will travel in the near future based on the road gradient information and the position information of the vehicle V.
  • a vehicle V travels in a “current travel section” starting at a point A and ending at a point B.
  • the road on which the vehicle V is traveling has an upward slope of a certain level or more in a “previous travel section” starting at the point B and ending at the point C.
  • the “previous travel section” is a travel section in which the average gradient of the road is different from the current travel section in which the vehicle V is currently traveling, and is a travel section ahead of the traveling direction of the vehicle V.
  • the gradient information of the pre-travel section pre-read by the ECU is determined from the gradient information held by the vehicle V and the position information of the vehicle V.
  • the running resistance of the vehicle V is dominated by gradient resistance, air resistance, and rolling resistance. Of these, the gradient resistance can be estimated. As a result, the ECU can estimate the running resistance of the preceding running section.
  • the fuel consumption of the vehicle V is not only the fuel consumption rate of the engine provided in the vehicle V (that is, the amount of fuel consumed by the engine to generate a predetermined driving force), but also the sliding resistance inside the engine and the engine It also affects the loss in the power transmission path.
  • the loss in the power transmission path of the engine is, for example, a loss caused by the transmission efficiency of each gear included in the transmission.
  • the vehicle V when the vehicle V according to the embodiment selects a gear in the preceding travel section, the vehicle V refers to an equal fuel consumption map that considers transmission efficiency of each gear included in the transmission. As a result, the vehicle V according to the embodiment can more accurately select a gear stage that achieves high fuel efficiency in the preceding travel section.
  • the vehicle V When the vehicle V is traveling on an automobile exclusive road such as an expressway, the vehicle V changes the presence or absence of a shift to the gear stage selected by the look-ahead according to various traveling environments in which the vehicle V is placed. Thereby, the uncomfortable feeling that can be given to the driver by the shift of the vehicle V can be reduced.
  • FIG. 2 is a diagram schematically showing the internal configuration of the vehicle V according to the embodiment.
  • a vehicle V according to the embodiment includes an engine 1, a transmission 2, a GPS (Global Positioning System) sensor 3, a weight sensor 4, a speed sensor 5, an accelerator opening sensor 6, and a vehicle control device 10 as an ECU.
  • GPS Global Positioning System
  • the vehicle V is a large vehicle that uses the engine 1 such as a diesel engine as a driving force, and is particularly a vehicle equipped with an auto cruise mode.
  • the transmission 2 is an AMT for transmitting the rotational driving force of the engine 1 to driving wheels (not shown) of the vehicle V.
  • the transmission 2 includes a plurality of gears for converting the rotational driving force of the engine 1.
  • the “auto cruise mode” in the vehicle V means that the engine 1 and the transmission 2 and the like are ECUs so as to maintain a preset speed of the vehicle V without the driver operating the accelerator or the shift lever. This is a mode controlled automatically by.
  • the auto-cruise mode is mainly assumed to be used when the vehicle V travels on a highway.
  • the GPS sensor 3 acquires the position of the GPS sensor 3, that is, the position of the vehicle V on which the GPS sensor 3 is mounted, by receiving and analyzing radio waves transmitted from a plurality of navigation satellites.
  • the GPS sensor 3 outputs information indicating the position of the vehicle V to the vehicle control device 10.
  • the weight sensor 4 acquires the total weight of the vehicle V. Specifically, the weight sensor 4 measures the weight of the load of the vehicle V, and acquires the total weight of the vehicle V by adding the weight of the vehicle V alone excluding the load. The weight sensor 4 outputs information indicating the total weight of the vehicle V to the vehicle control device 10.
  • the speed sensor 5 measures the speed of the vehicle V.
  • the speed sensor 5 outputs information indicating the measured speed to the vehicle control device 10.
  • the accelerator opening sensor 6 measures the accelerator opening that is the amount of depression of the accelerator pedal by the driver of the vehicle V.
  • the accelerator opening sensor 6 outputs information indicating the accelerator opening to the vehicle control device 10.
  • the vehicle control device 10 acquires information from each sensor described above, and controls the amount of fuel supplied to the cylinder in the engine 1 and the gear stage of the transmission 2 based on the acquired information.
  • the vehicle control device 10 controls the engine 1 and the transmission 2 so that the vehicle V travels while maintaining the set speed. Further, the vehicle control device 10 is configured so that the speed of the vehicle V does not exceed the set upper limit speed when a speed limit device (Speed Device: SLD) (not shown) of the vehicle V is operating. And the transmission 2 is controlled.
  • SLD Speed Device
  • FIG. 3 is a diagram schematically illustrating a functional configuration of the vehicle control device 10 according to the embodiment.
  • the vehicle control device 10 according to the embodiment includes a storage unit 11 and a control unit 12.
  • the storage unit 11 is, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the storage unit 11 stores various programs for causing the control unit 12 to function.
  • storage part 11 may memorize
  • the control unit 12 is a calculation resource such as a CPU (Central Processing Unit) (not shown).
  • the control unit 12 executes a program stored in the storage unit 11 to thereby execute a current gear stage selection unit 13, a road gradient acquisition unit 14, a travel section determination unit 15, a previous gear stage selection unit 16, and a shift control unit. 17 functions are realized.
  • a CPU Central Processing Unit
  • the current gear stage selection unit 13 selects the current gear stage that is the gear stage of the transmission 2 in the section in which the vehicle V is traveling based on the estimated value of the running resistance of the vehicle V on the road on which the vehicle V is traveling. Details of the current gear selection by the current gear selection unit 13 will be described later.
  • the road gradient acquisition unit 14 acquires the road gradient on the road on which the vehicle V is traveling based on the information indicating the position of the vehicle V acquired from the GPS sensor 3 and the map information stored in the storage unit 11. .
  • the travel section determination unit 15 is a travel section in which the average slope of the road differs from the current travel section in which the vehicle V is currently traveling based on the road gradient acquired by the road gradient acquisition unit 14 by a predetermined value or more. The preceding travel section ahead of the traveling direction is determined.
  • the first gear stage selection unit 16 selects the first gear stage that is the gear stage of the transmission 2 in the previous traveling section based on the road gradient in the previous traveling section and the speed of the vehicle V.
  • details of the selection of the previous gear stage by the previous gear stage selection unit 16 will be described together with the current gear stage selection by the current gear stage selection unit 13.
  • the road gradient acquisition unit 14 In addition, in order to acquire the gradient information of the road on which the vehicle V will travel in the future, the road gradient acquisition unit 14 must estimate the location where the vehicle V will travel in the future. If the road gradient acquisition unit 14 cannot acquire the road gradient, it becomes difficult for the travel segment determination unit 15 to determine the previous travel segment.
  • the road gradient acquisition unit 14 can relatively easily estimate the location where the vehicle V will travel in the future.
  • the road gradient acquisition unit 14 becomes difficult to estimate a place where the vehicle V will travel in the future.
  • the shift control unit 17 first determines that the vehicle V is a gear selection result by the current gear selection unit 13 and a gear selection result by the previous gear selection unit 16. To get.
  • the shift control unit 17 controls the shift of the gear stage of the transmission 2 based on the gear selection result and the gear selection result by the first gear stage selection unit 16.
  • the transmission 2 provided in the vehicle V according to the embodiment is an AMT, and is a transmission that realizes automatic gear shift of the transmission 2 by moving a sleeve in a conventional manual transmission with an actuator.
  • the basic structure of the transmission 2 according to the embodiment is the same structure as a conventional manual transmission.
  • the transmission 2 according to the embodiment includes two auxiliary transmission mechanisms called a splitter and a range, and one main transmission mechanism provided between the splitter and the range.
  • the splitter changes the gear ratio between the input shaft to which the engine power of the vehicle V is input and the countershaft.
  • the main transmission mechanism mainly changes the transmission ratio between the counter shaft and the output shaft.
  • the range is provided on a drive transmission path that transmits the rotational drive of the output shaft to the propeller shaft, and changes the gear ratio between the output shaft and the propeller shaft.
  • the main transmission mechanism includes a “directly connected gear” that directly connects the input shaft and the output shaft.
  • the gear of the transmission 2 When the vehicle V is cruising on a highway with a small gradient, if 12 gears (overdrive gear) or 11 gears (directly connected gear) are selected as the gear of the transmission 2, it can contribute to improving the fuel consumption of the vehicle V. Many.
  • the direct connection gear is a gear that directly connects the input shaft and the output shaft. Since the engine power is transmitted directly to the output shaft without passing through the countershaft, the transmission efficiency is higher than other gear stages via the countershaft.
  • the main transmission mechanism is a direct connection gear even when the transmission 2 has five gears. In this case, the gear ratio gear ratio of the range is not directly connected (gear ratio 1), and the transmission efficiency decreases.
  • the gear stage of the transmission 2 is “overdrive gear” means the highest gear of the transmission 2
  • “directly connected gear” is a gear that is one stage lower than the highest gear of the transmission 2. I mean.
  • FIG. 4 is a diagram schematically illustrating an example of an equal fuel consumption map of the engine 1 according to the embodiment.
