WO2018201903A1 - 数据传输方法、终端和基站 - Google Patents

数据传输方法、终端和基站 Download PDF

Info

Publication number
WO2018201903A1
WO2018201903A1 PCT/CN2018/083603 CN2018083603W WO2018201903A1 WO 2018201903 A1 WO2018201903 A1 WO 2018201903A1 CN 2018083603 W CN2018083603 W CN 2018083603W WO 2018201903 A1 WO2018201903 A1 WO 2018201903A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbg
cbgs
cbs
terminal
base station
Prior art date
Application number
PCT/CN2018/083603
Other languages
English (en)
French (fr)
Inventor
高雪娟
托尼
郑方政
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to US16/611,206 priority Critical patent/US11166284B2/en
Priority to KR1020197036140A priority patent/KR102317679B1/ko
Priority to JP2019560661A priority patent/JP6899450B2/ja
Priority to EP18794616.5A priority patent/EP3621232B1/en
Publication of WO2018201903A1 publication Critical patent/WO2018201903A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a data transmission method, a terminal, and a base station.
  • a PDSCH Physical Downlink Shared CHannel
  • a PUSCH Physical Uplink Shared CHannel
  • ACK acknowledgement
  • NACK Non-ACKnowledgement
  • the ACK/NACK feedback is performed for the TB, that is, when the spatial combining is not used, each TB corresponds to 1-bit ACK/NACK feedback information for indicating whether the reception of the TB is correct.
  • the ACK/NACK feedback information corresponding to each TB carried in one PDSCH needs to be logically ANDed to obtain 1-bit ACK/NACK feedback information. Uplink transmission is similar.
  • a TB needs to be divided into i CBs (Code Blocks), and each CB is separately encoded and CRC (Cyclic Redundancy Check) added.
  • the encoded CBs are cascaded for mapping and transmission. Since each CB is independently coded and contains CRC information, in fact, each CB can generate ACK/NACK feedback information, but if ACK/NACK feedback is performed for each CB, one TB needs to correspond to K-bit ACK/ NACK feedback information, the amount of feedback is large.
  • the embodiments of the present invention provide a data transmission method, a terminal, and a base station, and determine that a TB needs to be divided into M CBGs (Code Block group, a plurality of CBs obtained by dividing the TB by the code block according to a preset grouping manner, thereby dividing the one TB into the M CBGs; according to the M
  • the CBG performs data transmission; wherein the M is a positive integer.
  • the data transmission method is applicable to a terminal or a base station.
  • the CBG in the embodiment of the present invention is specifically described as follows:
  • i CBs can be divided into multiple CBGs according to certain rules, and each CBG can include only one CB or j CBs (ie, one TB).
  • j is a positive integer greater than or equal to 1 and less than or equal to i.
  • the ACK/NACK feedback can be performed based on the CBG, that is, one CBG can have 1 bit or more bits of ACK/NACK feedback information, thereby increasing the ACK/NACK feedback overhead to a certain extent, and can support a smaller granularity based on CBG.
  • Retransmission CBG-based retransmission is supported, and only CBGs corresponding to the same TB and HARQ processes are allowed to retransmit. It is possible to configure whether the terminal enables CBG-based retransmission through high-level signaling.
  • the first embodiment of the present invention provides a data transmission method, including: determining, by a terminal, that one TB needs to be divided into M CBGs; and the terminal dividing the one TB by code blocks according to a preset grouping manner.
  • the obtained one or more CBs are grouped to divide the one TB into the M CBGs; the terminal performs data transmission according to the M CBGs; wherein the M is a positive integer.
  • the terminal determines that one TB needs to be divided into M CBGs, including: the terminal determines, according to a predefined rule, that one TB needs to be divided into M CBGs; or the terminal determines, according to configuration information, that one TB needs to be Divided into M CBG.
  • the terminal receives the configuration information by using high layer signaling; or the terminal receives the configuration information by using a downlink control channel.
  • the configuration information includes: configuration information specific to the terminal; or configuration information shared by multiple terminals, where the terminal is one of the multiple terminals.
  • the terminal groups the one or more CBs that are obtained after the TB is divided by the code block according to a preset grouping manner, so that the TB is divided into the M CBGs, including: the terminal. Determining the number of CBs in each CBG of the M CBGs according to a preset grouping manner; the terminal dividing the TBs into the number of CBs in each CBG of the M CBGs determined by the terminal M CBGs are described.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • the second embodiment of the present invention provides a data transmission method, including: determining, by a base station, that one TB needs to be divided into M CBGs; and the base station splitting the one TB by code blocks according to a preset grouping manner.
  • the obtained one or more CBs are grouped to divide the one TB into the M CBGs; the base station performs data transmission according to the M CBGs; wherein the M is a positive integer.
  • the determining, by the base station, that one TB needs to be divided into M CBGs includes: determining, by the base station, that one TB needs to be divided into M CBGs according to a predefined rule; or the base station is configured from multiple predefined M values. Select one of the number of CBGs to be divided into one TB, and notify the terminal of the M value by configuration information.
  • the base station sends the configuration information by using high layer signaling; or the base station sends the configuration information by using a downlink control channel.
  • the base station notifies the terminal to the terminal by using configuration information specific to the terminal; or the base station notifies the terminal by using the configuration information shared by multiple terminals.
  • the eNB divides the TB into the M CBGs by using the one or more CBs that are obtained after the TB is divided by the code block according to a preset grouping manner
  • the base station includes: the base station Determining the number of CBs in each CBG of the M CBGs according to a preset grouping manner; the base station dividing the TBs according to the determined number of CBs in each CBG of the M CBGs M CBGs are described.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • the determining, by the base station, the number of CBs in each CBG of the M CBGs according to a preset grouping manner, including: defining r C mod M, where the C is a TB after code block partitioning a number of obtained CBs, wherein r is a remainder of the C divisible by the M; the base station determines that the number N k of CBs included in the CBG k of the M CBGs is:
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • the determining, by the base station, the number of CBs in each CBG of the M CBGs according to a preset grouping manner, including: defining r C mod M, where the C is a TB after code block partitioning a number of obtained CBs, wherein r is a remainder of the C divisible by the M; the base station determines that the number N k of CBs included in the CBG k of the M CBGs is:
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • the determining, by the base station, the number of CBs in each CBG of the M CBGs according to a preset grouping manner, including: defining r C mod M, where the C is a TB after code block partitioning a number of obtained CBs, wherein r is a remainder of the C divisible by the M; the base station determines that the number N k of CBs included in the CBG k of the M CBGs is:
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • a third embodiment of the present invention provides a terminal, where the terminal includes: a determining module, configured to determine that a TB needs to be divided into M CBGs; and a grouping module, configured to: One or more C CBs obtained by the TB partitioning are grouped to divide the TB into the M CBGs; and a data transmission module is configured to perform data transmission according to the M CBGs; M is a positive integer.
  • the determining module includes: a first determining submodule, configured to determine, according to a predefined rule, that one TB needs to be divided into M CBGs; or a second determining submodule, configured to determine, according to the configuration information, that a TB needs to be Divided into M CBG.
  • the terminal receives the configuration information by using high layer signaling; or the terminal receives the configuration information by using a downlink control channel.
  • the configuration information includes: configuration information specific to the terminal; or configuration information shared by multiple terminals, where the terminal is one of the multiple terminals.
  • the grouping module includes: a third determining submodule, configured to determine, according to a preset grouping manner, a number of CBs in each CBG of the M CBGs; a grouping submodule, configured to determine, according to the determined The number of CBs in each CBG of the M CBGs is divided into the M CBGs.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • a fourth embodiment of the present invention provides a base station, where the base station includes: a determining module, configured to determine that one TB needs to be divided into M CBGs; and a grouping module, configured to: One or more C CBs obtained by the TB partitioning are grouped to divide the TB into the M CBGs; and a data transmission module is configured to perform data transmission according to the M CBGs; M is a positive integer.
  • the determining module includes: a first determining submodule, configured to determine, according to a predefined rule, that one TB needs to be divided into M CBGs; or a second determining submodule for using a plurality of predefined M values Select one of the number of CBGs to be divided into one TB, and notify the terminal of the M value by configuration information.
  • the base station further includes: a sending module, where the sending module is configured to send the configuration information by using a high layer signaling, or used to send the configuration information by using a downlink control channel.
  • a sending module configured to send the configuration information by using a high layer signaling, or used to send the configuration information by using a downlink control channel.
  • the sending module is further configured to: notify the terminal by using the terminal-specific configuration information, or notify the terminal by using the configuration information shared by multiple terminals.
  • the grouping module includes: a third determining submodule, configured to determine, according to a preset grouping manner, a number of CBs in each CBG of the M CBGs; a grouping submodule, configured to determine, according to the determined The number of CBs in each CBG of the M CBGs is divided into the M CBGs.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • k is an integer greater than or equal to 0 and less than Mr;
  • k is an integer greater than or equal to Mr and less than M.
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • k is an integer greater than or equal to 0 and less than r;
  • k is an integer greater than or equal to r and less than M.
  • a fifth embodiment of the present invention provides a computer apparatus, the apparatus comprising a processor, wherein the processor is configured to implement a method as described in the first aspect or the second aspect when executing a computer program stored in a memory A step of.
  • a sixth embodiment of the present invention provides a computer readable storage medium having stored thereon a computer program: when the computer program is executed by a processor, implementing the method as described in the first aspect or the second aspect step.
  • the data transmission method, the terminal, and the base station in the embodiment of the present invention divide the CB into CBGs to support CBG-based retransmission and ACK/NACK feedback, and solve the above technical problems existing in the prior art, and reach the LTE system.
  • the technical effect of reducing unnecessary redundancy and improving transmission efficiency is reduced.
  • FIG. 1 is a first flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 2 is a second flowchart of a data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a terminal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a base station according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a terminal in another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a base station in another embodiment of the present invention.
  • the embodiments of the present invention provide a data transmission method, a terminal, and a base station.
  • a TB needs to be divided into M CBGs, and a plurality of CBs obtained by dividing the TB by the code block are grouped according to a preset grouping manner, thereby dividing the TB into M CBGs, and according to M CBGs for data transmission.
