WO2018205506A1 - 显示基板、其制作方法及反射型液晶显示面板、显示装置 - Google Patents

显示基板、其制作方法及反射型液晶显示面板、显示装置 Download PDF

Info

Publication number
WO2018205506A1
WO2018205506A1 PCT/CN2017/108512 CN2017108512W WO2018205506A1 WO 2018205506 A1 WO2018205506 A1 WO 2018205506A1 CN 2017108512 W CN2017108512 W CN 2017108512W WO 2018205506 A1 WO2018205506 A1 WO 2018205506A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
common electrode
reflective layer
black matrix
Prior art date
Application number
PCT/CN2017/108512
Other languages
English (en)
French (fr)
Inventor
孙丽
李红敏
邵文君
Original Assignee
京东方科技集团股份有限公司
合肥京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP17861213.1A priority Critical patent/EP3623861A4/en
Priority to US15/770,942 priority patent/US20200241354A1/en
Publication of WO2018205506A1 publication Critical patent/WO2018205506A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display substrate, a method of fabricating the same, a reflective liquid crystal display panel, and a display device.
  • the liquid crystal display panels currently used are mostly transmissive liquid crystal display panels, which have backlights located behind the array substrate and are realized by transmitting light emitted from the backlight. Since the transmissive liquid crystal display panel has a backlight, it not only increases the display power consumption, but also increases the volume and weight of the liquid crystal display panel, and does not conform to the trend of thinning and portable liquid crystal display panels.
  • the reflective liquid crystal display panel can realize display by using external ambient light.
  • the reflective liquid crystal display panel Compared with a transmissive liquid crystal display panel having a backlight, the reflective liquid crystal display panel has advantages of high contrast, low power consumption, thin body, and light weight. Therefore, reflective liquid crystal display panels are increasingly being applied to portable electronic terminals such as mobile phones, notebook computers, digital cameras, personal digital assistants and the like.
  • the main disadvantage of the current reflective liquid crystal display panel is that the contrast is insufficient. In order to improve the contrast, it is necessary to increase the reflection area, so that the incident light is reflected into the human eye as much as possible, thereby improving the display quality.
  • a reflective layer and a common electrode layer on the side of the black matrix facing away from the substrate substrate and electrically connected to each other;
  • An orthographic projection of the black matrix on the substrate substrate covers an orthographic projection of the reflective layer on the substrate substrate.
  • an orthographic projection of the reflective layer on the base substrate completely overlaps with an orthographic projection of the black matrix on the base substrate .
  • a surface of the reflective layer facing away from a side of the black matrix is a roughened surface.
  • the reflective layer is located between the black matrix and the common electrode layer.
  • the method further includes: a color resist layer between the reflective layer and the black matrix.
  • the method further includes: a color resist layer located on a side of the common electrode layer facing away from the substrate substrate.
  • the method further includes: a color resist layer between the reflective layer and the common electrode layer;
  • the common electrode layer is electrically connected to the reflective layer through a first via hole penetrating the color resist layer.
  • the method further includes: a first insulating layer between the reflective layer and the common electrode layer;
  • the common electrode layer is electrically connected to the reflective layer through a second via hole penetrating the first insulating layer.
  • the reflective layer is located on a side of the common electrode layer facing away from the base substrate.
  • the method includes: a color resist layer between the common electrode layer and the black matrix.
  • the method further includes: a color resist layer on a side of the reflective layer facing away from the substrate substrate.
  • the method further includes: a color resist layer between the common electrode layer and the reflective layer;
  • the reflective layer is electrically connected to the common electrode layer through a third via extending through the color resist layer.
  • the method further includes: a second insulating layer between the reflective layer and the common electrode layer;
  • the reflective layer is electrically connected to the common electrode layer through a fourth via hole penetrating the second insulating layer.
  • the material of the reflective layer is a metal material.
  • the material of the reflective layer is one of molybdenum, aluminum, tungsten, titanium, copper, or a combination of alloys.
  • An embodiment of the present disclosure provides a reflective liquid crystal display panel comprising: an opposite display substrate and an opposite substrate; wherein
  • the display substrate is the above display substrate provided by the embodiment of the disclosure.
  • the opposite substrate has a reflective pixel electrode.
  • the embodiment of the present disclosure provides a display device, including the above reflective liquid crystal display panel provided by the embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for fabricating the above display substrate, including:
  • An orthographic projection of the black matrix on the substrate substrate covers an orthographic projection of the reflective layer on the substrate substrate.
  • Patterns of the black matrix and the reflective layer are separately formed using the same mask.
  • the method further includes:
  • a roughening treatment is performed on a surface of the reflective layer facing away from the side of the black matrix.
  • FIG. 1 is a schematic structural view of a reflective liquid crystal display panel in the related art
  • FIG. 2a is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • 2b is a second schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • 2c is a third schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 2 is a fourth schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a fifth schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • 3b is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • 3c is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for fabricating a display substrate according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a reflective liquid crystal display panel according to an embodiment of the present disclosure.
  • each film layer in the drawings does not reflect its true proportion in the display substrate or the reflective liquid crystal display panel, and the purpose is only to schematically illustrate the present disclosure.
  • FIG. 1 is a schematic structural view of a reflective liquid crystal display panel in the related art.
  • the reflective liquid crystal display panel replaces the indium tin oxide (ITO) pixels on the array substrate (ie, the opposite substrate in FIG. 1) with a metal (eg, aluminum) pixel electrode A having a relatively high reflectivity.
  • the electrode reflects the ambient light incident on the inside of the liquid crystal cell to realize display.
  • the display substrate provided by the embodiment of the present disclosure includes: a substrate substrate 201, and a black matrix on one side of the substrate substrate 201. 202, and a reflective layer 203 and a common electrode layer 204 on the side of the black matrix 202 facing away from the base substrate 201 and electrically connected to each other; wherein the orthographic projection of the black matrix 202 on the base substrate 201 covers the reflective layer 203 on the base substrate Orthographic projection on 201.
  • the orthographic projection of the black matrix 202 on the substrate substrate 201 covers the orthographic projection of the reflective layer 203 on the substrate substrate 201, the external ambient light does not directly illuminate the reflection.
  • the layer 203 faces the surface of one side of the black matrix 202, and thus the reflective layer 203 does not affect the total amount of incident light entering the liquid crystal cell.
  • the reflective layer 203 is added over the black matrix 202, as shown in FIG. 5, the incident light L entering the liquid crystal cell can be made multiple times between the pixel electrode 401 of the opposite substrate and the reflective layer 203 of the display substrate.
  • the light After the reflection, the light is emitted, thereby avoiding the absorption of the light reflected by the black matrix 202 to the region where the black matrix 202 is located, thereby increasing the amount of light emitted, and to some extent, increasing the reflection area, thereby improving the reflection type.
  • the contrast of the LCD panel Moreover, by making the common electrode layer 204 and the reflective layer 203 in parallel, the resistance of the common electrode layer 204 can be reduced to some extent, thereby improving the uniformity of the distribution of the common electrode signals, and improving the display performance of the reflective liquid crystal display panel.
  • the mask As a tool for transferring fine patterns, the mask has a key role in the production of display panels and is an indispensable part of the display panel industry chain.
  • masks are expensive and account for a large proportion of production technology costs. Therefore, in order to reduce the production cost, in the above display substrate provided by the embodiment of the present disclosure, as shown in FIGS. 2a to 3d, the orthographic projection of the reflective layer 203 on the substrate substrate 201 and the black matrix 202 on the base substrate 201 are provided.
  • the orthographic projections on the top overlap completely. In this way, the pattern of the black matrix 202 and the reflective layer 203 can be separately formed using the same mask, thereby saving production costs.
  • the reflective layer 203 which is formed using the mask of the black matrix 202 also has a mesh structure. Therefore, the resistance of the reflective layer can be made small, and the resistance of the common electrode layer can be further reduced when the common electrode layer is connected in parallel with the reflective layer having a small resistance.
  • the mask of the pattern of the layer 203 is used to fabricate the reflective layer 203 having other structures, which is not limited herein.
  • the surface of the reflective layer facing away from the side of the black matrix is a roughened surface.
  • the incident light entering the liquid crystal cell is reflected by the pixel electrode to the roughened surface of the reflective layer, diffuse reflection occurs on the roughened surface of the reflective layer, thereby reducing the optical loss to a lower level.
  • the level increases the amount of light emitted.
  • the rough surface of the reflective layer can be obtained by controlling the film formation rate of the reflective layer.
  • the surface of the reflective layer facing away from the side of the black matrix may be subjected to a plasma process to make it a non-uniform, uneven, and matte surface.
  • a gas containing one or more of the following halogen elements may be used: chlorine gas (Cl 2 ), bromine gas (Br 2 ), iodine Gas (I 2 ), hydrogen chloride (HCl), hydrogen bromide (HBr), and hydrogen iodide (HI) are not limited herein.