  • the gear selection in the transmission 2 will be described with reference to FIG.
  • the vertical axis represents the net average effective pressure Pme of the cylinder included in the engine 1
  • the horizontal axis represents the rotational speed N of the engine 1.
  • the curve indicated by the symbol Pmax is the maximum combustion pressure curve Pmax indicating the maximum combustion pressure of the engine 1.
  • the engine 1 cannot generate torque exceeding the maximum combustion pressure curve Pmax in the iso-fuel consumption map shown in FIG.
  • the area shown by hatching indicates the fuel consumption rate (Specific Fuel Consumption; SFC) of the engine 1.
  • SFC indicates the fuel consumption per unit work of the engine 1. The smaller the value of SFC, the more the engine 1 can do the same job with less fuel.
  • FIG. 4 In the iso-fuel consumption map shown in FIG. 4, areas with different fuel consumption rates are identified using hatching.
  • a region indicated by hatching H ⁇ b> 1 indicated by a symbol H ⁇ b> 1 is a region having the best fuel consumption rate (that is, a fuel consumption amount is small). The fuel consumption rate gets worse in order.
  • the illustration of the region where the fuel consumption rate is worse than the region indicated by hatching H5 is omitted.
  • subjected is only described as the area
  • the force F generated by the torque T generated by the vehicle V must antagonize the running resistance of the vehicle V.
  • the net average effective pressure Pme is inversely proportional to the rotational speed N of the engine 1.
  • the rotational speed N of the engine 1 is determined by the gear ratio of the gear stage selected by the transmission 2. Therefore, the engine 1 cannot be at an arbitrary rotational speed on the equal horsepower curve Lp in the equal fuel consumption map, and is restricted to a discrete rotational speed determined by the speed Vc and the gear ratio of the transmission 2.
  • a white circle G12 indicated by reference numeral G12 indicates the state of the engine 1 when the transmission 2 has 12 gears (that is, an overdrive gear).
  • white circles denoted by reference numerals G11, G10, and G9 indicate the state of the engine 1 when the gear stage is 11 stages (that is, a direct connection gear), 10 stages, and 9 stages, respectively.
  • the gear stage of the transmission 2 is 12th and 11th, both are included in the region H2, but the 12th gear is closer to the region H1 and the fuel efficiency is better.
  • the current gear stage selection unit 13 and the previous gear stage selection unit 16 can improve fuel efficiency by referring to the equal fuel consumption map.
  • the gear stage can be determined.
  • the current gear stage selection unit 13 estimates an estimated value Pv of the running resistance of the vehicle V on the road on which the vehicle V is running, and refers to the equal fuel consumption map using the speed of the vehicle V and the estimated value Pv of the running resistance. Thus, the gear stage of the transmission 2 is selected.
  • the acceleration of the vehicle V is proportional to the amount obtained by subtracting the traveling resistance of the vehicle from the driving force of the vehicle V and inversely proportional to the weight of the vehicle V.
  • the current gear stage selection unit 13 estimates the net average effective pressure Pme generated by the engine 1 from the injection amount of fuel injected into the engine 1 and the like.
  • the current gear selection unit 13 acquires the torque T generated by the engine 1 from the net average effective pressure Pme.
  • the current gear selection unit 13 acquires the driving force of the vehicle V from the torque T, the gear ratio of the gear selected by the transmission 2, the final reduction ratio, and the diameter of the drive wheels.
  • the current gear stage selection unit 13 estimates the running resistance of the vehicle V from the driving force of the vehicle V, the weight of the vehicle V, and the acceleration of the vehicle V, and selects a gear stage with reference to the equal fuel consumption map.
  • the front gear selection unit 16 is different from the current gear selection unit 13 in that the running resistance of the vehicle V is calculated by calculation.
  • the running resistance of the vehicle V is dominated by the sum of the rolling resistance of the drive wheels provided in the vehicle V, the air resistance of the vehicle V, and the gradient resistance of the road on which the vehicle V runs.
  • the air resistance of the vehicle V is proportional to the square of the speed of the vehicle V.
  • the road gradient resistance depends on the road gradient on which the vehicle travels and the weight of the vehicle V.
  • the rolling coefficient of the driving wheel and the proportional coefficient for calculating the air resistance of the vehicle V are stored in advance in the storage unit 11 by the manufacturer of the vehicle V.
  • the previous gear stage selection unit 16 refers to the map information held in the storage unit 11 and acquires gradient information in the previous travel section determined by the travel section determination unit 15. Further, the first gear stage selection unit 16 acquires the weight of the vehicle V and the speed of the vehicle V from the weight sensor 4 and the speed sensor 5, respectively. Thereby, the previous gear stage selection unit 16 calculates the gradient resistance of the vehicle V in the previous traveling section.
  • the first gear stage selection unit 16 obtains the air resistance of the vehicle V by multiplying the square of the speed of the vehicle V by a proportional coefficient.
  • the front gear stage selection unit 16 calculates the running resistance of the vehicle V by adding the rolling resistance read from the gradient resistance of the vehicle V, the air resistance of the vehicle V, and the storage unit 11. Similar to the current gear stage selection unit 13, the previous gear stage selection unit 16 selects a gear stage in the previous travel section from the calculated travel resistance and the equal fuel consumption map.
  • the first gear stage selection unit 16 refers to different equal fuel consumption maps when the gear stage of the transmission 2 is a direct gear and when the gear stage of the transmission 2 is a normal gear. select.
  • FIG. 5A and 5B are diagrams for explaining the difference between the equal fuel consumption map of the normal gear and the equal fuel consumption map of the direct connection gear.
  • FIG. 5A is a diagram schematically illustrating an example of an equal fuel consumption map of a direct gear
  • FIG. 5B is a diagram schematically illustrating an example of an equal fuel efficiency map of a normal gear.
  • the equal fuel consumption map shown in FIG. 5B is the same as the equal fuel consumption map shown in FIG. That is, the white circle G12 in the regular gear equal fuel consumption map shown in FIG. 5B indicates the state of the engine 1 when the transmission 2 is an overdrive gear having 12 gears.
  • the gear stage of the transmission 2 is a direct connection gear
  • the transmission efficiency of the gear as a whole of the transmission 2 is higher than when the gear stage of the transmission 2 is a normal gear.
  • the gear stage of the transmission 2 is a direct-coupled gear
  • the transmission loss that occurs before the output of the engine 1 is transmitted to the drive wheels of the vehicle V, compared to the case where the gear stage of the transmission 2 is a normal gear.
  • the gear stage of the transmission 2 is a direct connection gear
  • the fuel consumption rate of the engine 1 is improved as compared with the case where the gear stage of the transmission 2 is a normal gear.
  • the region H1 in the region below the maximum combustion pressure curve Pmax is wide in the equal fuel consumption map of the direct gear. For this reason, the portion that is in the region H2 in the equi-fuel ratio map of the normal gear is also the region H1 in the equi-fuel ratio map of the direct connection gear.
  • the equal horsepower curve Lp shown in FIG. 5A is the same as the equal horsepower curve Lp shown in FIG. 5B.
  • the state of the engine 1 in the directly connected gear (11 steps) in the equal horsepower curve Lp is included in the region H1. This is because in order for the engine 1 to perform work corresponding to the equal horsepower curve Lp, the fuel consumption of the vehicle V is improved when the transmission 2 is a direct connection gear rather than a normal gear such as an overdrive gear. Means.
  • the first gear stage selection unit 16 selects a gear stage with reference to the equal fuel efficiency map reflecting the difference in transmission efficiency of the gear stage of the transmission 2, thereby improving the fuel efficiency of the vehicle V.
  • the stage can be selected with higher accuracy.
  • the current gear stage selection unit 13 always selects the optimum gear stage of the transmission 2 according to the change in the running resistance of the vehicle V if the vehicle V is running.
  • the first gear selection unit 16 selects the optimum gear in the previous traveling section determined by the traveling section determination unit 15 and the vehicle V selects the current traveling section. Look ahead while driving.
  • the shift control unit 17 determines whether or not to shift to the preceding gear when the vehicle V reaches the boundary between the current traveling section and the preceding traveling section, according to various traveling environments in which the vehicle V is placed. change.
  • the shift control of the transmission 2 by the shift control unit 17 executed according to various traveling environments in which the vehicle V is placed will be described.
  • the “predetermined time” is for the shift control unit 17 to determine whether or not to shift down the gear stage of the transmission 2 from the overdrive gear to the direct connection gear at the boundary between the current travel section and the previous travel section.
  • This is the “shift-down criterion threshold time” to be referred to.
  • the specific value of the shift-down determination reference threshold time may be determined by experiment in consideration of road gradient information on which the vehicle V is supposed to travel, the performance of the engine 1 provided in the vehicle V, and the like. For example, 1 minute. This is the time during which the vehicle V traveling at 80 km / h travels approximately 1.3 km.
  • the shift control unit 17 suppresses the shift down when the travel section in which the vehicle V travels after the shift down from the overdrive gear to the direct connection gear is shorter than a predetermined time, that is, when the estimated travel time of the vehicle V is short. Thereby, the shift control part 17 can suppress that the driver
  • the front gear selection unit 16 calculates the running resistance of the vehicle V based on the weight of the vehicle V, the speed of the vehicle V, the rolling resistance of the vehicle V, and the like, and selects the front gear.
  • the engine 1 has a low load (for example, when the vehicle V is traveling on a flat road). Even so, the first gear stage selection unit 16 may select the directly connected gear as the best gear.