  • M is a positive integer.
  • the CB grouping method is applicable to a terminal or a base station.
  • a first embodiment of the present invention provides a data transmission method, including:
  • the terminal determines that one TB needs to be divided into M CBGs.
  • the terminal groups, according to a preset grouping manner, one or more CBs obtained by dividing the TB by the code block, thereby dividing the TB into the M CBGs;
  • the terminal performs data transmission according to the M CBGs.
  • M is a positive integer.
  • the step S110 may specifically include: determining, by the terminal, that one TB needs to be divided into M CBGs according to a predefined rule; or determining, by the terminal, that one TB needs to be divided into M CBGs according to the configuration information.
  • the terminal may receive the configuration information by: receiving, by the high-level signaling, the configuration information by the terminal; or receiving, by the terminal, the configuration information by using a downlink control channel.
  • the configuration information includes: configuration information specific to the terminal; or configuration information shared by multiple terminals, where the terminal is one of the multiple terminals.
  • the size of the M corresponding to the TB of the different TBS may be the same or different; the terminal may determine that the codebook size when the ACK/NACK feedback is performed on the one TB is also M. Bit.
  • the one or more CBs obtained by dividing the one TB by the code block may be implemented in an LTE system.
  • the step S120 may specifically include: determining, by the terminal, the number of CBs in each CBG of the M CBGs according to a preset grouping manner; the terminal is based on the determined CBs in each CBG of the M CBGs.
  • the number of TBs is divided into the M CBGs. That is to say, each of the M CBGs includes a group of CBs.
  • the determining, by the terminal, the number of CBs in each CBG of the M CBGs can be implemented in the following four manners (but not limited to the four modes):
  • the manner in which the terminal determines the number N k of CBs included in the CBG k in the M CBGs can be classified into a mode a1 and a mode b1.
  • the mode a1 is:
  • the mode b1 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 contains CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 and CBG 2 contain CB
  • CBG 3 and CBG 4 contain CB
  • CBG 2 and CBG 3 contain CB
  • the manner in which the terminal determines the number N k of CBs included in the CBG k of the M CBGs can be divided into mode a2 and mode b2.
  • the mode a2 is:
  • the mode b2 is:
  • CBG 0 and CBG 1 contain CB, or, CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 contains CB, or CBG 0 contains CB, CBG 1 , CBG 2 and CBG 3 contain CB;
  • CBG 1 and CBG 2 contain CB, or, CBG 1 and CBG 2 contain CB, CBG 3 and CBG 4 contain CB.
  • the manner in which the terminal determines the number N k of CBs included in the CBG k in the M CBGs can be classified into mode a3 and mode b3.
  • the mode a3 is:
  • the mode b3 is:
  • CBG 0 and CBG 1 contain CB, or CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 , CBG 1 and CBG 2 contain CB, or CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB;
  • CBG 1 and CBG 2 contain CB, or CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB.
  • the manner in which the terminal determines the number N k of CBs included in the CBG k of the M CBGs can be classified into a mode a4 and a mode b4.
  • the mode a4 is:
  • the mode b4 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB, or CBG 3 contains CB;
  • CBG 1 and CBG 2 contain CB
  • CBG 3 and CBG 4 contain CB
  • CBG 3 and CBG 4 contain CB
  • the number of CBs included in each CBG changes with the change of the TBS (Transport Block Size) of one TB.
  • the terminal sends a TB, and the base station receives a TB, and generates A-bit ACK/NACK feedback information for each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner, and A may A predetermined value of 1 or greater, and the feedback information is sent to the terminal.
  • the terminal may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and retransmit the CBG corresponding to the feedback information as NACK.
  • the base station sends a TB, and the terminal receives one TB, and generates A-bit ACK/NACK feedback information for each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner, A The information may be a predetermined value of 1 or greater, and the feedback information may be sent to the base station.
  • the base station may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and retransmit the corresponding feedback information to the NACK. Information in CBG.
  • a second embodiment of the present invention provides a data transmission method, including:
  • the base station determines that one TB needs to be divided into M CBGs;
  • the base station groups one or more CBs obtained by dividing the TB by the code block according to a preset grouping manner, thereby dividing the TB into the M CBGs;
  • the base station performs data transmission according to the M CBGs.
  • M is a positive integer.
  • the step S210 may specifically include: determining, by the base station, that one TB needs to be divided into M CBGs according to a predefined rule.
  • the base station may also select one of the plurality of predefined M values as the number of CBGs that need to be divided into one TB, and notify the terminal of the M value by using configuration information, so that the terminal can be based on the
  • the configuration information groups the TBs on the terminal side.
  • the base station sends the configuration information by using high layer signaling, or the base station sends the configuration information by using a downlink control channel.
  • the base station notifies the M value to the terminal by using configuration information specific to the terminal; or the base station notifies the terminal to the M value by using configuration information shared by multiple terminals.
  • the size of the M corresponding to the TB of the different TBS may be the same or different; the base station may determine that the codebook size when the ACK/NACK feedback is performed on the one TB is also M. Bit.
  • the one or more CBs obtained by dividing the one TB by the code block may be implemented in an LTE system.
  • the step S220 may specifically include: determining, by the base station, the number of CBs in each CBG of the M CBGs according to a preset grouping manner; the base station is based on the determined CBs in each CBG of the M CBGs.
  • the number of TBs is divided into the M CBGs. That is to say, each of the M CBGs includes a group of CBs.
  • the determining, by the base station, the number of CBs in each CBG of the M CBGs by using the following four modes (but not limited to the four modes):
  • the marking manner of the subscript k of the CBG k (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other manners.
  • the manner in which the base station determines the number N k of CBs included in the CBG k in the M CBGs can be classified into mode a1 and mode b1.
  • the mode a1 is:
  • the mode b1 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 contains CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB, or CBG 2 and CBG 3 contain CB.
  • the marking manner of the subscript k of the CBG k (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other manners.
  • the manner in which the base station determines the number N k of CBs included in the CBG k in the M CBGs can be classified into mode a2 and mode b2.
  • the mode a2 is:
  • the mode b2 is:
  • CBG 0 and CBG 1 contain CB, or, CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 contains CB, or CBG 0 contains CB, CBG 1 , CBG 2 and CBG 3 contain CB;
  • CBG 1 and CBG 2 contain CB, or, CBG 1 and CBG 2 contain CB, CBG 3 and CBG 4 contain CB.
  • the marking manner of the subscript k of the CBG k (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other manners.
  • the manner in which the base station determines the number N k of CBs included in the CBG k in the M CBGs can be classified into mode a3 and mode b3.
  • the mode a3 is:
  • the mode b3 is:
  • CBG 0 and CBG 1 contain CB, or CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 , CBG 1 and CBG 2 contain CB, or CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB;
  • CBG 1 and CBG 2 contain CB, or CBG 1 and CBG 2 contain CB, CBG 3 and CBG 4 contain CB.
  • the manner in which the base station determines the number N k of CBs included in the CBG k of the M CBGs may be classified into mode a4 and mode b4.
  • the mode a4 is:
  • the mode b4 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB, or CBG 3 contains CB;
  • CBG 1 and CBG 2 contain CB
  • CBG 3 and CBG 4 contain CB
  • CBG 3 and CBG 4 contain CB
  • the number of CBs included in each CBG changes with the change of the TBS (Transport Block Size) of one TB.
  • the base station performs data transmission according to the M CBGs, specifically: the base station performs ACK/NACK feedback and/or retransmission based on the M CBGs.
  • the terminal sends a TB, and the base station receives a TB, and generates A-bit ACK/NACK feedback information for each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner, A.
  • the information may be a predetermined value of 1 or greater, and the feedback information may be sent to the terminal.
  • the terminal may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and retransmit the corresponding feedback information to the NACK.
  • Information in CBG is not limited to the terminal's the terminal's the terminal's feedback information from the terminal.
  • the base station sends a TB, and the terminal receives one TB, and generates A-bit ACK/NACK feedback information for each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner, A The information may be a predetermined value of 1 or greater, and the feedback information may be sent to the base station.
  • the base station may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and retransmit the corresponding feedback information to the NACK. Information in CBG.
  • a third embodiment of the present invention provides a terminal 3, which can implement the method flow performed by the terminal side in the foregoing embodiment.
  • the terminal 3 includes:
  • a determining module 310 configured to determine that one TB needs to be divided into M CBGs; and a grouping module 320, configured to group one or more CBs obtained by the block division by the code block according to a preset grouping manner, thereby The TB is divided into the M CBGs; the data transmission module 330 is configured to perform data transmission according to the M CBGs.
  • M is a positive integer.
  • the determining module 310 may include: a first determining submodule, configured to determine, according to a predefined rule, that one TB needs to be divided into M CBGs; or a second determining submodule, configured to determine, according to the configuration information, that a TB needs to be divided into M CBGs.
  • the terminal receives the configuration information by using high layer signaling; or the terminal receives the configuration information by using a downlink control channel.
  • the configuration information may further include: configuration information specific to the terminal; or configuration information shared by multiple terminals, where the terminal is one of the multiple terminals.
  • the size of the M corresponding to the TB of the different TBS may be the same or different; the terminal may determine that the codebook size when the ACK/NACK feedback is performed on the one TB is also M. Bit.
  • the grouping module 320 includes: a third determining sub-module, configured to determine, according to a preset grouping manner, a number of CBs in each CBG of the M CBGs; a grouping sub-module, configured to determine the M-based ones The number of CBs in each CBG in the CBG, and the TB is divided into the M CBGs. That is to say, each of the M CBGs includes a group of CBs.
  • the third determining sub-module determines, according to a preset grouping manner, the number of CBs in each CBG of the M CBGs by using the following four methods (but not limited to the four modes):
  • the third determining submodule includes a first defining unit and a first determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the first determining unit determines the number N k of CBs included in the CBG k of the M CBGs, which can be divided into mode a1 and mode b1:
  • the mode a1 is:
  • the mode b1 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 contains CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB, or CBG 2 and CBG 3 contain CB.
  • the third determining submodule includes a second defining unit and a second determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the manner of determining the number N k of CBs included in the CBG k of the M CBGs can be divided into mode a2 and mode b2:
  • the mode a2 is:
  • the mode b2 is:
  • CBG 0 and CBG 1 contain CB, or, CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 contains CB, or CBG 0 contains CB, CBG 1 , CBG 2 and CBG 3 contain CB;
  • CBG 1 and CBG 2 contain CB, or, CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB.