  • the reflective layer may be implemented in various manners.
  • the material of the reflective layer may be a metal material, for example, a metal material having a strong reflectivity. This is not limited.
  • the material of the reflective layer may be one of molybdenum, aluminum, tungsten, titanium, copper or a combination of alloys, which is not limited herein.
  • the common electrode layer can be connected to the common electrode line on the opposite substrate through the gold ball in the sealant to receive the common electrode signal transmitted by the common electrode line.
  • the material of the common electrode layer is a transparent conductive material, and may be, for example, one or a combination of an indium tin oxide material, an indium zinc oxide material, a carbon nanotube or a graphene, which is not limited herein.
  • the relative positional relationship between the reflective layer 203 and the common electrode layer 204 may be the following two: First, as shown in FIG. 2a to FIG. 2d, the reflective layer 203 may be located between the black matrix 202 and the common electrode layer 204. . Second, as shown in FIG. 3a to FIG. 3d, the reflective layer 203 can also be located in the public.
  • the common electrode layer 204 faces away from the side of the base substrate 201.
  • the reflective layer 203 and the common electrode layer 204 may be directly electrically connected to each other, or may be electrically insulated and then electrically connected through the via holes, which is not limited herein.
  • the array substrate may further include: a color resist layer 205.
  • the color resist layer includes red color resist, green color resist, and blue color resist.
  • the color resist layer may also include color resists of other colors, which are not limited herein.
  • the color resist layer may also be disposed on the opposite substrate.
  • the relative positional relationship of the color resist layer, the reflective layer, and the common electrode layer may be various, and several embodiments are listed below.
  • the reflective layer 203 when the reflective layer 203 is located between the black matrix 202 and the common electrode layer 204, in the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 2a, the reflective layer 203 and the common electrode layer 204 is directly electrically connected, and no other film layer is disposed therebetween, and the color resist layer 205 may be positioned between the reflective layer 203 and the black matrix 202.
  • the reflective layer 203 when the reflective layer 203 is located between the black matrix 202 and the common electrode layer 204, in the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 2b, the reflective layer 203 and the common electrode layer 204 is directly electrically connected, and no other film layer is disposed therebetween, and the color resist layer 205 may be disposed on the side of the common electrode layer 204 facing away from the substrate 201. At this time, the color resist layer 205 is not disposed in the sealant region, so that the common electrode layer 204 is electrically connected to the common electrode line on the opposite substrate through the gold ball in the sealant.
  • the array substrate may further include: a first insulating layer 206 between the reflective layer 203 and the common electrode layer 204; and the common electrode layer 204 passes through the second through the first insulating layer 206.
  • the hole 2061 is electrically connected to the reflective layer 203.
  • the first insulating layer 206 may be a single-layer structure or an insulating layer of a multi-layer structure to achieve insulation between the two, which is not limited herein.
  • the material of the general color resist layer 205 has an insulating effect.
  • the color resist layer 205 may be used as an insulating layer between the reflective layer 203 and the common electrode layer 204, and then pass through the via hole.
  • the reflective layer 203 is electrically connected to the common electrode layer 204.
  • the color resist layer 205 may be disposed between the reflective layer 203 and the common electrode layer 204.
  • the common electrode layer 204 is electrically connected to the reflective layer 203 through the first via 2051 penetrating the color resist layer 205. In this way, the color resist layer 205 can be used as the insulating layer between the reflective layer 203 and the common electrode layer 204, which can avoid adding a new film layer, and is advantageous for realizing the thin and light design of the reflective liquid crystal display panel.
  • the reflective layer 203 when the reflective layer 203 is located on the side of the common electrode layer 204 facing away from the substrate 201, in the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 3a, the reflective layer 203 and the public The electrode layers 204 are directly electrically connected without other film layers disposed therebetween, and the color resist layer 205 may be positioned between the common electrode layer 204 and the black matrix 202.
  • the reflective layer 203 when the reflective layer 203 is located on the side of the common electrode layer 204 facing away from the substrate 201, in the display substrate provided by the embodiment of the present disclosure, as shown in FIG. 3b, the reflective layer 203 and the common The electrode layer 204 is directly electrically connected, and no other film layer is disposed therebetween, and the color resist layer 205 may be disposed on a side of the reflective layer 203 facing away from the substrate 201. At this time, the color resist layer 205 is not disposed in the sealant region, so that the common electrode layer 204 is electrically connected to the common electrode line on the opposite substrate through the gold ball in the sealant.
  • the array substrate may further include: a second insulating layer 207 between the reflective layer 203 and the common electrode layer 204; and the reflective layer 203 passes through the second insulation
  • the fourth via 2071 of the layer 207 is electrically connected to the common electrode layer 204.
  • the second insulating layer 207 may be a single-layer structure or an insulating layer of a multi-layer structure to achieve insulation between the two, which is not limited herein. At this time, the second insulating layer 207 is not disposed in the sealant region, so that the common electrode layer 204 is electrically connected to the common electrode line on the opposite substrate through the gold ball in the sealant.
  • the material of the general color resist layer 205 has an insulating effect.
  • the color resist layer 205 may be used as an insulating layer between the reflective layer 203 and the common electrode layer 204, and then passed through the via hole.
  • the reflective layer 203 is electrically connected to the common electrode layer 204.
  • the color resist layer 205 may be disposed on the common electrode layer 204 and the reflective layer. Between 203, and the reflective layer 203 is electrically connected to the common electrode layer 204 through the third via 2052 penetrating the color resist layer 205.
  • the color resist layer 205 can be used as the insulating layer between the reflective layer 203 and the common electrode layer 204, which can avoid adding a new film layer, and is advantageous for realizing the thin and light design of the reflective liquid crystal display panel. Moreover, at this time, the color resist layer 205 is not disposed in the sealant region, so that the common electrode layer 204 is electrically connected to the common electrode line on the opposite substrate through the gold ball in the sealant.
  • an embodiment of the present disclosure provides a method for fabricating the above display substrate.
  • the principle of solving the problem is similar to the principle of solving the problem in the display substrate. Therefore, the manufacturing method provided by the embodiment of the present disclosure
  • the implementation reference may be made to the implementation of the above display substrate provided by the embodiments of the present disclosure, and the repeated description is not repeated.
  • a method for manufacturing the above display substrate provided by the embodiment of the present disclosure, as shown in FIG. 4, may specifically include the following steps:
  • the orthographic projection of the black matrix on the substrate substrate covers the orthographic projection of the reflective layer on the substrate.
  • the same mask layer is used to form the patterns of the black matrix and the reflective layer, respectively.
  • the method may further include: performing a surface of the reflective layer facing away from the black matrix side. Roughening treatment.
  • the patterning process involved in forming each layer structure may include not only deposition, photoresist coating, mask masking, exposure, development, etching, Some or all of the processes, such as stripping of the photoresist, may also include other processes, which are specifically based on the pattern in which the desired pattern is formed in the actual manufacturing process, and are not limited herein.
  • a post-baking process may also be included after development and prior to etching.
  • the deposition process may be a chemical vapor deposition method, a plasma enhanced chemical vapor deposition method or a physical vapor deposition method, which is not limited herein; the mask used in the mask process may be a halftone mask (Half Tone Mask).
  • the single-slit sizing mask or the gray sizing mask is not limited herein; the etching may be dry etching or wet etching, which is not limited herein.
  • forming the reflective layer and the common electrode layer electrically connected to each other on the substrate formed with the black matrix may specifically include:
  • a common electrode layer electrically connected to the reflective layer is formed on the base substrate on which the reflective layer is formed.
  • the reflective layer and the common electrode layer that are electrically connected to each other are formed on the base substrate on which the black matrix is formed.
  • a reflective layer electrically connected to the common electrode layer is formed on the base substrate on which the common electrode layer is formed.
  • the relative order relationship of the color resist layer, the reflective layer, and the common electrode layer may be various, and several embodiments are listed below.
  • the method may further include : forming a color resist layer on the base substrate on which the black matrix is formed.
  • a color resist layer on the base substrate on which the black matrix is formed.
  • the embodiments of the present disclosure provide a preparation process of the display substrate as shown in FIG. 2a, and specifically include the following steps:
  • a substrate substrate 201 is provided.
  • a black matrix 202 having a lattice structure is formed on the base substrate 201.
  • a color resist layer 205 including red color resist, green color resist, and blue color resist is formed on the base substrate 201 of the black matrix 202 having a mesh structure.
  • a common electrode layer 204 is formed on the base substrate 201 on which the reflective layer 203 is formed.
  • the method when the common electrode layer is formed, the common electrode layer is formed in the above-mentioned manufacturing method provided by the embodiment of the present disclosure, after forming the common electrode layer, the method further includes: forming a common electrode A color resist layer is formed on the base substrate of the layer.