  • the shift control unit 17 sets the road gradient in the preceding traveling section to a predetermined value as a condition for shifting down the gear stage of the transmission 2 from the overdrive gear to the direct connection gear when the vehicle V reaches the preceding traveling section. You may add that it is the above ascending slope.
  • uphill slope greater than or equal to a predetermined value indicates whether or not the shift control unit 17 shifts down the gear stage of the transmission 2 from the overdrive gear to the direct connection gear at the boundary between the current travel section and the previous travel section.
  • the specific value of the shift-down determination threshold time may be determined by experiment in consideration of road gradient information on which the vehicle V is supposed to travel, the performance of the engine 1 provided in the vehicle V, and the like. 1%. Thereby, it can suppress that the driver
  • the shift control unit 17 newly shifts the current gear stage selection unit 13 to the overdrive gear. Is selected, the gear stage of the transmission 2 is maintained as a directly connected gear without shifting up.
  • the “predetermined time” refers to a “shift-up determination” that is referred to by the shift control unit 17 to determine whether or not to shift up the gear stage of the transmission 2 from the directly connected gear to the overdrive gear in the current traveling section.
  • Reference threshold time The specific value of the shift-up determination reference threshold time may be determined by experiment in consideration of road gradient information on which the vehicle V is supposed to travel, the performance of the engine 1 provided in the vehicle V, and the like. For example, it is 1 minute which is the same as the shift-down determination reference threshold time.
  • the shift-up determination reference threshold time is stored in the storage unit 11.
  • the shift control unit 17 suppresses upshifting when the traveling section in which the vehicle V travels after the downshift from the overdrive gear to the direct connection gear is short, that is, when the estimated traveling time of the vehicle V is short. Thereby, the shift control part 17 can suppress that the driver
  • the shift control unit 17 may determine whether to shift up based on the distance condition instead of or in addition to the time condition. Specifically, when the travel distance until the vehicle V reaches the preceding travel section is within a predetermined distance, the shift control unit 17 newly shifts the current gear stage selection unit 13 to the overdrive gear. Even in the case of selection, the gear stage of the transmission 2 may be maintained as a directly connected gear.
  • the “predetermined distance” refers to “shift up” that is referred to by the shift control unit 17 to determine whether or not to shift up the gear stage of the transmission 2 from the directly connected gear to the overdrive gear in the current travel section.
  • This is the “judgment threshold distance”.
  • the specific value of the shift-up determination reference threshold distance may be determined by experiment in consideration of road gradient information on which the vehicle V is supposed to travel, the performance of the engine 1 provided in the vehicle V, and the like. For example, 1.5 kilometers. This is the distance that the vehicle V traveling at 90 km / h travels in one minute. Thereby, the shift control part 17 can suppress that the driver
  • the shift-up determination reference threshold distance is stored in the storage unit 11.
  • the engine 1 and the transmission 2 and the like are automatically controlled so as to maintain the preset speed of the vehicle V without the driver of the vehicle V operating the accelerator or the shift lever. It is equipped with an auto cruise mode. Further, the speed limiting device for the vehicle V controls the engine 1 and the transmission 2 so that the vehicle V travels at the upper limit speed without exceeding the set upper limit speed. Thus, the vehicle V has a mode for automatically traveling at a predetermined set speed.
  • the preceding gear stage selection unit 16 estimates the running resistance of the vehicle V on the assumption that the vehicle V is running at a set speed. Further, the first gear stage selection unit 16 refers to the equal fuel consumption map based on the rotation speed N of the engine 1 calculated on the assumption that the vehicle V is traveling at the set speed.
  • the speed of the vehicle V is not always equal to the set speed. For example, the driver of the vehicle V may temporarily accelerate the vehicle V for overtaking, or the vehicle V may be decelerated due to a steep slope. For this reason, if the assumption placed at the speed of the vehicle V deviates from the actual speed of the vehicle V when the leading gear selection unit 16 selects the leading gear, the leading gear is the optimum gear in the preceding traveling section. It can happen that it falls off the steps.
  • the shift control unit 17 sets the gear stage of the transmission 2 when the vehicle V reaches the preceding travel section on the condition that the difference between the predetermined set speed and the speed of the vehicle V is within a predetermined range.
  • the gear stage selected by the first gear stage selection unit 16 is changed.
  • the “predetermined range” means whether or not the shift control unit 17 changes the gear stage of the transmission 2 to the gear stage selected by the previous gear stage selection unit 16 at the boundary between the current travel section and the previous travel section.
  • This is a “shift determination criterion range” that is referred to to determine the shift.
  • the specific value of the shift determination reference range may be determined by experiment in consideration of road gradient information on which the vehicle V is supposed to travel, the performance of the engine 1 provided in the vehicle V, and the like. 5 kilometers. That is, on the condition that the value obtained by subtracting the hourly speed of the vehicle V from the hourly speed that becomes the set speed is within ⁇ 5, the shift control unit 17 changes to the gear stage selected by the first gear stage selecting unit 16.
  • the shift determination reference range is stored in the storage unit 11.
  • the shift control unit 17 may adopt the auto-cruise speed set for the vehicle V as the set speed, or the speed limiter speed preset for the vehicle V (the speed at which the speed limiter operates) as the set speed. May be. In either case, the speed is expected as the speed that the vehicle V should take when the vehicle V is in the automatic travel mode.
  • the shift control unit 17 can increase the effectiveness of the preceding gear stage by setting the shift to the preceding gear stage as a condition that the difference between the set speed and the speed of the vehicle V is within a predetermined range.
  • the current gear stage selection unit 13 estimates the running resistance of the vehicle V from the driving force of the vehicle V, the weight of the vehicle V, and the acceleration of the vehicle V, and selects the gear stage by referring to the equal fuel consumption map. To do.
  • the current gear stage selection unit 13 can estimate the running resistance in real time while the vehicle V is running, but stores a shift pattern in which the relationship between the speed of the vehicle V and the gear stage of the transmission 2 is previously patterned.
  • the current gear stage may be selected by reading from 11 and referring to it. In the following description, it is assumed that the current gear stage selection unit 13 selects the current gear stage, which is the gear stage of the transmission 2 in the current traveling section, in accordance with a shift pattern that is determined in advance and stored in the storage unit 11. To do.
  • the shift pattern stored in the storage unit 11 does not assume a general-purpose equal fuel consumption map, and the equal fuel consumption map is not referred to.
  • the gear stage of the transmission 2 in the current traveling section is an overdrive gear
  • the front gear stage is a directly connected gear.
  • the shift control unit 17 is configured to transmit the transmission 2 while the vehicle V is traveling in the preceding traveling section when the gear stage of the transmission 2 in the current traveling section is an overdrive gear and the preceding gear stage is a direct connection gear.
  • the gear stage is maintained as a directly connected gear.
  • the shift control unit 17 shifts down the gear stage of the transmission 2 to the direct-coupled gear when the vehicle V reaches the preceding traveling section, and the vehicle V moves the preceding traveling section (when the preceding gear is selected by the preceding gear stage selecting unit 16 ( That is, even if the current gear stage selection unit 13 selects the overdrive gear during traveling in the current traveling section), the gear stage of the transmission 2 is maintained as a directly connected gear.
  • the shift control unit 17 can execute any combination of the above-described four shift controls from the first shift control to the fourth shift control.
  • the new shift control generated by the combination has the effect of the original shift control.
  • the vehicle control apparatus 10 it is possible to improve the estimation accuracy of the fuel consumption and the gear selection technology in the vehicle V including the AMT.
  • the first gear stage selection unit 16 takes into account the difference in gear transmission efficiency between when the gear stage of the transmission 2 is a direct-coupled gear and when the gear stage of the transmission 2 is a normal gear.
  • the first gear is selected with reference to the different equal fuel consumption maps.
  • the front gear stage selection unit 16 can improve the estimation accuracy of the fuel consumption amount in the vehicle V.
  • the shift control unit 17 determines whether the vehicle V is shifted to the previous gear selected by the previous gear selection unit 16. Change according to various driving environments. Thereby, the uncomfortable feeling that can be given to the driver by the shift of the vehicle V can be reduced.
  • the present disclosure has been described using the embodiment, the technical scope of the present disclosure is not limited to the scope described in the embodiment, and various modifications and changes can be made within the scope of the gist. is there.
  • the specific embodiments of device distribution / integration are not limited to the above-described embodiments, and all or a part of them may be configured to be functionally or physically distributed / integrated in arbitrary units. Can do.
  • new embodiments generated by any combination of a plurality of embodiments are also included in the embodiments of the present disclosure. The effect of the new embodiment produced by the combination has the effect of the original embodiment.
  • the vehicle control device of the present disclosure is useful in terms of improving gear selection technology in a vehicle including an automated manual transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