  • the third determining submodule includes a third defining unit and a third determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the manner in which the third determining unit determines the number N k of CBs included in the CBG k in the M CBGs may be classified into mode a3 and mode b3:
  • the mode a3 is:
  • the mode b3 is:
  • CBG 0 and CBG 1 contain CB, or CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 , CBG 1 and CBG 2 contain CB, or CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB;
  • CBG 1 and CBG 2 contain CB, or CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB.
  • the third determining submodule includes a fourth defining unit and a fourth determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the manner in which the fourth determining unit determines the number N k of CBs included in the CBG k of the M CBGs may be classified into a mode a4 and a mode b4:
  • the mode a4 is:
  • the mode b4 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB, or CBG 3 contains CB;
  • CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB, or CBG 3 and CBG 4 contain CB.
  • the number of CBs included in each CBG changes with the change of the TBS (Transport Block Size) of one TB.
  • the data transmission module 330 is configured to perform data transmission according to the M CBGs, and specifically includes: the data transmission module 330 performs ACK/NACK feedback and/or retransmission based on the M CBGs.
  • the data transmission module 330 of the terminal transmits one TB, and the base station receives one TB, and generates an A-bit ACK according to each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner.
  • the NACK feedback information, A may be a predetermined value of 1 or greater, and the feedback information is sent to the terminal, and the CBG corresponding to each feedback information may be determined according to the same CB grouping manner, and then the CBG corresponding to the feedback information is re-transmitted in the CBG.
  • Information may be a predetermined value of 1 or greater, and the feedback information is sent to the terminal, and the CBG corresponding to each feedback information may be determined according to the same CB grouping manner, and then the CBG corresponding to the feedback information is re-transmitted in the CBG.
  • the base station sends a TB, and the terminal receives one TB, and generates A-bit ACK/NACK feedback information for each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner, A The information may be a predetermined value of 1 or greater, and the feedback information may be sent to the base station.
  • the base station may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and retransmit the corresponding feedback information to the NACK. Information in CBG.
  • a fourth embodiment of the present invention provides a base station 4, which can implement the method flow performed by the base station side described in the foregoing embodiment.
  • the base station 4 includes:
  • a determining module 410 configured to determine that one TB needs to be divided into M CBGs; and a grouping module 420, configured to group one or more CBs obtained by the block division by the code block according to a preset grouping manner, thereby The TB is divided into the M CBGs; the data transmission module 430 is configured to perform data transmission according to the M CBGs; wherein the M is a positive integer.
  • the determining module 410 may include: a first determining submodule, configured to determine, according to a predefined rule, that one TB needs to be divided into M CBGs; or a second determining submodule, configured to select from a plurality of predefined M values A number of CBGs to be divided into one TB, and the M value is notified to the terminal through configuration information, so that the terminal can group the TBs on the terminal side based on the configuration information.
  • the base station further includes a sending module: the sending module is configured to send the configuration information by using high layer signaling, or used to send the configuration information by using a downlink control channel.
  • the sending module is further configured to: notify the terminal by using the terminal-specific configuration information, or notify the terminal by using the configuration information shared by multiple terminals.
  • the size of the M corresponding to the TB of the different TBS may be the same or different; the base station may determine that the codebook size when the ACK/NACK feedback is performed on the one TB is also M. Bit.
  • the grouping module 420 includes: a third determining submodule, configured to determine, according to a preset grouping manner, a number of CBs in each CBG of the M CBGs; a grouping submodule, configured to determine the M according to the The number of CBs in each CBG in the CBG, and the TB is divided into the M CBGs. That is to say, each of the M CBGs includes a group of CBs.
  • the third determining sub-module determines, according to a preset grouping manner, the number of CBs in each CBG of the M CBGs by using the following four methods (but not limited to the four modes):
  • the third determining submodule includes a first defining unit and a first determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the first determining unit determines the number N k of CBs included in the CBG k of the M CBGs, which can be divided into mode a1 and mode b1:
  • the mode a1 is:
  • the mode b1 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 contains CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 , CBG 2 and CBG 3 contain CB
  • CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB, or CBG 2 and CBG 3 contain CB.
  • the third determining submodule includes a second defining unit and a second determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the manner of determining the number N k of CBs included in the CBG k of the M CBGs can be divided into mode a2 and mode b2:
  • the mode a2 is:
  • the mode b2 is:
  • CBG 0 and CBG 1 contain CB, or, CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 contains CB, or CBG 0 contains CB, CBG 1 , CBG 2 and CBG 3 contain CB;
  • CBG 1 and CBG 2 contain CB, or, CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB.
  • the third determining submodule includes a third defining unit and a third determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the manner in which the third determining unit determines the number N k of CBs included in the CBG k in the M CBGs may be classified into mode a3 and mode b3:
  • the mode a3 is:
  • the mode b3 is:
  • CBG 0 and CBG 1 contain CB, or CBG 0 and CBG 1 contain CB, CBG 2 and CBG 3 contain CB;
  • CBG 0 , CBG 1 and CBG 2 contain CB, or CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB;
  • CBG 1 and CBG 2 contain CB, or CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB.
  • the third determining submodule includes a fourth defining unit and a fourth determining unit.
  • the subscript k of the CBG k is marked differently (for example, k is marked from 0 to M-1, or k is marked from 1 to M, of course, k can be marked in other ways, here
  • the manner in which the fourth determining unit determines the number N k of CBs included in the CBG k of the M CBGs may be classified into a mode a4 and a mode b4:
  • the mode a4 is:
  • the mode b4 is:
  • CBG 0 and CBG 1 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 2 and CBG 3 contain CB
  • CBG 0 , CBG 1 and CBG 2 contain CB, CBG 3 contains CB, or CBG 3 contains CB;
  • CBG 1 and CBG 2 contain A CB, CBG 3 and comprising CBG 4 CB, or CBG 3 and CBG 4 contain CB.
  • the number of CBs included in each CBG changes with the change of the TBS (Transport Block Size) of one TB.
  • the data transmission module 430 is configured to perform data transmission according to the M CBGs. Specifically, the data transmission module 430 performs ACK/NACK feedback and/or retransmission based on the M CBGs.
  • the terminal sends a TB, and the base station receives a TB, and generates A-bit ACK/NACK feedback information for each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner, A.
  • the information may be a predetermined value of 1 or greater, and the feedback information may be sent to the terminal.
  • the terminal may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and retransmit the corresponding feedback information to the NACK.
  • Information in CBG is not limited to the terminal's the terminal's the terminal's feedback information from the terminal.
  • the data transmission module 430 in the base station sends a TB, and the terminal receives one TB, and generates an A-bit ACK according to each CBG of the M CBGs obtained by grouping the TB according to the preset grouping manner.
  • A may be a predetermined value of 1 or greater, and the feedback information is sent to the base station.
  • the base station may determine the CBG corresponding to each feedback information according to the same CB grouping manner, and then retransmit.
  • the corresponding feedback information is information in the CBG of the NACK.
  • the fifth embodiment of the present invention provides a computer device, where the device includes a processor, and the processor is configured to implement the steps of the method in the first embodiment or the second embodiment of the present invention when the computer program stored in the memory is executed.
  • the apparatus can implement the function of the terminal side in the foregoing embodiment.
  • the apparatus can include a transceiver 510, and at least one processor 500 coupled to the transceiver, wherein:
  • the processor 500 is configured to read a program in the memory 520, and perform the following process: determining that one TB needs to be divided into M CBGs; and one or more codes obtained by dividing the one TB by code block according to a preset grouping manner The block CB performs grouping, thereby dividing the one TB into the M CBGs; and performing data transmission according to the M CBGs.
  • M is a positive integer.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus interface 530 provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, as well as providing various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the processor 500 reads the program in the memory 520, and performs the method in the embodiment shown in FIG. 1 .
  • the processor 500 reads the program in the memory 520, and performs the method in the embodiment shown in FIG. 1 .
  • the processor 500 reads the program in the memory 520, and performs the method in the embodiment shown in FIG. 1 .
  • the processor 500 reads the program in the memory 520, and performs the method in the embodiment shown in FIG. 1 .
  • the apparatus can implement the functions of the base station side in the foregoing embodiment.
  • the apparatus can include a transceiver 610, and at least one processor 600 coupled to the transceiver, wherein:
  • the processor 600 is configured to read a program in the memory 620, and perform the following process: determining that one TB needs to be divided into M CBGs; and one or more codes obtained by dividing the one TB by code block according to a preset grouping manner The block CB performs grouping, thereby dividing the one TB into the M CBGs; and performing data transmission according to the M CBGs.
  • M is a positive integer.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • Bus interface 630 provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 600 is responsible for managing the bus architecture and general processing, as well as providing various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 620 can store data used by the processor 600 when performing operations.
  • the processor 600 can be a CPU, an ASIC, an FPGA, or a CPLD.
  • the processor 600 reads the program in the memory 620 and executes the method in the embodiment shown in FIG. 2 .
  • the processor 600 reads the program in the memory 620 and executes the method in the embodiment shown in FIG. 2 .
  • the processor 600 reads the program in the memory 620 and executes the method in the embodiment shown in FIG. 2 .
  • the processor 600 reads the program in the memory 620 and executes the method in the embodiment shown in FIG. 2 .
  • the sixth embodiment of the present invention provides a computer readable storage medium, on which a computer program is stored: when the computer program is executed by a processor, the steps of the method in the first embodiment or the second embodiment of the present invention are implemented.
  • the technical solution in the foregoing embodiments of the present invention has at least the following technical effects or advantages: the data transmission method, the terminal, and the base station in the embodiment of the present invention divide the CB into CBGs to support CBG-based retransmission and ACK/NACK.
  • the feedback solves the above technical problems existing in the prior art, and achieves the technical effect of reducing unnecessary retransmission redundancy and improving transmission efficiency when performing data transmission in the LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了数据传输方法、终端和基站,确定一TB需要被分为M个CBG;按照预设分组方式对所述一个TB经过码块分割后得到的多个CB进行分组,从而将所述一个TB分为所述M个CBG;按照所述M个CBG进行数据传输;其中,所述M正整数。本发明的技术方案解决了现有技术中存在的LTE系统中数据传输效率低和资源利用率低的技术问题。