  • the black matrix 202, the reflective layer 203, the common electrode layer 204, and the color resist layer 205 that is, the structure of the display substrate shown in FIG. 2b, can be sequentially formed on the base substrate.
  • the embodiments of the present disclosure provide a preparation process of the display substrate as shown in FIG. 2b, and steps (1) to (2) and preparation in the embodiment are as shown in the figure.
  • the steps (1) to (2) of the display substrate shown in 2a are basically the same, and will not be described herein.
  • the remaining processes in this embodiment specifically include the following steps:
  • a reflective layer 203 having a mesh-like structure is formed on the base substrate 201 on which the black matrix 202 is formed by using a mask forming a pattern of the black matrix 202; and by controlling the film formation rate of the reflective layer 203, A reflective layer 203 having a rough surface on the side facing away from the black matrix 202.
  • the common electrode layer 204 is formed on the base substrate 201 on which the reflective layer 203 is formed.
  • a color resist layer 205 including red color resist, green color resist, and blue color resist is formed on the base substrate 201 on which the common electrode layer 204 is formed.
  • the method includes: forming a first insulating layer on the base substrate formed with the reflective layer, and a second via hole penetrating the first insulating layer;
  • Forming the common electrode layer electrically connected to the reflective layer may specifically include: forming a common electrode layer on the base substrate on which the first insulating layer is formed, and forming the common electrode layer electrically connected to the reflective layer through the second via.
  • the structure of the black matrix 202, the reflective layer 203, the first insulating layer 206, and the common electrode layer 204 that is, the display substrate shown in FIG. 2d, can be sequentially formed on the base substrate.
  • the embodiments of the present disclosure provide a preparation process of the display substrate as shown in FIG. 2d, and steps (1) to (3) and preparation in the embodiment are as shown in the figure.
  • the steps (1) to (3) of the display substrate shown in 2b are basically the same, and will not be described herein.
  • the remaining processes in this embodiment specifically include the following steps:
  • a first insulating layer 206 is formed on the base substrate 201 on which the reflective layer 203 is formed, and a second via hole 2061 penetrating the first insulating layer 206.
  • a common electrode layer 204 is formed on the base substrate 201 on which the first insulating layer 206 is formed, and the formed common electrode layer 204 is electrically connected to the reflective layer 203 through the second via 2061.
  • the method includes: forming a color resist layer on the substrate formed with the reflective layer, and forming a first via hole penetrating the color resist layer;
  • Forming the common electrode layer electrically connected to the reflective layer comprises: forming a common electrode layer on the base substrate on which the color resist layer is formed, and forming the common electrode layer electrically connected to the reflective layer through the first via.
  • the structure of the black matrix 202, the reflective layer 203, the color resist layer 204, and the common electrode layer 204 can be sequentially formed on the base substrate.
  • the color resist layer 204 can be used as the insulating layer between the reflective layer 203 and the common electrode layer 204, which can avoid adding a new film layer, and is advantageous for realizing the thin and light design of the reflective liquid crystal display panel.
  • the preparation process of the substrate shown in FIG. 2c For the preparation process of the display substrate shown in FIG. 2c, reference may be made to the above-mentioned preparation of the display shown in FIG. 2d.
  • the preparation process of the substrate wherein only the process in the step (4) is replaced by: forming a color resist layer containing red color resist, green color resist, and blue color resist on the base substrate 201 on which the reflective layer 203 is formed. 205, and the first via 2051 penetrating through the color resist layer 205.
  • the rest of the preparation process is substantially the same as the preparation process of the display substrate shown in FIG. 2d above, and will not be described herein.
  • the method includes forming a color resist layer on a substrate formed with a black matrix.
  • the black matrix 202, the color resist layer 205, the common electrode layer 204, and the reflective layer 203 that is, the structure of the display substrate shown in FIG. 3a, can be sequentially formed on the base substrate.
  • the method further includes: forming the reflective layer A color resist layer is formed on the base substrate.
  • the black matrix 202, the common electrode layer 204, the reflective layer 203, and the color resist layer 205 that is, the structure of the display substrate shown in FIG. 3b can be sequentially formed on the base substrate.
  • the method includes: forming a second insulating layer on the base substrate formed with the common electrode layer, and a fourth via hole penetrating the second insulating layer;
  • Forming the reflective layer electrically connected to the common electrode layer may specifically include: forming a reflective layer on the base substrate on which the second insulating layer is formed, and forming the reflective layer to be electrically connected to the common electrode layer through the fourth via. In this way, the black matrix 202, the common electrode layer 204, and the second can be sequentially formed on the base substrate.
  • the edge layer 207 and the reflective layer 203 that is, the structure of the display substrate shown in FIG. 3d.
  • the common electrode layer when the common electrode layer is formed first, and then the reflective layer is formed, in the above manufacturing method provided by the embodiment of the present disclosure, after the common electrode layer is formed, and before the reflective layer is formed, Forming a color resist layer on the base substrate on which the common electrode layer is formed, and a third via hole penetrating through the color resist layer;
  • Forming the reflective layer electrically connected to the common electrode layer specifically includes: forming a reflective layer on the base substrate on which the color resist layer is formed, and forming the reflective layer electrically connected to the common electrode layer through the third via.
  • the black matrix 202, the common electrode layer 204, the color resist layer 204, and the reflective layer 203 can be sequentially formed on the base substrate.
  • the color resist layer 204 can be used as the insulating layer between the reflective layer 203 and the common electrode layer 204, which can avoid adding a new film layer, and is advantageous for realizing the thin and light design of the reflective liquid crystal display panel.
  • a color resist layer 205 including a red color resist, a green color resist, and a blue color resist, and a third via 2052 penetrating the color resist layer 205 may be formed on the base substrate 201.
  • the rest of the preparation process is substantially the same as the preparation process of the display substrate shown in FIG. 3d above, and will not be described herein.
  • an embodiment of the present disclosure provides a reflective liquid crystal display panel.
  • the principle of solving the problem of the reflective liquid crystal display panel is similar to the principle of the above problem of the display substrate. Therefore, the reflection provided by the embodiment of the present disclosure
  • the implementation of the liquid crystal display panel refer to the implementation of the above display substrate provided by the embodiment of the present disclosure, and the repeated description is omitted.
  • a reflective liquid crystal display panel includes: an opposite display substrate and an opposite substrate;
  • the display substrate is the above display substrate
  • the opposite substrate has a reflective pixel electrode 401.
  • the opposite substrate is an array substrate
  • the material of the pixel electrode 401 is a metal material.
  • the material of the pixel electrode 401 is a large reflectivity. Aluminum metal material, so that as much ambient light as possible can be reflected out of the liquid crystal cell.
  • the opposite substrate further needs to include: a thin film transistor.
  • the thin film transistor may be a bottom gate type structure; or may be a top gate type structure, which is not limited herein.
  • the thin film transistor when the thin film transistor is a bottom gate type structure, as shown in FIG. 5, in each thin film transistor, the source/drain 402 and the data line (FIG. 5) None of them are located above the active layer 403, and the gate 404 and the gate line (not shown) are both located below the active layer 403, and the gate insulating layer 403 is provided with a gate insulating layer.
  • a layer 405 is provided with a passivation layer 406 over the layer on which the source/drain 402 is located.
  • the material of the source/drain 402, the gate 404, the data line, and the gate line may be one of molybdenum, aluminum, tungsten, titanium, copper, or a combination of alloys, which is not limited herein.
  • the material of the gate insulating layer 405 and the passivation layer 406 may be one or a combination of silicon oxide and silicon nitride, which is not limited herein.
  • the material of the active layer 403 may be a polysilicon semiconductor material, an amorphous silicon semiconductor material, an oxide semiconductor material or an organic semiconductor material, which is not limited herein.
  • the pattern of the gate 404 and the gate line can be simultaneously prepared by using one patterning process.
  • the pattern of the common electrode lines can also be prepared at the same time.
  • a secondary patterning process may also be used, in which one patterning process is used to prepare the pattern of the gate electrode 404 and the gate line, and another patterning process is used to prepare the pattern of the common electrode line, which is not limited herein.
  • the material of the common electrode line may be one of molybdenum, aluminum, tungsten, titanium, copper or a combination of alloys, which is not limited herein.
  • the source/drain 402 and the data line can be simultaneously prepared by using one patterning process.
  • the secondary patterning process can also be used to separately prepare the source/drain 402 and the data.
  • the graphics of the line are not limited here.
  • the reflective liquid crystal display panel provided by the embodiment of the present disclosure is applicable to liquid crystal display panels of various display modes, for example, a twisted nematic (TN) mode liquid crystal display panel, and an advanced super-dimensional field switch.
  • TN twisted nematic
  • ADS Advanced Dimension Switch
  • HADS high aperture rate - high-advanced Dimension Switch
  • IPS in-plane switch
  • the mode of the liquid crystal display panel is not limited herein.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned reflective liquid crystal display panel provided by the embodiment of the present disclosure, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, Any product or component with display functions such as digital photo frames, navigators, smart watches, fitness wristbands, and personal digital assistants.