直結ギヤと、直結ギヤよりもギヤ比の小さいギヤであるオーバードライブギヤを含む通常ギヤとを有する変速機を備える車両を制御する車両制御装置は、車両が走行中の現走行区間とは道路勾配が異なる走行区間である先走行区間を決定する走行区間決定部と、車両の走行抵抗に基づいて現走行区間における変速機のギヤ段である現ギヤ段を選択する現ギヤ段選択部と、先走行区間における車両の走行抵抗の推定値に基づいて、先走行区間における変速機のギヤ段である先ギヤ段を選択する先ギヤ段選択部と、現ギヤ段が直結ギヤであり、先ギヤ段も直結ギヤである場合において、新たにオーバードライブギヤへのシフトアップが選択されたときは、車両が先走行区間に到達するまでの状況に基づいて変速機をシフトアップするか否かを選択するシフト制御部とを備える。

Description

車両制御装置
 本開示は、車両制御装置に関し、特に車両が搭載している変速機のギヤ段を選択する技術に関する。
 車両の現在位置から目標位置までの走行経路における道路情報に応じて、走行経路における車両の駆動力を推定し、推定された駆動力とあらかじめ記憶された燃費マップとを比較して、走行経路において燃料消費量が最小となるような変速スケジュールを設定する技術が提案されている(特許文献1参照)。
日本国特開平9-21457号公報
 トラックやバス等の大型の車両の中には、オートメイテッドマニュアルトランスミッション(Automated Manual Transmission;以下、「AMT」と記載する。)と呼ばれる変速機を搭載するものも存在する。AMTは、従来のマニュアルトランスミッションにおけるスリーブをアクチュエータで移動することによって、変速機のギヤ段を自動でシフトする変速機である。
 車両の最終的な駆動力は、AMTでの選択されたギヤ段に依存する。ここで、AMTは多数のギヤを備えており、各ギヤ段で噛み合わせの抵抗が異なることもある。ギヤ段における噛み合わせの抵抗の相違は、車両が搭載するエンジンにおける燃料消費量に影響する。このため、車両の燃料消費量に基づくギヤ段の選択技術には改善の余地があると考えられる。
 本開示の目的は、オートメイテッドマニュアルトランスミッションを備える車両におけるギヤ段の選択技術を改善可能な車両制御装置を提供することである。
 本開示の車両制御装置は、変速機を備える車両の動作を制御する車両制御装置であって、前記変速機は、インプットシャフトを介して入力されるエンジンの動力をカウンターシャフトを介さずにアウトプットシャフトに伝達する、前記インプットシャフトと前記アウトプットシャフトとを直結する直結ギヤと、前記エンジンの動力を前記カウンターシャフトを介して前記アウトプットシャフトに伝達する通常ギヤと、を備え、前記通常ギヤは前記直結ギヤよりもギヤ比の小さいギヤであるオーバードライブギヤを含む。前記車両制御装置は、前記車両が走行中の現走行区間とは道路勾配が異なる走行区間であって、前記車両の進行方向前方にある先走行区間を決定する走行区間決定部と、前記車両の走行抵抗に基づいて前記現走行区間における前記変速機のギヤ段である現ギヤ段を選択する現ギヤ段選択部と、前記先走行区間の道路勾配と前記車両の速度とに基づいて推定された前記先走行区間における前記車両の走行抵抗に基づいて、前記先走行区間における前記変速機のギヤ段である先ギヤ段を選択する先ギヤ段選択部と、前記現ギヤ段と前記先ギヤ段とに基づいて、前記変速機のギヤ段のシフトを制御するシフト制御部と、を備える。前記シフト制御部は、前記現ギヤ段が前記直結ギヤであり、かつ前記先ギヤ段も前記直結ギヤである場合において、前記現ギヤ段選択部が新たに前記オーバードライブギヤへのシフトアップを選択したときは、前記車両が前記先走行区間に到達するまでの状況に基づいて前記変速機をシフトアップするか否かを選択する。
 前記シフト制御部は、前記車両が前記先走行区間に到達するまでの推定時間が所定の時間以内のときは、前記現ギヤ段選択部が新たにオーバードライブギヤへのシフトアップを選択した場合であっても前記変速機のギヤ段を前記直結ギヤのまま維持してもよい。
 前記シフト制御部は、前記車両が前記先走行区間に到達するまでの走行距離が所定の距離以内のときは、前記現ギヤ段選択部が新たにオーバードライブギヤへのシフトアップを選択した場合であっても前記変速機のギヤ段を前記直結ギヤのまま維持してもよい。
 本開示の車両制御装置によれば、オートメイテッドマニュアルトランスミッションを備える車両におけるギヤ段の選択技術を改善することができる。
図1は、実施の形態に係る車両の概要を説明するための図である。 図2は、実施の形態に係る車両の内部構成を模式的に示す図である。 図3は、実施の形態に係る車両制御装置の機能構成を模式的に示す図である。 図4は、実施の形態に係るエンジンの等燃費マップの一例を模式的に示す図である。 図5Aは、直結ギヤの等燃費マップの一例を模式的に示す図である。 図5Bは、通常ギヤの等燃費マップの一例を模式的に示す図である。
<実施の形態の概要>
 図1は、実施の形態に係る車両Vの概要を説明するための図である。図1を参照して、実施の形態に係る車両Vの概要を述べる。実施の形態に係る車両Vはディーゼルエンジン等のエンジンを駆動力とし、AMTを備える大型車両である。
 近年、車両に搭載されているECU(Electronic Control Unit)等の演算装置が、車両が走行抵抗に打ち勝って走行し、かつ車両の燃費が良くなるように変速機のギヤ段を自動で選択することが広く行われている。詳細は後述するが、車両におけるギヤ段の選択は、車両の走行抵抗に打ち勝つトルクを発生できるギヤ段のうち、車両の燃費がよくなるギヤ段を、当該エンジンの等燃費マップを参照して選択する。
 車両の走行中、車両の加速度は、車両の駆動力から車両の走行抵抗を減じた量に比例し、車両の重量に反比例する。したがって、車両に搭載されているECUは、車両の駆動力、車両の重量、及び車両の加速度から車両の走行抵抗を推定し、その走行抵抗に打ち勝つトルクを発生できるギヤ段を選択する。しかしながら、ECUが車両の加速度を用いて走行抵抗を推定する場合、ECUは、現在走行中の位置における車両の走行抵抗を推定することはできるが、現在走行中の位置より先の位置においては走行抵抗を推定することができない。
 ECUが走行抵抗を推定によって求める場合、その走行抵抗の算出精度は必ずしも高いとはいえない。したがって、精度が必ずしも保証されない走行抵抗に基づいてギヤ段を選択しても、選択したギヤ段が車両の燃費が良くなるギヤ段であることが必ずしも保証されない。そこで、実施の形態に係る車両VのECUは、現在走行中の位置より先の位置の道路の勾配情報を取得することにより、先の位置における走行抵抗を推定する。以下、実施の形態に係る車両Vが勾配情報を取得し、先の位置における走行抵抗を推定する方法の概要を説明する。
 実施の形態に係る車両Vは、航法衛星から受信した情報に基づいて車両Vの現在位置を示す位置情報を取得する衛星航法機能を備えている。また、車両Vは、車両Vが走行する道路の勾配情報を保持している。なお、車両Vは、航法衛星からの受信情報を用いずに、加速度センサ等の出力値に基づいて車両Vの現在位置を取得する自律航法機能を備えてもよい。
 車両VのECUは、道路の勾配情報と車両Vの位置情報とに基づいて、車両Vが近い将来走行することになる道路の勾配情報を先読みする。図1において、車両Vは、地点Aを始点とし地点Bを終点とする「現走行区間」を走行している。図1に示す例では、車両Vが走行している道路は、地点Bを始点とし地点Cを終点とする「先走行区間」において一定以上の上り勾配となる。なお、「先走行区間」とは、車両Vが現在走行中である現走行区間とは道路の平均勾配が異なる走行区間であって、車両Vの進行方向前方にある走行区間である。
 ECUが先読みした先走行区間の勾配情報は、車両Vが保持する勾配情報と車両Vの位置情報から定まる。車両Vの走行抵抗は勾配抵抗、空気抵抗、及び転がり抵抗が支配的であるが、このうち勾配抵抗を推定できることになる。これにより、ECUは、先走行区間の走行抵抗を推定することができる。
 ここで、車両Vの燃費は、車両Vが備えるエンジンの燃料消費率(すなわち、エンジンが所定の駆動力を発生させるために消費する燃料の量)のみならず、エンジン内部の摺動抵抗やエンジンの動力の伝達経路におけるロスにも影響する。ここで、エンジンの動力の伝達経路におけるロスは、例えば変速機が備える各ギヤの伝達効率に起因するロスである。
 このため、実施の形態に係る車両Vは、先走行区間におけるギヤを選択する際に、変速機が備える各ギヤの伝達効率を考慮した等燃費マップを参照する。これにより、実施の形態に係る車両Vは、先走行区間において高燃費となるギヤ段をより精度よく選択することができる。
 車両Vが高速道路等の自動車専用道路を走行している場合、車両Vは、先読みによって選択したギヤ段へのシフトの有無を、車両Vが置かれた種々の走行環境に応じて変更する。これにより、車両Vの変速によって運転者へ与えうる違和感を軽減できる。
<実施の形態に係る車両Vの構成>
 図2を参照しながら、実施の形態に係る車両Vの内部構成について説明する。
 図2は、実施の形態に係る車両Vの内部構成を模式的に示す図である。実施の形態に係る車両Vは、エンジン1、変速機2、GPS(Global Positioning System)センサ3、重量センサ4、速度センサ5、アクセル開度センサ6、及びECUとしての車両制御装置10を備える。
 車両Vは、ディーゼルエンジン等のエンジン1を駆動力とする大型車両であり、特にオートクルーズモードを搭載する車両である。変速機2は、エンジン1の回転駆動力を車両Vの駆動輪(不図示)に伝達するためのAMTである。変速機2は、エンジン1の回転駆動力を変換するための複数段のギヤを含む。