Description

数据传输方法、终端和基站
本申请要求在2017年5月5日提交中国专利局、申请号为201710314193.1、发明名称为“数据传输方法、终端和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及数据传输方法、终端和基站。
背景技术
在LTE(Long Term Evolution,长期演进)系统中,PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)和PUSCH(Physical Uplink Shared CHannel,物理上行共享信道)分别用于承载下行数据传输和上行数据传输。每次传输以TB(Transport Block,传输块)为单位,一个PDSCH/PUSCH信道根据配置的传输模式不同,可以支持1或2个TB传输。以下行传输为例,终端在接收到PDSCH之后需要进行针对该PDSCH中传输的TB的ACK(ACKnowledgement,肯定确认)/NACK(Non-ACKnowledgement,否则确认)反馈。ACK/NACK反馈是针对TB进行的,即在不使用空间合并时,每个TB对应1比特ACK/NACK反馈信息,用于表示该TB的接收是否正确。对于配置多TB传输的PDSCH且使用空间合并时,需要对一个PDSCH中所承载的每个TB对应的ACK/NACK反馈信息进行逻辑与操作,得到1比特ACK/NACK反馈信息。上行传输类似。
由于编码器的复杂度限制,一个TB需要分割为i个CB(Code Block,码块),对每个CB分别进行编码和CRC(Cyclic Redundancy Check,循环冗余校验)的添加,将多个编码后的CB级联在一起进行映射和传输。由于每个CB为独立编码且都包含CRC信息,因此实际上每个CB都可以产生ACK/NACK反馈信息,但如果针对每个CB都进行ACK/NACK反馈,则一个TB需要对应K比特ACK/NACK反馈信息,反馈量较大。LTE系统中为了减少ACK/NACK反馈量,仅针对TB进行ACK/NACK反馈,即只有一个TB中的所有CB都正确接收,该TB才算正确接收,终端会反馈ACK作为反馈信息,只要该TB中有一个CB错误接收,该TB的反馈信息就为NACK,则基站侧需要重传该TB。
随着移动通信业务需求的发展变化,ITU(International Telecommunication Union,国际电信联盟)和3GPP(3rd Generation Partnership Project,第三代产业合作计划)等组织都开始研究新的无线通信系统(5 Generation New RAT,5G NR)。
可见,现有技术中存在的LTE系统中数据传输效率低和资源利用率低的技术问题。
发明内容
为了解决现有技术中存在的LTE系统中数据传输效率低和资源利用率低的技术问题,本发明实施例提供了数据传输方法、终端和基站,确定一TB需要被分为M个CBG(Code Block Group,码块组);按照预设分组方式对所述一个TB经过码块分割后得到的多个CB进行分组,从而将所述一个TB分为所述M个CBG;按照所述M个CBG进行数据传输;其中,所述M正整数。该数据传输方法适用于终端或基站。
为了更好的理解本发明的实施例,对于本发明实施例中的CBG,具体说明如下:
5G NR中提出了基于CBG的传输和ACK/NACK反馈概念。例如,一个TB经过码块分割得到i个CB后,i个CB可以按照一定规则被分为多个CBG,每个CBG中可以仅包含一个CB,也可以包含j个CB(即一个TB),其中,j为大于等于1且小于等于i的正整数。
ACK/NACK反馈可以基于CBG进行,即一个CBG可以有1比特或多个比特ACK/NACK反馈信息,从而在一定程度上增加ACK/NACK反馈开销的基础上,可以支持粒度更小的基于CBG的重传。支持基于CBG的重传,仅允许对应同一个TB和HARQ进程的传输错的CBG进行重传。可以通过高层信令配置终端是否开启基于CBG的重传。
第一方面,本发明的实施例一提供了一种数据传输方法,包括:终端确定一个TB需要被分为M个CBG;所述终端按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述一个TB分为所述M个CBG;所述终端按照所述M个CBG进行数据传输;其中,所述M为正整数。
可选的,所述终端确定一个TB需要被分为M个CBG,包括:所述终端根据预定义规则确定一个TB需要被分为M个CBG;或者所述终端根据配置信息确定一个TB需要被分为M个CBG。
可选的,所述终端通过高层信令接收所述配置信息;或者所述终端通过下行控制信道接收所述配置信息。
可选的,所述配置信息,包括:所述终端专属的配置信息;或者多个终端共享的配置信息,其中,所述终端是所述多个终端中的一个终端。
可选的,所述终端按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述TB分为所述M个CBG,包括:所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;所述终端基于确定出的所述M个CBG中 每个CBG中CB的个数,将所述TB分为所述M个CBG。
可选的,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:所述终端定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述终端确定所述M个CBG中的CBG k包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000001
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000002
Figure PCTCN2018083603-appb-000003
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000004
Figure PCTCN2018083603-appb-000005
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000006
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000007
Figure PCTCN2018083603-appb-000008
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000009
其中,所述k为大于等于r且小于M的整数。
可选的,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000010
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000011
Figure PCTCN2018083603-appb-000012
其中,所述k为大于等于r且小于M的整数。
第二方面,本发明的实施例二提供了一种数据传输方法,包括:基站确定一个TB需要被分为M个CBG;所述基站按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述一个TB分为所述M个CBG;所述基站按照所述M个CBG进行数据传输;其中,所述M为正整数。
可选的,所述基站确定一个TB需要被分为M个CBG,包括:所述基站根据预定义规则确定一个TB需要被分为M个CBG;或者所述基站从预先定义的多个M值中选择一个作为一个TB需要被分为的CBG个数,并通过配置信息将所述M值通知给终端。
可选的,所述基站通过高层信令发送所述配置信息;或者所述基站通过下行控制信道发送所述配置信息。
可选的,所述基站通过终端专属的配置信息将所述M值通知给所述终端;或者所述基站通过多个终端共享的配置信息将所述M值通知给所述终端。
可选的,所述基站按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述TB分为所述M个CBG,包括:所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;所述基站基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
可选的,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:所述基站定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述基站确定所述M个CBG中的CBG k包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000013
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000014
Figure PCTCN2018083603-appb-000015
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述基站确定所述M个CBG中的CBG k中包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000016
Figure PCTCN2018083603-appb-000017
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000018
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述基站确定所述M个CBG中的CBG k中包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000019
Figure PCTCN2018083603-appb-000020
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000021
其中,所述k为大于等于r且小于M的整数。
可选的,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;所述基站确定所述M个CBG中的CBG k中包含的CB的个数N k为:
Figure PCTCN2018083603-appb-000022
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000023
Figure PCTCN2018083603-appb-000024
其中,所述k为大于等于r且小于M的整数。
第三方面,本发明的实施例三提供了一种终端,所述终端包括:确定模块,用于确定一个TB需要被分为M个CBG;分组模块,用于按照预设分组方式对所述一个TB经过码块分割后得到的一个或多C个CB进行分组,从而将所述TB分为所述M个CBG;数据传输模块,用于按照所述M个CBG进行数据传输;其中,所述M为正整数。
可选的,所述确定模块包括:第一确定子模块,用于根据预定义规则确定一个TB需要被分为M个CBG;或者第二确定子模块,用于根据配置信息确定一个TB需要被分为M个CBG。
可选的,所述终端通过高层信令接收所述配置信息;或者所述终端通过下行控制信道接收所述配置信息。
可选的,所述配置信息,包括:所述终端专属的配置信息;或者多个终端共享的配置信息,其中,所述终端是所述多个终端中的一个终端。
可选的,所述分组模块包括:第三确定子模块,用于按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;分组子模块,用于基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
可选的,所述第三确定子模块包括:第一定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第一确定单元,用于确定所述M个CBG中的CBG k包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000025
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000026
Figure PCTCN2018083603-appb-000027
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述第三确定子模块包括:第二定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第二确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000028
Figure PCTCN2018083603-appb-000029
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000030
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述第三确定子模块包括:第三定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第三确定单元所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000031
Figure PCTCN2018083603-appb-000032
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000033
其中,所述k为大于等于r且小于M的整数。
可选的,所述第三确定子模块包括:第四定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第四确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000034
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000035
Figure PCTCN2018083603-appb-000036
其中,所述k为大于等于r且小于M的整数。
第四方面,本发明的实施例四提供了一种基站,所述基站包括:确定模块,用于确定一个TB需要被分为M个CBG;分组模块,用于按照预设分组方式对所述一个TB经过码块分割后得到的一个或多C个CB进行分组,从而将所述TB分为所述M个CBG;数据传输模块,用于按照所述M个CBG进行数据传输;其中,所述M为正整数。
可选的,所述确定模块包括:第一确定子模块,用于根据预定义规则确定一个TB需要被分为M个CBG;或者第二确定子模块,用于从预先定义的多个M值中选择一个作为一个TB需要被分为的CBG个数,并通过配置信息将所述M值通知给终端。
可选的,所述基站还包括发送模块:所述发送模块,用于通过高层信令发送所述配置信息;或者用于通过下行控制信道发送所述配置信息。
可选的,所述发送模块,还用于:通过终端专属的配置信息将所述M值通知给所述终端;或者通过多个终端共享的配置信息将所述M值通知给所述终端。
可选的,所述分组模块包括:第三确定子模块,用于按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;分组子模块,用于基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
可选的,所述第三确定子模块包括:第一定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第一确定单元,用于确定所述M个CBG中的CBG k包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000037
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000038
Figure PCTCN2018083603-appb-000039
其中,所述k为大于等于M-r且小于M的整数。
可选的,所述第三确定子模块包括:第二定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第二确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000040
Figure PCTCN2018083603-appb-000041
其中,所述k为大于等于0且小于M-r的整数;
Figure PCTCN2018083603-appb-000042
其中,所述k为大于等于M-r且小于M的整数。
3可选的,所述第三确定子模块包括:第三定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第三确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000043
Figure PCTCN2018083603-appb-000044
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000045
其中,所述k为大于等于r且小于M的整数。
可选的,所述第三确定子模块包括:第四定义单元,用于定义r=C mod M,其中, 所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;第四确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
Figure PCTCN2018083603-appb-000046
其中,所述k为大于等于0且小于r的整数;
Figure PCTCN2018083603-appb-000047
Figure PCTCN2018083603-appb-000048
其中,所述k为大于等于r且小于M的整数。
第五方面,本发明的实施例五提供了一种计算机装置,所述装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如第一方面或第二方面中所述方法的步骤。
第六方面,本发明的实施例六提供了一种计算机可读存储介质,其上存储有计算机程序:所述计算机程序被处理器执行时实现如第一方面或第二方面中所述方法的步骤。
本发明实施例中的数据传输方法、终端和基站,将CB分为CBG,以支持基于CBG的重传和ACK/NACK反馈,解决了现有技术中存在的上述技术问题,达到了在LTE系统中进行数据传输时,减少不必要的重传冗余,提高传输效率的技术效果。
附图说明
图1为本发明实施例中数据传输方法的第一流程图;
图2为本发明实施例中数据传输方法的第二流程图;
图3为本发明实施例中终端的示意图;
图4为本发明实施例中基站的示意图;
图5为本发明另外的实施例中终端的示意图;
图6为本发明另外的实施例中基站的示意图。
具体实施方式
为了解决现有技术中存在的LTE系统中数据传输效率低和资源利用率低的技术问题,本发明实施例提供数据传输方法、终端和基站。本发明实施例中,确定一TB需要被分为M个CBG,按照预设分组方式对该TB经过码块分割后得到的多个CB进行分组,从而将该TB分为M个CBG,并按照M个CBG进行数据传输。其中,M正整数。该CB分组方法适用于终端或基站。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细的说明。
参见图1,本发明实施例一提供了一种数据传输方法,包括:
S110,终端确定一个TB需要被分为M个CBG;
S120,所述终端按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述TB分为所述M个CBG;
S130,所述终端按照所述M个CBG进行数据传输;
其中,所述M为正整数。
所述步骤S110具体可以包括:所述终端根据预定义规则确定一个TB需要被分为M个CBG;或者所述终端根据配置信息确定一个TB需要被分为M个CBG。
其中,终端可以通过以下方式接收所述配置信息:所述终端通过高层信令接收所述配置信息;或者所述终端通过下行控制信道接收所述配置信息。
所述配置信息包括:所述终端专属的配置信息;或者多个终端共享的配置信息,其中,所述终端是所述多个终端中的一个终端。
不同的TBS(Transport Block Size,传输块大小)的TB对应的M的大小可以相同或者不同;所述终端可以确定对所述一个TB进行ACK/NACK反馈时的码本(codebook)大小也为M比特。
其中,将所述一个TB经过码块分割后得到的一个或多个CB可以用LTE系统中的实现方式。
所述步骤S120具体可以包括:所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;所述终端基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。也就是说,所述M个CBG中每个CBG包括一组CB。
其中,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数可以通过以下四种方式实现(但并不限于这四种方式):
第一种实现方式:
所述终端定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述终端确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a1和方式b1。
所述方式a1为:
Figure PCTCN2018083603-appb-000049
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000050
Figure PCTCN2018083603-appb-000051
其中,M–r≤k< M。
所述方式b1为:
Figure PCTCN2018083603-appb-000052
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000053
Figure PCTCN2018083603-appb-000054
其中,M–r<k≤M。
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000055
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000056
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000057
个CB;
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000058
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000059
个CB,或者CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000060
个CB;
对于方式b1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000061
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000062
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000063
个CB。
第二种实现方式:
所述终端定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述终端确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a2和方式b2。
所述方式a2为:
Figure PCTCN2018083603-appb-000064
Figure PCTCN2018083603-appb-000065
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000066
其中,M–r≤k<M。
所述方式b2为:
Figure PCTCN2018083603-appb-000067
Figure PCTCN2018083603-appb-000068
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000069
其中,M–r<k ≤M。
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000070
个CB,或者,CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000071
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000072
个CB;
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000073
个CB,或者CBG 0包含
Figure PCTCN2018083603-appb-000074
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000075
个CB;
对于方式b2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000076
个CB,或者,CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000077
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000078
个CB。
第三种实现方式:
所述终端定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述终端确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a3和方式b3。
所述方式a3为:
Figure PCTCN2018083603-appb-000079
Figure PCTCN2018083603-appb-000080
其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000081
其中,r≤k<M。
所述方式b3为:
Figure PCTCN2018083603-appb-000082
Figure PCTCN2018083603-appb-000083
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000084
其中,r<k≤M。
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000085
个CB,或者CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000086
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000087
个CB;
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=19个TB, r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000088
个CB,或者CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000089
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000090
个CB;
对于方式b3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000091
个CB,或者CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000092
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000093
个CB。
第四种实现方式:
所述终端定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述终端确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a4和方式b4。
所述方式a4为:
Figure PCTCN2018083603-appb-000094
其中,其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000095
Figure PCTCN2018083603-appb-000096
其中,r≤k<M。
所述方式b4为:
Figure PCTCN2018083603-appb-000097
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000098
Figure PCTCN2018083603-appb-000099
其中,r<k≤M。
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000100
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000101
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000102
个CB;
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000103
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000104
个CB,或者CBG 3包含
Figure PCTCN2018083603-appb-000105
个CB;
对于方式b4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000106
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000107
个CB,或者CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000108
个CB。
其中,每个CBG中包括的CB的个数随着一个TB的TBS(Transport Block Size,传输块大小)的改变而改变。
所述步骤S130中所述终端按照所述M个CBG进行数据传输,具体包括:所述终端基于所述M个CBG进行ACK/NACK反馈和/或重传。
例如在上行数据传输时,终端发送一个TB,基站接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给终端,终端接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
或者,在下行数据传输时,基站发送一个TB,终端接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给基站,基站接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
参见图2,本发明实施例二提供了一种数据传输方法,包括:
S210,基站确定一个TB需要被分为M个CBG;
S220,所述基站按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述TB分为所述M个CBG;
S230,所述基站按照所述M个CBG进行数据传输;
其中,所述M为正整数。
所述步骤S210具体可以包括:所述基站根据预定义规则确定一个TB需要被分为M个CBG。
另外,所述基站也可以从预先定义的多个M值中选择一个作为一个TB需要被分为的CBG个数,并通过配置信息将所述M值通知给终端,以使得终端能够基于所述配置信息对终端侧的TB进行分组。所述基站通过高层信令发送所述配置信息,或者所述基站通过下行控制信道发送所述配置信息。
其中,所述基站通过终端专属的配置信息将所述M值通知给所述终端;或者,所述基站通过多个终端共享的配置信息将所述M值通知给所述终端。
不同的TBS(Transport Block Size,传输块大小)的TB对应的M的大小可以相同或 者不同;所述基站可以确定对所述一个TB进行ACK/NACK反馈时的码本(codebook)大小也为M比特。
其中,将所述一个TB经过码块分割后得到的一个或多个CB可以用LTE系统中的实现方式。
所述步骤S220具体可以包括:所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;所述基站基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。也就是说,所述M个CBG中每个CBG包括一组CB。
其中,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数可以通过以下四种方式实现(但并不限于这四种方式):
第一种实现方式:
所述基站定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述基站确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a1和方式b1。
所述方式a1为:
Figure PCTCN2018083603-appb-000109
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000110
Figure PCTCN2018083603-appb-000111
其中,M–r≤k<M。
所述方式b1为:
Figure PCTCN2018083603-appb-000112
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000113
Figure PCTCN2018083603-appb-000114
其中,M–r<k≤M。
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000115
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000116
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000117
个CB;
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000118
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000119
个CB,或者CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000120
个CB;
对于方式b1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000121
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000122
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000123
个CB。
第二种实现方式:
所述基站定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述基站确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a2和方式b2。
所述方式a2为:
Figure PCTCN2018083603-appb-000124
Figure PCTCN2018083603-appb-000125
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000126
其中,M–r≤k<M。
所述方式b2为:
Figure PCTCN2018083603-appb-000127
Figure PCTCN2018083603-appb-000128
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000129
其中,M–r<k≤M。
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000130
个CB,或者,CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000131
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000132
个CB;
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000133
个CB,或者CBG 0包含
Figure PCTCN2018083603-appb-000134
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000135
个CB;
对于方式b2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000136
个CB,或者,CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000137
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000138
个CB。
第三种实现方式:
所述基站定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述基站确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a3和方式b3。
所述方式a3为:
Figure PCTCN2018083603-appb-000139
Figure PCTCN2018083603-appb-000140
其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000141
其中,r≤k<M。
所述方式b3为:
Figure PCTCN2018083603-appb-000142
Figure PCTCN2018083603-appb-000143
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000144
其中,r<k≤M。
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000145
个CB,或者CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000146
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000147
个CB;
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000148
个CB,或者CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000149
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000150
个CB;
对于方式b3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000151
个CB,或者CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000152
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000153
个CB。
第四种实现方式:
所述基站定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数。
根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述基站确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a4和方式b4。
所述方式a4为:
Figure PCTCN2018083603-appb-000154
其中,其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000155
Figure PCTCN2018083603-appb-000156
其中,r≤k<M。
所述方式b4为:
Figure PCTCN2018083603-appb-000157
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000158
Figure PCTCN2018083603-appb-000159
其中,r<k≤M。
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000160
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000161
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000162
个CB;
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000163
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000164
个CB,或者CBG 3包含
Figure PCTCN2018083603-appb-000165
个CB;
对于方式b4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000166
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000167
个CB,或者CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000168
个CB。
其中,每个CBG中包括的CB的个数随着一个TB的TBS(Transport Block Size,传输块大小)的改变而改变。
所述步骤S230中,所述基站按照所述M个CBG进行数据传输,具体包括:所述基站基于所述M个CBG进行ACK/NACK反馈和/或重传。
例如,在上行数据传输时,终端发送一个TB,基站接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给终端,终端接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
或者,在下行数据传输时,基站发送一个TB,终端接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈 信息,A可以为1或大于1的预定值,并将反馈信息发送给基站,基站接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
参见图3,本发明实施例三提供了一种终端3,该终端可实现前述实施例中终端侧执行的方法流程。所述终端3包括:
确定模块310,用于确定一个TB需要被分为M个CBG;分组模块320,用于按照预设分组方式对所述一个TB经过码块分割后得到的一个或多CB进行分组,从而将所述TB分为所述M个CBG;数据传输模块330,用于按照所述M个CBG进行数据传输。
其中,所述M为正整数。
所述确定模块310可以包括:第一确定子模块,用于根据预定义规则确定一个TB需要被分为M个CBG;或者第二确定子模块,用于根据配置信息确定一个TB需要被分为M个CBG。
其中所述终端通过高层信令接收所述配置信息;或者所述终端通过下行控制信道接收所述配置信息。
所述配置信息,还可以包括:所述终端专属的配置信息;或者多个终端共享的配置信息,其中,所述终端是所述多个终端中的一个终端。
不同的TBS(Transport Block Size,传输块大小)的TB对应的M的大小可以相同或者不同;所述终端可以确定对所述一个TB进行ACK/NACK反馈时的码本(codebook)大小也为M比特。
所述分组模块320包括:第三确定子模块,用于按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;分组子模块,用于基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。也就是说,所述M个CBG中每个CBG包括一组CB。其中,所述第三确定子模块,按照预设分组方式确定所述M个CBG中每个CBG中CB的个数可以通过以下四种方式实现(但并不限于这四种方式):
第一种实现方式:
所述第三确定子模块包括第一定义单元和第一确定单元。所述第一定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第一确定单元确定所述M个CBG中的CBG k包含的CB的个数N k,可以分为方式a1和方式b1:
所述方式a1为:
Figure PCTCN2018083603-appb-000169
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000170
Figure PCTCN2018083603-appb-000171
其中,M–r≤k<M。
所述方式b1为:
Figure PCTCN2018083603-appb-000172
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000173
Figure PCTCN2018083603-appb-000174
其中,M–r<k≤M。
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000175
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000176
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000177
个CB;
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000178
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000179
个CB,或者CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000180
个CB;
对于方式b1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000181
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000182
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000183
个CB。
第二种实现方式:
所述第三确定子模块包括第二定义单元和第二确定单元。所述第二定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第二确定单元,确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a2和方式b2:
所述方式a2为:
Figure PCTCN2018083603-appb-000184
Figure PCTCN2018083603-appb-000185
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000186
其中,M–r≤k <M。
所述方式b2为:
Figure PCTCN2018083603-appb-000187
Figure PCTCN2018083603-appb-000188
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000189
其中,M–r<k≤M。
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000190
个CB,或者,CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000191
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000192
个CB;
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000193
个CB,或者CBG 0包含
Figure PCTCN2018083603-appb-000194
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000195
个CB;
对于方式b2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000196
个CB,或者,CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000197
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000198
个CB。
第三种实现方式:
所述第三确定子模块包括第三定义单元和第三确定单元。所述第三定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第三确定单元确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a3和方式b3:
所述方式a3为:
Figure PCTCN2018083603-appb-000199
Figure PCTCN2018083603-appb-000200
其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000201
其中,r≤k<M。
所述方式b3为:
Figure PCTCN2018083603-appb-000202
Figure PCTCN2018083603-appb-000203
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000204
其中,r<k≤M。
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000205
个CB,或者CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000206
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000207
个CB;
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000208
个CB,或者CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000209
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000210
个CB;
对于方式b3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000211
个CB,或者CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000212
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000213
个CB。
第四种实现方式:
所述第三确定子模块包括第四定义单元和第四确定单元。所述第四定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第四确定单元确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a4和方式b4:
所述方式a4为:
Figure PCTCN2018083603-appb-000214
其中,其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000215
Figure PCTCN2018083603-appb-000216
其中,r≤k<M。
所述方式b4为:
Figure PCTCN2018083603-appb-000217
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000218
Figure PCTCN2018083603-appb-000219
其中,r<k≤M。
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000220
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000221
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000222
个CB;
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000223
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000224
个CB,或者CBG 3包含
Figure PCTCN2018083603-appb-000225
个CB;
对于方式b4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000226
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000227
个CB,或者CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000228
个CB。
其中,每个CBG中包括的CB的个数随着一个TB的TBS(Transport Block Size,传输块大小)的改变而改变。
所述数据传输模块330,用于按照所述M个CBG进行数据传输,具体包括:所述数据传输模块330基于所述M个CBG进行ACK/NACK反馈和/或重传。
例如,在上行数据传输时,终端的数据传输模块330发送一个TB,基站接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给终端,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
或者,在下行数据传输时,基站发送一个TB,终端接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给基站,基站接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
参见图4,本发明实施例四提供了一种基站4,该基站可实现前述实施例描述的基站侧执行的方法流程。所述基站4包括:
确定模块410,用于确定一个TB需要被分为M个CBG;分组模块420,用于按照预设分组方式对所述一个TB经过码块分割后得到的一个或多CB进行分组,从而将所述TB分为所述M个CBG;数据传输模块430,用于按照所述M个CBG进行数据传输;其中,所述M为正整数。
所述确定模块410可以包括:第一确定子模块,用于根据预定义规则确定一个TB需要被分为M个CBG;或者第二确定子模块,用于从预先定义的多个M值中选择一个作为 一个TB需要被分为的CBG个数,并通过配置信息将所述M值通知给终端,以使得终端能够基于所述配置信息对终端侧的TB进行分组。
所述基站还包括发送模块:所述发送模块,用于通过高层信令发送所述配置信息;或者用于通过下行控制信道发送所述配置信息。
所述发送模块,还用于:通过终端专属的配置信息将所述M值通知给所述终端;或者通过多个终端共享的配置信息将所述M值通知给所述终端。不同的TBS(Transport Block Size,传输块大小)的TB对应的M的大小可以相同或者不同;所述基站可以确定对所述一个TB进行ACK/NACK反馈时的码本(codebook)大小也为M比特。
所述分组模块420包括:第三确定子模块,用于按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;分组子模块,用于基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。也就是说,所述M个CBG中每个CBG包括一组CB。其中,所述第三确定子模块,按照预设分组方式确定所述M个CBG中每个CBG中CB的个数可以通过以下四种方式实现(但并不限于这四种方式):
第一种实现方式:
所述第三确定子模块包括第一定义单元和第一确定单元。所述第一定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第一确定单元确定所述M个CBG中的CBG k包含的CB的个数N k,可以分为方式a1和方式b1:
所述方式a1为:
Figure PCTCN2018083603-appb-000229
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000230
Figure PCTCN2018083603-appb-000231
其中,M–r≤k<M。
所述方式b1为:
Figure PCTCN2018083603-appb-000232
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000233
Figure PCTCN2018083603-appb-000234
其中,M–r<k≤M。
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000235
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000236
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000237
个CB;
具体地,对于方式a1,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000238
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000239
个CB,或者CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000240
个CB;
对于方式b1,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000241
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000242
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000243
个CB。
第二种实现方式:
所述第三确定子模块包括第二定义单元和第二确定单元。所述第二定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第二确定单元,确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a2和方式b2:
所述方式a2为:
Figure PCTCN2018083603-appb-000244
Figure PCTCN2018083603-appb-000245
其中,0≤k<M–r;或者,
Figure PCTCN2018083603-appb-000246
其中,M–r≤k<M。
所述方式b2为:
Figure PCTCN2018083603-appb-000247
Figure PCTCN2018083603-appb-000248
其中,1≤k≤M–r;或者,
Figure PCTCN2018083603-appb-000249
其中,M–r<k≤M。
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000250
个CB,或者,CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000251
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000252
个CB;
具体地,对于方式a2,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0包含
Figure PCTCN2018083603-appb-000253
个CB,或者CBG 0包含
Figure PCTCN2018083603-appb-000254
个CB,CBG 1、CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000255
个CB;
对于方式b2,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000256
个CB,或者,CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000257
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000258
个CB。
第三种实现方式:
所述第三确定子模块包括第三定义单元和第三确定单元。所述第三定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第三确定单元确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a3和方式b3:
所述方式a3为:
Figure PCTCN2018083603-appb-000259
Figure PCTCN2018083603-appb-000260
其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000261
其中,r≤k<M。
所述方式b3为:
Figure PCTCN2018083603-appb-000262
Figure PCTCN2018083603-appb-000263
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000264
其中,r<k≤M。
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000265
个CB,或者CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000266
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000267
个CB;
具体地,对于方式a3,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000268
个CB,或者CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000269
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000270
个CB;
对于方式b3,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000271
个CB,或者CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000272
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000273
个CB。
第四种实现方式:
所述第三确定子模块包括第四定义单元和第四确定单元。所述第四定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;根据所述CBG k的下标k的标记方式的不同(例如k为从0开始标记到M-1,或者k为从1开始标记到M,当然,k还可以以其他的方式进行标记,在此不再赘述),所述第四确定单元确定所述M个CBG中的CBG k包含的CB的个数N k的方式可以分为方式a4和方式b4:
所述方式a4为:
Figure PCTCN2018083603-appb-000274
其中,0≤k<r;或者,
Figure PCTCN2018083603-appb-000275
Figure PCTCN2018083603-appb-000276
其中,r≤k<M。
所述方式b4为:
Figure PCTCN2018083603-appb-000277
其中,1≤k≤r;或者,
Figure PCTCN2018083603-appb-000278
Figure PCTCN2018083603-appb-000279
其中,r<k≤M。
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0和CBG 1包含
Figure PCTCN2018083603-appb-000280
个CB,CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000281
个CB,或者CBG 2和CBG 3包含
Figure PCTCN2018083603-appb-000282
个CB;
具体地,对于方式a4,假设M=4,一个TB按照CB分割定义被分割为C=19个TB,r=19 mod 4=3,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 0、CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000283
个CB,CBG 3包含
Figure PCTCN2018083603-appb-000284
个CB,或者CBG 3包含
Figure PCTCN2018083603-appb-000285
个CB;
对于方式b4,假设M=4,一个TB按照CB分割定义被分割为C=18个TB,r=18 mod 4=2,则按照上述计算方式,4个CGB中的CBG k包含的CB的个数N k为:
CBG 1和CBG 2包含
Figure PCTCN2018083603-appb-000286
个CB,CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000287
个CB,或者CBG 3和CBG 4包含
Figure PCTCN2018083603-appb-000288
个CB。
其中,每个CBG中包括的CB的个数随着一个TB的TBS(Transport Block Size,传输块大小)的改变而改变。
数据传输模块430,用于按照所述M个CBG进行数据传输;具体包括:所述数据传 输模块430基于所述M个CBG进行ACK/NACK反馈和/或重传。
例如,在上行数据传输时,终端发送一个TB,基站接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给终端,终端接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
或者,在下行数据传输时,基站中的数据传输模块430发送一个TB,终端接收一个TB,并根据该一个TB按照预设分组方式进行分组后得到的M个CBG的每个CBG产生A比特ACK/NACK反馈信息,A可以为1或大于1的预定值,并将反馈信息发送给基站,基站接收到反馈信息后,可以根据同样的CB分组方式确定每个反馈信息对应的CBG后,重传对应反馈信息为NACK的CBG中的信息。
本发明实施例五提供了一种计算机装置,所述装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现本发明实施例一或实施例二中所述方法的步骤。
如图5所示,该装置可实现前述实施例中终端侧的功能。该装置可包括:收发机510、以及与该收发机连接的至少一个处理器500,其中:
处理器500用于读取存储器520中的程序,执行下列过程:确定一个TB需要被分为M个CBG;按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个码块CB进行分组,从而将所述一个TB分为所述M个CBG;按照所述M个CBG进行数据传输。其中,所述M为正整数。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口530提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。存储器520可以存储处理器500在执行操作时所使用的数据。
可选的,处理器500可以是CPU、ASIC、FPGA或CPLD。
本发明实施例中,处理器500读取存储器520中的程序,执行图1所示实施例中的方法,具体参见图1所示实施例中的相关描述,此处不再赘述。
如图6所示,该装置可实现前述实施例中基站侧的功能。该装置可包括:收发机610、 以及与该收发机连接的至少一个处理器600,其中:
处理器600用于读取存储器620中的程序,执行下列过程:确定一个TB需要被分为M个CBG;按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个码块CB进行分组,从而将所述一个TB分为所述M个CBG;按照所述M个CBG进行数据传输。其中,所述M为正整数。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口630提供接口。收发机610可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器600负责管理总线架构和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。存储器620可以存储处理器600在执行操作时所使用的数据。
可选的,处理器600可以是CPU、ASIC、FPGA或CPLD。
本发明实施例中,处理器600读取存储器620中的程序,执行图2所示实施例中的方法,具体参见图2所示实施例中的相关描述,此处不再赘述。
本发明实施例六提供了一种计算机可读存储介质,其上存储有计算机程序:所述计算机程序被处理器执行时实现本发明实施例一或实施例二中所述方法的步骤。
上述本发明实施例中的技术方案,至少具有如下的技术效果或优点:本发明实施例中的数据传输方法、终端和基站,将CB分为CBG,以支持基于CBG的重传和ACK/NACK反馈,解决了现有技术中存在的上述技术问题,达到了在LTE系统中进行数据传输时,减少不必要的重传冗余,提高传输效率的技术效果。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (38)

  1. 一种数据传输方法,其特征在于,包括:
    终端确定一个传输块TB需要被分为M个码块组CBG,其中,所述M为正整数;
    所述终端按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个码块CB进行分组,从而将所述一个TB分为所述M个CBG;
    所述终端按照所述M个CBG进行数据传输。
  2. 如权利要求1所述的方法,其特征在于,所述终端确定一个TB需要被分为M个CBG,包括:
    所述终端根据预定义规则确定一个TB需要被分为M个CBG;或者
    所述终端根据配置信息确定一个TB需要被分为M个CBG。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端通过高层信令接收所述配置信息;或者
    所述终端通过下行控制信道接收所述配置信息。
  4. 如权利要求2所述的方法,其特征在于,所述配置信息,包括:
    所述终端专属的配置信息;或者
    多个终端共享的配置信息,其中,所述终端是所述多个终端中的一个终端。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述终端按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述TB分为所述M个CBG,包括:
    所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;
    所述终端基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
  6. 如权利要求5所述的方法,其特征在于,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    所述终端定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述终端确定所述M个CBG中的CBG k包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100001
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100002
    Figure PCTCN2018083603-appb-100003
    其中,所述k为大于等于M-r且小于M的整数。
  7. 如权利要求5所述的方法,其特征在于,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100004
    Figure PCTCN2018083603-appb-100005
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100006
    其中,所述k为大于等于M-r且小于M的整数。
  8. 如权利要求5所述的方法,其特征在于,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100007
    Figure PCTCN2018083603-appb-100008
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100009
    其中,所述k为大于等于r且小于M的整数。
  9. 如权利要求5所述的方法,其特征在于,所述终端按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述终端确定所述M个CBG中的CBG k中包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100010
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100011
    Figure PCTCN2018083603-appb-100012
    其中,所述k为大于等于r且小于M的整数。
  10. 一种数据传输方法,其特征在于,包括:
    基站确定一个传输块TB需要被分为M个码块组CBG,其中,所述M为正整数;
    所述基站按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进 行分组,从而将所述一个TB分为所述M个CBG;
    所述基站按照所述M个CBG进行数据传输。
  11. 如权利要求10所述的方法,其特征在于,所述基站确定一个TB需要被分为M个CBG,包括:
    所述基站根据预定义规则确定一个TB需要被分为M个CBG;或者
    所述基站从预先定义的多个M值中选择一个作为一个TB需要被分为的CBG个数,并通过配置信息将所述M值通知给终端。
  12. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述基站通过高层信令发送所述配置信息;或者
    所述基站通过下行控制信道发送所述配置信息。
  13. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    所述基站通过终端专属的配置信息将所述M值通知给所述终端;或者
    所述基站通过多个终端共享的配置信息将所述M值通知给所述终端。
  14. 如权利要求10-13任一项所述的方法,其特征在于,所述基站按照预设分组方式对所述一个TB经过码块分割后得到的一个或多个CB进行分组,从而将所述TB分为所述M个CBG,包括:
    所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;
    所述基站基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
  15. 如权利要求14所述的方法,其特征在于,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    所述基站定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述基站确定所述M个CBG中的CBG k包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100013
    Figure PCTCN2018083603-appb-100014
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100015
    其中,所述k为大于等于M-r且小于M的整数。
  16. 如权利要求14所述的方法,其特征在于,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r 为所述C整除所述M的余数;
    所述基站确定所述M个CBG中的CBG k中包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100016
    Figure PCTCN2018083603-appb-100017
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100018
    其中,所述k为大于等于M-r且小于M的整数。
  17. 如权利要求14所述的方法,其特征在于,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述基站确定所述M个CBG中的CBG k中包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100019
    Figure PCTCN2018083603-appb-100020
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100021
    其中,所述k为大于等于r且小于M的整数。
  18. 如权利要求14所述的方法,其特征在于,所述基站按照预设分组方式确定所述M个CBG中每个CBG中CB的个数,包括:
    定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    所述基站确定所述M个CBG中的CBG k中包含的CB的个数N k为:
    Figure PCTCN2018083603-appb-100022
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100023
    Figure PCTCN2018083603-appb-100024
    其中,所述k为大于等于r且小于M的整数。
  19. 一种终端,其特征在于,所述终端包括:
    确定模块,用于确定一个传输块TB需要被分为M个码块组CBG,其中,所述M为正整数;
    分组模块,用于按照预设分组方式对所述一个TB经过码块分割后得到的一个或多C个CB进行分组,从而将所述TB分为所述M个CBG;
    数据传输模块,用于按照所述M个CBG进行数据传输。
  20. 如权利要求19所述的终端,其特征在于,所述确定模块包括:
    第一确定子模块,用于根据预定义规则确定一个TB需要被分为M个CBG;或者
    第二确定子模块,用于根据配置信息确定一个TB需要被分为M个CBG。
  21. 如权利要求20所述的终端,其特征在于,所述终端还包括接收模块:
    所述接收模块,用于通过高层信令接收所述配置信息;或者用于通过下行控制信道接收所述配置信息。
  22. 如权利要求21所述的终端,其特征在于,所述配置信息,包括:
    所述终端专属的配置信息;或者
    多个终端共享的配置信息,其中,所述终端是所述多个终端中的一个终端。
  23. 如权利要求19-22任一项所述的终端,其特征在于,所述分组模块包括:
    第三确定子模块,用于按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;
    分组子模块,用于基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
  24. 如权利要求23所述的终端,其特征在于,所述第三确定子模块包括:
    第一定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第一确定单元,用于确定所述M个CBG中的CBG k包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100025
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100026
    Figure PCTCN2018083603-appb-100027
    其中,所述k为大于等于M-r且小于M的整数。
  25. 如权利要求23所述的终端,其特征在于,所述第三确定子模块包括:
    第二定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第二确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100028
    Figure PCTCN2018083603-appb-100029
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100030
    其中,所述k为大于等于M-r且小于M的整数。
  26. 如权利要求23所述的终端,其特征在于,所述第三确定子模块包括:
    第三定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第三确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100031
    Figure PCTCN2018083603-appb-100032
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100033
    其中,所述k为大于等于r且小于M的整数。
  27. 如权利要求23所述的终端,其特征在于,所述第三确定子模块包括:
    第四定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第四确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100034
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100035
    Figure PCTCN2018083603-appb-100036
    其中,所述k为大于等于r且小于M的整数。
  28. 一种基站,其特征在于,所述基站包括:
    确定模块,用于确定一个传输块TB需要被分为M个码块组CBG,其中,所述M为正整数;
    分组模块,用于按照预设分组方式对所述一个TB经过码块分割后得到的一个或多C个CB进行分组,从而将所述TB分为所述M个CBG;
    数据传输模块,用于按照所述M个CBG进行数据传输。
  29. 如权利要求28所述的基站,其特征在于,所述确定模块包括:
    第一确定子模块,用于根据预定义规则确定一个TB需要被分为M个CBG;或者
    第二确定子模块,用于从预先定义的多个M值中选择一个作为一个TB需要被分为的CBG个数,并通过配置信息将所述M值通知给终端。
  30. 如权利要求29所述的基站,其特征在于,所述基站还包括发送模块:
    所述发送模块,用于通过高层信令发送所述配置信息;或者用于通过下行控制信道发送所述配置信息。
  31. 如权利要求30所述的基站,其特征在于,所述发送模块,还用于:
    通过终端专属的配置信息将所述M值通知给所述终端;或者
    通过多个终端共享的配置信息将所述M值通知给所述终端。
  32. 如权利要求28-31任一项所述的基站,其特征在于,所述分组模块包括:
    第三确定子模块,用于按照预设分组方式确定所述M个CBG中每个CBG中CB的个数;
    分组子模块,用于基于确定出的所述M个CBG中每个CBG中CB的个数,将所述TB分为所述M个CBG。
  33. 如权利要求32所述的基站,其特征在于,所述第三确定子模块包括:
    第一定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第一确定单元,用于确定所述M个CBG中的CBG k包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100037
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100038
    Figure PCTCN2018083603-appb-100039
    其中,所述k为大于等于M-r且小于M的整数。
  34. 如权利要求32所述的基站,其特征在于,所述第三确定子模块包括:
    第二定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第二确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100040
    Figure PCTCN2018083603-appb-100041
    其中,所述k为大于等于0且小于M-r的整数;
    Figure PCTCN2018083603-appb-100042
    其中,所述k为大于等于M-r且小于M的整数。
  35. 如权利要求32所述的基站,其特征在于,所述第三确定子模块包括:
    第三定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到的CB个数,所述r为所述C整除所述M的余数;
    第三确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100043
    Figure PCTCN2018083603-appb-100044
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100045
    其中,所述k为大于等于r且小于M的整数。
  36. 如权利要求32所述的基站,其特征在于,所述第三确定子模块包括:
    第四定义单元,用于定义r=C mod M,其中,所述C为一个TB经过码块分割后得到 的CB个数,所述r为所述C整除所述M的余数;
    第四确定单元,用于确定所述M个CBG中的CBG k中包含的CB的个数N k,所述N k为:
    Figure PCTCN2018083603-appb-100046
    其中,所述k为大于等于0且小于r的整数;
    Figure PCTCN2018083603-appb-100047
    Figure PCTCN2018083603-appb-100048
    其中,所述k为大于等于r且小于M的整数。
  37. 一种计算机装置,其特征在于,所述装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如权利要求1-9或者10-18中任一项所述方法的步骤。
  38. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被处理器执行时实现如权利要求1-9或者10-18中任一项所述方法的步骤。
PCT/CN2018/083603 2017-05-05 2018-04-18 数据传输方法、终端和基站 WO2018201903A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/611,206 US11166284B2 (en) 2017-05-05 2018-04-18 Data transmission method, terminal, and base station
KR1020197036140A KR102317679B1 (ko) 2017-05-05 2018-04-18 데이터 전송 방법, 단말 및 기지국
JP2019560661A JP6899450B2 (ja) 2017-05-05 2018-04-18 データ伝送方法、端末及び基地局
EP18794616.5A EP3621232B1 (en) 2017-05-05 2018-04-18 Data transmission method, terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710314193.1 2017-05-05
CN201710314193.1A CN108809531B (zh) 2017-05-05 2017-05-05 数据传输方法、终端和基站

Publications (1)

Publication Number Publication Date
WO2018201903A1 true WO2018201903A1 (zh) 2018-11-08

Family

ID=64016368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083603 WO2018201903A1 (zh) 2017-05-05 2018-04-18 数据传输方法、终端和基站

Country Status (7)

Country Link
US (1) US11166284B2 (zh)
EP (1) EP3621232B1 (zh)
JP (1) JP6899450B2 (zh)
KR (1) KR102317679B1 (zh)
CN (1) CN108809531B (zh)
TW (1) TWI675575B (zh)
WO (1) WO2018201903A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950995B1 (ko) * 2017-06-08 2019-02-22 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 관련 시그널링 방법 및 상기 방법을 이용하는 장치
EP3745628A4 (en) * 2018-01-30 2021-09-15 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSMISSION PROCESS, DEVICE AND SYSTEM

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060481A (zh) * 2007-02-05 2007-10-24 中兴通讯股份有限公司 一种Turbo码传输块的分段方法
US20120002657A1 (en) * 2009-03-25 2012-01-05 Fujitsu Limited Radio communication system, mobile station apparatus, base station apparatus, and radio communication method in radio communication system
CN104301077A (zh) * 2013-07-16 2015-01-21 普天信息技术研究院有限公司 一种混合重传的方法
WO2016165575A1 (zh) * 2015-04-15 2016-10-20 中兴通讯股份有限公司 一种实现码块分割的方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9992004B2 (en) 2015-02-03 2018-06-05 Qualcomm Incorporated Code block cluster level HARQ
KR101704916B1 (ko) * 2015-08-18 2017-02-08 주식회사 니프코코리아 자동차용 에어벤트의 듀얼댐퍼장치
KR101705087B1 (ko) * 2016-03-31 2017-02-14 오철규 완경사 배면 주차 스토퍼
CN113965295A (zh) * 2016-04-20 2022-01-21 康维达无线有限责任公司 新无线电中的物理信道
JP6833971B2 (ja) * 2017-03-08 2021-02-24 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて無線信号の送受信方法及び装置
US10742234B2 (en) * 2017-03-15 2020-08-11 Qualcomm Incorporated Code block group definition configuration for wireless communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060481A (zh) * 2007-02-05 2007-10-24 中兴通讯股份有限公司 一种Turbo码传输块的分段方法
US20120002657A1 (en) * 2009-03-25 2012-01-05 Fujitsu Limited Radio communication system, mobile station apparatus, base station apparatus, and radio communication method in radio communication system
CN104301077A (zh) * 2013-07-16 2015-01-21 普天信息技术研究院有限公司 一种混合重传的方法
WO2016165575A1 (zh) * 2015-04-15 2016-10-20 中兴通讯股份有限公司 一种实现码块分割的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3621232A4

Also Published As

Publication number Publication date
JP6899450B2 (ja) 2021-07-07
EP3621232A4 (en) 2020-05-13
EP3621232B1 (en) 2023-07-19
US11166284B2 (en) 2021-11-02
CN108809531A (zh) 2018-11-13
KR102317679B1 (ko) 2021-10-26
JP2020519182A (ja) 2020-06-25
TW201843989A (zh) 2018-12-16
CN108809531B (zh) 2020-10-27
TWI675575B (zh) 2019-10-21
EP3621232A1 (en) 2020-03-11
KR20200005609A (ko) 2020-01-15
US20200170018A1 (en) 2020-05-28

Similar Documents

Publication Publication Date Title
US11018813B2 (en) Uplink control information transmission method and apparatus
CN111133704B (zh) 用于基于代码块组的第五代(5g)或其它下一代系统的自适应两级下行链路控制信道结构
US20210091893A1 (en) Information Transmission Method and Communications Device
CN106559878B (zh) 上行控制信息uci发送、获取方法及装置
US20190182809A1 (en) Data transmission method and apparatus, and data processing method and apparatus
US11057923B2 (en) Transmission method, terminal device and base station
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
TW201705709A (zh) 上行控制資訊傳輸方法及裝置
CN104348582A (zh) 用于传输控制信息的方法和设备
WO2019154126A1 (zh) 反馈码本确定方法及装置
WO2019024696A1 (zh) 确定传输块大小的方法、装置及设备
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2019080071A1 (zh) 上行控制信道传输方法、终端设备和网络设备
WO2018201984A1 (zh) 数据的传输方法和设备
CN110073622B (zh) 用于数据块组的反馈信息
WO2018201903A1 (zh) 数据传输方法、终端和基站
WO2018228553A1 (zh) 数据传输的方法、网络设备和终端设备
JP6571213B6 (ja) データ記憶方法、端末装置及び基地局
US10148747B2 (en) Allocation of transmission attempts
JP2021520106A (ja) アップリンク制御情報の伝送方法及び装置
WO2017080430A1 (zh) 冗余版本及其改变周期的确定、信道估计方法及装置
WO2023231910A1 (zh) 反馈信息发送方法、反馈信息接收方法、终端及存储介质
WO2021233146A1 (zh) 一种数据调度方法及装置
WO2019201196A1 (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置
CN116803029A (zh) 一种反馈信息传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036140

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018794616

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018794616

Country of ref document: EP

Effective date: 20191205