  • a display device including the above-mentioned reflective liquid crystal display panel provided by the embodiment of the present disclosure, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, Any product or component with display functions such as digital photo frames, navigators, smart watches, fitness wristbands, and personal digital assistants.
  • the display device reference may be made to the embodiment of the reflective liquid crystal display panel described above, and the repeated description is omitted.
  • the display substrate, the manufacturing method thereof, and the reflective liquid crystal display panel and the display device provided by the embodiment of the present disclosure include: a substrate, a black matrix having a grid structure on the substrate, and a black matrix
  • the reflective layer and the common electrode layer are electrically connected to each other; wherein the orthographic projection of the black matrix on the base substrate covers the orthographic projection of the reflective layer on the base substrate. Since the orthographic projection of the black matrix on the substrate substrate covers the orthographic projection of the reflective layer on the substrate, the external ambient light is not directly incident on the surface of the reflective layer facing the side of the black matrix, so the reflective layer does not affect The total amount of incident light entering the cell.
  • the reflective layer is added on the black matrix, the incident light entering the liquid crystal cell can be emitted after multiple reflections between the pixel electrode of the opposite substrate and the reflective layer of the display substrate, thereby avoiding the black matrix pair pixel
  • the absorption of light reflected by the electrode to the area where the black matrix is located increases the amount of light emitted, and the effect of increasing the reflection area is achieved to a certain extent, and the contrast of the reflective liquid crystal display panel is improved.
  • the resistance of the common electrode layer can be reduced to some extent, thereby improving the uniformity of the distribution of the common electrode signals, and improving the display performance of the reflective liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示基板、其制作方法及反射型液晶显示面板、显示装置,包括:衬底基板(201),位于衬底基板上的黑矩阵(202),以及位于黑矩阵(202)背离衬底基板(201)一侧且相互电连接的反射层(203)与公共电极层(204);其中,黑矩阵(202)在衬底基板(201)上的正投影覆盖反射层(203)在衬底基板(201)上的正投影,可以提高反射型液晶显示面板的对比度与显示性能。

Description

显示基板、其制作方法及反射型液晶显示面板、显示装置
本申请要求在2017年5月12日提交中国专利局、申请号为201710333398.4、发明名称为“显示基板、其制作方法及反射型液晶显示面板、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板、其制作方法及反射型液晶显示面板、显示装置。
背景技术
随着显示产业发展,液晶显示面板的结构也逐渐多样化。目前使用的液晶显示面板多为透射型液晶显示面板,其具有的背光源位于阵列基板后,通过透射背光源发出的光来实现显示。由于这种透射型液晶显示面板具有背光源,因此,不仅会增大显示功耗,而且会增加液晶显示面板的体积及重量,不符合液晶显示面板轻薄化、便携式的发展趋势。
在周边外部光源较强的环境下,反射型液晶显示面板可以利用外部环境光实现显示。与具有背光源的透射型液晶显示面板相比,反射型液晶显示面板具有对比度高、功耗低、机身薄和重量轻等优点。因此,反射型液晶显示面板被越来越多地应用于诸如手机、笔记本电脑、数码相机、个人数字助理等便携式电子终端。但是,目前的反射型液晶显示面板存在的主要缺点是对比度不够,为提高对比度,需要增大反射面积,使入射光尽可能多的反射进入人眼,从而提高显示质量。
发明内容
本公开实施例提供的一种显示基板,包括:
衬底基板,
位于所述衬底基板一侧的黑矩阵,以及
位于所述黑矩阵背离所述衬底基板一侧且相互电连接的反射层与公共电极层;其中,
所述黑矩阵在所述衬底基板上的正投影覆盖所述反射层在所述衬底基板上的正投影。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,所述反射层在所述衬底基板的正投影与所述黑矩阵在所述衬底基板的正投影完全重叠。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,所述反射层的背离所述黑矩阵一侧的表面为经过粗糙化处理的表面。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,所述反射层位于所述黑矩阵与所述公共电极层之间。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述反射层与所述黑矩阵之间的色阻层。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述公共电极层背离所述衬底基板一侧的色阻层。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述反射层与所述公共电极层之间的色阻层;
所述公共电极层通过贯穿所述色阻层的第一过孔与所述反射层电连接。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述反射层与所述公共电极层之间的第一绝缘层;
所述公共电极层通过贯穿所述第一绝缘层的第二过孔与所述反射层电连接。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,所述反射层位于所述公共电极层背离所述衬底基板的一侧。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还 包括:位于所述公共电极层与所述黑矩阵之间的色阻层。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述反射层背离所述衬底基板一侧的色阻层。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述公共电极层与所述反射层之间的色阻层;
所述反射层通过贯穿所述色阻层的第三过孔与所述公共电极层电连接。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,还包括:位于所述反射层与所述公共电极层之间的第二绝缘层;
所述反射层通过贯穿所述第二绝缘层的第四过孔与所述公共电极层电连接。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,所述反射层的材料为金属材料。
在本公开的一些实施例中,在本公开实施例提供的上述显示基板中,所述反射层的材料为钼、铝、钨、钛、铜其中之一或合金组合。
本公开实施例提供了一种反射型液晶显示面板,包括:相对而置的显示基板和对向基板;其中,
所述显示基板为本公开实施例提供的上述显示基板;
所述对向基板具有反射型的像素电极。
本公开实施例提供了一种显示装置,包括:本公开实施例提供的上述反射型液晶显示面板。