 ここで、車両Vにおける「オートクルーズモード」とは、運転者がアクセルやシフトレバーを操作しなくても、あらかじめ設定された車両Vの速度を維持するようにエンジン1及び変速機2等がECUによって自動で制御されるモードをいう。オートクルーズモードは、車両Vが高速道路を走行する際に使用されることが主に想定されている。
 GPSセンサ3は、複数の航法衛星から送信された電波を受信して解析することにより、GPSセンサ3の位置、すなわちGPSセンサ3を搭載する車両Vの位置を取得する。GPSセンサ3は、車両Vの位置を示す情報を車両制御装置10に出力する。
 重量センサ4は、車両Vの総重量を取得する。具体的には、重量センサ4は車両Vの積荷の重量を計測し、積荷を除いた車両V単体の重量と合算することで車両Vの総重量を取得する。重量センサ4は、車両Vの総重量を示す情報を車両制御装置10に出力する。
 速度センサ5は、車両Vの速度を計測する。速度センサ5は、計測された速度を示す情報を車両制御装置10に出力する。アクセル開度センサ6は、車両Vの運転者によるアクセルペダルの踏み込み量であるアクセル開度を計測する。アクセル開度センサ6は、アクセル開度を示す情報を車両制御装置10に出力する。
 車両制御装置10は、上述の各センサから情報を取得し、取得した情報に基づいてエンジン1内のシリンダに供給する燃料の量、及び変速機2のギヤ段を制御する。車両制御装置10は、車両Vがオートクルーズモードの場合には、車両Vが設定された速度を保って走行するように、エンジン1及び変速機2を制御する。また、車両制御装置10は、車両Vの図示しない速度制限装置(Speed Limit Device:SLD)が稼働している場合には、車両Vの速度が設定された上限速度を超えないように、エンジン1及び変速機2を制御する。
 図3は、実施の形態に係る車両制御装置10の機能構成を模式的に示す図である。実施の形態に係る車両制御装置10は、記憶部11と、制御部12とを備える。
 記憶部11は、例えば、ROM(Read Only Memory)又はRAM(Random Access Memory)である。記憶部11は、制御部12を機能させるための各種のプログラムを記憶する。また、記憶部11は、地図情報を記憶してもよく、道路の道路勾配を示す情報を記憶してもよい。
 制御部12は、図示しないCPU(Central Processing Unit)等の計算リソースである。制御部12は、記憶部11に記憶されているプログラムを実行することによって、現ギヤ段選択部13、道路勾配取得部14、走行区間決定部15、先ギヤ段選択部16、及びシフト制御部17の機能を実現する。
 現ギヤ段選択部13は、車両Vが走行中の道路における車両Vの走行抵抗の推定値に基づいて、車両Vが走行中の区間における変速機2のギヤ段である現ギヤ段を選択する。現ギヤ段選択部13による現ギヤ段選択の詳細は後述する。
 道路勾配取得部14は、GPSセンサ3から取得した車両Vの位置を示す情報と、記憶部11に格納されている地図情報とに基づいて、車両Vが走行中の道路における道路勾配を取得する。
 走行区間決定部15は、道路勾配取得部14が取得した道路勾配に基づいて、車両Vが現在走行中の現走行区間とは道路の平均勾配が所定値以上異なる走行区間であって、車両Vの進行方向前方にある先走行区間を決定する。
 先ギヤ段選択部16は、先走行区間の道路勾配と車両Vの速度とに基づいて、先走行区間における変速機2のギヤ段である先ギヤ段を選択する。以下、先ギヤ段選択部16による先ギヤ段選択の詳細について、現ギヤ段選択部13による現ギヤ段選択とともに説明する。
 なお、車両Vが将来走行することになる道路の勾配情報を取得するためには、道路勾配取得部14は、車両Vが将来走行することになる場所を推定しなければならない。道路勾配取得部14が道路勾配を取得できないと、走行区間決定部15による先走行区間の決定も困難となる。
 車両Vが高速道路等の自動車専用道路を走行する場合、道路勾配取得部14は車両Vが将来走行することになる場所の推定が比較的容易である。一方、車両Vが一般道や市街地等のように分岐を多く含む道路を走行する場合には、道路勾配取得部14は車両Vが将来走行することになる場所の推定が難しくなる。
 以上より、車両Vが一般道や市街地等を走行中は、車両Vは現ギヤ段選択部13によるギヤ選択にしたがって走行する。また、車両Vが高速道路等の自動車専用道路を走行する場合、まずシフト制御部17が、車両Vは現ギヤ段選択部13によるギヤの選択結果と先ギヤ段選択部16によるギヤの選択結果を取得する。シフト制御部17は、ギヤの選択結果と先ギヤ段選択部16によるギヤの選択結果に基づいて、変速機2のギヤ段のシフトを制御する。
 以下では、まず変速機2について説明し、次いでギヤ段と燃費との関係について説明する。その後、シフト制御部17による変速制御について説明する。
[実施の形態に係る変速機2]
 実施の形態に係る車両Vが備える変速機2はAMTであり、従来のマニュアルトランスミッションにおけるスリーブをアクチュエータで移動することによって、変速機2のギヤ段の自動変速を実現する変速機である。このため、実施の形態に係る変速機2の基本構造は、従来のマニュアルトランスミッションと同様の構造である。実施の形態に係る変速機2は、スプリッタ及びレンジと呼ばれる二つの副変速機構と、スプリッタとレンジとの間に備えられる一つの主変速機構とから構成される。
 スプリッタは、車両Vのエンジンの動力が入力されるインプットシャフトと、カウンターシャフトとの間の変速比を変更する。主変速機構は、主にカウンターシャフトとアウトプットシャフトとの間の変速比を変更する。レンジはアウトプットシャフトの回転駆動をプロペラシャフトに伝える駆動伝達経路上に設けられており、アウトプットシャフトとプロペラシャフトとの間の変速比を変更する。なお、主変速機構には、インプットシャフトとアウトプットシャフトとを直結する「直結ギヤ」が存在する。
 実施の形態に係る車両Vが備える変速機2において、スプリッタ、主変速機構、及びレンジのギヤ段は、一例としてそれぞれ2段、3段、及び2段である。すなわち、実施の形態に係る車両Vが備える変速機2は、12段変速(2段×3段×2段=12段)の変速機である。車両Vが勾配の少ない高速道路で巡行する際には、変速機2のギヤは12段(オーバードライブギヤ)又は11段(直結ギヤ)が選択されると、車両Vの燃費向上に資することが多い。
 直結ギヤは、インプットシャフトとアウトプットシャフトとを直結するギヤである。エンジンの動力がカウンターシャフトを介さずに直接アウトプットシャフトに伝達されるため、カウンターシャフトを介する他のギヤ段と比べて伝達効率が高い。なお、変速機2のギヤ段が5段のときも主変速機構は直結ギヤとなるが、この場合レンジのギヤ比ギヤ比が直結(ギヤ比1)となってはおらず、伝達効率は低下する。以下本明細書において、変速機2のギヤ段が「オーバードライブギヤ」は変速機2の最高段のギヤを意味し、「直結ギヤ」は変速機2の最高段よりも一段低い段のギヤを意味することとする。
[ギヤ段と燃費との関係]
 図4は、実施の形態に係るエンジン1の等燃費マップの一例を模式的に示す図である。以下、図4を参照しながら、変速機2におけるギヤ選択について説明する。
 図4に示す等燃費マップにおいて、縦軸はエンジン1が備えるシリンダの正味平均有効圧力Pmeであり、横軸はエンジン1の回転数Nである。正味平均有効圧力Pmeに対して、エンジン1の排気量等から定まる所定の値を乗じると、エンジン1のトルクTとなる。すなわち、正味平均有効圧力Pmeは、エンジン1が発生するトルクTと比例関係にある。この比例係数をαとすると、T=αPmeとなる。
 図4に示す等燃費マップにおいて、符号Pmaxで示す曲線は、エンジン1の最大燃焼圧力を示す最大燃焼圧力曲線Pmaxである。エンジン1は、図4に示す等燃費マップにおいて、最大燃焼圧力曲線Pmaxを超えるトルクを発生させることはできない。
 図4に示す等燃費マップにおいて、ハッチングで示す領域は、エンジン1の燃料消費率(Specific Fuel Consumption;SFC)を示す。SFCは、エンジン1の単位仕事当たりの燃料消費量を示す。SFCの値が小さいほど、エンジン1はより少ない燃料で同じ仕事をすることができる。
 図4に示す等燃費マップは、燃料消費率が異なる領域がハッチングンを用いて識別されている。図4において、符号H1で示すハッチングH1が付された領域が最も燃費消費率のよい(すなわち、燃費消費量が少ない)領域であり、以後、ハッチングH2、ハッチングH3、ハッチングH4、及びハッチングH5の順に燃費消費率が悪くなる。なお、図4では、ハッチングH5が付された領域よりも燃費消費率の悪い領域の図示は省略している。以下、ハッチングH1が付された領域を、単に領域H1と記載する。他の領域も同様である。
 車両Vが走行抵抗に打ち勝って定速度Vcで走行するには、車両Vが発生するトルクTによって生じる力Fが車両Vの走行抵抗に拮抗しなければならない。この場合、車両Vのエンジン1は、走行抵抗馬力Pv=F・Vcを出力する必要がある。図4に示す等燃費マップにおいて、符号Lpで示す曲線は、走行抵抗馬力Pv=F・Vcに対応する等馬力曲線Lpである。
 回転数Nで回転しているエンジン1がトルクTを発生しているとき、エンジン1が出力する馬力Pは、P=TN=αPmeNとなる。このため、正味平均有効圧力Pmeは、エンジン1の回転数Nに反比例する。ここで、エンジン1の回転数Nは変速機2が選択しているギヤ段のギヤ比によって定まる。したがって、エンジン1は等燃費マップにおいて等馬力曲線Lp上の任意の回転数となることはできず、速度Vcと変速機2のギヤ比とによって定まる離散的な回転数に規制される。