本公开实施例提供了一种上述显示基板的制作方法,包括:
提供一衬底基板;
在所述衬底基板上形成黑矩阵;
在所述黑矩阵上形成相互电连接的反射层与公共电极层;其中,
所述黑矩阵在所述衬底基板上的正投影覆盖所述反射层在所述衬底基板上的正投影。
在本公开的一些实施例中,在本公开实施例提供的上述制作方法中,采 用同一掩膜板分别形成所述黑矩阵和所述反射层的图形。
在本公开的一些实施例中,在本公开实施例提供的上述制作方法中,所述在所述黑矩阵上形成反射层之后,还包括:
对所述反射层的背离所述黑矩阵一侧的表面进行粗糙化处理。
附图说明
图1为相关技术中反射型液晶显示面板的结构示意图;
图2a为本公开实施例提供的显示基板的结构示意图之一;
图2b为本公开实施例提供的显示基板的结构示意图之二;
图2c为本公开实施例提供的显示基板的结构示意图之三;
图2d为本公开实施例提供的显示基板的结构示意图之四;
图3a为本公开实施例提供的显示基板的结构示意图之五;
图3b为本公开实施例提供的显示基板的结构示意图之六;
图3c为本公开实施例提供的显示基板的结构示意图之七;
图3d为本公开实施例提供的显示基板的结构示意图之八;
图4为本公开实施例提供的显示基板的制作方法的流程图;
图5为本公开实施例提供的反射型液晶显示面板的结构示意图。
具体实施方式
下面结合附图,对本公开实施例提供的显示基板、其制作方法及反射型液晶显示面板、显示装置的具体实施方式进行详细的说明。
附图中各膜层的形状和大小不反映其在显示基板或反射型液晶显示面板中的真实比例,目的只是示意说明本公开内容。
如图1所示,为相关技术中反射型液晶显示面板的结构示意图。从图1中可以看出,反射型液晶显示面板采用具有较强反射率的金属(例如铝)像素电极A替代阵列基板(即图1中的对向基板)上的氧化铟锡(ITO)像素电极,以反射入射至液晶盒内部的环境光,从而实现显示。
为了增大反射面积,提高反射型液晶显示面板的对比度,本公开实施例提供的显示基板,如图2a至图3d所示,包括:衬底基板201,位于衬底基板201一侧的黑矩阵202,以及位于黑矩阵202背离衬底基板201一侧且相互电连接的反射层203与公共电极层204;其中,黑矩阵202在衬底基板201上的正投影覆盖反射层203在衬底基板201上的正投影。
在本公开实施例提供的上述显示基板中,由于黑矩阵202在衬底基板201上的正投影覆盖反射层203在衬底基板201上的正投影,使得外部的环境光不会直接射向反射层203面向黑矩阵202的一侧的表面,因此反射层203不会影响进入液晶盒内的入射光的总量。以及由于在黑矩阵202之上增加了反射层203,如图5所示,使得进入液晶盒内的入射光L可在对向基板的像素电极401与显示基板的反射层203之间经过多次反射后射出,从而避免了黑矩阵202对像素电极401反射至黑矩阵202所在区域的光的吸收,进而增加了出光量,在一定程度上实现了增加反射面积的作用,因此,提高了反射型液晶显示面板的对比度。并且通过使公共电极层204与反射层203并联,可以在一定程度上减小公共电极层204的电阻,从而提高公共电极信号的分布均匀性,有利于提升反射型液晶显示面板的显示性能。
掩膜板作为转移微细图形的工具,在显示面板生产中具有承上启下的关键作用,是显示面板产业链中不可或缺的重要环节。然而,掩膜板价格昂贵,在生产技术成本中占据很大比重。因此,为了降低生产成本,在本公开实施例提供的上述显示基板中,如图2a至图3d所示,设置反射层203在衬底基板201上的正投影与黑矩阵202在衬底基板201上的正投影完全重叠。这样,就可以使用同一张掩膜板分别制作黑矩阵202和反射层203的图形,从而节约生产成本。并且,一般黑矩阵202具有网格状结构,因此,使用黑矩阵202的掩膜板制作出的反射层203同样具有网格状结构。因此,可以使反射层的电阻较小,在通过将公共电极层与具有较小电阻的反射层并联时,可以进一步降低公共电极层的电阻。
当然,在具体实施时,还可以根据实际需要单独设计一张用于制作反射 层203的图形的掩膜板,以制作出具有其他结构的反射层203,在此不做限定。
在具体实施时,为了最大程度地增加出光量,在本公开实施例提供的上述显示基板中,反射层的背离黑矩阵一侧的表面为经过粗糙化处理的表面。这样,进入液晶盒内的入射光经像素电极反射至在反射层的粗糙化处理的表面时,就会在反射层的粗糙化处理的表面上发生漫反射,从而可以将光损耗降至较低水平,进而增大了出光量。
具体地,在本公开实施例提供的上述显示基板中,对反射层背离黑矩阵一侧的表面的粗造化处理的方式有多种,在此不做限定。例如,可通过控制反射层的成膜速率,获得反射层的粗糙表面。又如,可以在形成反射层的图形之后,对反射层背离黑矩阵一侧的表面进行等离子体工艺处理,使其变成不均匀、不平整、不光滑的表面。并且,在对反射层背离黑矩阵一侧的表面进行等离子体工艺处理过程中,可以使用含有下列一种或多种卤族元素的气体:氯气(Cl2)、溴气(Br2)、碘气(I2)、氯化氢(HCl)、溴化氢(HBr)、碘化氢(HI),在此不做限定。
在具体实施时,在本公开实施例提供的上述显示基板中,反射层的实现方式可以有多种,例如,反射层的材料可以为金属材料,例如可以为具有强反射率的金属材料,在此不做限定。并且,在具体实施时,反射层的材料可以为钼、铝、钨、钛、铜其中之一或合金组合,在此不做限定。
一般地,在反射型液晶显示面板中,通过对向基板上的像素电极和显示基板的公共电极之间的电场,控制液晶分子的偏转,以实现图像显示。具体地,公共电极层可以通过封框胶中的金球与对向基板上的公共电极线实现连接,从而接收公共电极线传输的公共电极信号。在具体实施时,公共电极层的材料为透明导电材料,例如可以为氧化铟锡材料、氧化铟锌材料、碳纳米管或石墨烯其中之一或组合,在此不做限定。
在具体实施时,反射层203与公共电极层204的相对位置关系可以有以下两种:其一,如图2a至图2d所示,反射层203可以位于黑矩阵202与公共电极层204之间。其二,如图3a至图3d所示,反射层203也可以位于公 共电极层204背离衬底基板201的一侧。并且,在本公开实施例提供的上述显示基板中,反射层203与公共电极层204之间可以直接电性连接,也可以先绝缘再通过过孔电连接,在此不作限定。
在具体实施时,为了获得彩色图像,在本公开实施例提供的上述显示基板中,如图2a至图2c以及图3a至图3c所示,阵列基板还可以包括:色阻层205。并且,一般地,色阻层包括红光色阻、绿光色阻和蓝光色阻。当然,色阻层还可以包括其他颜色的色阻,在此不做限定。当然,在本公开实施例提供的上述显示基板中,还可以将色阻层设置在对向基板上。这样设置,一方面,可以减小对向基板上的信号线与像素电极之间的耦合,使信号线上的信号延迟状况得到改善。另一方面,还可以避免色阻层与像素电极未严格对准的问题,从而可以提高反射型液晶显示面板的开口率,改善反射型液晶显示面板的显示品质。
在具体实施时,在公开实施例提供的上述显示基板中,色阻层、反射层以及公共电极层的相对位置关系可以有多种,以下列举几种实施方式。
具体地,第一种实施方式,在反射层203位于黑矩阵202与公共电极层204之间时,在本公开实施例提供的显示基板中,如图2a所示,反射层203与公共电极层204直接电连接,其之间未设置其他膜层,可以使色阻层205位于反射层203与黑矩阵202之间。
具体地,第二种实施方式,在反射层203位于黑矩阵202与公共电极层204之间时,在本公开实施例提供的显示基板中,如图2b所示,反射层203与公共电极层204直接电连接,其之间未设置其他膜层,可以使色阻层205位于公共电极层204背离衬底基板201一侧。此时,在封框胶区中不设置色阻层205,以使公共电极层204通过封框胶中的金球与对向基板上的公共电极线电连接。
具体地,第三种实施方式,在反射层203位于黑矩阵202与公共电极层204之间时,可以在反射层203与公共电极层204之间设置使其绝缘的膜层,再通过过孔使反射层203与公共电极层204电连接。在本公开实施例提供的 显示基板中,如图2d所示,阵列基板还可以包括:位于反射层203与公共电极层204之间的第一绝缘层206;并且公共电极层204通过贯穿第一绝缘层206的第二过孔2061与反射层203电连接。其中,第一绝缘层206可以为单层结构或多层结构的绝缘层,以实现二者之间的绝缘,在此不做限定。
具体地,第四种实施方式,一般色阻层205的材料具有绝缘作用,在具体实施时,可以采用色阻层205作为反射层203与公共电极层204之间的绝缘层,再通过过孔使反射层203与公共电极层204电连接。在本公开实施例提供的显示基板中,如图2c所示,在反射层203位于黑矩阵202与公共电极层204之间时,可以使色阻层205位于反射层203与公共电极层204之间,且公共电极层204通过贯穿色阻层205的第一过孔2051与反射层203电连接。这样可以采用色阻层205作为反射层203与公共电极层204之间的绝缘层,可以避免增加新的膜层,有利于实现反射型液晶显示面板的轻薄化设计。
具体地,第五种实施方式,在反射层203位于公共电极层204背离衬底基板201的一侧时,在本公开实施例提供的显示基板中,如图3a所示,反射层203与公共电极层204直接电连接,其之间未设置其他膜层,可以使色阻层205位于公共电极层204与黑矩阵202之间。
具体地,第六种实施方式,在反射层203位于公共电极层204背离衬底基板201的一侧时,在本公开实施例提供的显示基板中,如图3b所示,反射层203与公共电极层204直接电连接,其之间未设置其他膜层,可以使色阻层205位于反射层203背离衬底基板201的一侧。此时,在封框胶区中不设置色阻层205,以使公共电极层204通过封框胶中的金球与对向基板上的公共电极线电连接。
具体地,第七种实施方式,在反射层203位于公共电极层204背离衬底基板201的一侧时,可以在反射层203与公共电极层204之间设置使其绝缘的膜层,再通过过孔使反射层203与公共电极层204电连接。在本公开实施例提供的显示基板中,如图3d所示,阵列基板还可以包括:位于反射层203与公共电极层204之间的第二绝缘层207;并且反射层203通过贯穿第二绝缘 层207的第四过孔2071与公共电极层204电连接。其中,第二绝缘层207可以为单层结构或多层结构的绝缘层,以实现二者之间的绝缘,在此不做限定。此时,在封框胶区中不设置第二绝缘层207,以使公共电极层204通过封框胶中的金球与对向基板上的公共电极线电连接。
具体地,第八种实施方式,一般色阻层205的材料具有绝缘作用,在具体实施时,可以采用色阻层205作为反射层203与公共电极层204之间的绝缘层,再通过过孔使反射层203与公共电极层204电连接。在本公开实施例提供的显示基板中,如图3c所示,在反射层203位于公共电极层204背离衬底基板201的一侧时,可以使色阻层205位于公共电极层204与反射层203之间,并且,反射层203通过贯穿色阻层205的第三过孔2052与公共电极层204电连接。这样可以采用色阻层205作为反射层203与公共电极层204之间的绝缘层,可以避免增加新的膜层,有利于实现反射型液晶显示面板的轻薄化设计。并且,此时,在封框胶区中不设置色阻层205,以使公共电极层204通过封框胶中的金球与对向基板上的公共电极线电连接。
基于同一公开构思,本公开实施例提供了一种上述显示基板的制作方法,由于该制作方法解决问题的原理与上述显示基板解决问题的原理相似,因此,本公开实施例提供的该制作方法的实施可以参见本公开实施例提供的上述显示基板的实施,重复之处不再赘述。
本公开实施例提供的一种上述显示基板的制作方法,如图4所示,具体可以包括以下步骤:
S401、提供一衬底基板;
S402、在衬底基板上形成黑矩阵;
S403、在形成有黑矩阵的衬底基板上形成相互电连接的反射层与公共电极层;其中,
黑矩阵在衬底基板上的正投影覆盖反射层在衬底基板上的正投影。
在具体实施时,为了降低生产成本,在本公开实施例提供的上述制作方法中,采用同一掩膜板分别形成黑矩阵和反射层的图形。
在具体实施时,为了增大出光量,在本公开实施例提供的上述制作方法中,步骤S403在黑矩阵上形成反射层之后,还可以包括:对反射层的背离黑矩阵一侧的表面进行粗糙化处理。
需要说明的是,在本公开实施例提供的上述制作方法中,形成各层结构涉及到的构图工艺,不仅可以包括沉积、光刻胶涂覆、掩模板掩模、曝光、显影、刻蚀、光刻胶剥离等部分或全部的工艺过程,还可以包括其他工艺过程,具体以实际制作过程中形成所需构图的图形为准,在此不做限定。例如,在显影之后和刻蚀之前还可以包括后烘工艺。
其中,沉积工艺可以为化学气相沉积法、等离子体增强化学气相沉积法或物理气相沉积法,在此不做限定;掩膜工艺中所用的掩膜板可以为半色调掩膜板(Half Tone Mask)、单缝衍射掩模板(Single Slit Mask)或灰色调掩模板(Gray Tone Mask),在此不做限定;刻蚀可以为干法刻蚀或者湿法刻蚀,在此不做限定。
在具体实施时,在本公开实施例提供的上述制作方法中,在形成有黑矩阵的衬底基板上形成相互电连接的反射层与公共电极层,具体可以包括:
在形成有黑矩阵的衬底基板上形成反射层;
在形成有反射层的衬底基板上形成与反射层电连接的公共电极层。
当然,在形成有黑矩阵的衬底基板上形成相互电连接的反射层与公共电极层,具体也可以包括:
在形成有黑矩阵的衬底基板上形成公共电极层;
在形成有公共电极层的衬底基板上形成与公共电极层电连接的反射层。
为了获得彩色图像,一般还需要设置色阻层。在具体实施时,形成色阻层、反射层以及公共电极层的相对顺序关系可以有多种,以下列举几种实施方式。
具体地,第一种实施方式,在先形成反射层,后形成公共电极层时,在本公开实施例提供的上述制作方法中,在形成黑矩阵之后,且在形成反射层之前,还可以包括:在形成有黑矩阵的衬底基板上形成色阻层。这样可以在 衬底基板上依次形成黑矩阵202、色阻层205、反射层203、以及公共电极层204,即图2a所示的显示基板的结构。
为了更好地理解本公开实施例提供的上述制作方法,本公开实施例提供了如图2a所示的显示基板的制备过程,具体包括以下步骤:
(1)、提供一衬底基板201。
(2)、在衬底基板201上形成网格状结构的黑矩阵202。
(3)、在具有网格状结构的黑矩阵202的衬底基板201上形成包含红光色阻、绿光色阻和蓝光色阻的色阻层205。
(4)、采用形成黑矩阵202的图形的掩膜板,在形成有色阻层205的衬底基板201上形成网格状结构的反射层203;并通过控制形成反射层203的成膜速率,获得在背离黑矩阵202一侧具有粗糙表面的反射层203。
(5)、在形成有反射层203的衬底基板201上形成公共电极层204。
具体地,第二种实施方式,在先形成反射层,后形成公共电极层时,在本公开实施例提供的上述制作方法中,在形成公共电极层之后,还可以包括:在形成有公共电极层的衬底基板上形成色阻层。这样可以在衬底基板上依次形成黑矩阵202、反射层203、公共电极层204、以及色阻层205,即图2b所示的显示基板的结构。
为了更好地理解本公开实施例提供的上述制作方法,本公开实施例提供了如图2b所示的显示基板的制备过程,本实施例中的步骤(1)~(2)与制备如图2a所示的显示基板的步骤(1)~(2)基本相同,在此不作赘述。本实施例中其余过程具体包括以下步骤:
(3)采用形成黑矩阵202的图形的掩膜板,在形成有黑矩阵202的衬底基板201上形成网格状结构的反射层203;并通过控制形成反射层203的成膜速率,获得在背离黑矩阵202一侧具有粗糙表面的反射层203。
(4)、在形成有反射层203的衬底基板201上形成公共电极层204。
(5)、在形成有公共电极层204的衬底基板201上形成包含红光色阻、绿光色阻和蓝光色阻的色阻层205。
具体地,第三种实施方式,在先形成反射层,后形成公共电极层时,在本公开实施例提供的上述制作方法中,在形成反射层之后,且在形成公共电极层之前,还可以包括:在形成有反射层的衬底基板上形成第一绝缘层,以及贯穿第一绝缘层的第二过孔;
形成与反射层电连接的公共电极层,具体可以包括:在形成有第一绝缘层的衬底基板上形成公共电极层,且形成的公共电极层通过第二过孔与反射层电连接。这样可以在衬底基板上依次形成黑矩阵202、反射层203、第一绝缘层206、以及公共电极层204,即图2d所示的显示基板的结构。
为了更好地理解本公开实施例提供的上述制作方法,本公开实施例提供了如图2d所示的显示基板的制备过程,本实施例中的步骤(1)~(3)与制备如图2b所示的显示基板的步骤(1)~(3)基本相同,在此不作赘述。本实施例中其余过程具体包括以下步骤:
(4)在形成有反射层203的衬底基板201上形成第一绝缘层206,以及贯穿第一绝缘层206的第二过孔2061。
(5)、在形成有第一绝缘层206的衬底基板201上形成公共电极层204,并且,形成的公共电极层204通过第二过孔2061与反射层203电连接。
具体地,第四种实施方式,在先形成反射层,后形成公共电极层时,在本公开实施例提供的上述制作方法中,在形成反射层之后,且在形成公共电极层之前,还可以包括:在形成有反射层的衬底基板上形成色阻层,以及贯穿色阻层的第一过孔;
形成与反射层电连接的公共电极层,具体包括:在形成有色阻层的衬底基板上形成公共电极层,且形成的公共电极层通过第一过孔与反射层电连接。这样可以在衬底基板上依次形成黑矩阵202、反射层203、色阻层204、以及公共电极层204,即图2c所示的显示基板的结构。并且这样可以采用色阻层204作为反射层203与公共电极层204之间的绝缘层,可以避免增加新的膜层,有利于实现反射型液晶显示面板的轻薄化设计。
图2c所示的显示基板的制备过程,可以参见上述制备图2d所示的显示 基板的制备过程,其中仅需将步骤(4)中的过程替换为:在形成有反射层203的衬底基板201上形成包含红光色阻、绿光色阻和蓝光色阻的色阻层205,以及贯穿色阻层205的第一过孔2051,即可。其余制备过程与上述图2d所示的显示基板的制备过程基本相同,在此不作赘述。
具体地,第五种实施方式,在先形成公共电极层,后形成反射层时,在本公开实施例提供的上述制作方法中,在形成黑矩阵之后,且在形成公共电极层之前,还可以包括:在形成有黑矩阵的衬底基板上形成色阻层。这样可以在衬底基板上依次形成黑矩阵202、色阻层205、公共电极层204、以及反射层203,即图3a所示的显示基板的结构。
图3a所示的显示基板的制备过程,可以参见上述制备图2a所示的显示基板的制备过程,其中仅需将步骤(4)与步骤(5)的顺序进行颠倒即可,在此不作赘述。
具体地,第六种实施方式,在先形成公共电极层,后形成反射层时,在本公开实施例提供的上述制作方法中,在形成反射层之后,还可以包括:在形成有反射层的衬底基板上形成色阻层。这样可以在衬底基板上依次形成黑矩阵202、公共电极层204、反射层203、以及色阻层205,即图3b所示的显示基板的结构。
图3b所示的显示基板的制备过程,可以参见上述制备图2b所示的显示基板的制备过程,其中仅需将步骤(3)与步骤(4)的顺序进行颠倒即可,在此不作赘述。
具体地,第七种实施方式,在先形成公共电极层,后形成反射层时,在本公开实施例提供的上述制作方法中,在形成公共电极层之后,且在形成反射层之前,还可以包括:在形成有公共电极层的衬底基板上形成第二绝缘层,以及贯穿第二绝缘层的第四过孔;
形成与公共电极层电连接的反射层,具体可以包括:在形成有第二绝缘层的衬底基板上形成反射层,且形成的反射层通过第四过孔与公共电极层电连接。这样可以在衬底基板上依次形成黑矩阵202、公共电极层204、第二绝 缘层207、以及反射层203,即图3d所示的显示基板的结构。
图3d所示的显示基板的制备过程,可以参见上述制备图2d所示的显示基板的制备过程,其中仅需将步骤(3)与步骤(5)的顺序进行颠倒即可,在此不作赘述。
具体地,第八种实施方式,在先形成公共电极层,后形成反射层时,在本公开实施例提供的上述制作方法中,在形成公共电极层之后,且在形成反射层之前,还包括:在形成有公共电极层的衬底基板上形成色阻层,以及贯穿色阻层的第三过孔;
形成与公共电极层电连接的反射层,具体包括:在形成有色阻层的衬底基板上形成反射层,且形成的反射层通过第三过孔与公共电极层电连接。这样可以在衬底基板上依次形成黑矩阵202、公共电极层204、色阻层204、以及反射层203,即图3c所示的显示基板的结构。并且这样可以采用色阻层204作为反射层203与公共电极层204之间的绝缘层,可以避免增加新的膜层,有利于实现反射型液晶显示面板的轻薄化设计。
图3c所示的显示基板的制备过程,可以参见上述制备图3d所示的显示基板的制备过程,其中仅需将步骤(4)中的过程替换为:在形成有金公共电极层204的衬底基板201上形成包含红光色阻、绿光色阻和蓝光色阻的色阻层205,以及贯穿色阻层205的第三过孔2052,即可。其余制备过程与上述图3d所示的显示基板的制备过程基本相同,在此不作赘述。
基于同一发明构思,本公开实施例提供了一种反射型液晶显示面板,由于该反射型液晶显示面板解决问题的原理与上述显示基板解决问题的原理相似,因此,本公开实施例提供的该反射型液晶显示面板的实施可以参见本公开实施例提供的上述显示基板的实施,重复之处不再赘述。