 図4において、符号G12で示す白丸G12は、変速機2のギヤ段が12段(すなわちオーバードライブギヤ)の場合におけるエンジン1の状態を示している。同様に、符号G11、符号G10、及び符号G9で示す白丸は、それぞれギヤ段が11段(すなわち直結ギヤ)、10段、及び9段の場合におけるエンジン1の状態を示している。変速機2のギヤ段が12段と11段との場合では、両者とも領域H2に含まれるが、12段の場合の方がより領域H1に近く、燃費効率が良い。
 このように、車両Vの速度Vcと車両Vの走行抵抗馬力Pvとが定まれば、現ギヤ段選択部13及び先ギヤ段選択部16は、等燃費マップを参照することによって燃費効率のよいギヤ段を定めることができる。
[現ギヤ段選択部13によるギヤ段選択]
 現ギヤ段選択部13は、車両Vが走行中の道路における車両Vの走行抵抗の推定値Pvを推定し、車両Vの速度と走行抵抗の推定値Pvとを用いて等燃費マップを参照することにより、変速機2のギヤ段を選択する。
 上述したように、車両Vの走行中、車両Vの加速度は、車両Vの駆動力から車両の走行抵抗を減じた量に比例し、車両Vの重量に反比例する。現ギヤ段選択部13は、エンジン1に噴射している燃料の噴射量等から、エンジン1が発生している正味平均有効圧力Pmeを推定する。現ギヤ段選択部13は、正味平均有効圧力Pmeからエンジン1が発生するトルクTを取得する。現ギヤ段選択部13は、トルクT、変速機2が選択しているギヤ段のギヤ比、最終減速比、及び駆動輪の直径から、車両Vの駆動力を取得する。現ギヤ段選択部13は、車両Vの駆動力、車両Vの重量、及び車両Vの加速度から車両Vの走行抵抗を推定し、等燃費マップを参照してギヤ段を選択する。
[先ギヤ段選択部16によるギヤ段選択]
 先ギヤ段選択部16は、車両Vの走行抵抗を計算によって算出する点で現ギヤ段選択部13と相違する。ここで、車両Vの走行抵抗は、車両Vが備える駆動輪の転がり抵抗と、車両Vの空気抵抗と、車両Vが走行する道路の勾配抵抗との総和が支配的である。車両Vの空気抵抗は車両Vの速度の二乗に比例する。また、道路の勾配抵抗は、車両が走行する道路の勾配と車両Vの重量とに依存する。駆動輪の転がり抵抗と、車両Vの空気抵抗を算出するための比例係数は、あらかじめ車両Vの製造者によって記憶部11に格納されている。
 先ギヤ段選択部16は、記憶部11が保持している地図情報を参照して、走行区間決定部15が決定した先走行区間における勾配情報を取得する。また、先ギヤ段選択部16は、重量センサ4及び速度センサ5からそれぞれ車両Vの重量及び車両Vの速度を取得する。これにより、先ギヤ段選択部16は、先走行区間における車両Vの勾配抵抗を算出する。
 先ギヤ段選択部16は、車両Vの速度の二乗に比例係数を乗じて車両Vの空気抵抗を取得する。先ギヤ段選択部16は、車両Vの勾配抵抗、車両Vの空気抵抗、及び記憶部11から読み出して転がり抵抗を加算して、車両Vの走行抵抗を算出する。先ギヤ段選択部16は、現ギヤ段選択部13と同様に、算出した走行抵抗と等燃費マップとから、先走行区間におけるギヤ段を選択する。
 ここで、先ギヤ段選択部16は、変速機2のギヤ段が直結ギヤの場合と、変速機2のギヤ段が通常ギヤの場合とで、異なる等燃費マップを参照して先ギヤ段を選択する。
 図5A及び図5Bは、通常ギヤの等燃費マップと直結ギヤの等燃費マップとの相違を説明するための図である。具体的には、図5Aは直結ギヤの等燃費マップの一例を模式的に示す図であり、図5Bは通常ギヤの等燃費マップの一例を模式的に示す図である。図5Bに示す等燃費マップは、図4に示す等燃費マップと同一である。すなわち、図5Bに示す通常ギヤの等燃費マップにおける白丸G12は、変速機2のギヤ段が12段であるオーバードライブギヤの場合におけるエンジン1の状態を示す。
 上述したように、変速機2のギヤ段が直結ギヤの場合、変速機2のギヤ段が通常ギヤの場合と比べて変速機2全体としてのギヤの伝達効率が高くなる。このため、変速機2のギヤ段が直結ギヤの場合、変速機2のギヤ段が通常ギヤの場合と比べてエンジン1の出力が車両Vの駆動輪に伝達するまでの間に発生する伝達ロスが少なくなる。結果として、変速機2のギヤ段が直結ギヤの場合、変速機2のギヤ段が通常ギヤの場合と比べてエンジン1の燃料消費率が改善する。
 図5Aに示す直結ギヤの等燃費マップと図5Bに示す通常ギヤの等燃費マップとを比較すると、直結ギヤの等燃費マップは、最大燃焼圧力曲線Pmax以下の領域における領域H1が広い。このため、通常ギヤの等燃費マップにおいては領域H2である部分も、直結ギヤの等燃費マップにおいては領域H1となっている。
 図5Aに示す等馬力曲線Lpは、図5Bに示す等馬力曲線Lpと同一である。図5Aに示すように、等馬力曲線Lpにおいて直結ギヤ(11段)におけるエンジン1の状態は領域H1に含まれている。これは、エンジン1が等馬力曲線Lpに対応する仕事をするためには、変速機2がオーバードライブギヤといった通常ギヤにするよりも、直結ギヤとする方が、車両Vの燃費が向上することを意味する。
 このように、先ギヤ段選択部16は、変速機2のギヤ段の伝達効率の相違を反映させた等燃費マップを参照してギヤ段を選択することにより、車両Vの燃費を向上させるギヤ段をより精度よく選択することができる。
[シフト制御部17による変速制御]
 現ギヤ段選択部13は、車両Vが走行中であれば車両Vの走行抵抗の変化に応じて変速機2の最適なギヤ段を常に選択する。車両Vが高速道路等の自動車専用道路を走行している場合、先ギヤ段選択部16は、走行区間決定部15が決定した先走行区間における最適なギヤ段を、車両Vが現走行区間を走行中に先読みする。
 したがって、車両Vが高速道路等の自動車専用道路を走行している場合、車両Vが現走行区間と先走行区間との境界に到達すると、現ギヤ段と先ギヤ段との競合が生じる場合もある。また、直結ギヤのギヤ比はオーバードライブギヤのギヤ比よりも高いので、車両Vの速度が同じであってもエンジン1のエンジン回転数は直結ギヤの方が高い。このため、例えば燃費向上の観点からオーバードライブギヤから直結ギヤにシフトダウンすると、車両Vの運転者はエンジン1が突然吹き上がったかの印象を受けかねない。
 そこで、シフト制御部17は、車両Vが現走行区間と先走行区間との境界に到達したときに先ギヤ段へシフトするか否かを、車両Vが置かれた種々の走行環境に応じて変更する。以下、車両Vが置かれた種々の走行環境に応じて実行される、シフト制御部17による変速機2の変速制御について説明する。
(第1の変速制御)
 現走行区間における変速機2のギヤ段がオーバードライブギヤであり、かつ先ギヤ段選択部16が選択した先ギヤ段が直結ギヤであるとする。シフト制御部17は、先走行区間における車両Vの推定走行時間が所定時間より長いことを条件として、車両Vが先走行区間に到達したときに変速機2のギヤ段をオーバードライブギヤから直結ギヤにシフトダウンする。
 ここで「所定時間」とは、シフト制御部17が現走行区間と先走行区間との境界において変速機2のギヤ段をオーバードライブギヤから直結ギヤにシフトダウンするか否かを判定するために参照する「シフトダウン判定基準閾時間」である。シフトダウン判定基準閾時間の具体的な値は、車両Vが走行することが想定される道路の勾配情報や、車両Vが備えるエンジン1の性能等を勘案して実験により定めればよいが、例えば1分である。これは、時速80キロメートルで走行している車両Vが、およそ1.3キロメートル走行する時間である。
 シフト制御部17は、オーバードライブギヤから直結ギヤにシフトダウン後に車両Vが走行する走行区間が所定時間より短い場合、すなわち車両Vの推定走行時間が短い場合にシフトダウンを抑制する。これにより、シフト制御部17は、短時間で変速が繰り返されることによるシフトビジー感を車両Vの運転者が感じることを抑制できる。
 上述したように、先ギヤ段選択部16は、車両Vの重量、車両Vの速度、車両Vの転がり抵抗等に基づいて車両Vの走行抵抗を算出し、先ギヤ段を選択する。ここで、車両Vの重量、車両Vの速度、車両Vの転がり抵抗等の測定誤差の大きさによっては、エンジン1が低負荷の場合(例えば、車両Vが平坦な道路を走行中の場合)であっても、先ギヤ段選択部16は直結ギヤを最良ギヤとして選択することも起こり得る。
 先行区間が平坦な道路を走行中の場合に、走行抵抗の誤算出によって先ギヤ段選択部16が直結ギヤを先ギヤ段として選択すると、走行区間の境界で不用なシフトダウンが実行されることになる。直結ギヤのギヤ比はオーバードライブギヤのギヤ比よりも大きいため、変速機2のギヤ段がオーバードライブギヤから直結ギヤにシフトダウンすると、エンジン1の回転数が上昇する。エンジン1の回転数の上昇は騒音となり得るため、運転者のドライビングフィールを損ないかねない。
 そこで、シフト制御部17は、車両Vが先走行区間に到達したときに変速機2のギヤ段をオーバードライブギヤから直結ギヤにシフトダウンするための条件として、先走行区間における道路勾配が所定値以上の上り勾配であることを加えてもよい。
 ここで「所定値以上の上り勾配」とは、シフト制御部17が現走行区間と先走行区間との境界において変速機2のギヤ段をオーバードライブギヤから直結ギヤにシフトダウンするか否かを判定するために参照する「シフトダウン判定基準閾勾配」である。シフトダウン判定閾時間の具体的な値は、車両Vが走行することが想定される道路の勾配情報や、車両Vが備えるエンジン1の性能等を勘案して実験により定めればよいが、例えば1%である。これにより、変速機2の不要なシフトダウンにより、車両Vの運転者が違和感を受けることを抑制できる。
(第2の変速制御)
 現走行区間における変速機2のギヤ段が直結ギヤであり、かつ先ギヤ段選択部16が選択した先ギヤ段も直結ギヤであるとする。この場合において、車両Vが現走行区間を走行中に、現ギヤ段選択部13が新たにオーバードライブギヤへのシフトアップを選択した場合を考える。シフト制御部17は、車両Vが先走行区間に到達するまでの状況に基づいて、車両Vが先走行区間に到達する前に変速機2をシフトアップするか否かを選択する。
 より具体的には、シフト制御部17は、車両Vが先走行区間に到達するまでの推定時間が所定の時間以内のときは、現ギヤ段選択部13が新たにオーバードライブギヤへのシフトアップを選択した場合であっても、シフトアップせずに変速機2のギヤ段を直結ギヤのまま維持する。
 ここで「所定の時間」とは、シフト制御部17が現走行区間において変速機2のギヤ段を直結ギヤからオーバードライブギヤにシフトアップするか否かを判定するために参照する「シフトアップ判定基準閾時間」である。シフトアップ判定基準閾時間の具体的な値は、車両Vが走行することが想定される道路の勾配情報や、車両Vが備えるエンジン1の性能等を勘案して実験により定めればよいが、例えばシフトダウン判定基準閾時間と同じ1分である。シフトアップ判定基準閾時間は記憶部11に格納されている。
 シフト制御部17は、オーバードライブギヤから直結ギヤにシフトダウン後に車両Vが走行する走行区間が短い場合、すなわち車両Vの推定走行時間が短い場合にシフトアップを抑制する。これにより、シフト制御部17は、短時間で変速が繰り返されることによるシフトビジー感を車両Vの運転者が感じることを抑制できる。
 シフト制御部17は、時間の条件に替えて、あるいはそれに加えて、距離の条件に基づいてシフトアップするか否かを判定してもよい。具体的には、シフト制御部17は、車両Vが先走行区間に到達するまでの走行距離が所定の距離以内のときは、現ギヤ段選択部13が新たにオーバードライブギヤへのシフトアップを選択した場合であっても変速機2のギヤ段を直結ギヤのまま維持してもよい。
 ここで、「所定の距離」とは、シフト制御部17が現走行区間において変速機2のギヤ段を直結ギヤからオーバードライブギヤにシフトアップするか否かを判定するために参照する「シフトアップ判定基準閾距離」である。シフトアップ判定基準閾距離の具体的な値は、車両Vが走行することが想定される道路の勾配情報や、車両Vが備えるエンジン1の性能等を勘案して実験により定めればよいが、例えば1.5キロメートルである。これは、時速90キロメートルで走行している車両Vが、1分間で走行する距離である。これにより、シフト制御部17は、短時間で変速が繰り返されることによるシフトビジー感を車両Vの運転者が感じることを抑制できる。なお、シフトアップ判定基準閾距離は記憶部11に格納されている。
(第3の変速制御)
 実施の形態に係る車両Vは、車両Vの運転者がアクセルやシフトレバーを操作しなくても、あらかじめ設定された車両Vの速度を維持するようにエンジン1及び変速機2等が自動で制御されるオートクルーズモードを搭載している。また、車両Vの速度制限装置は、車両Vの速度が設定された上限速度を超えないで上限速度で走行するように、エンジン1及び変速機2を制御する。このように、車両Vは、所定の設定速度で自動走行するモードを備えている。
 実施の形態に係る先ギヤ段選択部16は、車両Vが設定速度で走行していることを仮定して、車両Vの走行抵抗を推定する。また、先ギヤ段選択部16は、車両Vが設定速度で走行していることを仮定して算出したエンジン1の回転数Nに基づいて等燃費マップを参照する。ここで、車両Vの速度は、必ずしも常に設定速度と等しいとは限らない。例えば、車両Vの運転者が追い抜きのために車両Vを一時的に加速することもあるし、急勾配の影響で車両Vが減速している場合もある。このため、先ギヤ段選択部16が先ギヤ段を選択する際に車両Vの速度に置く仮定と、車両Vの実際の速度とがずれる場合には、先ギヤ段が先走行区間における最適ギヤ段から外れることも起こり得る。
 そこで、シフト制御部17は、所定の設定速度と車両Vの速度との差が所定の範囲内であることを条件として、車両Vが先走行区間に到達したときに変速機2のギヤ段を先ギヤ段選択部16が選択したギヤ段に変更する。
 ここで「所定の範囲」とは、シフト制御部17が現走行区間と先走行区間との境界において変速機2のギヤ段を先ギヤ段選択部16が選択したギヤ段に変更するか否かを判定するために参照する「変速判定基準範囲」である。変速判定基準範囲の具体的な値は、車両Vが走行することが想定される道路の勾配情報や、車両Vが備えるエンジン1の性能等を勘案して実験により定めればよいが、例えば時速5キロメートルである。すなわち、設定速度となる時速から車両Vの時速を減じた値が±5の収まることを条件として、シフト制御部17は先ギヤ段選択部16が選択したギヤ段に変更する。変速判定基準範囲は、記憶部11に格納されている。
 シフト制御部17は、車両Vに設定されたオートクルーズ速度を設定速度として採用してもよいし、車両Vにあらかじめ設定されたスピードリミッター速度(速度制限装置が作動する速度)を設定速度として採用してもよい。いずれの場合にしても、車両Vが自動走行するモードのときに車両Vがとるべき速度として期待されている速度である。シフト制御部17が、先ギヤ段への変速を設定速度と車両Vの速度との差が所定の範囲内であることを条件とすることにより、先ギヤ段の有効性を高めることができる。
(第4の変速制御)
 上述したように、現ギヤ段選択部13は、車両Vの駆動力、車両Vの重量、及び車両Vの加速度から車両Vの走行抵抗を推定し、等燃費マップを参照してギヤ段を選択する。現ギヤ段選択部13は、車両Vが走行中にリアルタイムで走行抵抗を推定することもできるが、車両Vの速度と変速機2のギヤ段との関係をあらかじめパターン化したシフトパターンを記憶部11から読み出して参照することにより、現ギヤ段を選択してもよい。以下では、現ギヤ段選択部13が、あらかじめ定められ記憶部11に格納されたシフトパターンに則って、現走行区間における変速機2のギヤ段である現ギヤ段を選択することを前提として説明する。
 記憶部11が格納しているシフトパターンは汎用的な等燃費マップを前提としておらず、等燃費マップは参照されない。
 いま、現走行区間における変速機2のギヤ段がオーバードライブギヤであり、先ギヤ段が直結ギヤであるとする。車両Vが現走行区間の走行を終え、先走行区間の走行に入った場合、すなわち、シフト制御部17が先走行区間として先ギヤを選択した走行区間が「現走行区間」となった場合、現ギヤ段選択部13が選択した現ギヤ段と、シフト制御部17があらかじめ選択しておいた先ギヤ段とに齟齬が生じやすい。汎用シフトマップは等燃費マップを考慮していないからである。
 そこで、シフト制御部17は、現走行区間における変速機2のギヤ段がオーバードライブギヤであり、先ギヤ段が直結ギヤであるときは、車両Vが先走行区間を走行中は、変速機2のギヤ段を直結ギヤのまま維持する。シフト制御部17は、車両Vが先走行区間に到達したときに変速機2のギヤ段を直結ギヤにシフトダウンし、車両Vが先ギヤ段選択部16による先ギヤ選択時における先走行区間(すなわち、現走行区間)を走行中に現ギヤ段選択部13がオーバードライブギヤを選択したとしても、変速機2のギヤ段を直結ギヤのまま維持する。これにより、変速機2のギヤ段が現ギヤ段とあらかじめ選択された先ギヤ段とを交互に選択される、いわゆるシフトハンチングが発生することを抑制できる。
 なお、シフト制御部17は、上述した第1の変速制御から第4の変速制御までの4つの変速制御を任意に組み合わせて実行することができる。組み合わせによって生じた新たな変速制御は、もととなる変速制御の効果を合わせ持つ。
<車両制御装置10の効果>
 以上説明したように、実施の形態に係る車両制御装置10によれば、AMTを備える車両Vにおける燃料消費量の推定精度及びギヤ段の選択技術を改善することができる。特に、実施の形態に係る先ギヤ段選択部16は、変速機2のギヤ段が直結ギヤの場合と、変速機2のギヤ段が通常ギヤの場合とで、ギヤの伝達効率の相違を考慮した異なる等燃費マップを参照して先ギヤ段を選択する。これにより、先ギヤ段選択部16は、車両Vにおける燃料消費量の推定精度を向上することができる。
 また、車両Vが高速道路等の自動車専用道路を走行している場合、シフト制御部17は、先ギヤ段選択部16が選択した先ギヤ段へシフトするか否かを、車両Vが置かれた種々の走行環境に応じて変更する。これにより、車両Vの変速によって運転者へ与えうる違和感を軽減できる。
 以上、本開示を実施の形態を用いて説明したが、本開示の技術的範囲は上記実施の形態に記載の範囲には限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、装置の分散・統合の具体的な実施の形態は、以上の実施の形態に限られず、その全部又は一部について、任意の単位で機能的又は物理的に分散・統合して構成することができる。また、複数の実施の形態の任意の組み合わせによって生じる新たな実施の形態も、本開示の実施の形態に含まれる。組み合わせによって生じる新たな実施の形態の効果は、もとの実施の形態の効果を合わせ持つ。
 本出願は、2017年5月12日付で出願された日本国特許出願(特願2017-095972)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の車両制御装置は、オートメイテッドマニュアルトランスミッションを備える車両におけるギヤ段の選択技術の改善という点において有用である。
1 エンジン
2 変速機
3 GPSセンサ
4 重量センサ
5 速度センサ
6 アクセル開度センサ
10 車両制御装置
11 記憶部
12 制御部
13 現ギヤ段選択部
14 道路勾配取得部
15 走行区間決定部
16 先ギヤ段選択部
17 シフト制御部
V 車両