具体地,本公开实施例提供的一种反射型液晶显示面板,如图5所示,包括:相对而置的显示基板和对向基板;其中,
显示基板为上述显示基板;
对向基板具有反射型的像素电极401。
具体地,在本公开实施例提供的上述反射型液晶显示面板中,对向基板为阵列基板,像素电极401的材料为金属材料,较佳地,像素电极401的材料为具有较大反射率的铝金属材料,从而可以将尽可能多的环境入射光反射出液晶盒。
一般地,在本公开实施例提供的上述反射型液晶显示面板中,对向基板还需要包括:薄膜晶体管。具体地,该薄膜晶体管具体可以为底栅型结构;或者,也可以为顶栅型结构,在此不做限定。
具体地,本公开实施例提供的上述反射型液晶显示面板中,在薄膜晶体管为底栅型结构时,如图5所示,在每个薄膜晶体管中,源/漏极402和数据线(图中未示出)均位于有源层403的上方,栅极404和栅线(图中未示出)均位于有源层403的下方,栅极404与有源层403之间设置有栅绝缘层405,源/漏极402所在层之上设置有钝化层406。
其中,源/漏极402、栅极404、数据线和栅线的材料可以是钼、铝,钨、钛、铜其中之一或合金组合,在此不做限定。栅绝缘层405和钝化层406的材料可以为氧化硅、氮化硅其中之一或组合,在此不做限定。有源层403的材料可以为多晶硅半导体材料、非晶硅半导体材料、氧化物半导体材料或有机半导体材料,在此不做限定。
需要说明的是,为简化制作工艺,节省制作成本,提高生产效率,在本公开实施例提供的上述反射型液晶显示面板中,可以使用一次构图工艺同时制备出栅极404和栅线的图形,较佳地,还可以同时制备出公共电极线的图形。当然,也可以采用二次构图工艺,其中一次构图工艺用于制备出栅极404和栅线的图形,另一次构图工艺用于制备出公共电极线的图形,在此不做限定。并且,公共电极线的材料可以是钼、铝,钨、钛、铜其中之一或合金组合,在此不做限定。
此外,为简化制作工艺,节省制作成本,提高生产效率,在本公开实施例提供的上述对向基板中,还可以使用一次构图工艺同时制备出源/漏极402和数据线。当然,也可以采用二次构图工艺,分别制备出源/漏极402和数据 线的图形,在此不做限定。
值得注意的是,本公开实施例提供的上述反射型液晶显示面板适用于多种显示模式的液晶显示面板,例如,扭转向列(Twisted Nematic,TN)模式的液晶显示面板,高级超维场开关(Adwanced Dimension Switch,ADS)模式的液晶显示面板,高开口率-高级超维场开关(High-Adwanced Dimension Switch,HADS)模式的液晶显示面板,或者,平面内开关(In-Plane Switch,IPS)模式的液晶显示面板,在此不做限定。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述反射型液晶显示面板,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、智能手表、健身腕带、个人数字助理等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述反射型液晶显示面板的实施例,重复之处不再赘述。
本公开实施例提供的上述显示基板、其制作方法及反射型液晶显示面板、显示装置,包括:衬底基板,位于衬底基板上的具有网格状结构的黑矩阵,以及位于黑矩阵之上的相互电连接的反射层与公共电极层;其中,黑矩阵在衬底基板上的正投影覆盖反射层在衬底基板上的正投影。由于黑矩阵在衬底基板上的正投影覆盖反射层在衬底基板上的正投影,使得外部的环境光不会直接射向反射层面向黑矩阵的一侧的表面,因此反射层不会影响进入液晶盒内的入射光的总量。以及由于在黑矩阵之上增加了反射层,使得进入液晶盒内的入射光可在对向基板的像素电极与显示基板的反射层之间经过多次反射后射出,从而避免了黑矩阵对像素电极反射至黑矩阵所在区域的光的吸收,进而增加了出光量,在一定程度上实现了增加反射面积的作用,提高了反射型液晶显示面板的对比度。并且通过使公共电极层与反射层并联,可以在一定程度上减小公共电极层的电阻,从而提高公共电极信号的分布均匀性,有利于提升反射型液晶显示面板的显示性能。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变 型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (20)

  1. 一种显示基板,包括:
    衬底基板,
    位于所述衬底基板一侧的黑矩阵,以及
    位于所述黑矩阵背离所述衬底基板一侧且相互电连接的反射层与公共电极层;其中,
    所述黑矩阵在所述衬底基板上的正投影覆盖所述反射层在所述衬底基板上的正投影。
  2. 如权利要求1所述的显示基板,其特征在于,所述反射层在所述衬底基板的正投影与所述黑矩阵在所述衬底基板的正投影完全重叠。
  3. 如权利要求1所述的显示基板,其特征在于,所述反射层的背离所述黑矩阵一侧的表面为经过粗糙化处理的表面。
  4. 如权利要求1所述的显示基板,其特征在于,所述反射层位于所述黑矩阵与所述公共电极层之间。
  5. 如权利要求4所述的显示基板,其特征在于,还包括:位于所述反射层与所述黑矩阵之间的色阻层。
  6. 如权利要求4所述的显示基板,其特征在于,还包括:位于所述公共电极层背离所述衬底基板一侧的色阻层。
  7. 如权利要求4所述的显示基板,其特征在于,还包括:位于所述反射层与所述公共电极层之间的色阻层;
    所述公共电极层通过贯穿所述色阻层的第一过孔与所述反射层电连接。
  8. 如权利要求4所述的显示基板,其特征在于,还包括:位于所述反射层与所述公共电极层之间的第一绝缘层;
    所述公共电极层通过贯穿所述第一绝缘层的第二过孔与所述反射层电连接。
  9. 如权利要求1所述的显示基板,其特征在于,所述反射层位于所述公 共电极层背离所述衬底基板的一侧。
  10. 如权利要求9所述的显示基板,其特征在于,还包括:位于所述公共电极层与所述黑矩阵之间的色阻层。
  11. 如权利要求9所述的显示基板,其特征在于,还包括:位于所述反射层背离所述衬底基板一侧的色阻层。
  12. 如权利要求9所述的显示基板,其特征在于,还包括:位于所述公共电极层与所述反射层之间的色阻层;
    所述反射层通过贯穿所述色阻层的第三过孔与所述公共电极层电连接。
  13. 如权利要求9所述的显示基板,其特征在于,还包括:位于所述反射层与所述公共电极层之间的第二绝缘层;
    所述反射层通过贯穿所述第二绝缘层的第四过孔与所述公共电极层电连接。
  14. 如权利要求1-9任一项所述的显示基板,其特征在于,所述反射层的材料为金属材料。
  15. 如权利要求14所述的显示基板,其特征在于,所述反射层的材料为钼、铝、钨、钛、铜其中之一或合金组合。
  16. 一种反射型液晶显示面板,其特征在于,包括:相对而置的显示基板和对向基板;其中,
    所述显示基板为如权利要求1-15任一项所述的显示基板;
    所述对向基板具有反射型的像素电极。
  17. 一种显示装置,其特征在于,包括:如权利要求16所述的反射型液晶显示面板。
  18. 一种如权利要求1-15任一项所述的显示基板的制作方法,其特征在于,包括:
    提供一衬底基板;
    在所述衬底基板上形成黑矩阵;
    在形成有所述黑矩阵的衬底基板上形成相互电连接的反射层与公共电极 层;其中,
    所述黑矩阵在所述衬底基板上的正投影覆盖所述反射层在所述衬底基板上的正投影。
  19. 如权利要求18所述的制作方法,其特征在于,采用同一掩膜板分别形成所述黑矩阵和所述反射层的图形。
  20. 如权利要求18或19所述的制作方法,其特征在于,所述在所述黑矩阵上形成反射层之后,还包括:
    对所述反射层的背离所述黑矩阵一侧的表面进行粗糙化处理。
PCT/CN2017/108512 2017-05-12 2017-10-31 显示基板、其制作方法及反射型液晶显示面板、显示装置 WO2018205506A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17861213.1A EP3623861A4 (en) 2017-05-12 2017-10-31 DISPLAY SUBSTRATE, MANUFACTURING METHOD FOR IT, REFLECTIVE LIQUID CRYSTAL DISPLAY PANEL AND DISPLAY DEVICE
US15/770,942 US20200241354A1 (en) 2017-05-12 2017-10-31 Display substrate, method for fabricating the same, reflective liquid crystal display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710333398.4A CN108873445A (zh) 2017-05-12 2017-05-12 显示基板、其制作方法及反射型液晶显示面板、显示装置
CN201710333398.4 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018205506A1 true WO2018205506A1 (zh) 2018-11-15

Family

ID=64104706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108512 WO2018205506A1 (zh) 2017-05-12 2017-10-31 显示基板、其制作方法及反射型液晶显示面板、显示装置

Country Status (4)

Country Link
US (1) US20200241354A1 (zh)
EP (1) EP3623861A4 (zh)
CN (1) CN108873445A (zh)
WO (1) WO2018205506A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108873460A (zh) * 2018-07-18 2018-11-23 深圳市华星光电半导体显示技术有限公司 液晶面板