Claims (3)

  1.  変速機を備える車両の動作を制御する車両制御装置であって、
     前記変速機は、
     インプットシャフトを介して入力されるエンジンの動力をカウンターシャフトを介さずにアウトプットシャフトに伝達する、前記インプットシャフトと前記アウトプットシャフトとを直結する直結ギヤと、
     前記エンジンの動力を前記カウンターシャフトを介して前記アウトプットシャフトに伝達する通常ギヤと、を備え、前記通常ギヤは前記直結ギヤよりもギヤ比の小さいギヤであるオーバードライブギヤを含み、
     前記車両制御装置は、
     前記車両が走行中の現走行区間とは道路勾配が異なる走行区間であって、前記車両の進行方向前方にある先走行区間を決定する走行区間決定部と、
     前記車両の走行抵抗に基づいて前記現走行区間における前記変速機のギヤ段である現ギヤ段を選択する現ギヤ段選択部と、
     前記先走行区間の道路勾配と前記車両の速度とに基づいて推定された前記先走行区間における前記車両の走行抵抗に基づいて、前記先走行区間における前記変速機のギヤ段である先ギヤ段を選択する先ギヤ段選択部と、
     前記現ギヤ段と前記先ギヤ段とに基づいて、前記変速機のギヤ段のシフトを制御するシフト制御部と、を備え、
     前記シフト制御部は、前記現ギヤ段が前記直結ギヤであり、かつ前記先ギヤ段も前記直結ギヤである場合において、前記現ギヤ段選択部が新たに前記オーバードライブギヤへのシフトアップを選択したときは、前記車両が前記先走行区間に到達するまでの状況に基づいて前記変速機をシフトアップするか否かを選択する、
     車両制御装置。
  2.  前記シフト制御部は、前記車両が前記先走行区間に到達するまでの推定時間が所定の時間以内のときは、前記現ギヤ段選択部が新たに前記オーバードライブギヤへのシフトアップを選択した場合であっても前記変速機のギヤ段を前記直結ギヤのまま維持する、
     請求項1に記載の車両制御装置。
  3.  前記シフト制御部は、前記車両が前記先走行区間に到達するまでの走行距離が所定の距離以内のときは、前記現ギヤ段選択部が新たに前記オーバードライブギヤへのシフトアップを選択した場合であっても前記変速機のギヤ段を前記直結ギヤのまま維持する、
     請求項1に記載の車両制御装置。
PCT/JP2018/018113 2017-05-12 2018-05-10 車両制御装置 WO2018207869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018002454.7T DE112018002454T5 (de) 2017-05-12 2018-05-10 Fahrzeugsteuervorrichtung
CN201880031484.2A CN110621917B (zh) 2017-05-12 2018-05-10 车辆控制装置
US16/613,053 US11473674B2 (en) 2017-05-12 2018-05-10 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095972 2017-05-12
JP2017095972A JP7062884B2 (ja) 2017-05-12 2017-05-12 車両制御装置

Publications (1)

Publication Number Publication Date
WO2018207869A1 true WO2018207869A1 (ja) 2018-11-15

Family

ID=64105147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018113 WO2018207869A1 (ja) 2017-05-12 2018-05-10 車両制御装置

Country Status (5)

Country Link
US (1) US11473674B2 (ja)
JP (1) JP7062884B2 (ja)
CN (1) CN110621917B (ja)
DE (1) DE112018002454T5 (ja)
WO (1) WO2018207869A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200060592A (ko) * 2018-11-21 2020-06-01 현대자동차주식회사 차량의 변속 제어 장치 및 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272571A (ja) * 1991-02-27 1992-09-29 Isuzu Motors Ltd 自動車シフト変更制御装置
JPH09114367A (ja) * 1995-10-24 1997-05-02 Mitsubishi Electric Corp 車載走行制御装置
JP2006038078A (ja) * 2004-07-26 2006-02-09 Toyota Motor Corp 車両の減速制御装置
JP2009292207A (ja) * 2008-06-03 2009-12-17 Toyota Motor Corp 車両の駆動装置
JP2014001823A (ja) * 2012-06-20 2014-01-09 Mitsubishi Fuso Truck & Bus Corp 自動変速機の変速制御装置
US8700277B2 (en) * 2009-04-15 2014-04-15 Zf Friedrichshafen Ag Gearbox control device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3663677B2 (ja) 1995-07-06 2005-06-22 アイシン・エィ・ダブリュ株式会社 車両用自動変速機の制御装置
US5730680A (en) * 1995-10-05 1998-03-24 Nissan Motor Co., Ltd. Continuously variable transmission control method and apparatus
DE10129149B4 (de) 2000-07-06 2022-07-28 Robert Bosch Gmbh Verfahren zur Optimierung der Kraftübertragung eines Motors auf die Antriebsräder eines Fahrzeugs
JP4125067B2 (ja) 2002-06-12 2008-07-23 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
US6691011B1 (en) 2003-05-30 2004-02-10 Eaton Corporation Method of estimating vehicle deceleration during a transmission gear shift
DE102005057809A1 (de) * 2005-12-03 2007-06-06 Zf Friedrichshafen Ag Verfahren zur Schaltsteuerung eines automatisierten Kraftfahrzeug-Schaltgetriebes
US8504258B2 (en) 2006-11-20 2013-08-06 GM Global Technology Operations LLC GPS altitude data for transmission control systems and methods
US8301349B2 (en) * 2009-04-03 2012-10-30 Zf Friedrichshafen Ag Use of gradient road resistance strategies
EP2448784B1 (en) * 2009-07-02 2019-03-13 Volvo Lastvagnar AB Method and system for controlling a vehicle cruise control
CN102425657A (zh) 2011-10-25 2012-04-25 北京理工大学 一种电动汽车上坡amt系统换挡综合控制方法
CN103121450B (zh) * 2011-11-18 2016-08-24 北汽福田汽车股份有限公司 一种纯电动汽车的坡道控制方法
KR101558350B1 (ko) 2013-11-26 2015-10-08 현대자동차 주식회사 차량용 변속 제어 장치
US10077837B2 (en) * 2014-03-10 2018-09-18 Aisin Aw Co., Ltd. Control device and control method for continuously variable transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272571A (ja) * 1991-02-27 1992-09-29 Isuzu Motors Ltd 自動車シフト変更制御装置
JPH09114367A (ja) * 1995-10-24 1997-05-02 Mitsubishi Electric Corp 車載走行制御装置
JP2006038078A (ja) * 2004-07-26 2006-02-09 Toyota Motor Corp 車両の減速制御装置
JP2009292207A (ja) * 2008-06-03 2009-12-17 Toyota Motor Corp 車両の駆動装置
US8700277B2 (en) * 2009-04-15 2014-04-15 Zf Friedrichshafen Ag Gearbox control device
JP2014001823A (ja) * 2012-06-20 2014-01-09 Mitsubishi Fuso Truck & Bus Corp 自動変速機の変速制御装置

Also Published As

Publication number Publication date
US11473674B2 (en) 2022-10-18
CN110621917A (zh) 2019-12-27
US20200200260A1 (en) 2020-06-25
JP7062884B2 (ja) 2022-05-09
DE112018002454T5 (de) 2020-02-20
JP2018194050A (ja) 2018-12-06
CN110621917B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2018207870A1 (ja) 車両制御装置
CN110651139B (zh) 车辆控制装置以及车辆控制方法
JP6919316B2 (ja) 車両制御装置
WO2018207816A1 (ja) 車両制御装置および車両制御方法
CN110651141B (zh) 车辆控制装置
WO2018207877A1 (ja) 車両制御装置
WO2018207834A1 (ja) 車両制御装置および車両制御方法
WO2018207860A1 (ja) 車両制御装置
WO2018207869A1 (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18797851

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18797851

Country of ref document: EP

Kind code of ref document: A1