CN109799641B (zh) * 2019-03-29 2021-10-22 合肥京东方光电科技有限公司 一种阵列基板及其制备方法、液晶显示面板
CN111045261B (zh) * 2019-12-05 2021-07-27 苏州华星光电技术有限公司 一种显示面板
CN113126354A (zh) * 2021-04-09 2021-07-16 武汉华星光电技术有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752811A (zh) * 2004-09-22 2006-03-29 Lg.菲利浦Lcd株式会社 高亮度的液晶显示器件
US20080088779A1 (en) * 2006-10-16 2008-04-17 Innocom Technology (Shenzhen) Co., Ltd. Transflective liquid crystal display device having color filter on thin film transistor structure
CN101165576A (zh) * 2006-10-18 2008-04-23 群康科技(深圳)有限公司 液晶显示装置
CN102346333A (zh) * 2010-07-23 2012-02-08 乐金显示有限公司 液晶显示装置及其制造方法
CN103676316A (zh) * 2013-12-09 2014-03-26 京东方科技集团股份有限公司 一种显示面板和显示装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072012B2 (en) * 2003-05-12 2006-07-04 Lg.Philips Lcd Co., Ltd. Liquid crystal display device including data line divided into first and second branch lines and method of fabricating the same
US7728914B2 (en) * 2004-01-28 2010-06-01 Au Optronics Corporation Position encoded sensing device with amplified light reflection intensity and a method of manufacturing the same
JP2007017798A (ja) * 2005-07-08 2007-01-25 Alps Electric Co Ltd 液晶表示装置
CN200941140Y (zh) * 2005-11-22 2007-08-29 比亚迪股份有限公司 一种半反射式彩色滤光片、彩色滤光膜及液晶显示器
JP2007212659A (ja) * 2006-02-08 2007-08-23 Hitachi Displays Ltd 液晶表示装置
JP4471014B2 (ja) * 2008-04-04 2010-06-02 ソニー株式会社 液晶表示装置、バックライト光源および光学フィルム
JP2010015019A (ja) * 2008-07-04 2010-01-21 Hitachi Displays Ltd 液晶表示装置およびその製造方法
CN102023406B (zh) * 2009-09-14 2017-02-15 北京京东方光电科技有限公司 液晶显示面板及其制造方法
CN103185980A (zh) * 2011-12-30 2013-07-03 上海天马微电子有限公司 液晶显示面板
CN103149731A (zh) * 2013-03-11 2013-06-12 京东方科技集团股份有限公司 彩膜基板的制作方法、彩膜基板及显示装置
CN105467650B (zh) * 2014-09-12 2018-11-30 深超光电(深圳)有限公司 彩色滤光片基板及显示面板
CN104267528B (zh) * 2014-09-23 2017-01-18 京东方科技集团股份有限公司 一种反射型显示装置
CN104765186A (zh) * 2015-03-24 2015-07-08 深圳市华星光电技术有限公司 显示面板及显示装置
CN204790246U (zh) * 2015-05-21 2015-11-18 上海天马微电子有限公司 一种显示基板和一种显示装置
CN105807483B (zh) * 2016-05-27 2019-01-22 京东方科技集团股份有限公司 显示面板及其制作方法、以及显示装置
CN105929580A (zh) * 2016-06-12 2016-09-07 友达光电(昆山)有限公司 电阻式触控显示装置
CN105929595B (zh) * 2016-07-11 2019-06-07 京东方科技集团股份有限公司 一种反射式液晶显示模组及装置
CN106054439A (zh) * 2016-07-11 2016-10-26 深圳天珑无线科技有限公司 一种彩色滤光片及液晶面板
CN105974648B (zh) * 2016-07-18 2019-06-28 京东方科技集团股份有限公司 显示面板和显示装置
CN106324881B (zh) * 2016-10-24 2019-09-03 上海中航光电子有限公司 显示装置、显示面板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752811A (zh) * 2004-09-22 2006-03-29 Lg.菲利浦Lcd株式会社 高亮度的液晶显示器件
US20080088779A1 (en) * 2006-10-16 2008-04-17 Innocom Technology (Shenzhen) Co., Ltd. Transflective liquid crystal display device having color filter on thin film transistor structure
CN101165576A (zh) * 2006-10-18 2008-04-23 群康科技(深圳)有限公司 液晶显示装置
CN102346333A (zh) * 2010-07-23 2012-02-08 乐金显示有限公司 液晶显示装置及其制造方法
CN103676316A (zh) * 2013-12-09 2014-03-26 京东方科技集团股份有限公司 一种显示面板和显示装置

Also Published As

Publication number Publication date
CN108873445A (zh) 2018-11-23
EP3623861A4 (en) 2021-01-06
US20200241354A1 (en) 2020-07-30
EP3623861A1 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
WO2018176740A1 (zh) 柔性显示面板、显示装置及柔性显示面板的制作方法
US9285631B2 (en) Display device, transflective thin film transistor array substrate and manufacturing method thereof
WO2018176760A1 (zh) 一种柔性显示面板、显示装置及柔性显示面板的制作方法
WO2018205506A1 (zh) 显示基板、其制作方法及反射型液晶显示面板、显示装置
WO2017147974A1 (zh) 阵列基板的制作方法及制得的阵列基板
WO2015172492A1 (zh) 阵列基板及其制备方法、显示装置
WO2015188492A1 (zh) 阵列基板及显示装置
US8845343B2 (en) Array substrate for reflective type or transflective type liquid crystal display device
CN101825815B (zh) Tft-lcd阵列基板及其制造方法
US10651204B2 (en) Array substrate, its manufacturing method and display device
US8179506B2 (en) Method for fabricating a pixel structure and the pixel structure
KR100978265B1 (ko) 액정표시장치 및 그 제조방법
WO2018201776A1 (zh) 阵列基板及其制作方法、液晶显示面板和显示装置
WO2016177213A1 (zh) 阵列基板及其制造方法、显示装置
WO2013026375A1 (zh) 薄膜晶体管阵列基板及其制造方法和电子器件
CN101676781B (zh) 影像显示系统及其制造方法
CN105097837A (zh) 阵列基板及其制作方法、显示装置
WO2017012292A1 (zh) 阵列基板及其制备方法、显示面板、显示装置
WO2017147973A1 (zh) 阵列基板的制作方法及制得的阵列基板
US20190333945A1 (en) Array substrate and manufacturing method thereof
EP3678179A1 (en) Array substrate and manufacturing method thereof, and display device
WO2016058330A1 (zh) 阵列基板及其制造方法、显示装置
US20210116744A1 (en) Array substrate, fabrication method thereof, liquid crystal display panel and display device
WO2020133938A1 (zh) 显示面板、显示面板制备方法、显示屏及显示终端
TWI375839B (en) Liquid crystal panel and method of making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE