WO2019201196A1 - 速率匹配的方法和装置,以及解速率匹配的方法和装置 - Google Patents

速率匹配的方法和装置,以及解速率匹配的方法和装置 Download PDF

Info

Publication number
WO2019201196A1
WO2019201196A1 PCT/CN2019/082636 CN2019082636W WO2019201196A1 WO 2019201196 A1 WO2019201196 A1 WO 2019201196A1 CN 2019082636 W CN2019082636 W CN 2019082636W WO 2019201196 A1 WO2019201196 A1 WO 2019201196A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
receiving end
capability
transmission time
max
Prior art date
Application number
PCT/CN2019/082636
Other languages
English (en)
French (fr)
Inventor
冯淑兰
李�根
沈祖康
王轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810351167.0A external-priority patent/CN110391870B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19789165.8A priority Critical patent/EP3751765A4/en
Publication of WO2019201196A1 publication Critical patent/WO2019201196A1/zh
Priority to US17/028,651 priority patent/US11558305B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching

Definitions

  • the present application relates to the field of communications, and in particular, to a method and apparatus for rate matching, and a method and apparatus for de-rate matching.
  • channel coding In a wireless communication system, in order to improve communication reliability, channel coding (referred to as "coding") is generally used to reduce the transmission code rate to improve reliability. Assuming that the information bit is K, the bit of the data obtained after decoding is N, N is greater than or equal to K, and KN bits are called redundant bits, so that the effective code rate is K/N.
  • the transmitting end sends the decoded N-bit codeword to the receiving end, and after receiving the N-bit codeword, the receiving end adopts a certain decoding mode to correct the error codeword in the transmission process and restore the correct K-bit. Codeword.
  • the data block before encoding is called a transport block (TB). Since the number of bits of the TB is large, the transmitting end usually splits one TB into multiple code blocks (CB), each CB is separate. Coding, since the physical resource used to transmit the code block may be inconsistent with the physical time-frequency resource of the code block to be transmitted, bit retransmission or puncturing is required for the code block to be transmitted to match the capacity of the physical time-frequency resource. The process is called rate matching. Therefore, multiple coded CBs need to undergo rate matching, and then interleaved, cascaded, etc., and then transmitted as a physical data block (codeword) to the receiving end.
  • codeword physical data block
  • the first transmission time of the TB on one carrier changes according to the change of the subcarrier spacing, and the scheduling time of the TB (the time domain resource allocated to the TB) ) is also flexible, and the maximum amount of data that the receiving end can process in a unit time is fixed, and the amount of data that the receiving end can buffer is also fixed. Therefore, the transmitting end of the 5G mobile communication system is in the scheduling time.
  • the amount of data transmitted may exceed the processing capability and buffering capability of the receiving end during the scheduling time, resulting in processing capacity overflow or buffer overflow at the receiving end, thereby reducing the receiving success rate of the receiving end.
  • the present application provides a rate matching method and a computing device, and a de-rate matching method and apparatus.
  • the rate matching parameter is determined according to the processing capability and/or the buffering capability of the receiving end in the scheduling time, thereby avoiding the processing capability overflow at the receiving end. And / or buffer overflow, thereby improving the receiving success rate of the receiving end.
  • a rate matching method including: determining a receiving capability of a receiving end, the receiving capability is used to indicate a maximum data processing amount of a receiving end in a first transmission time, and/or the receiving capability is used to indicate a maximum data buffer amount of the receiving end in the first transmission time, where the first transmission time is used to transmit the first transmission block to which the first code block belongs; and N CB and N CB are determined according to the receiving capability, and the code block used for rate matching is used. Size; rate matching the first code block according to N CB .
  • the receiving end may select a smaller code block for de-rate matching, and reduce the amount of data processed and/or buffered in the first transmission time.
  • the processing end overflow and/or buffer overflow is avoided at the receiving end, thereby improving the receiving success rate; for example, when the receiving end has a strong receiving capability during the first transmission time, the receiving end can select a larger code block.
  • De-rate matching is performed to reduce the code rate without exceeding the receiving capability of the receiving end, so as to obtain a higher receiving success rate.
  • the receiving end can adjust the code block size used by the de-rate matching according to the processing capability and/or the buffering capability of the receiving end in a period of time (ie, the first transmission time), and avoid the receiving end.
  • a processing capability overflow and/or a buffer overflow occurs, thereby improving the reception success rate at the receiving end.
  • determining the receiving capability of the receiving end including:
  • S (i) determine the receiving ability, wherein
  • the maximum data rate of carrier i also referred to as the peak rate of the carrier, or the maximum transmission rate, carrier i is used to transmit the first transport block
  • S (i) is the duration of the first transmission time of the first transport block, called The first transmission duration, the receiving end's receiving capability and Positive correlation, and the receiving capability of the receiving end is positively correlated with S (i) .
  • It defines the maximum amount of data that can be transmitted can be a carrier i in a unit time, where the transmission, including sending and receiving, for sending end, also may be a maximum transmission rate for the receiving side, the maximum reception rate may also be referred to, S ( i) Defining the transmission duration of the data, the combination of the two can obtain the maximum amount of data that the receiving end can process and buffer through the carrier i during the first transmission time, and therefore, can be based on the maximum data rate of the carrier i and the first transmission time.
  • the maximum amount of cached data at the receiving end Positive correlation.
  • the transmission time here also includes two concepts of transmission duration and reception duration. For the transmission end, the transmission duration is long, and for the reception end, the reception duration is equal, and the two are not clearly distinguished.
  • determining the receiving capability of the receiving end including: according to And S (i) determining the receiving capability of the receiving end, wherein The length of the maximum transport block that the carrier i can transmit during the second transmission duration, S (i) is the duration of the transmission time of the first transport block, referred to as the first transmission duration, and the carrier i is used to transmit the first transmission Block, receiving end receiving capability and Positive correlation, the receiving capability is positively correlated with the S (i) , and the second transmission time is determined The transmission duration used in the time is positively correlated with the reciprocal of the second transmission time.
  • the first transmission duration and the second transmission duration may or may not be equal.
  • S (i) and the second transmission time are defined, for example, the receiving capability of the receiving end To define, where S 2 (i) is the second transmission time.
  • determining N CB according to the receiving capability including: determining, according to the receiving capability of the receiving end, N CB,max , N CB,max is a maximum value of a size of a single code block that the receiving end can process in the first transmission time, N reception CB, max positive correlation with the receiving end; the N REF, N and N CB, max determined N CB, where, N is a first reference REF code block size, N is the size of the first code block, N is N CB CB, the smallest of the values of max , N ref and N.
  • N ref and N CB,max are used to indicate the amount of buffered data or data processing at the receiving end in different cases, where N ref is a value obtained based on the unrestricted receiving capability of the receiving end, and N CB,max is based on The value obtained by the receiving end of the receiving end during a transmission time (the receiving capability of the receiving end may be limited in the first transmission time), and the transmitting end uses the minimum value between N ref , N and N CB, max as the rate matching
  • the code block size (N CB ) used can make the amount of data actually transmitted in the channel not exceed the processing capability and/or the buffering capability of the receiving end, thereby avoiding the overflow of processing capability when the receiving capability of the receiving end is limited and/or Or a buffer overflow.
  • N is greater than N ref
  • N ref is greater than N CB,max
  • the transmitting end can use N CB,max as the rate matching.
  • N CB Determining N CB according to the receiving capability, comprising: determining N CB,max , N CB,max according to the receiving capability of the receiving end is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, N CB,max and The receiving capability of the receiving end is positively correlated; according to N and N CB, max determines N CB , where N is the size of the first code block, N CB is N CB, and the value of max and N is smaller.
  • N CB,max is used to indicate the amount of buffered data or data processing at the receiving end
  • N CB,max is a value obtained based on the receiving capability of the receiving end in the first transmission time (the receiving capability of the receiving end may be limited in the first transmission time)
  • the sender uses the minimum value between N and N CB,max as the code block size (N CB ) used in rate matching, so that the amount of data actually transmitted in the channel does not exceed the processing capability and/or buffer of the receiving end. Capabilities, so that processing capacity overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N is greater than N CB,max , and the transmitting end can use N CB,max as the code block size used for rate matching ( N CB ).
  • determining N CB, max according to reception capability comprising: determining N CB, max, where, N CB, max is also positively correlated with U (i), U (i ) The U (i) and reception of the carrier The ratio of the transmission bandwidth value of the activated partial bandwidth BWP of i to the sum of the transmission bandwidth values of the activated BWPs of all activated receiving carriers of the receiving end, the carrier i is used for transmitting the first transport block.
  • the transmitting end needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the transmission bandwidth value of the carrier i to the total bandwidth value of all activated receiving carriers, where the receiving end is on the carrier i.
  • the receiving capability is U (i) times the total receiving capability of the receiving end on multiple carriers.
  • determining N CB according to the receiving capability comprising: determining N′ ref according to a maximum data processing amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is a reference transport block size, and the carrier i is used for transmitting.
  • the first transport block, N' ref is the second reference code block size, and N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data processing amount, and the maximum data processing amount is Positively related to S (i) , Is the maximum data rate of carrier i, S (i) is the duration of the first transmission time; N CB is determined according to N and N' ref , where N is the size of the first code block, N CB is N' ref and The one with a smaller value in N.
  • determining N CB according to the receiving capability including: determining N′ ref according to a maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is a reference transport block size, and the carrier i is used for transmitting
  • the first transport block, N' ref is the second reference code block size, and N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data transfer amount, and the maximum data transfer amount is Positively related to S (i) and positively correlated with the reciprocal of the second transmission duration
  • S (i) is the duration of the first transmission time, referred to as the first transmission duration
  • the second transmission duration is determined to be the The duration of the second transmission time employed;
  • N CB is determined according to N and N' ref , where N is the size of the first code block and N CB is the smaller of N' ref and N.
  • the transmitting end selects a minimum value from the maximum data processing amount or the maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, and determines the reference code block size according to the minimum value (N' Ref ), then compare the size of N' ref and N, and select one of the smaller values as the code block size (N CB ) used in the first code block rate matching, so that the actual amount of data transmitted in the channel does not exceed the reception
  • N CB code block size
  • the maximum amount of data processing is also a positive correlation with the U-(i), a transmission bandwidth value of the U-(i) for all active receiving carrier transmission bandwidth value on the receiving side BWP activated carrier i activation of the BWP and The ratio.
  • the transmitting end When the receiving end supports multiple carriers, the transmitting end also needs to determine the receiving end on the carrier i according to the ratio of the transmission bandwidth value of the activated BWP of the carrier i to the sum of the transmission bandwidth values of the activated BWPs of all activated receiving carriers. Capability, wherein the receiving capability of the receiving end on the carrier i is U (i) times the total receiving capability of the receiving end on the plurality of carriers, and the foregoing optional method can avoid the processing capability overflow of the receiving end in the multi-carrier scenario and / or buffer overflow.
  • the first transport block is a high priority transport block
  • the first transport block includes C code blocks, where C is a positive integer, and each of the C code blocks has a size of N CB before rate matching.
  • the method further includes: determining, according to C and N CB, the amount of buffered data or the amount of processed data occupied by the high priority transport block, the amount of buffered data occupied by the high priority transport block is N CB ⁇ C; and the first transmission according to carrier i
  • the maximum data buffer amount in the time and the buffer data amount occupied by the high priority transport block determine the remaining buffer data amount, the remaining buffer data amount is equal to the maximum data buffer amount minus N CB ⁇ C, and the carrier i is used to transmit the first transport block.
  • the remaining buffer data amount is used for buffering low priority data; determining N CB, lp , N CB, lp as the size of the code block of the low priority transport block when performing rate matching according to the remaining buffer data amount, where N CB, lp N lp , N ref and N CB, max, the minimum value in lp , N lp is the size of each code block of the low priority transport block, N ref is the first reference code block size, N CB, max, lp
  • N ref is the first reference code block size
  • N CB, max, lp For the carrier i to be transmitted based on the amount of remaining buffer data, for carrying out The maximum amount of the data blocks of the rate matching; rate matching N CB, lp code blocks of low priority transport block according to.
  • the transmitting end may determine the code rate matching parameter of each TB according to the priority of the TB, and the high priority TB determines the rate matching parameter according to the foregoing method, and determines the cached data occupied by the high priority TB.
  • the size (N CB, max, lp ) of the code block of the low priority TB that the carrier i can transmit is determined according to the current remaining cache resource or data processing resource, and compared with N CB, max, lp , N lp and N
  • the size of the ref from which a minimum value is selected as the rate matching block value (N CB, lp ) of the code block of the low priority TB, so that the amount of data actually transmitted in the channel does not exceed the processing capability and/or buffering capability of the receiving end. Therefore, it can be avoided that the receiving low-priority TB has a processing capability overflow and/or a buffer overflow when the receiving capability of the receiving end is limited.
  • the method further includes: receiving a notification message from the receiving end, where the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end; and the data sent in the unit time is reduced according to the notification message. size.
  • the above solution can reduce the amount of data transmitted in the channel in time, so that the amount of data actually transmitted in the channel does not exceed the processing capability and/or the buffering capability of the receiving end.
  • the notification message further includes a recommended transmission rate, which is a data transmission rate that matches the receiving capability of the receiving end.
  • the recommended transmission rate is a data transmission rate determined by the receiving end based on the receiving capability of the current first transmission time, and the transmitting end determines the code block size used in the rate matching according to the recommended transmission rate, so that the actual amount of data transmitted in the channel is not Exceed the processing power and/or cache capability of the receiving end.
  • the notification message is physical layer signaling or higher layer signaling or media access control (MAC) layer signaling.
  • MAC media access control
  • a de-rate matching method including: determining a receiving capability of a receiving end, the receiving capability is used to indicate a maximum data processing amount of the receiving end in a first transmission time, and/or the receiving capability is used for And indicating a maximum data buffering amount of the receiving end in the first transmission time, where the first transmission time is used to receive the first transmission block; determining N CB according to the receiving capability, and N CB is a code block size used for performing rate matching; The CB performs rate dematching on the first transport block.
  • the transmission time can also be considered as the receiving time.
  • the receiving end may select a smaller code block for de-rate matching, and reduce the amount of data processed and/or buffered in the first transmission time.
  • the processing end overflow and/or buffer overflow is avoided at the receiving end, thereby improving the receiving success rate; for example, when the receiving end has a strong receiving capability during the first transmission time, the receiving end can select a larger code block.
  • De-rate matching is performed to reduce the code rate without exceeding the receiving capability of the receiving end, so as to obtain a higher receiving success rate.
  • the receiving end can adjust the code block size used by the de-rate matching according to the processing capability and/or the buffering capability of the receiving end in a period of time (ie, the first transmission time), and avoid the receiving end.
  • a processing capability overflow and/or a buffer overflow occurs, thereby improving the reception success rate at the receiving end.
  • determining the receiving capability of the receiving end including: according to And S (i) determine the receiving ability, wherein For the maximum data rate of the carrier i, the carrier i is used to transmit the first transport block, and S (i) is the duration of the first transmission time of the first transport block, which is called the first transmission duration, and the receiving capability of the receiving end is Positive correlation, and the receiving capability of the receiving end is positively correlated with S (i) .
  • S (i) defines the transmission duration of the data.
  • the combination of the two can obtain the maximum data that the receiver can process and buffer through carrier i during the first transmission time. Therefore, the receiving capability of the receiving end can be determined according to the maximum data rate of the carrier i and the duration of the first transmission time, for example, the receiving capability of the receiving end is used. To indicate, or, to receive To represent.
  • determining the receiving capability of the receiving end including:
  • S (i) determining the receiving capability of the receiving end, wherein The length of the maximum transport block that the carrier i can transmit during the second transmission duration, S (i) is the duration of the transmission time of the first transport block, referred to as the first transmission duration, and the carrier i is used to transmit the first transmission Block, receiving end receiving capability and Positive correlation, the receiving capability is positively correlated with the S (i) , and the second transmission time is determined
  • the transmission duration used in the time is positively correlated with the reciprocal of the second transmission time.
  • the first transmission duration and the second transmission duration may or may not be equal.
  • S (i) and the second transmission time are defined, for example, the receiving capability of the receiving end To define, where S 2 (i) is the second transmission time, or, the receiving capability is To represent.
  • determining N CB according to the receiving capability including: determining, according to the receiving capability of the receiving end, N CB,max , N CB,max is a maximum value of a size of a single code block that the receiving end can process in the first transmission time, N reception CB, max positive correlation with the receiving end; the N REF, N and N CB, max determined N CB, where, N is a first reference REF code block size, N is the size of the first code block, N is N CB CB, the smallest of the values of max , N ref and N.
  • N ref and N CB,max are used to indicate the amount of buffered data of the receiving end in different cases, wherein N ref is a value obtained based on the unrestricted receiving capability of the receiving end, and N CB,max is based on the first transmission time.
  • the value obtained by the receiving end of the receiving end (the receiving capability of the receiving end may be limited in the first transmission time), and the receiving end uses the minimum value between N ref , N and N CB, max as the code used in the solution rate matching
  • the block size (N CB ) can make the amount of data actually processed and buffered in the first transmission time not exceed the receiving capability of the receiving end, thereby avoiding processing capability overflow and/or buffering when the receiving capability of the receiving end is limited. overflow.
  • N is greater than N ref
  • N ref is greater than N CB,max
  • the receiving end can use N CB,max as the de-rate matching.
  • determining N CB according to the receiving capability including: determining, according to the receiving capability of the receiving end, N CB,max , N CB,max is a maximum value of a size of a single code block that the receiving end can process in the first transmission time, N CB,max is positively correlated with the receiving capability of the receiving end; according to N and N CB, max determines N CB , where N is the size of the first code block, N CB is N CB, and the value of max and N is smaller.
  • N CB,max is used to indicate the amount of buffered data at the receiving end, where N CB,max is a value obtained based on the receiving capability of the receiving end in the first transmission time (the receiving capability of the receiving end may be limited in the first transmission time), and the receiving The minimum value between N and N CB,max is used as the code block size (N CB ) used in the solution rate matching, so that the amount of data actually processed and buffered in the first transmission time does not exceed the receiving end. Capabilities, so that processing capacity overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N is greater than N CB,max , and the receiving end can use N CB,max as the code block size used in the de-rate matching. (N CB ).
  • determining N CB, max according to reception capability comprising: determining N CB, max, where, N CB, max is also positively correlated with U (i), U (i ) The U (i) and reception of the carrier The ratio of the transmission bandwidth value of the activated BWP of i to the sum of the transmission bandwidth values of the activated BWPs of all activated receiving carriers of the receiving end, the carrier i is used for transmitting the first transport block.
  • the receiving end When the receiving end supports multiple carriers, the receiving end needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the transmission bandwidth value of the carrier i to the total bandwidth value of all activated receiving carriers, wherein the receiving end is on the carrier i.
  • the receiving capability is U (i) times the total receiving capability of the receiving end on multiple carriers.
  • determining N CB according to the receiving capability comprising: determining N′ ref according to a maximum data processing amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is a reference transport block size, and the carrier i is used for transmitting.
  • the first transport block, N' ref is the second reference code block size, and N r ' ef is positively correlated with the minimum of the TBS LBRM and the maximum data processing amount, and the maximum data processing amount is Positively related to S (i) , Is the maximum data rate of carrier i, S (i) is the duration of the transmission time; N CB is determined according to N and N' ref , where N is the size of the first code block, and N CB is N' ref and N The value is one smaller.
  • determining N CB according to the receiving capability including: determining N′ ref according to a maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is a reference transport block size, and the carrier i is used for transmitting
  • the first transport block, N' ref is the second reference code block size, and N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data transmission amount, and the maximum data transmission amount is Positively related to S (i) and positively correlated with the reciprocal of the second transmission duration
  • S (i) is the duration of the first transport block, referred to as the first transmission time, and the second transmission time is determined by the determination
  • the transmission duration used determining N CB according to N and N' ref , where N is the size of the first code block, and N CB is the smaller of N' ref and N.
  • determining N CB according to the receiving capability including: determining N′ ref according to a maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is a reference transport block size, and the carrier i is used for transmitting
  • the first transport block, N' ref is the second reference code block size, and N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data transfer amount, and the maximum data transfer amount is Positively related to S (i) and positively correlated with the reciprocal of the second transmission duration
  • S (i) is the duration of the first transmission time, referred to as the first transmission duration
  • the second transmission duration is determined to be the The duration of the second transmission time employed;
  • N CB is determined according to N and N' ref , where N is the size of the first code block and N CB is the smaller of N' ref and N.
  • the receiving end selects a minimum value from the maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, determines the reference code block size (N' ref ) according to the minimum value, and then compares The size of N' ref and N, one of the smaller values is selected as the code block size (N CB ) used in the first code block de-rate matching, so that the amount of data actually processed by the receiving end during the first transmission time is not The receiving capability of the receiving end is exceeded, so that processing capability overflow and/or buffer overflow may occur in the case where the receiving capability of the receiving end is limited.
  • the maximum data transmission amount is also positively correlated with U (i) , and U (i) is the sum of the transmission bandwidth value of the activated BWP of carrier i and the transmission bandwidth value of the activated BWP of all activated receiving carriers at the receiving end. The ratio.
  • the receiving end When the receiving end supports multiple carriers, the receiving end needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the transmission bandwidth value of the carrier i to the total bandwidth value of all activated receiving carriers, wherein the receiving end is on the carrier i.
  • the receiving capability is U (i) times the total receiving capability of the receiving end on multiple carriers.
  • the first transport block is a high priority transport block
  • the first transport block includes C code blocks
  • C is a positive integer.
  • the size of each code block in the C code blocks before the solution rate matching is N CB.
  • the method further includes: determining, according to C and N CB , the amount of buffered data occupied by the high priority transport block, the amount of buffered data occupied by the high priority transport block is N CB ⁇ C according to the maximum of the carrier i in the first transmission time
  • the amount of data buffer and the amount of buffered data occupied by the high-priority transport block determine the amount of remaining buffer data, the amount of remaining buffer data is equal to the maximum data buffer amount minus N CB ⁇ C, carrier i is used to transmit the first transport block, and the remaining buffer data amount
  • For buffering low priority data; determining N CB, lp , N CB, lp according to the amount of remaining buffer data is the size of the code block of the low priority transport block when performing rate dematching,
  • the receiving end may determine the code block size used by each TB in the solution rate matching according to the priority of the TB, and the high priority TB determines the code block size used in the solution rate matching according to the foregoing method, and determines After the high priority TB performs the buffer data amount required for the rate matching, the size of the code block (N CB, max, lp ) of the low priority TB that the carrier i can transmit is determined according to the current remaining buffer data amount, and the N is compared.
  • the amount of data actually processed does not exceed the receiving capability of the receiving end, thereby avoiding the processing capability overflow and/or buffer overflow of receiving the low priority TB in the case where the receiving capability of the receiving end is limited.
  • the method further includes: sending a notification message to the sending end, where the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end.
  • the above solution can reduce the amount of data transmitted in the channel in time, so that the amount of data actually transmitted in the channel does not exceed the processing capability and/or the buffering capability of the receiving end.
  • the notification message further includes a recommended transmission rate, which is a data transmission rate that matches the receiving capability of the receiving end.
  • the recommended transmission rate is a data transmission rate determined by the receiving end based on the receiving capability of the current first transmission time, and the transmitting end determines the code block size used in the rate matching according to the recommended transmission rate, so that the actual amount of data transmitted in the channel is not Exceed the processing power and/or cache capability of the receiving end.
  • the notification message is physical layer signaling or higher layer signaling or medium access control MAC layer signaling.
  • a rate matching device which may be a communication device (eg, a terminal device or a network device) or a chip within the communication device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the communication device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the communication device to perform the method of one of the first aspects above and alternative embodiments thereof.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to cause the communication
  • the storage unit may be a storage unit (eg, a register, a cache, etc.) within the chip, or may be located outside the chip within the communication device Storage unit (eg, read only memory, random access memory, etc.).
  • a de-rate matching device which may be a communication device (eg, a terminal device or a network device) or a chip within the communication device.
  • the apparatus can include a processing unit and a transceiver unit.
  • the processing unit may be a processor
  • the transceiver unit may be a transceiver
  • the communication device may further include a storage unit, the storage unit may be a memory; the storage unit is configured to store an instruction, the processing The unit executes the instructions stored by the storage unit to cause the communication device to perform the method of one of the first aspects above and alternative embodiments thereof.
  • the processing unit may be a processor, the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes instructions stored by the storage unit to cause the communication
  • the storage unit may be a storage unit (eg, a register, a cache, etc.) within the chip, or may be located outside the chip within the communication device Storage unit (eg, read only memory, random access memory, etc.).
  • a network system comprising the rate matching device of the third aspect and the de-rate matching device of the fourth aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a transmitting end, and a processor, causing the transmitting end to execute The method of the first aspect.
  • a computer program product comprising: computer program code, when the computer program code is run by a communication unit, a processing unit or a transceiver of a receiving end, and a processor, causing the receiving end to execute The method of the second aspect.
  • a computer storage medium for storing computer software instructions for use by the transmitting end, comprising a program designed to perform the first aspect.
  • a computer storage medium for storing computer software instructions for use by the receiving end, comprising a program designed to perform the second aspect.
  • a chip in which instructions are stored which, when run on a transmitting end, cause the chip to perform the method of the first aspect.
  • a chip in which instructions are stored which, when run on a receiving end, cause the chip to perform the method of the second aspect.
  • Figure 1 is a communication system suitable for use in the present application
  • FIG. 2 is a schematic diagram of a communication method suitable for the present application
  • FIG. 3 is a schematic diagram of a rate matching method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a solution rate matching method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a rate matching apparatus according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a de-rate matching device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of an access network device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a communication apparatus for rate matching and/or de-rate matching according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another rate matching method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another solution rate matching method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another rate matching apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another de-rate matching device according to an embodiment of the present application.
  • FIG. 1 illustrates a communication system 100 to which the present application is applied.
  • the communication system 100 includes an access network device 110 and a terminal device 120.
  • the access network device 110 communicates with the terminal device 120 over a wireless network.
  • the wireless communication module can encode the information for transmission. Specifically, the wireless communication module may acquire a certain number of information bits to be transmitted to the access network device 110 through a channel, such as information bits generated by the processing module, received from other devices, or saved in the storage module. . These information bits can be included in one or more TBs, and the TBs can be segmented to generate multiple CBs.
  • the terminal device 120 When the transmission direction of the communication system 100 is uplink transmission, the terminal device 120 is the transmitting end, and the access network device 110 is the receiving end.
  • the transmission direction of the communication system 100 is the downlink transmission, the access network device 110 is the transmitting end, and the terminal is the transmitting end.
  • Device 120 is the receiving end.
  • the technical solution provided by the embodiment of the present application can be applied to various communication systems, for example, a 5G mobile communication system, and the 5G mobile communication system described in the present application includes a non-standalone (NSA) 5G mobile communication system and / or standalone (SA) 5G mobile communication system.
  • the technical solution provided by the embodiment of the present application can also be applied to a future communication system, such as a sixth generation mobile communication system.
  • a terminal device may be referred to as an access terminal, a user equipment (UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device user agent or user device.
  • the access terminal can be a cellular telephone, a handheld device with wireless communication capabilities, a computing device or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G communication system.
  • the access network device may be a base transceiver station (BTS) in a code division multiple access (CDMA) system, or may be a wideband code division multiple access (WCDMA) system.
  • the base station (node B, NB) may also be an evolved base station (eNB) in a long term evolution (LTE) system, or may be a base station (gNB) in a 5G communication system.
  • the access network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the communication system to which the present application is applied is merely an example.
  • the communication system to which the present application is applied is not limited thereto.
  • the number of access network devices and terminal devices included in the communication system may be other numbers.
  • the receiving end stores the soft information of the received data, and the storage soft information needs to consume the storage resources of the receiving end.
  • the coded bits of each code block are N bits
  • the receiving end needs to store N ⁇ L bits
  • L is the number of soft information valid bits of each received data.
  • the transmitting end may perform rate matching on the code block by using limited buffer rate matching (LBRM) technology, as shown in FIG. 2, the transmitting end is K bit.
  • LBRM limited buffer rate matching
  • N CB Min(N,N ref ).
  • N CB is equal to 90 bits, that is, the first 90 bits are selected from 100 bits for rate matching, and the last 10 bits are discarded, thereby reducing the receiving end.
  • FIG. 3 is a schematic diagram of a rate matching method provided by an embodiment of the present application.
  • the execution device of the method 300 shown in FIG. 3 is a transmitting end, and the method 300 includes:
  • S310 Determine a receiving capability of the receiving end, where the receiving capability is used to indicate a maximum data processing amount of the receiving end in the first transmission time, and/or the receiving capability is used to indicate a maximum data buffer of the receiving end in the first transmission time.
  • the first transmission time is used to transmit the first transport block to which the first code block belongs.
  • the receiving capability may be the maximum value of the data volume processed by the receiving end in a unit time, and the transmitting end may calculate the maximum data processing amount of the receiving end in the first transmission time according to the maximum value of the data volume processed by the receiving end in a unit time, and the receiving capability. It may also be the maximum value of the transport block that the receiving end can receive in the first transmission time, and may also be other parameters for indicating the maximum data processing amount of the receiving end in the first transmission time. Similarly, the receiving capability may also be It is a parameter for indicating the maximum data buffer amount of the receiving end in the first transmission time, which is not limited in this application.
  • the first code block refers to a code block that has undergone channel coding and has not undergone bit selection.
  • N CB is a code block size used for performing rate matching.
  • N CB is a code block size that matches the receiving capability of the receiving end. For example, if the receiving capability of the receiving end is data that receives at most X bits in the first transmission time, then N CB is less than or equal to the value of X divided by Y, where Y The number of code blocks divided for the first transport block.
  • the transmitting end may perform rate matching on the first code block according to the scheduled time-frequency resource and the modulation and coding scheme (MCS) table, and select a modulation coding parameter corresponding to the N CB , and the specific rate matching method may refer to
  • MCS modulation and coding scheme
  • the transmitting end may select a smaller code block for rate matching, improve the code rate, and reduce the first transmission time.
  • the amount of data transmitted avoids the processing capability overflow and/or buffer overflow at the receiving end, thereby improving the receiving success rate; or, when the receiving end has a strong receiving capability during the first transmission time, the transmitting end may select The large code block performs rate matching, and the code rate is lowered without exceeding the receiving capability of the receiving end, so as to obtain a higher receiving success rate.
  • the rate matching method provided in this embodiment can adjust the code block size used according to the processing capability and/or the buffering capability of the receiving end in a period of time (ie, the first transmission time) to avoid the processing capability of the receiving end. Overflow and/or buffer overflow, which improves the reception success rate at the receiving end.
  • S310 includes:
  • S (i) determine the receiving ability, wherein
  • the maximum data rate of the carrier i also referred to as the peak rate or the maximum transmission rate, the carrier i is used to transmit the first transport block
  • S (i) is the duration of the first transmission time of the first transport block, referred to as the first transmission. Duration, receiving capacity and Positive correlation, and the receiving capability of the receiving end is positively correlated with S (i) .
  • S (i) defines the transmission duration of the data.
  • the combination of the two can obtain the maximum data that the receiver can process and buffer through carrier i during the first transmission time. Therefore, the receiving capability of the receiving end can be determined according to the maximum data rate of the carrier i and the duration of the first transmission time, for example, the receiving capability of the receiving end is used for To represent.
  • the receiving end's receiving capability is To represent.
  • the positive correlation between O and M means that when M is increased, O also increases, but the manner of increasing M and O is not limited. For example, when M increases linearly, O can be linearly increased. Large, it can also increase nonlinearly. or,
  • the positive correlation between O and M can also mean that when M decreases, O also decreases, but the manner of reducing M and O is not limited. For example, when M decreases linearly, O can decrease linearly or nonlinearly. small.
  • M and O can be any two physical quantities, for example, O is the receiving capability of the receiving end, and M is Or S (i) .
  • the above positive correlation is equally applicable to the positive correlations of other parts of the application.
  • S310 includes:
  • S (i) determining the receiving capability of the receiving end, wherein
  • the maximum transmission block size that the carrier i can transmit in the second transmission time, S (i) is the duration of the first transmission time, which is called the first transmission duration, and the carrier i is used to transmit the first transmission block, and the receiving end receives Ability and Positive correlation, the receiving capability is positively correlated with S (i) , and the second transmission time is used to determine
  • the receiving capability of the receiving end is inversely related to the second transmission time.
  • the negative correlation between E and F means that F decreases when E increases, and the specific manner in which F decreases as E increases, for example, when E increases linearly , O can be linearly reduced or reduced nonlinearly. or,
  • the negative correlation between E and F means that F decreases when E decreases, and the specific way of increasing F with decreasing E is not limited. For example, when E decreases linearly, F can increase linearly. Can increase nonlinearly.
  • E and F can be any two physical quantities, for example, E is the receiving capability of the receiving end, and F is the second transmission time.
  • E is the receiving capability of the receiving end
  • F is the second transmission time.
  • the larger the data the larger the amount of data transmitted by the carrier i when the transmission time is the same, or the shorter the second transmission time when the data amount transmitted by the carrier i is the same, the greater the amount of data processed by the receiving end per unit time.
  • the larger the receiving capacity of the receiving end the larger.
  • Dividing by the second transmission time can be equivalent to the peak processing rate at the receiving end. Therefore, it can be used S (i) and the second transmission time are defined, for example, the receiving capability of the receiving end To indicate that S 2 (i) is the second transmission time.
  • the receiving end's receiving capability is To represent, It can be calculated according to the maximum multiple-input multiple-output (MIMO) layer, the maximum modulation order, and the maximum code rate supported by the receiving end, and the maximum bandwidth of the carrier i is used as the maximum configuration BWP.
  • MIMO multiple-input multiple-output
  • the minimum subcarrier spacing supported for carrier i is calculated according to the method described in section 5.1.3.2 of the communication standard document (3GPP TS 38.214 V F.1.0)
  • the length of the slot corresponding to the minimum subcarrier spacing supported by the second transmission time carrier i for example, the subcarrier spacing is 30 kHz, and the second transmission time length is 0.5 ms.
  • Can also be based on the maximum data rate of the carrier i at the receiving end Get, for example It can also be obtained according to the device type of the receiving end. For example, if the device type of the receiving end is LTE UE type (Category) 6, then S 2 (i) 1 milliseconds.
  • S320 includes:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the receiving capability of the receiving end; Ref , N and N CB,max determines N CB , where N ref is the first reference code block size, N is the size of the first code block, N CB is the smallest of N CB, max , N ref and N .
  • N ref and N CB,max are used to indicate the amount of buffered data of the receiving end in different cases, wherein N ref is a value obtained based on the unrestricted receiving capability of the receiving end, and N CB,max is based on the first transmission time.
  • the value obtained by the receiving end of the receiving end (the receiving capability of the receiving end may be limited in the first transmission time), and the transmitting end uses the minimum value between N ref , N and N CB, max as the code block used in rate matching.
  • the size (N CB ) can make the actual amount of data transmitted in the channel not exceed the processing capability and/or the buffering capability of the receiving end, so that processing capacity overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N ref is greater than N CB,max
  • the transmitting end can use N CB,max as the rate matching.
  • the calculation method of N ref , N CB,max can be calculated according to the method described in section 5.4.2.1 of the communication standard document (3GPP TS 38.212 V F.1.0), and can be referred to the calculation method in the other embodiments below.
  • determining N CB,max according to the receiving capability includes:
  • N CB,max is determined according to U (i) and the receiving capability, where N CB,max is also positively correlated with U (i) , and U (i) is the transmission bandwidth value of the activated BWP of carrier i and all activated at the receiving end
  • the ratio of the sum of the transmission bandwidth values of the activated BWPs of the received carrier, and the carrier i is used to transmit the first transport block.
  • the transmitting end needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the transmission bandwidth value of the carrier i to the total bandwidth value of all activated receiving carriers, where the receiving end is on the carrier i.
  • the receiving capability is U (i) times the total receiving capability of the receiving end on multiple carriers.
  • the above optional method can avoid processing capability overflow and/or buffer overflow in the receiving end in the multi-carrier scenario.
  • the transmission bandwidth value of the carrier i may be the bandwidth value of the maximum bandwidth supported by the carrier i, or may be other bandwidth values.
  • the calculation method of U (i) can be referred to the following embodiment.
  • S320 includes:
  • N' ref Determining N' ref according to the maximum data processing amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is the reference transport block size, the carrier i is used to transmit the first transport block, and N' ref is the second reference code
  • the block size, N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data processing amount, and the maximum data processing amount is Positively related to S (i) ,
  • S (i) is the duration of the transmitted time;
  • N CB is determined according to N and N' ref , where N is the size of the first code block and N CB is the value of N' ref and N The little one.
  • determining N CB according to the receiving capability including: determining N′ ref according to a maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is a reference transport block size, and the carrier i is used for transmitting
  • the first transport block, N' ref is the second reference code block size, and N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data transfer amount, and the maximum data transfer amount is Positively related to S (i) and positively correlated with the reciprocal of the second transmission duration
  • S (i) is the duration of the first transport block, referred to as the first transmission time, and the second transmission time is determined by the determination
  • the transmission duration used determining N CB according to N and N' ref , where N is the size of the first code block, and N CB is the smaller of N' ref and N.
  • the transmitting end selects a minimum value from the maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, determines the reference code block size (N' ref ) according to the minimum value, and then compares The size of N' ref and N, and selecting one of the smaller values as the code block size (N CB ) used in the first code block rate matching, can make the actual amount of data transmitted in the channel not exceed the processing capability of the receiving end and / Or caching capability, so that processing capability overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • the TBS LBRM can be calculated according to the maximum multiple-input multiple-output (MIMO) layer, the maximum modulation order, and the maximum code rate supported by the receiving end, and can be in accordance with the communication standard document (3GPP TS 38.212 V F.1.0). The method described in 5.4.2.1 calculates the TBS LBRM .
  • MIMO multiple-input multiple-output
  • the method described in 5.4.2.1 calculates the TBS LBRM .
  • the maximum data transmission amount is also positively correlated with U (i) , and U (i) is the sum of the transmission bandwidth value of the activated BWP of carrier i and the transmission bandwidth value of the activated BWP of all activated receiving carriers at the receiving end. The ratio.
  • the transmitting end needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the activated transmission bandwidth value of the carrier i to the total bandwidth value of all activated receiving carriers, wherein the receiving end is in the carrier.
  • the receiving capability on i is U (i) times the total receiving capability of the receiving end on multiple carriers.
  • the above optional method can avoid processing capability overflow and/or buffer overflow in the receiving end in the multi-carrier scenario.
  • the calculation method of U (i) can be referred to the following embodiment.
  • the first transport block is a high priority transport block
  • the first transport block includes C code blocks, where C is a positive integer, and each of the C code blocks has a size of N CB before rate matching.
  • Method 300 also includes:
  • the amount of buffered data occupied by the high-priority transport block is N CB ⁇ C; the maximum data buffer amount and high priority according to carrier i in the first transmission time
  • the amount of buffered data occupied by the level transport block determines the amount of remaining buffer data, the amount of remaining buffer data is equal to the maximum data buffer amount minus N CB ⁇ C, the carrier i is used to transmit the first transport block, and the remaining buffer data amount is used to buffer the low priority Data; determining N CB, lp , N CB, lp as the size of the code block of the low priority transport block when performing rate matching according to the amount of remaining buffer data, where N CB, lp are N lp , N ref , and N CB , Max, the minimum value in lp , N lp is the size of each code block of the low priority transport block, N ref is the first reference code block size
  • the transmitting end may determine the code rate matching parameter of each TB according to the priority of the TB, and the high priority TB determines the rate matching parameter according to the foregoing method, and determines the cached data occupied by the high priority TB.
  • the size (N CB, max, lp ) of the code block of the low priority TB that the carrier i can transmit is determined according to the current remaining cache resources, and the sizes of N CB, max, lp , N lp and N ref are compared.
  • Selecting a minimum value as the rate matching code block value (N CB, lp ) of the code block of the low priority TB can make the actual amount of data transmitted in the channel not exceed the processing capability and/or the buffering capability of the receiving end, thereby avoiding Receiving low priority TBs with processing capability overflow and/or buffer overflow occurs when the receiving capability of the receiving end is limited.
  • the method 300 further includes:
  • the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end; and the size of the data sent in the unit time is reduced according to the communication message.
  • the above solution can reduce the amount of data transmitted in the channel in time, so that the amount of data actually transmitted in the channel does not exceed the processing capability and/or the buffering capability of the receiving end.
  • the notification message further includes a suggested transmission rate, which is a data transmission rate that matches the receiving capability of the receiving end.
  • the recommended transmission rate is a data transmission rate determined by the receiving end based on the receiving capability of the current first transmission time, and the transmitting end determines the code block size used in the rate matching according to the recommended transmission rate, so that the actual amount of data transmitted in the channel is not Exceed the processing power and/or cache capability of the receiving end.
  • the notification message is physical layer signaling or higher layer signaling or MAC layer signaling.
  • FIG. 10 includes S1010, S1020, and S1030.
  • the S1010 is the same as the S310 in the rate matching method 300, and the S1030 is the same as the S330 in the method 300.
  • the specific implementations of S310 and S330 are also applicable to S1010 and S1030, and are not described again.
  • S1020 is similar to S320 in method 300, except that, optionally, S1020 includes:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the receiving capability of the receiving end; And N CB,max determines N CB , where N is the size of the first code block, N CB is N CB, and the value of max and N is one.
  • N CB,max is used to indicate the amount of buffered data of the receiving end in different situations
  • N CB,max is a value obtained based on the receiving capability of the receiving end in the first transmission time (the receiving capability of the receiving end may be limited in the first transmission time)
  • the sender uses the minimum value between N ref , N and N CB,max as the code block size (N CB ) used for rate matching, so that the amount of data actually transmitted in the channel does not exceed the processing capability of the receiving end and/or Or caching capability, so that processing capability overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N is greater than N CB,max , and the transmitting end can use N CB,max as the code block size used for rate matching ( N CB ).
  • the calculation method of N CB,max can be referred to the calculation method in the other embodiments below. At this point, it may not be necessary to obtain N ref as described in method 300.
  • the rate matching method provided by the embodiment of the present application is described in detail from the perspective of the transmitting end.
  • the following describes the de-rate matching method provided by the embodiment of the present application from the perspective of the receiving end.
  • FIG. 4 is a schematic diagram of a solution rate matching method provided by an embodiment of the present application.
  • the execution device of the method 400 shown in FIG. 4 is a receiving end, and the method 400 includes:
  • S410 Determine a receiving capability of the receiving end, where the receiving capability is used to indicate a maximum data processing amount of the receiving end in the first transmission time, and/or the receiving capability is used to indicate a maximum data buffer of the receiving end in the first transmission time.
  • the first transmission time is used to receive the first transport block.
  • the receiving capability may be the maximum value of the amount of data processed by the receiving end in a unit time, and the receiving end may calculate the maximum data processing amount of the receiving end in the first transmission time according to the maximum value of the data volume processed by the receiving end in the unit time, and receive
  • the capability may also be a maximum value of the amount of data that the receiving end can process in the first transmission time, and may also be other parameters for indicating the maximum data processing amount of the receiving end in the first transmission time.
  • the receiving capability is also It can be any parameter for indicating the maximum data buffer amount of the receiving end in the first transmission time, which is not limited in this application.
  • the first transmission time is the time of receiving the first transport block.
  • N CB is a code block size used when performing rate dematching.
  • N CB is a code block size that matches the receiving capability of the receiving end. For example, if the receiving capability of the receiving end is data that receives at most X bits in the first transmission time, then N CB is less than or equal to the value of X divided by Y, where Y The number of code blocks divided for the first transport block.
  • the transmitting end may perform de-rate matching on the first code block by selecting a modulation and coding parameter corresponding to the N CB from the MCS table.
  • de-rate matching method refer to the de-rate matching method in the prior art. This will not be repeated here.
  • the transmitting end may select a smaller code block for rate matching, improve the code rate, and reduce the first transmission time.
  • the amount of data transmitted avoids the processing capability overflow and/or buffer overflow at the receiving end, thereby improving the receiving success rate; or, when the receiving end has a strong receiving capability during the first transmission time, the transmitting end may select The large code block performs rate matching, and the code rate is lowered without exceeding the receiving capability of the receiving end, so as to obtain a higher receiving success rate.
  • the rate matching method provided in this embodiment can adjust the code block size used according to the processing capability and/or the buffering capability of the receiving end in a period of time (ie, the first transmission time) to avoid the processing capability of the receiving end. Overflow and/or buffer overflow, which improves the reception success rate at the receiving end.
  • S310 includes:
  • S (i) determine the receiving ability, wherein For the maximum data rate of carrier i, carrier i is used to transmit the first transport block, S (i) is the duration of the first transmission time of the first transport block, and the receiving capability of the receiving end is Positive correlation, and the receiving capability of the receiving end is positively correlated with S (i) .
  • S (i) defines the transmission duration of the data.
  • the combination of the two can obtain the maximum data that the receiver can process and buffer through carrier i during the first transmission time. Therefore, the receiving capability of the receiving end can be determined according to the maximum data rate of the carrier i and the duration of the first transmission time, for example, the receiving capability of the receiving end is used.
  • the receiving end's receiving capability To represent For the calculation method of S and ( S ) , reference may be made to the calculation method in the other embodiments below.
  • S410 includes:
  • S (i) determining the receiving capability of the receiving end, wherein
  • the maximum transmission block size that the carrier i can transmit in the second transmission time, S (i) is the duration of the first transmission time, which is called the first transmission duration, and the carrier i is used to transmit the first transmission block, and the receiving end receives Ability and Positive correlation, the receiving capability is positively correlated with the S (i) , and the second transmission time is used for determining
  • the receiving capability of the receiving end is inversely related to the second transmission time.
  • S (i) and the second transmission time are defined, for example, the receiving capability of the receiving end To indicate, or, the receiving end's receiving capability To indicate that S 2 (i) is the second transmission time. For example, if the second transmission time is 1ms, then The maximum transport block size that carrier i can transmit in 1 ms.
  • the minimum subcarrier spacing supported for carrier i is calculated according to the method described in section 5.1.3.2 of the communication standard document (3GPP TS 38.214 V F.1.0)
  • the length of the slot corresponding to the minimum subcarrier spacing supported by the second transmission time carrier i for example, the subcarrier spacing is 30 kHz, and the second transmission time length is 0.5 ms.
  • Can also be based on the maximum data rate of the carrier i at the receiving end Get, for example It can also be obtained according to the device type of the receiving end. For example, if the device type of the receiving end is LTE UE type (Category) 6, then S 2 (i) 1 milliseconds.
  • S420 includes:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the receiving capability of the receiving end; Ref , N and N CB,max determines N CB , where N ref is the first reference code block size, N is the size of the first code block, N CB is the smallest of N CB, max , N ref and N .
  • N ref and N CB,max are used to indicate the amount of buffered data of the receiving end in different cases, wherein N ref is a value obtained based on the unrestricted receiving capability of the receiving end, and N CB,max is based on the first transmission time.
  • the value obtained by the receiving end of the receiving end (the receiving capability of the receiving end may be limited in the first transmission time), and the receiving end uses the minimum value between N ref , N and N CB, max as the code used in the solution rate matching
  • the block size (N CB ) can make the amount of data actually processed and buffered in the first transmission time not exceed the receiving capability of the receiving end, thereby avoiding processing capability overflow and/or buffering when the receiving capability of the receiving end is limited. overflow.
  • N is greater than N ref
  • N ref is greater than N CB,max
  • the receiving end can use N CB,max as the de-rate matching.
  • the calculation method of N ref , N CB,max can be calculated according to the method described in section 5.4.2.1 of the communication standard document (3GPP TS 38.212 V F.1.0), and can be referred to the calculation method in the other embodiments below.
  • determining N CB,max according to the receiving capability includes:
  • N CB,max is determined according to U (i) and the receiving capability, where N CB,max is also positively correlated with U (i) , and U (i) is the transmission bandwidth value of the activated BWP of carrier i and all activated at the receiving end
  • the ratio of the sum of the transmission bandwidth values of the BWPs of the received carrier, and the carrier i is used to transmit the first transport block.
  • the transmitting end needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the transmission bandwidth value of the carrier i to the total bandwidth value of all activated receiving carriers, where the receiving end is on the carrier i.
  • the receiving capability is U (i) times the total receiving capability of the receiving end on multiple carriers.
  • S420 includes:
  • N' ref Determining N' ref according to the maximum data processing amount of the TBS LBRM and the carrier i in the first transmission time, where the TBS LBRM is the reference transport block size, the carrier i is used to transmit the first transport block, and N' ref is the second reference code
  • the block size, N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data processing amount, and the maximum data processing amount is Positively related to S (i) ,
  • S (i) is the duration of the transmitted time;
  • N CB is determined according to N and N r ' ef , where N is the size of the first code block and N CB is N' ref and N The value is one smaller.
  • the receiving end selects a minimum value from the maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, determines the reference code block size (N' ref ) according to the minimum value, and then compares The size of N' ref and N, one of the smaller values is selected as the code block size (N CB ) used in the first code block de-rate matching, so that the amount of data actually processed by the receiving end during the first transmission time is not The receiving capability of the receiving end is exceeded, so that processing capability overflow and/or buffer overflow may occur in the case where the receiving capability of the receiving end is limited.
  • TBS LBRM MIMO layers according to the maximum supported by the receiving end, the maximum modulation order and the maximum bit rate is calculated, may be calculated according to a communication standard document TBS LBRM method (3GPP TS 38.212 V F.1.0) as described in Section 5.4.2.1 .
  • a transmission bandwidth value BWP activated the U-(i) is a BWP transmission bandwidth values activated carrier i and the receiving end all active received carrier and the ratio.
  • the receiving end When the receiving end supports multiple carriers, the receiving end further needs to determine the receiving capability of the receiving end on the carrier i according to the ratio of the activated BWP transmission bandwidth value of the carrier i to the total bandwidth value of the activated BWP of all activated receiving carriers, wherein
  • the receiving capability of the receiving end on the carrier i is U (i) times the total receiving capability of the receiving end on the multiple carriers.
  • the foregoing optional method can avoid the processing capability overflow and/or buffering of the receiving end in the multi-carrier scenario. overflow.
  • the calculation method of U (i) can be referred to the following embodiment.
  • the first transport block is a high priority transport block
  • the first transport block includes C code blocks, where C is a positive integer, and each of the C code blocks has a size of N CB before rate matching.
  • the method 400 also includes:
  • the amount of buffered data occupied by the high-priority transport block is N CB ⁇ C; the maximum data buffer amount and high priority according to carrier i in the first transmission time
  • the amount of buffered data occupied by the level transport block determines the amount of remaining buffer data, the amount of remaining buffer data is equal to the maximum data buffer amount minus N CB ⁇ C, the carrier i is used to transmit the first transport block, and the remaining buffer data amount is used to buffer the low priority Data; determining N CB, lp , N CB, lp as the size of the code block of the low priority transport block when performing rate matching according to the amount of remaining buffer data, where N CB, lp are N lp , N ref , and N CB , Max, the minimum value in lp , N lp is the size of each code block of the low priority transport block, N ref is the first reference code block size
  • the receiving end may determine the code block size used by each TB in the solution rate matching according to the priority of the TB, and the high priority TB determines the code block size used in the solution rate matching according to the foregoing method, and determines After the high priority TB performs the buffer data amount required for the rate matching, the size of the code block (N CB, max, lp ) of the low priority TB that the carrier i can transmit is determined according to the current remaining buffer data amount, and the N is compared.
  • the amount of data actually processed does not exceed the receiving capability of the receiving end, thereby avoiding the processing capability overflow and/or buffer overflow of receiving the low priority TB in the case where the receiving capability of the receiving end is limited.
  • the method 400 further includes:
  • the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end.
  • the above solution can reduce the amount of data transmitted in the channel in time, so that the amount of data actually transmitted in the channel does not exceed the processing capability and/or the buffering capability of the receiving end.
  • the notification message further includes a recommended transmission rate, where the recommended transmission rate is a data transmission rate that matches the receiving capability of the receiving end.
  • the recommended transmission rate is a data transmission rate determined by the receiving end based on the receiving capability of the current first transmission time, and the transmitting end determines the code block size used in the rate matching according to the recommended transmission rate, so that the actual amount of data transmitted in the channel is not Exceed the processing power and/or cache capability of the receiving end.
  • the notification message is physical layer signaling or higher layer signaling or MAC layer signaling.
  • FIG. 11 includes S1110, S1120, and S1130.
  • the S1110 is the same as the S410 in the de-rate matching method 400 described above, and the S1130 is the same as the S430 in the method 400.
  • the specific implementations of S410 and S430 are also applicable to S1110 and S1130, and are not described again.
  • S1120 is similar to S420 in method 400, except that, optionally, S1120 includes:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the receiving capability of the receiving end; And N CB,max determines N CB , where N is the size of the first code block, N CB is N CB, and the value of max and N is one.
  • N CB,max is used to indicate the amount of buffered data of the receiving end in different situations
  • N CB,max is a value obtained based on the receiving capability of the receiving end in the first transmission time (the receiving capability of the receiving end may be limited in the first transmission time)
  • the sender uses the minimum value between N ref , N and N CB,max as the code block size (N CB ) used for rate matching, so that the amount of data actually transmitted in the channel does not exceed the processing capability of the receiving end and/or Or caching capability, so that processing capability overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N is greater than N CB,max , and the transmitting end can use N CB,max as the code block size used for rate matching ( N CB ).
  • the calculation method of N CB,max can be referred to the calculation method in the other embodiments below. At this point, it may not be necessary to obtain N ref as described in method 400.
  • the transmitting end calculates the code block size N CB used for rate matching according to the following manner, and the receiving end calculates the code block size N CB used for the de-rate matching according to the following manner.
  • the carrier described in this embodiment refers to the transmission.
  • the carrier of the first TB refers to the transmission.
  • Step 1 Calculate TBS LBRM and N ref using the method described in 5.4.2.1 of the Communication Standard (3GPP TS 38.212 V F.1.0).
  • Step 2 Calculate the maximum value of the size of a single code block that the receiving end can process in the first transmission time according to the receiving capability of the receiving end on the current carrier (ie, carrier i) and the first transmission time of the currently scheduled data. CB,max .
  • N is the coded block size after encoding.
  • N CB,max is calculated as follows:
  • N CB,max one of which is calculated as Express Do a rounding operation.
  • - f (i) is a scaling factor of CC i, which may be 1 or 0.75 or other numbers less than 1 and greater than 0.
  • the value may be reported by the terminal to the base station as a parameter indicating the receiving capability of the terminal.
  • OH (j) is a redundancy factor, depending on whether the current CC is uplink or downlink, and the frequency band in which it is located takes a different value.
  • OH (j) takes the following values:
  • S (i) represents the transmission time of the first transport block, and can be expressed by absolute time, for example, the real of the first transport block
  • Inter-transmission time Or it can be represented by the equivalent transmission time of the first transport block, for example one of the calculation methods is: among them:
  • N RE is the number of resource elements (RE elements) of a time slot, and takes different values according to different design parameters.
  • the sender or receiver determines the number of REs (N' RE ) allocated to a PRB, where Indicates that there are 12 subcarriers in the frequency domain of one PRB. Indicates the number of symbols of the physical channel carrying the current data, which can be 1-14. Indicates the number of REs included in a demodulation reference signal (DMRS) within a PRB within a scheduled time.
  • DMRS demodulation reference signal
  • the value may be 3-48 or other values. Is a parameter indicating an overhead, which takes one of ⁇ 0, 6, 12, 18 ⁇ . If the upper layer does not configure this parameter, then The value is 0.
  • S (i) is calculated as: among them:
  • the number of symbols in a time slot may be a fixed value such as 12, 14, 24, 28, etc., determined according to the current frame format.
  • the value of the n PRB may be a fixed value, for example, the maximum number of PRBs supported by each component carrier (CC), such as 273, or the maximum bandwidth of the current carrier according to the frequency band and bandwidth in which the CC operates.
  • n PRB 132.
  • the current scheduling data that is, the number of frequency domain PRBs of the first TB.
  • Another The implementation is: It can be calculated according to the maximum multiple-input multiple-output (MIMO) layer, the maximum modulation order, and the maximum code rate supported by the receiving end, and the maximum bandwidth of the carrier i is used as the maximum configuration BWP.
  • MIMO multiple-input multiple-output
  • the minimum subcarrier spacing supported for carrier i is calculated according to the method described in section 5.1.3.2 of the communication standard document (3GPP TS 38.214 V F.1.0)
  • the length of the slot corresponding to the minimum subcarrier spacing supported by the second transmission time carrier i for example, the subcarrier spacing is 30 kHz, and the second transmission time length is 0.5 ms.
  • the transmitting end calculates the code block size N CB used for rate matching according to the following manner, and the receiving end calculates the code block size N CB used for the de-rate matching according to the following manner.
  • the carrier described in this embodiment refers to the transmission.
  • the carrier of the first TB refers to the transmission.
  • Step 1 Calculate the maximum value of the size of a single code block that the receiving end can process in the first transmission time according to the receiving capability of the receiving end on the current carrier (ie, carrier i) and the first transmission time of the currently scheduled data. CB,max .
  • N is the coded block size after encoding
  • the calculation method of N CB,max is the same as that of N CB,max in the first embodiment, and will not be described again.
  • the transmitting end calculates the code block size N CB used for rate matching according to the following manner, and the receiving end calculates the code block size N CB used for the de-rate matching according to the following manner.
  • the carrier described in this embodiment refers to the transmission.
  • the carrier of the first TB refers to the transmission.
  • Step 1 Calculate the TBS LBRM using the method described in 5.4.2.1 of the Communication Standard (3GPP TS 38.212 V F.1.0).
  • Step 2 Calculate N ref ' according to the receiving end's receiving capability of the current carrier (ie, carrier i) and the first transmission time of the currently scheduled data, Express Do a rounding operation, where For the calculation method, refer to the first embodiment.
  • the implementation is: It can be calculated according to the maximum multiple-input multiple-output (MIMO) layer, the maximum modulation order, and the maximum code rate supported by the receiving end, and the maximum bandwidth of the carrier i is used as the maximum configuration BWP.
  • the minimum subcarrier spacing supported for carrier i is calculated according to the method described in section 5.1.3.2 of the communication standard document (3GPP TS 38.214 V F.1.0)
  • the length of the slot corresponding to the minimum subcarrier spacing supported by the second transmission time carrier i for example, the subcarrier spacing is 30 kHz, and the second transmission time length is 0.5 ms.
  • the first embodiment, the second embodiment and the third embodiment only consider the case of a single carrier. If the receiving end supports the multi-carrier, the N CB is further calculated according to the total maximum data rate of the receiving end and the scheduling duration of all the currently scheduled TBs. For example, for the multi-carrier:
  • Step 1 Calculate TBS LBRM and N ref using the method described in 5.4.2.1 of the Communication Standard (3GPP TS 38.212 V F.1.0).
  • Step 2 Calculate, according to the receiving capability of the receiving end on the current carrier (ie, carrier i) and the first transmission time of the currently scheduled data, calculate a single code block that the receiving end can process in the first transmission time and on the current carrier.
  • the maximum size of the size N CB,max The maximum size of the size N CB,max .
  • P max is the total maximum data rate that the receiver can handle
  • the BWP (i) is the bandwidth part (BWP ) of the current transmission carrier i
  • K active is the total number of activated BWPs of all currently activated receiving carriers at the receiving end
  • the BWP (k) is the transmission carrier i.
  • the currently scheduled BWP bandwidth In the above formula of P max , the value of j may be i.
  • N is the coded block size after encoding.
  • the first embodiment, the second embodiment and the third embodiment only consider the case of a single carrier. If the receiving end supports the multi-carrier, the N CB is further calculated according to the total maximum data rate of the receiving end and the scheduling duration of all the currently scheduled TBs. For example, for the multi-carrier:
  • Step 1 Calculate, according to the receiving capability of the receiving end on the current carrier (ie, carrier i) and the first transmission time of the currently scheduled data, calculate a single code block that the receiving end can process in the first transmission time and on the current carrier.
  • the maximum size of the size N CB,max The maximum size of the size N CB,max .
  • P max is the total maximum data rate that the receiver can handle
  • the BWP (i) is the bandwidth part (BWP ) of the current transmission carrier i
  • K active is the total number of activated BWPs of all currently activated receiving carriers at the receiving end
  • the BWP (k) is the transmission carrier i.
  • the currently scheduled BWP bandwidth In the above formula of P max , the value of j may be i.
  • N is the coded block size after encoding.
  • the transmitting end and the receiving end may further determine the code block size used by the different TB code blocks in rate matching according to different priorities of the TB, and ensure high priority services (high priority) Level TB) can be transmitted at a lower code rate.
  • Step 1 Calculate TBS LBRM and N ref using the method described in 5.4.2.1 of the Communication Standard (3GPP TS 38.212 V F.1.0).
  • Step 2 Calculate the maximum data amount N CB,max that the carrier i can process in the first transmission time of the current data according to the receiving capability of the receiving end and the first transmission time of the currently scheduled data.
  • P max is the total maximum data rate that the receiver can handle
  • S (i) is calculated with the same method as in the first embodiment S (i) calculation method.
  • the value of j may be i.
  • N is the coded block size after encoding.
  • the transmitting end and the receiving end may further determine the code block size used by the different TB code blocks in rate matching according to different priorities of the TB, and ensure high priority services (high priority) Level TB) can be transmitted at a lower code rate.
  • Step 1 Calculate the maximum data amount N CB,max that the carrier i can process in the first transmission time of the current data according to the receiving capability of the receiving end and the first transmission time of the currently scheduled data.
  • P max is the total maximum data rate that the receiver can handle
  • S (i) is calculated with the same method as in the first embodiment S (i) calculation method.
  • the value of j may be i.
  • N is the coded block size after encoding.
  • the remaining resources after high-priority scheduling are used for transmission.
  • the remaining resources after use are P max ⁇ S (i) /R LBRM -C hp ⁇ N CB,hp , specific:
  • Step 1 Calculate TBS LBRM and N ref using the method described in 5.4.2.1 of the Communication Standard (3GPP TS 38.212 V F.1.0).
  • Step 2 Calculate the maximum data amount N CB,max that the transmission carrier can process in the first transmission time of the current data according to the receiving capability of the receiving end and the first transmission time of the currently scheduled data.
  • One of the calculation methods is Express Do a rounding operation.
  • N is the coded block size after encoding.
  • the remaining resources after high-priority scheduling are used for transmission.
  • the remaining resources after use are P max ⁇ S (i) /R LBRM -C hp ⁇ N CB,hp , specific:
  • Step 1 Calculate the maximum data amount N CB,max that the transmission carrier can process in the first transmission time of the current data according to the receiving capability of the receiving end and the first transmission time of the currently scheduled data.
  • One of the calculation methods is Express Do a rounding operation.
  • the “carrier” may also be referred to as “cell”, and the two are equivalent in the present application.
  • N is the coded block size after encoding.
  • FIG. 5 is a schematic structural diagram of a rate matching apparatus according to an embodiment of the present application.
  • the apparatus 500 includes:
  • the processing unit 510 is configured to determine a receiving capability of the receiving end, where the receiving capability is used to indicate a maximum data processing amount of the receiving end in the first transmission time, and/or the receiving capability is used to indicate that the receiving end is in the first transmission time.
  • the maximum data buffer amount, the first transmission time is used to transmit the first transport block to which the first code block belongs;
  • the processing unit 510 is further configured to: determine N CB according to the receiving capability, where N CB is a code block size used for performing rate matching;
  • the processing unit 510 is further configured to perform rate matching on the first code block according to the N CB .
  • processing unit 510 is specifically configured to:
  • S (i) determining the receiving capability of the receiving end, wherein For the maximum data rate of carrier i, carrier i is used to transmit the first transport block, S (i) is the duration of the first transmission time, and the receiving capability is Positive correlation, and the receiving ability is positively correlated with S (i) .
  • processing unit 510 is specifically configured to:
  • S (i) determine the receiving ability, wherein For the size of the largest transport block that carrier i can transmit during the second transmission time, S (i) is the duration of the first transmission time, carrier i is used to transmit the first transport block, and the receiving capability is Positive correlation, and the receiving ability is positively correlated with S (i) .
  • processing unit 510 is further configured to:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the received capability;
  • N is a first reference REF code block size
  • N is the size of the first code block
  • N is the CB N CB, max, N ref and N The smallest one.
  • processing unit 510 is further configured to:
  • N CB,max is determined according to U (i) and the receiving capability, where N CB,max is also positively correlated with U (i) , and U (i) is the transmission bandwidth value of the activated BWP of carrier i and all activated at the receiving end
  • the ratio of the sum of the transmission bandwidth values of the activated BWPs of the received carrier, and the carrier i is used to transmit the first transport block.
  • processing unit 510 is further configured to:
  • N' ref Determining N' ref according to the maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, wherein the TBS LBRM is the reference transmission block size, the carrier i is used for transmitting the first transmission block, and N' ref is the second reference code
  • the block size, N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data transfer amount, and the maximum data transfer amount is Positively related to S (i) , For the maximum data rate of carrier i, S (i) is the duration of the first transmission time;
  • N CB is determined according to N and N' ref , where N is the size of the first code block, and N CB is one of N' ref and N.
  • the maximum amount of data transmission is also the U-(i) positively associated with the transmission bandwidth value BWP activated the U-(i) a transmission bandwidth value BWP activated carrier i and the receiving end all active received carrier The ratio of and.
  • the apparatus 500 may further include other units, for example, a receiving unit and a sending unit, where the receiving unit is configured to receive a notification message from the receiving end, where the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end; For reducing the size of data transmitted per unit time according to the communication message.
  • a receiving unit and a sending unit where the receiving unit is configured to receive a notification message from the receiving end, where the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end; For reducing the size of data transmitted per unit time according to the communication message.
  • the notification message further includes a recommended transmission rate, which is a data transmission rate that matches the receiving capability of the receiving end.
  • the notification message is physical layer signaling or higher layer signaling or MAC layer signaling.
  • each unit described above is only a functional division, and there may be other division methods in actual implementation, for example, the transmission unit and the reception unit are located in one communication module.
  • FIG. 12 includes a processing unit 1210.
  • the processing unit 1210 is similar to the processing unit 510 in the rate matching device 500 described above, except that, optionally, the processing unit 1210 is further configured to:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the receiving capability of the receiving end; And N CB,max determines N CB , where N is the size of the first code block, N CB is N CB, and the value of max and N is one.
  • N CB,max is used to indicate the amount of buffered data of the receiving end in different situations
  • N CB,max is a value obtained based on the receiving capability of the receiving end in the first transmission time (the receiving capability of the receiving end may be limited in the first transmission time)
  • the sender uses the minimum value between N ref , N and N CB,max as the code block size (N CB ) used for rate matching, so that the amount of data actually transmitted in the channel does not exceed the processing capability of the receiving end and/or Or caching capability, so that processing capability overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N is greater than N CB,max , and the transmitting end can use N CB,max as the code block size used for rate matching ( N CB ).
  • the calculation method of N CB,max can be referred to the calculation method in the other embodiments below. At this time, it is not necessary to acquire N ref as described in the device 500.
  • processing unit 510 is equally applicable to the processing unit 1210 and will not be described again.
  • FIG. 6 is a schematic structural diagram of a de-rate matching device according to an embodiment of the present application.
  • the device 600 includes: a processing unit 610, where
  • the processing unit 610 is configured to determine a receiving capability of the receiving end, where the receiving capability is used to indicate a maximum data processing amount of the receiving end in the first transmission time, and/or the receiving capability is used to indicate that the receiving end is within the first transmission time. a maximum data buffer amount, where the first transmission time is used to receive the first transport block to which the first code block belongs;
  • the processing unit 610 is further configured to: determine N CB according to the receiving capability, where N CB is a code block size used when performing rate dematching;
  • the processing unit 610 is further configured to perform rate de-matching on the first code block according to the N CB .
  • processing unit 610 is specifically configured to:
  • S (i) determining the receiving capability of the receiving end, wherein For the maximum data rate of carrier i, carrier i is used to transmit the first transport block, S (i) is the duration of the first transmission time, and the receiving capability is Positive correlation, and the receiving ability is positively correlated with S (i) .
  • processing unit 610 is specifically configured to:
  • S (i) determine the receiving ability, wherein For the size of the largest transport block that carrier i can transmit during the second transmission time, S (i) is the duration of the first transmission time, carrier i is used to transmit the first transport block, and the receiving capability is Positive correlation, and the receiving ability is positively correlated with S (i) .
  • processing unit 610 is further configured to:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the received capability;
  • N is a first reference REF code block size
  • N is the size of the first code block
  • N is the CB N CB, max, N ref and N The smallest one.
  • processing unit 610 is further configured to:
  • N CB,max is determined according to U (i) and the receiving capability, where N CB,max is also positively correlated with U (i) , and U (i) is the transmission bandwidth value of the activated BWP of carrier i and all activated at the receiving end
  • the ratio of the sum of the transmission bandwidth values of the activated BWPs of the received carrier, and the carrier i is used to transmit the first transport block.
  • processing unit 610 is further configured to:
  • N' ref Determining N' ref according to the maximum data transmission amount of the TBS LBRM and the carrier i in the first transmission time, wherein the TBS LBRM is the reference transmission block size, the carrier i is used for transmitting the first transmission block, and N' ref is the second reference code
  • the block size, N' ref is positively correlated with the minimum of the TBS LBRM and the maximum data transfer amount, and the maximum data transfer amount is Positively related to S (i) , For the maximum data rate of carrier i, S (i) is the duration of the first transmission time;
  • N CB is determined according to N and N' ref , where N is the size of the first code block, and N CB is one of N' ref and N.
  • the maximum amount of data transmission is also the U-(i) positively associated with the transmission bandwidth value BWP activated the U-(i) a transmission bandwidth value BWP activated carrier i and the receiving end all active received carrier The ratio of and.
  • the device 600 may further include other units, for example, a sending unit, configured to send a notification message to the sending end, where the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end.
  • a sending unit configured to send a notification message to the sending end, where the notification message is used to indicate that the size of the data received by the receiving end exceeds the receiving capability of the receiving end.
  • the notification message further includes a recommended transmission rate, where the recommended transmission rate is a data transmission rate that matches the receiving capability of the receiving end.
  • the notification message is physical layer signaling or higher layer signaling or MAC layer signaling.
  • the rate matching device and the de-rate matching device may be a chip, and the processing unit may be implemented by hardware or by software.
  • the processing unit may be a logic circuit, an integrated circuit, etc.;
  • the processing unit may be implemented by reading a software code stored in the storage unit, and the storage unit may be integrated in the processor or may exist independently of the processor.
  • FIG. 13 which includes a processing unit 1310.
  • the processing unit 1310 is similar to the processing unit 610 in the de-rate matching device 600 described above, except that the processing unit 1310 is further configured to:
  • N CB,max , N CB,max is the maximum value of the size of a single code block that the receiving end can process in the first transmission time, and N CB,max is positively correlated with the receiving capability of the receiving end; And N CB,max determines N CB , where N is the size of the first code block, N CB is N CB, and the value of max and N is one.
  • N CB,max is used to indicate the amount of buffered data of the receiving end in different situations
  • N CB,max is a value obtained based on the receiving capability of the receiving end in the first transmission time (the receiving capability of the receiving end may be limited in the first transmission time)
  • the sender uses the minimum value between N ref , N and N CB,max as the code block size (N CB ) used for rate matching, so that the amount of data actually transmitted in the channel does not exceed the processing capability of the receiving end and/or Or caching capability, so that processing capability overflow and/or buffer overflow can be avoided if the receiving capability of the receiving end is limited.
  • N is greater than N CB,max , and the transmitting end can use N CB,max as the code block size used for rate matching ( N CB ).
  • the calculation method of N CB,max can be referred to the calculation method in the other embodiments below. At this time, it is not necessary to acquire N ref as described in the device 600.
  • processing unit 610 is also applicable to the processing unit 1310, and details are not described herein again.
  • the sending end and the receiving end provided by the embodiment of the present application are further described below by taking the sending end as the access network device and the receiving end as the terminal device as an example.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device can be applied to the communication system shown in FIG. 1 to perform the function of the receiving end in the above method embodiment.
  • FIG. 7 shows only the main components of the terminal device.
  • the terminal device 70 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and the communication data, and controlling the entire terminal device, executing the software program, and processing the data of the software program, for example, for supporting the terminal device to perform the actions described in the foregoing method embodiments, such as Determining the receiving capability of the receiving end, determining N CB according to the receiving capability, and performing rate matching on the first code block according to the N CB .
  • the memory is mainly used to store software programs and data, such as storing the first transport block and the first code block described in the above embodiments.
  • the control circuit is mainly used for converting baseband signals and radio frequency signals and processing radio frequency signals.
  • the control circuit together with the antenna can also be called a transceiver, and is mainly used for transmitting and receiving RF signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are primarily used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal, and then sends the radio frequency signal to the outside through the antenna in the form of electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor, which converts the baseband signal into data and processes the data.
  • FIG. 7 shows only one memory and one processor for ease of illustration. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be referred to as a storage medium or a storage device, and the like.
  • the processor may include a baseband processor and/or a central processing unit, and the baseband processor is mainly used to process a communication protocol and communication data, and the central processing unit is mainly used to control the entire terminal device. Execute software programs to process data from software programs.
  • the processor in FIG. 7 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and interconnected by technologies such as a bus.
  • the terminal device may include a plurality of baseband processors to accommodate different network standards, and the terminal device may include a plurality of central processors to enhance its processing capabilities, and various components of the terminal devices may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the functions of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transceiving function can be regarded as the transceiving unit 701 of the terminal device 70, for example, for supporting the terminal device to perform the receiving function and the transmitting function as described in the method 400.
  • the processor having the processing function is regarded as the processing unit 702 of the terminal device 70.
  • the terminal device 70 includes a transceiver unit 701 and a processing unit 702.
  • the transceiver unit can also be referred to as a transceiver, a transceiver, a transceiver, and the like.
  • the device for implementing the receiving function in the transceiver unit 701 can be regarded as a receiving unit, and the device for implementing the sending function in the transceiver unit 701 is regarded as a sending unit, that is, the transceiver unit 701 includes a receiving unit and a sending unit.
  • the receiving unit may also be referred to as a receiver, an input port, a receiving circuit, etc.
  • the transmitting unit may be referred to as a transmitter, a transmitter, or a transmitting circuit or the like.
  • the transceiver unit 701 may not include an antenna, but only includes a circuit portion such that the antenna is externally disposed to the transceiver unit.
  • the processor 702 can be configured to execute the instructions stored in the memory to control the transceiver unit 701 to receive signals and/or transmit signals to complete the functions of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 701 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 702 controls the transceiver unit 701 to implement the reception. Therefore, the processor 702 is a signal transceiving decision maker and initiates a data transceiving operation, and the transceiving unit 701 is an executor of signal transceiving.
  • FIG. 8 is a schematic structural diagram of an access network device according to an embodiment of the present application, where the access network device may be, for example, a base station.
  • the base station can be applied to the communication system shown in FIG. 1, and performs the function of the transmitting end in the foregoing method embodiment.
  • the base station 80 can include one or more radio frequency units, such as a remote radio unit (RRU) 801 and one or more baseband units (BBUs) (also referred to as digital units (DUs)). ) 802.
  • RRU remote radio unit
  • BBUs baseband units
  • DUs digital units
  • the RRU 801 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 8011 and a radio frequency unit 8012.
  • the RRU 801 is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for transmitting the first code block in the foregoing method embodiment.
  • the BBU 802 part is mainly used for performing baseband processing, controlling a base station, and the like.
  • the RRU 801 and the BBU 802 may be physically disposed together or physically separated, that is, distributed base stations.
  • the BBU 802 is a control center of a base station, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU (processing unit) 802 can be used to control the base station to perform an operation procedure about the network device in the foregoing method embodiment.
  • the BBU 802 may be composed of one or more boards, and multiple boards may jointly support a single access indication radio access network (such as a long term evolution (LTE) network). It is also possible to separately support radio access networks (such as LTE networks, 5G networks, or other networks) of different access systems.
  • the BBU 802 also includes a memory 8021 and a processor 8022 for storing the necessary instructions and data.
  • the memory 8021 stores the first code block in the above method embodiment.
  • the processor 8022 is configured to control a base station to perform necessary actions, for example, to control a base station to perform an operation procedure of the network device in the foregoing method embodiment.
  • the memory 8021 and the processor 8022 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • FIG. 9 shows a schematic structural diagram of a communication device 900.
  • the device 900 can be used to perform the steps of the method described in the foregoing method embodiments, and can be referred to the description in the foregoing method embodiments.
  • the communication device 900 can be a chip, an access network device (such as a base station), a terminal device or other communication device, and the like.
  • the communication device 900 includes one or more processors 901.
  • the processor 901 can be a general purpose processor or a dedicated processor or the like.
  • it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (eg, base stations, terminals, or chips, etc.), execute software programs, and process data of the software programs.
  • the communication device may include a transceiver unit for implementing input (reception) and output (transmission) of signals.
  • the communication device can be a chip, and the transceiver unit can be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for a terminal or base station or other communication device.
  • the communication device can be a terminal or a base station or other communication device, and the transceiver unit can be a transceiver, a radio frequency chip, or the like.
  • the communication device 900 includes one or more of the processors 901, which may implement the functions of the execution device of the method of the embodiment illustrated in Figures 3 and/or 4.
  • the communication device 900 includes means for rate matching the first code block and means for transmitting the first code block.
  • the function of the rate matching component for the first code block can be implemented by one or more processors and transmitted through the transceiver, or the input/output circuit, or the interface of the chip.
  • the communication device 900 includes means for de-rate matching the first code block, and means for receiving the first code block.
  • the function of the means for de-rate matching the first code block may be implemented by one or more processors and the first code block is received by a transceiver, or an input/output circuit, or an interface of the chip.
  • processor 901 can implement other functions in addition to implementing the functions of the embodiment shown in FIG. 3 and/or FIG.
  • the processor 901 can execute instructions such that the communication device 900 performs the steps described in the above method embodiments.
  • the instructions may be stored in whole or in part in the processor, such as instruction 903, or may be stored in whole or in part in memory 902 coupled to the processor, such as instruction 904, or may be made by instructions 903 and 904.
  • the communication device 900 performs the steps described in the above method embodiments.
  • the communication device 900 can also include circuitry that can implement the functionality of the network device or terminal device in the foregoing method embodiments.
  • communication device 900 can include one or more memories 902 having instructions 904 stored thereon that can be executed on the processor such that communication device 900 performs the above Method described in the method embodiments.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the one or more memories 902 may store the corresponding relationships described in the above embodiments, or related parameters or tables or the like involved in the above embodiments.
  • the processor and the memory may be provided separately or integrated.
  • the communication device 900 may further include a transceiver unit 905 and an antenna 906.
  • the processor 901 may also be referred to as a processing unit to control a communication device (terminal or base station).
  • the transceiver unit 905 can be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device through the antenna 906.
  • the application also provides a communication system comprising one or more of the aforementioned access network devices, and one or more terminal devices.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiment may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM double data rate synchronous DRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronously connected dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the present application also provides a computer readable medium having stored thereon a computer program that, when executed by a computer, implements the functions of any of the method embodiments described above.
  • the application also provides a computer program product that, when executed by a computer, implements the functions of any of the method embodiments described above.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a high-density digital video disc (DVD)), or a semiconductor medium (eg, a solid state disk, SSD)) and so on.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • system and “network” are used interchangeably herein.
  • network and/or in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc typically uses magnetism to replicate data, and The disc uses a laser to copy the data. Combinations of the above should also be included within the scope of the computer readable media.

Abstract

一种速率匹配方法和装置,该方法包括:确定接收端的接收能力,该接收能力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于传输第一码块所属的第一传输块(S310);根据接收能力确定N CB,N CB为进行速率匹配时使用的码块大小(S320);根据N CB对第一码块进行速率匹配(S330)。所述的速率匹配方法,接收端能够根据接收端在一段时间内的处理能力和/或缓存能力调整解速率匹配使用的码块大小,避免接收端出现处理能力溢出和/或缓存溢出,从而提高了接收端的接收成功率。

Description

速率匹配的方法和装置,以及解速率匹配的方法和装置
本申请要求于2018年4月18日提交中国国家知识产权局、申请号为201810351167.0、申请名称为“速率匹配的方法和装置,以及解速率匹配的方法和装置”的中国专利申请的优先权,其要求于2018年4月16日提交中国国家知识产权局、申请号为201810339728.5、申请名称为“速率匹配的方法和装置,以及解速率匹配的方法和装置”的中国专利申请的优先权,上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种速率匹配的方法和装置,以及一种解速率匹配的方法和装置。
背景技术
在无线通信系统中,为了提升通信可靠性,通常采用信道编码(简称为“编码”)的方式降低传输码率以提升可靠性,假设信息比特为K,经过译码后得到的数据的比特为N,N大于等于K,K-N比特称为冗余比特,这样有效的码率为K/N。发送端将译码后的N比特码字送给接收端,接收端收到N比特码字后,采用一定的译码方式,校正传输过程中的错误码字,恢复正确的K比特码字。
编码前的数据块称为传输块(transport block,TB),由于TB的比特数较大,所以发送端通常会将一个TB拆分为多个码块(code block,CB),每个CB单独编码,由于用来传输码块的物理资源与待传输的码块物理时频资源可能不一致,故需要对待传输的码块进行比特重发或者打孔,以匹配物理时频资源的承受能力,这个过程称为速率匹配,所以多个编码后的CB需要经过速率匹配后,再进行交织、级联等处理后作为一个物理的数据块(码字)传输至接收端。
在第五代(5th-generation,5G)移动通信系统中,TB在一个载波上的第一传输时间会根据子载波间隔的变化发生变化,并且,TB的调度时间(分配给TB的时域资源)也灵活多变,而接收端在单位时间内能够处理的数据量的最大值是固定的,并且,接收端能够缓存的数据量也是固定的,因此,5G移动通信系统中发送端在调度时间内传输的数据量有可能会超出接收端在该调度时间内的处理能力和缓存能力,导致接收端出现处理能力溢出或缓存溢出,从而降低了接收端的接收成功率。
发明内容
本申请提供了一种速率匹配方法和计算装置以及一种解速率匹配方法和装置,根据接收端在调度时间内的处理能力和/或缓存能力确定速率匹配参数,避免了接收端出现处理能力溢出和/或缓存溢出,从而提高了接收端的接收成功率。
第一方面,提供了一种速率匹配方法,包括:确定接收端的接收能力,该接收能 力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于传输第一码块所属的第一传输块;根据接收能力确定N CB,N CB为进行速率匹配时使用的码块大小;根据N CB对第一码块进行速率匹配。
例如,当接收端在该第一传输时间内的接收能力较差时,接收端可以选择较小的码块进行解速率匹配,减小了第一传输时间内处理和/或缓存的数据量,避免了接收端出现处理能力溢出和/或缓存溢出,从而提高了接收成功率;又例如,当接收端在该第一传输时间内的接收能力较强时,接收端可以选择较大的码块进行解速率匹配,在不超出接收端的接收能力的前提下降低码率,以便获得更高的接收成功率。
因此,本实施例提供的速率匹配方法,接收端能够根据接收端在一段时间(即,第一传输时间)内的处理能力和/或缓存能力调整解速率匹配使用的码块大小,避免接收端出现处理能力溢出和/或缓存溢出,从而提高了接收端的接收成功率。
可选地,确定接收端的接收能力,包括:
根据
Figure PCTCN2019082636-appb-000001
和S (i)确定接收能力,其中,
Figure PCTCN2019082636-appb-000002
为载波i的最大数据速率,也称为载波的峰值速率,或者最大传输速率,载波i用于传输第一传输块,S (i)为第一传输块的第一传输时间的时长,称为第一传输时长,接收端的接收能力与
Figure PCTCN2019082636-appb-000003
正相关,并且,接收端的接收能力与S (i)正相关。
Figure PCTCN2019082636-appb-000004
定义了载波i能够在单位时间内能够传输的最大数据量,这里的传输,包括发送和接收,对于发送端,还可以是最大发送速率,对于接收端,还可以称为最大接收速率,S (i)定义了数据的传输时长,二者结合可以获得接收端在第一传输时间内通过载波i能够处理并缓存的最大数据量,因此,可以根据载波i的最大数据速率和第一传输时间的时长确定接收端的接收能力,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000005
来表示,或者,接收端的接收能力用
Figure PCTCN2019082636-appb-000006
来表示,其中,R LBRM为速率匹配因子,取值为小于1的正数,例如R LBRM=2/3。接收端的最大缓存数据量与
Figure PCTCN2019082636-appb-000007
正相关。这里的传输时间,也包含了发送时长和接收时长两个概念,对于发送端,是发送时长,对于接收端,是接收时长,二者相等,本发明不做明显区分。
可选地,确定接收端的接收能力,包括:根据
Figure PCTCN2019082636-appb-000008
和S (i)确定接收端的接收能力,其中,
Figure PCTCN2019082636-appb-000009
为载波i在第二传输时长内能够传输的最大传输块的大小,S (i)为第一传输块的传输时间的时长,称为第一传输时长,载波i用于传输所述第一传输块,接收端的接收能力与
Figure PCTCN2019082636-appb-000010
正相关,接收能力与所述S (i)正相关,所述第二传输时间为确定所述
Figure PCTCN2019082636-appb-000011
时采用的传输时长,接收能力与第二传输时间的倒数正相关。第一传输时长与第二传输时长可以相等也可以不相等。
Figure PCTCN2019082636-appb-000012
定义了载波i能够在第二传输时间内传输的最大传输块大小,
Figure PCTCN2019082636-appb-000013
越大,说明在相同时间内传输载波i传输的数据量越多,在传输的数据量相同的前提下第二传输时间越短,说明接收端在单位时间内处理的数据量越大,因此,
Figure PCTCN2019082636-appb-000014
越大,接收端的接收能力越大,第二传输时间越小,接收端的接收能力越大,
Figure PCTCN2019082636-appb-000015
除以第二传输时间,则等效为接收端的峰值速率。因此,可以用
Figure PCTCN2019082636-appb-000016
S (i)和第二传输时间来定义,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000017
来定义,其中S 2 (i)为第二传输时间。
可选地,根据接收能力确定N CB,包括:根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N ref、N和N CB,max确定N CB,其中,N ref为第一参考码块大小,N为第一码块的大小,N CB为N CB,max、N ref和N中数值最小的一个。N ref和N CB,max用于指示不同情况下接收端的缓存数据量或者数据处理量,其中,N ref是基于接收端的接收能力未受限的情况下得到的值,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N ref、N和N CB,max三者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N ref,N ref大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。
根据接收能力确定N CB,包括:根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N和N CB,max确定N CB,其中,N为第一码块的大小,N CB为N CB,max和N中数值小的一个。N CB,max用于指示接收端的缓存数据量或者数据处理量,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N和N CB,max二者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。
可选地,根据接收能力确定N CB,max,包括:根据U (i)和接收能力确定N CB,max,其中,N CB,max还与U (i)正相关,U (i)为载波i的激活的部分带宽BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值,载波i用于传输第一传输块。
当接收端支持多载波时,发送端还需要根据载波i的传输带宽值占全部已激活接收载波的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。
可选地,根据接收能力确定N CB,包括:根据TBS LBRM和载波i在第一传输时间内的最大数据处理量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据处理量二者中的最小值正相关,最大数据处理量与
Figure PCTCN2019082636-appb-000018
和S (i)正相关,
Figure PCTCN2019082636-appb-000019
为载波i的最大数据速率,S (i)为所述第一传输时间的时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
可选地,根据接收能力确定N CB,包括:根据TBS LBRM和载波i在第一传输时间内 的最大数据传输量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据传输量二者中的最小值正相关,最大数据传输量与
Figure PCTCN2019082636-appb-000020
和S (i)正相关,且与第二传输时长的倒数正相关,
Figure PCTCN2019082636-appb-000021
为载波i能够在第二传输时间内传输的最大传输块的大小,S (i)为所述第一传输时间的时长,称为第一传输时长,第二传输时长为确定所述
Figure PCTCN2019082636-appb-000022
时采用的第二传输时间的时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
在该可选的方案中,发送端从TBS LBRM和载波i在第一传输时间内的最大数据处理量或最大数据传输量中选择一个最小值,根据该最小值确定参考码块大小(N′ ref),随后比较N' ref与N的大小,选择其中一个较小的值作为第一码块速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。
可选地,最大数据处理量还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活地BWP的传输带宽值的和的比值。
当接收端支持多载波时,发送端还需要根据载波i的激活的BWP的传输带宽值占全部激活的接收载波的激活的BWP的传输带宽值的和的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。
可选地,第一传输块为高优先级传输块,第一传输块包括的C个码块,C为正整数,C个码块中每个码块在速率匹配前的大小为N CB,所述方法还包括:根据C和N CB确定高优先级传输块占用的缓存数据量或处理数据量,高优先级传输块占用的缓存数据量为N CB·C;根据载波i在第一传输时间内的最大数据缓存量和高优先级传输块占用的缓存数据量确定剩余缓存数据量,剩余缓存数据量等于最大数据缓存量减去N CB·C,载波i用于传输第一传输块,剩余缓存数据量用于缓存低优先级数据;根据剩余缓存数据量确定N CB,lp,N CB,lp为低优先级传输块的码块在进行速率匹配时的大小,其中,N CB,lp为N lp、N ref和N CB,max,lp中的最小值,N lp为低优先级传输块的每个码块的大小,N ref为第一参考码块大小,N CB,max,lp为基于剩余缓存数据量确定的、载波i能够传输的、用于进行速率匹配的码块的数据量的最大值;根据N CB,lp对低优先级传输块的码块进行速率匹配。
当多个TB需要同时传输时,发送端可以根据TB的优先级确定各个TB的码率匹配参数,高优先级的TB按照前述方法确定速率匹配参数,确定了高优先级的TB占用的缓存数据量后,根据当前剩余的缓存资源或数据处理资源确定载波i能够传输的低优先级TB的码块的大小(N CB,max,lp),并对比N CB,max,lp、N lp和N ref的大小,从中选择一个最小值作为低优先级TB的码块的速率匹配码块值(N CB,lp),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下接收低优先级TB出现处理能力溢出和/或缓存溢出。
可选地,所述方法还包括:接收来自接收端的通知消息,该通知消息用于指示接收端接收到的数据的大小超出了接收端的接收能力;根据通知消息减小单位时间内发送的数据的大小。
上述方案可以及时减小信道中传输的数据量,使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,通知消息还包括建议传输速率,该建议传输速率为与接收端的接收能力相匹配的数据传输速率。
建议传输速率为接收端基于当前第一传输时间内的接收能力确定的数据传输速率,发送端根据该建议传输速率确定速率匹配时使用的码块大小,从而可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,通知消息为物理层信令或高层信令或介质访问控制(media access control,MAC)层信令。
第二方面,提供了一种解速率匹配方法,包括:确定接收端的接收能力,该接收能力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于接收第一传输块;根据接收能力确定N CB,N CB为进行解速率匹配时使用的码块大小;根据N CB对第一传输块进行解速率匹配。对于接收端而言,传输时间也可以认为是接收时间。
例如,当接收端在该第一传输时间内的接收能力较差时,接收端可以选择较小的码块进行解速率匹配,减小了第一传输时间内处理和/或缓存的数据量,避免了接收端出现处理能力溢出和/或缓存溢出,从而提高了接收成功率;又例如,当接收端在该第一传输时间内的接收能力较强时,接收端可以选择较大的码块进行解速率匹配,在不超出接收端的接收能力的前提下降低码率,以便获得更高的接收成功率。
因此,本实施例提供的速率匹配方法,接收端能够根据接收端在一段时间(即,第一传输时间)内的处理能力和/或缓存能力调整解速率匹配使用的码块大小,避免接收端出现处理能力溢出和/或缓存溢出,从而提高了接收端的接收成功率。
可选地,确定接收端的接收能力,包括:根据
Figure PCTCN2019082636-appb-000023
和S (i)确定接收能力,其中,
Figure PCTCN2019082636-appb-000024
为载波i的最大数据速率,载波i用于传输第一传输块,S (i)为第一传输块的第一传输时间的时长,称为第一传输时长,接收端的接收能力与
Figure PCTCN2019082636-appb-000025
正相关,并且,接收端的接收能力与S (i)正相关。
Figure PCTCN2019082636-appb-000026
定义了载波i能够在单位时间内能够处理的最大数据量,S (i)定义了数据的传输时长,二者结合可以获得接收端在第一传输时间内通过载波i能够处理并缓存的最大数据量,因此,可以根据载波i的最大数据速率和第一传输时间的时长确定接收端的接收能力,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000027
来表示,或者,接收能力用
Figure PCTCN2019082636-appb-000028
来表示。
可选地,确定接收端的接收能力,包括:
根据
Figure PCTCN2019082636-appb-000029
和S (i)确定接收端的接收能力,其中,
Figure PCTCN2019082636-appb-000030
为载波i在第二传输时长内能够传输的最大传输块的大小,S (i)为第一传输块的传输时间的时长,称为第一传输时长,载波i用于传输所述第一传输块,接收端的接收能力与
Figure PCTCN2019082636-appb-000031
正相关,接收能力与所述S (i)正相关,所述第二传输时间为确定所述
Figure PCTCN2019082636-appb-000032
时采用的传输时长,接收能 力与第二传输时间的倒数正相关。第一传输时长与第二传输时长可以相等也可以不相等。
Figure PCTCN2019082636-appb-000033
定义了载波i能够在第二传输时间内传输的最大传输块大小,
Figure PCTCN2019082636-appb-000034
越大,说明在相同时间内传输载波i传输的数据量越多,在传输的数据量相同的前提下第二传输时间越短,说明接收端在单位时间内处理的数据量越大,因此,
Figure PCTCN2019082636-appb-000035
越大,接收端的接收能力越大,
Figure PCTCN2019082636-appb-000036
除以第二传输时间,则等效为接收端的峰值速率。因此,可以用
Figure PCTCN2019082636-appb-000037
S (i)和第二传输时间来定义,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000038
来定义,其中S 2 (i)为第二传输时间,或者,接收能力用
Figure PCTCN2019082636-appb-000039
来表示。
可选地,根据接收能力确定N CB,包括:根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N ref、N和N CB,max确定N CB,其中,N ref为第一参考码块大小,N为第一码块的大小,N CB为N CB,max、N ref和N中数值最小的一个。
N ref和N CB,max用于指示不同情况下接收端的缓存数据量,其中,N ref是基于接收端的接收能力未受限的情况下得到的值,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),接收端将N ref、N和N CB,max三者之间的最小值作为解速率匹配时使用的码块大小(N CB),可以使得在第一传输时间内实际处理和缓存的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N ref,N ref大于N CB,max,接收端可以将N CB,max作为解速率匹配时使用的码块大小(N CB)。
可选地,根据接收能力确定N CB,包括:根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N和N CB,max确定N CB,其中,N为第一码块的大小,N CB为N CB,max和N中数值小的一个。N CB,max用于指示接收端的缓存数据量,其中,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),接收端将N和N CB,max二者之间的最小值作为解速率匹配时使用的码块大小(N CB),可以使得在第一传输时间内实际处理和缓存的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N CB,max,接收端可以将N CB,max作为解速率匹配时使用的码块大小(N CB)。
可选地,根据接收能力确定N CB,max,包括:根据U (i)和接收能力确定N CB,max,其中,N CB,max还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值,载波i用于传输第一传输块。
当接收端支持多载波时,接收端还需要根据载波i的传输带宽值占全部已激活接收载波的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。
可选地,根据接收能力确定N CB,包括:根据TBS LBRM和载波i在第一传输时间内的最大数据处理量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N r' ef与TBS LBRM和最大数据处理量二者中的最小值正相关,最大数据处理量与
Figure PCTCN2019082636-appb-000040
和S (i)正相关,
Figure PCTCN2019082636-appb-000041
为载波i的最大数据速率,S (i)为所述传输时间的时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
可选地,根据接收能力确定N CB,包括:根据TBS LBRM和载波i在第一传输时间内的最大数据传输量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N′ ref与TBS LBRM和最大数据传输量二者中的最小值正相关,最大数据传输量与
Figure PCTCN2019082636-appb-000042
和S (i)正相关,与第二传输时长的倒数正相关,
Figure PCTCN2019082636-appb-000043
为载波i能够在第二传输时长内传输的最大传输块的大小,S (i)为所述第一传输块的时长,称为第一传输时间,第二传输时间为确定所述
Figure PCTCN2019082636-appb-000044
时采用的传输时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
可选地,根据接收能力确定N CB,包括:根据TBS LBRM和载波i在第一传输时间内的最大数据传输量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据传输量二者中的最小值正相关,最大数据传输量与
Figure PCTCN2019082636-appb-000045
和S (i)正相关,且与第二传输时长的倒数正相关,
Figure PCTCN2019082636-appb-000046
为载波i能够在第二传输时间内传输的最大传输块的大小,S (i)为所述第一传输时间的时长,称为第一传输时长,第二传输时长为确定所述
Figure PCTCN2019082636-appb-000047
时采用的第二传输时间的时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
在该可选的方案中,接收端从TBS LBRM和载波i在第一传输时间内的最大数据传输量中选择一个最小值,根据该最小值确定参考码块大小(N' ref),随后比较N' ref与N的大小,选择其中一个较小的值作为第一码块解速率匹配时使用的码块大小(N CB),可以使得接收端在第一传输时间内实际处理的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。
可选地,最大数据传输量还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值。
当接收端支持多载波时,接收端还需要根据载波i的传输带宽值占全部已激活接收载波的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。
可选地,第一传输块为高优先级传输块,第一传输块包括的C个码块,C为正整数,C个码块中每个码块在解速率匹配前的大小为N CB,所述方法还包括:根据C和N CB确定高优先级传输块占用的缓存数据量,高优先级传输块占用的缓存数据量为N CB·C根据载波i在第一传输时间内的最大数据缓存量和高优先级传输块占用的缓存数据量确定剩余缓存数据量,剩余缓存数据量等于最大数据缓存量减去N CB·C,载波i用于传输第一传输块,剩余缓存数据量用于缓存低优先级数据;根据剩余缓存数据量确定 N CB,lp,N CB,lp为低优先级传输块的码块在进行解速率匹配时的大小,其中,N CB,lp为N lp、N ref和N CB,max,lp中的最小值,N lp为低优先级传输块的每个码块的大小,N ref为第一参考码块大小,N CB,max,lp为基于剩余缓存数据量确定的、载波i能够传输的、用于进行解速率匹配的码块的数据量的最大值;根据N CB,lp对低优先级传输块的码块进行解速率匹配。
当多个TB需要同时传输时,接收端可以根据TB的优先级确定各个TB在解速率匹配时使用的码块大小,高优先级TB按照前述方法确定解速率匹配时使用的码块大小,确定了高优先级TB进行解速率匹配所需的缓存数据量之后,根据当前剩余缓存数据量确定载波i能够传输的低优先级TB的码块的大小(N CB,max,lp),并对比N CB,max,lp、N lp和N ref的大小,从中选择一个最小值作为低优先级TB的码块的解速率匹配码块值(N CB,lp),可以使得接收端在第一传输时间内实际处理的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下接收低优先级TB出现处理能力溢出和/或缓存溢出。
可选地,所述方法还包括:向发送端发送通知消息,该通知消息用于指示接收端接收到的数据的大小超出了接收端的接收能力。
上述方案可以及时减小信道中传输的数据量,使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,通知消息还包括建议传输速率,该建议传输速率为与接收端的接收能力相匹配的数据传输速率。
建议传输速率为接收端基于当前第一传输时间内的接收能力确定的数据传输速率,发送端根据该建议传输速率确定速率匹配时使用的码块大小,从而可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,通知消息为物理层信令或高层信令或介质访问控制MAC层信令。
第三方面,提供了一种速率匹配装置,该装置可以是通信设备(例如,终端设备或网络设备),也可以是通信设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是通信设备时,该处理单元可以是处理器,该收发单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述第一方面及其可选实施方式之一中的方法。当该装置是通信设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述第一方面及其可选实施方式之一中的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供了一种解速率匹配装置,该装置可以是通信设备(例如,终端设备或网络设备),也可以是通信设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是通信设备时,该处理单元可以是处理器,该收发单元可以是收发器;该通信设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该通信设备执行上述第一方面及其可选实施方式之一中的方法。当该装置是通信设备内的芯片时,该处理单元可以是处理 器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该通信设备执行上述第一方面及其可选实施方式之一中的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该通信设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,提供了一种网络系统,所述网络系统包括上述第三方面所述的速率匹配装置和第四方面所述的解速率匹配装置。
第六方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被发送端的通信单元、处理单元或收发器、处理器运行时,使得发送端执行第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被接收端的通信单元、处理单元或收发器、处理器运行时,使得接收端执行第二方面所述的方法。
第八方面,提供了一种计算机存储介质,用于储存为上述发送端所用的计算机软件指令,其包含用于执行第一方面所设计的程序。
第九方面,提供了一种计算机存储介质,用于储存为上述接收端所用的计算机软件指令,其包含用于执行第二方面所设计的程序。
第十方面,提供了一种芯片,其中存储有指令,当其在发送端上运行时,使得所述芯片执行第一方面的方法。
第十一方面,提供了一种芯片,其中存储有指令,当其在接收端上运行时,使得所述芯片执行第二方面的方法。
附图说明
图1是一种适用于本申请的通信系统;
图2是一种适用于本申请的通信方法的示意图;
图3是本申请实施例提供的一种速率匹配方法的示意图;
图4是本申请实施例提供的一种解速率匹配方法的示意图;
图5是本申请实施例提供的一种速率匹配装置的示意图;
图6是本申请实施例提供的一种解速率匹配装置的示意图;
图7是本申请实施例提供的一种终端设备的示意图;
图8是本申请实施例提供的一种接入网设备的示意图;
图9是本申请实施例提供的一种用于速率匹配和/或解速率匹配的通信装置的示意图;
图10是本申请实施例提供的另一种速率匹配方法的示意图;
图11是本申请实施例提供的另一种解速率匹配方法的示意图;
图12是本申请实施例提供的另一种速率匹配装置的示意图;
图13是本申请实施例提供的另一种解速率匹配装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用本申请的通信系统100。该通信系统100包括接入网设备110和终端设备120,接入网设备110与终端设备120通过无线网络进行通信,当终端设备120发送数据时,无线通信模块可对信息进行编码以用于传输,具体地,无线通信模块可获取要通过信道发送至接入网设备110的一定数目的信息比特,这些信息比特例如是处理模块生成的、从其它设备接收的或者在存储模块中保存的信息比特。这些信息比特可包含在一个或多个TB中,TB可被分段以产生多个CB。
当通信系统100的传输方向为上行传输时,终端设备120为发送端,接入网设备110为接收端,当通信系统100的传输方向为下行传输时,接入网设备110为发送端,终端设备120为接收端。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:5G移动通信系统,本申请所述的5G移动通信系统包括非独立组网(non-standalone,NSA)的5G移动通信系统和/或独立组网(standalone,SA)的5G移动通信系统。本申请实施例提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。
在本申请中,终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G通信系统中的用户设备。
接入网设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G通信系统中的基站(gNB),上述基站仅是举例说明,接入网设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的接入网设备和终端设备的数量还可以是其它的数量。
为了便于理解本申请,在介绍本申请实施例提供的速率匹配方法之前,首先对本申请涉及的概念做简要介绍。
为了获得更好的译码效果,如果译码不成功,接收端会存储已接收到的数据的软信息,存储软信息需要消耗接收端的存储资源。若每个码块的编码后的比特为N比特,则接收端需要存储N·L比特,L为每个接收数据的软信息有效比特数。当接收端的缓存受限时,为了减少接收端的缓存量,发送端可以采用有限缓存速率匹配(limited buffer rate matching,LBRM)技术对码块进行速率匹配,如图2所示,发送端对K比特信息比特进行编码后得到大小为N比特的码块,如果码块的比特数N小于或等于N ref,N ref为参考码块的大小,则发送端会按照实际码块大小进行速率匹配,如果N大于N ref,则发送端会按照N ref对编码后的码块进行速率匹配,发送端在速率匹配时使用的码块大小N CB为N ref和N中的最小值,即,N CB=min(N,N ref)。上述确定N CB的过程即比特选择。
例如,编码后的码块大小为100比特,N ref等于90比特,则N CB等于90比特,即,从100比特中选择前90个比特进行速率匹配,丢弃后10个比特,从而减少接收端需 要存储的数据量。由于信息比特在编码时加入了冗余比特,接收端可以根据冗余比特译码信息比特,因此,在丢弃的比特数较少的情况下,且信道条件较好时,上述比特选择不会导致接收端译码失败。
下面将详细描述本申请实施例提供的速率匹配的方法。
图3示出了本申请实施例提供的一种速率匹配方法的示意图。图3所示的方法300的执行设备为发送端,该方法300包括:
S310,确定接收端的接收能力,该接收能力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于传输第一码块所属的第一传输块。
接收能力可以是接收端在单位时间内处理数据量的最大值,发送端可以根据接收端在单位时间内处理数据量的最大值计算接收端在第一传输时间内的最大数据处理量,接收能力也可以是接收端在第一传输时间内能够接收的传输块的最大值,还可以是其它用于指示接收端在第一传输时间内的最大数据处理量的参数,类似地,接收能力还可以是任意用于指示接收端在第一传输时间内的最大数据缓存量的参数,本申请对此不作限定。
在速率匹配过程中,第一码块指的是经过信道编码后且未经过比特选择的码块。
S320,根据接收能力确定N CB,N CB为进行速率匹配时使用的码块大小。
N CB是与接收端的接收能力相匹配的码块大小,例如,接收端的接收能力为第一传输时间内最多接收X比特的数据,则N CB小于或等于X除以Y的值,其中,Y为第一传输块划分的码块的数量。
S330,根据N CB对第一码块进行速率匹配。
例如,发送端可以根据调度的时频资源和调制与编码策略(modulation and coding scheme,MCS)表格选择与N CB对应的调制编码参数对第一码块进行速率匹配,具体的速率匹配方法可参考现有技术中的速率匹配方法,为了简洁,在此不再赘述。
根据本实施例提供的方法,当接收端在该第一传输时间内的接收能力较差时,发送端可以选择较小的码块进行速率匹配,提高码率,减小了第一传输时间内传输的数据量,避免了接收端出现处理能力溢出和/或缓存溢出,从而提高了接收成功率;或者,当接收端在该第一传输时间内的接收能力较强时,发送端可以选择较大的码块进行速率匹配,在不超出接收端的接收能力的前提下降低码率,以便获得更高的接收成功率。
因此,本实施例提供的速率匹配方法,能够根据接收端在一段时间(即,第一传输时间)内的处理能力和/或缓存能力调整速率匹配使用的码块大小,避免接收端出现处理能力溢出和/或缓存溢出,从而提高了接收端的接收成功率。
可选地,S310包括:
根据
Figure PCTCN2019082636-appb-000048
和S (i)确定接收能力,其中,
Figure PCTCN2019082636-appb-000049
为载波i的最大数据速率,也称为峰值速率或者最大传输速率,载波i用于传输第一传输块,S (i)为第一传输块的第一传输时间的时长,称为第一传输时长,接收端的接收能力与
Figure PCTCN2019082636-appb-000050
正相关,并且,接收端的接收能力与S (i)正相关。
Figure PCTCN2019082636-appb-000051
定义了载波i能够在单位时间内能够处理的最大数据量,S (i)定义了数据的传输时长,二者结合可以获得接收端在第一传输时间内通过载波i能够处理并缓存的最 大数据量,因此,可以根据载波i的最大数据速率和第一传输时间的时长确定接收端的接收能力,例如,接收端的接收能力用于
Figure PCTCN2019082636-appb-000052
来表示,
Figure PCTCN2019082636-appb-000053
和S (i)的计算方法可参考下文其它实施例中的计算方法。例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000054
来表示。
在本申请中,O与M正相关指的是:当M增大时,O也增大,但是对M和O的增大方式不作限定,例如,当M线性增大时,O可以线性增大,也可以非线性增大。或者,
O与M正相关也可以指:当M减小时,O也减小,但是对M和O的减小方式不作限定,例如,当M线性减小时,O可以线性减小,也可以非线性减小。
M和O可以为任意两个物理量,例如,O为接收端的接收能力,M为
Figure PCTCN2019082636-appb-000055
或S (i)。上述对正相关的解释对于本申请其它部分的正相关同样适用。
可选地,S310包括:
根据
Figure PCTCN2019082636-appb-000056
和S (i)确定接收端的接收能力,其中,
Figure PCTCN2019082636-appb-000057
为载波i在第二传输时间内能够传输的最大传输块的大小,S (i)为第一传输时间的时长,称为第一传输时长,载波i用于传输第一传输块,接收端的接收能力与
Figure PCTCN2019082636-appb-000058
正相关,接收能力与S (i)正相关,第二传输时间用于确定
Figure PCTCN2019082636-appb-000059
接收端的接收能力与第二传输时间负相关。
在本申请中,E与F负相关指的是:当E增大时,F减小,并且,对F随E的增大而减小的具体方式不作限定,例如,当E线性增大时,O可以线性减小,也可以非线性减小。或者,
E与F负相关指的是:当E减小时,F增大,并且,对F随E的减小而增加的具体方式不作限定,例如,当E线性减小时,F可以线性增大,也可以非线性增大。
E和F可以为任意两个物理量,例如,E为接收端的接收能力,F为第二传输时间。上述对负相关的解释对于本申请其它部分的负相关同样适用。
Figure PCTCN2019082636-appb-000060
定义了载波i能够在第二传输时间内传输的最大传输块大小,
Figure PCTCN2019082636-appb-000061
越大,说明传输时间相同时载波i传输的数据量越多,或者,载波i传输的数据量相同时第二传输时间越短,也说明接收端在单位时间内处理的数据量越大,因此,
Figure PCTCN2019082636-appb-000062
越大,接收端的接收能力越大。
Figure PCTCN2019082636-appb-000063
除以第二传输时间,可以等效为接收端的峰值处理速率。因此,可以用
Figure PCTCN2019082636-appb-000064
S (i)和第二传输时间来定义,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000065
来表示,其中S 2 (i)为第二传输时间。例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000066
来表示,
Figure PCTCN2019082636-appb-000067
可以根据接收端支持的最大多输入多输出(multiple-input multiple-output,MIMO)层数、最大调制阶数、最大码率计算得到,并按照载波i的最大带宽作为最大配置BWP,子载波间隔为载波i支持的最小子载波间隔,按照通信标准文档(3GPP TS 38.214 V F.1.0)的5.1.3.2节所描述的方法计算
Figure PCTCN2019082636-appb-000068
第二传输时间载波i支持的最小子载波间隔所对应的时隙长度,例如子载波间隔为30kHz,则第二传输时间长度为0.5ms。
Figure PCTCN2019082636-appb-000069
还可以根据接收端载波i的最大数据速率
Figure PCTCN2019082636-appb-000070
得到,例如
Figure PCTCN2019082636-appb-000071
还可以根据接收端的设备类型得到,例如接收端的设备类型为LTE UE类型(Category)6,则
Figure PCTCN2019082636-appb-000072
S 2 (i)=1毫秒。
可选地,S320包括:
根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N ref、N和N CB,max确定N CB,其中,N ref为第一参考码块大小,N为第一码块的大小,N CB为N CB,max、N ref和N中数值最小的一个。
N ref和N CB,max用于指示不同情况下接收端的缓存数据量,其中,N ref是基于接收端的接收能力未受限的情况下得到的值,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N ref、N和N CB,max三者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N ref,N ref大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。可以按照通信标准文档(3GPP TS 38.212 V F.1.0)的5.4.2.1节所描述的方法计算N ref,N CB,max的计算方法可参考下文其它实施例中的计算方法。
可选地,根据接收能力确定N CB,max,包括:
根据U (i)和接收能力确定N CB,max,其中,N CB,max还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值,载波i用于传输第一传输块。
当接收端支持多载波时,发送端还需要根据载波i的传输带宽值占全部已激活接收载波的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。载波i的传输带宽值可以是载波i支持的最大带宽的带宽值,也可以是其它的带宽值。U (i)的计算方法可参考下文实施例。
可选地,S320包括:
根据TBS LBRM和载波i在第一传输时间内的最大数据处理量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据处理量二者中的最小值正相关,最大数据处理量与
Figure PCTCN2019082636-appb-000073
和S (i)正相关,
Figure PCTCN2019082636-appb-000074
为载波i的最大数据速率,S (i)为所输时间的时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
可选地,根据接收能力确定N CB,包括:根据TBS LBRM和载波i在第一传输时间内的最大数据传输量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据传输量二者中的最小值正相关,最大数据传输量与
Figure PCTCN2019082636-appb-000075
和S (i)正相关,与第二传输时长的倒数正相关,
Figure PCTCN2019082636-appb-000076
为载波i能够在第二传输时长内传输的最大传输块的大小,S (i)为所述第一传输块的时长,称为第一传输时间,第二传输时间为确定所述
Figure PCTCN2019082636-appb-000077
时采用的传输时长;根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
在该可选的方案中,发送端从TBS LBRM和载波i在第一传输时间内的最大数据传输量中选择一个最小值,根据该最小值确定参考码块大小(N' ref),随后比较N' ref与N的大小,选择其中一个较小的值作为第一码块速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。TBS LBRM可以根据接收端支持的最大多输入多输出(multiple-input multiple-output,MIMO)层数、最大调制阶数、最大码率计算得到,可以按照通信标准文档(3GPP TS 38.212 V F.1.0)的5.4.2.1节所描述的方法计算TBS LBRM
可选地,最大数据传输量还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值。
当接收端支持多载波时,发送端还需要根据载波i的激活的传输带宽值占全部已激活接收载波的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。U (i)的计算方法可参考下文实施例。
可选地,第一传输块为高优先级传输块,第一传输块包括的C个码块,C为正整数,C个码块中每个码块在速率匹配前的大小为N CB,方法300还包括:
根据C和N CB确定高优先级传输块占用的缓存数据量,高优先级传输块占用的缓存数据量为N CB·C;根据载波i在第一传输时间内的最大数据缓存量和高优先级传输块占用的缓存数据量确定剩余缓存数据量,剩余缓存数据量等于最大数据缓存量减去N CB·C,载波i用于传输第一传输块,剩余缓存数据量用于缓存低优先级数据;根据剩余缓存数据量确定N CB,lp,N CB,lp为低优先级传输块的码块在进行速率匹配时的大小,其中,N CB,lp为N lp、N ref和N CB,max,lp中的最小值,N lp为低优先级传输块的每个码块的大小,N ref为第一参考码块大小,N CB,max,lp为基于剩余缓存数据量确定的、载波i能够传输的、用于进行速率匹配的码块的数据量的最大值;根据N CB,lp对低优先级传输块的码块进行速率匹配。
当多个TB需要同时传输时,发送端可以根据TB的优先级确定各个TB的码率匹配参数,高优先级的TB按照前述方法确定速率匹配参数,确定了高优先级的TB占用的缓存数据量后,根据当前剩余的缓存资源确定载波i能够传输的低优先级TB的码块的大小(N CB,max,lp),并对比N CB,max,lp、N lp和N ref的大小,从中选择一个最小值作为低优先级TB的码块的速率匹配码块值(N CB,lp),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下接收低优先级TB出现处理能力溢出和/或缓存溢出。
可选地,方法300还包括:
接收来自接收端的通知消息,该通知消息用于指示接收端接收到的数据的大小超出了接收端的接收能力;根据通信消息减小单位时间内发送的数据的大小。
上述方案可以及时减小信道中传输的数据量,使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,该通知消息还包括建议传输速率,该建议传输速率为与接收端的接收能 力相匹配的数据传输速率。
建议传输速率为接收端基于当前第一传输时间内的接收能力确定的数据传输速率,发送端根据该建议传输速率确定速率匹配时使用的码块大小,从而可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,该通知消息为物理层信令或高层信令或MAC层信令。
下面,参照图10,描述本申请实施例提供的另一种速率匹配方法1000,该方法包括S1010、S1020和S1030。
其中,S1010与上文中所描述的速率匹配方法300中的S310相同,S1030与方法300中的S330相同,S310和S330的具体实现方式同样适用于S1010和S1030,不再赘述。
S1020与方法300中的S320类似,不同之处在于,可选地,S1020包括:
根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N和N CB,max确定N CB,其中,N为第一码块的大小,N CB为N CB,max和N中数值小的一个。
N CB,max用于指示不同情况下接收端的缓存数据量,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N ref、N和N CB,max三者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。N CB,max的计算方法可参考下文其它实施例中的计算方法。此时,可以无需获取方法300中所述的N ref
除此之外,S320的具体实现方式同样适用于S1020,不再赘述。
方法300中除了S310、S320和S330以外可包括的其他步骤及其具体实现方式也适用于方法1000,此外,方法300的技术效果以及对于所涉及的术语的解释均可适用于方法1000,不再赘述。
上文从发送端的角度详细介绍了本申请实施例提供的速率匹配方法,下面,将从接收端的角度介绍本申请实施例提供的解速率匹配方法。
图4示出了本申请实施例提供的一种解速率匹配方法的示意图。图4所示的方法400的执行设备为接收端,该方法400包括:
S410,确定接收端的接收能力,该接收能力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于接收第一传输块。
接收能力可以是接收端在单位时间内处理数据量的最大值,接收端可以根据该接收端在单位时间内处理数据量的最大值计算接收端在第一传输时间内的最大数据处理量,接收能力也可以是接收端在第一传输时间内能够处理的数据量的最大值,还可以是其它用于指示接收端在第一传输时间内的最大数据处理量的参数,类似地,接收能 力还可以是任意用于指示接收端在第一传输时间内的最大数据缓存量的参数,本申请对此不作限定。
需要说明的是,对于接收端来说,第一传输时间即接收第一传输块的时间。
S420,根据接收能力确定N CB,N CB为进行解速率匹配时使用的码块大小。
N CB是与接收端的接收能力相匹配的码块大小,例如,接收端的接收能力为第一传输时间内最多接收X比特的数据,则N CB小于或等于X除以Y的值,其中,Y为第一传输块划分的码块的数量。
S430,根据N CB对第一传输块进行解速率匹配。
例如,发送端可以从MCS表格中选择与N CB对应的调制编码参数对第一码块进行解速率匹配,具体的解速率匹配方法可参考现有技术中的解速率匹配方法,为了简洁,在此不再赘述。
根据本实施例提供的方法,当接收端在该第一传输时间内的接收能力较差时,发送端可以选择较小的码块进行速率匹配,提高码率,减小了第一传输时间内传输的数据量,避免了接收端出现处理能力溢出和/或缓存溢出,从而提高了接收成功率;或者,当接收端在该第一传输时间内的接收能力较强时,发送端可以选择较大的码块进行速率匹配,在不超出接收端的接收能力的前提下降低码率,以便获得更高的接收成功率。
因此,本实施例提供的速率匹配方法,能够根据接收端在一段时间(即,第一传输时间)内的处理能力和/或缓存能力调整速率匹配使用的码块大小,避免接收端出现处理能力溢出和/或缓存溢出,从而提高了接收端的接收成功率。
可选地,S310包括:
根据
Figure PCTCN2019082636-appb-000078
和S (i)确定接收能力,其中,
Figure PCTCN2019082636-appb-000079
为载波i的最大数据速率,载波i用于传输第一传输块,S (i)为第一传输块的第一传输时间的时长,接收端的接收能力与
Figure PCTCN2019082636-appb-000080
正相关,并且,接收端的接收能力与S (i)正相关。
Figure PCTCN2019082636-appb-000081
定义了载波i能够在单位时间内能够处理的最大数据量,S (i)定义了数据的传输时长,二者结合可以获得接收端在第一传输时间内通过载波i能够处理并缓存的最大数据量,因此,可以根据载波i的最大数据速率和第一传输时间的时长确定接收端的接收能力,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000082
来表示,或者,接收端的接收能力用
Figure PCTCN2019082636-appb-000083
来表示,
Figure PCTCN2019082636-appb-000084
和S (i)的计算方法可参考下文其它实施例中的计算方法。
可选地,S410包括:
根据
Figure PCTCN2019082636-appb-000085
和S (i)确定接收端的接收能力,其中,
Figure PCTCN2019082636-appb-000086
为载波i在第二传输时间内能够传输的最大传输块的大小,S (i)为第一传输时间的时长,称为第一传输时长,载波i用于传输第一传输块,接收端的接收能力与
Figure PCTCN2019082636-appb-000087
正相关,接收能力与所述S (i)正相关,第二传输时间用于确定
Figure PCTCN2019082636-appb-000088
接收端的接收能力与第二传输时间负相关。
Figure PCTCN2019082636-appb-000089
定义了载波i能够在第二传输时间内传输的最大传输块大小,
Figure PCTCN2019082636-appb-000090
越大,说明传输时间相同时载波i传输的数据量越多,或者,载波i传输的数据量相同时第二传输时间越短,也说明接收端在单位时间内处理的数据量越大,因此,
Figure PCTCN2019082636-appb-000091
越大,接收端的接收能力越大。
Figure PCTCN2019082636-appb-000092
除以第二传输时间,可以等效为接收端的峰值处理速率。因此,可以用
Figure PCTCN2019082636-appb-000093
S (i)和第二传输时间来定义,例如,接收端的接收能力用
Figure PCTCN2019082636-appb-000094
来表示,或者,接收端的接收能力用
Figure PCTCN2019082636-appb-000095
来表示,其中S 2 (i)为第二传输时间。例如,第二传输时间为1ms,则
Figure PCTCN2019082636-appb-000096
为载波i在1ms内能够传输的最大传输块大小。
Figure PCTCN2019082636-appb-000097
可以根据接收端支持的最大多输入多输出(multiple-input multiple-output,MIMO)层数、最大调制阶数、最大码率计算得到,并按照载波i的最大带宽作为最大配置BWP,子载波间隔为载波i支持的最小子载波间隔,按照通信标准文档(3GPP TS38.214 V F.1.0)的5.1.3.2节所描述的方法计算
Figure PCTCN2019082636-appb-000098
第二传输时间载波i支持的最小子载波间隔所对应的时隙长度,例如子载波间隔为30kHz,则第二传输时间长度为0.5ms。
Figure PCTCN2019082636-appb-000099
还可以根据接收端载波i的最大数据速率
Figure PCTCN2019082636-appb-000100
得到,例如
Figure PCTCN2019082636-appb-000101
Figure PCTCN2019082636-appb-000102
还可以根据接收端的设备类型得到,例如接收端的设备类型为LTE UE类型(Category)6,则
Figure PCTCN2019082636-appb-000103
S 2 (i)=1毫秒。
可选地,S420包括:
根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N ref、N和N CB,max确定N CB,其中,N ref为第一参考码块大小,N为第一码块的大小,N CB为N CB,max、N ref和N中数值最小的一个。
N ref和N CB,max用于指示不同情况下接收端的缓存数据量,其中,N ref是基于接收端的接收能力未受限的情况下得到的值,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),接收端将N ref、N和N CB,max三者之间的最小值作为解速率匹配时使用的码块大小(N CB),可以使得在第一传输时间内实际处理和缓存的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N ref,N ref大于N CB,max,接收端可以将N CB,max作为解速率匹配时使用的码块大小(N CB)。可以按照通信标准文档(3GPP TS 38.212 V F.1.0)的5.4.2.1节所描述的方法计算N ref,N CB,max的计算方法可参考下文其它实施例中的计算方法。
可选地,根据接收能力确定N CB,max,包括:
根据U (i)和接收能力确定N CB,max,其中,N CB,max还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的BWP的传输带宽值的和的比值,载波i用于传输第一传输块。
当接收端支持多载波时,发送端还需要根据载波i的传输带宽值占全部已激活接收载波的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。U (i)的计算方法可参考下文实施例。
可选地,S420包括:
根据TBS LBRM和载波i在第一传输时间内的最大数据处理量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与 TBS LBRM和最大数据处理量二者中的最小值正相关,最大数据处理量与
Figure PCTCN2019082636-appb-000104
和S (i)正相关,
Figure PCTCN2019082636-appb-000105
为载波i的最大数据速率,S (i)为所输时间的时长;根据N和N r' ef确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
在该可选的方案中,接收端从TBS LBRM和载波i在第一传输时间内的最大数据传输量中选择一个最小值,根据该最小值确定参考码块大小(N' ref),随后比较N' ref与N的大小,选择其中一个较小的值作为第一码块解速率匹配时使用的码块大小(N CB),可以使得接收端在第一传输时间内实际处理的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。TBS LBRM可以根据接收端支持的最大MIMO层数、最大调制阶数和最大码率计算得到,可以按照通信标准文档(3GPP TS 38.212 V F.1.0)的5.4.2.1节所描述的方法计算TBS LBRM
可选地,最大数据传输量还与U (i)正相关,U (i)为载波i的激活的BWP传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值。
当接收端支持多载波时,接收端还需要根据载波i的激活的BWP传输带宽值占全部激活地接收载波的激活的BWP的总带宽值的比例确定接收端在载波i上的接收能力,其中,接收端在载波i上的接收能力为接收端在多个载波上的总接收能力的U (i)倍,上述可选的方法可以避免多载波场景中接收端出现处理能力溢出和/或缓存溢出。U (i)的计算方法可参考下文实施例。
可选地,第一传输块为高优先级传输块,第一传输块包括的C个码块,C为正整数,C个码块中每个码块在速率匹配前的大小为N CB,方法400还包括:
根据C和N CB确定高优先级传输块占用的缓存数据量,高优先级传输块占用的缓存数据量为N CB·C;根据载波i在第一传输时间内的最大数据缓存量和高优先级传输块占用的缓存数据量确定剩余缓存数据量,剩余缓存数据量等于最大数据缓存量减去N CB·C,载波i用于传输第一传输块,剩余缓存数据量用于缓存低优先级数据;根据剩余缓存数据量确定N CB,lp,N CB,lp为低优先级传输块的码块在进行速率匹配时的大小,其中,N CB,lp为N lp、N ref和N CB,max,lp中的最小值,N lp为低优先级传输块的每个码块的大小,N ref为第一参考码块大小,N CB,max,lp为基于剩余缓存数据量确定的、载波i能够传输的、用于进行速率匹配的码块的数据量的最大值;根据N CB,lp对低优先级传输块的码块进行速率匹配。
当多个TB需要同时传输时,接收端可以根据TB的优先级确定各个TB在解速率匹配时使用的码块大小,高优先级TB按照前述方法确定解速率匹配时使用的码块大小,确定了高优先级TB进行解速率匹配所需的缓存数据量之后,根据当前剩余缓存数据量确定载波i能够传输的低优先级TB的码块的大小(N CB,max,lp),并对比N CB,max,lp、N lp和N ref的大小,从中选择一个最小值作为低优先级TB的码块的解速率匹配码块值(N CB,lp),可以使得接收端在第一传输时间内实际处理的数据量不超过接收端的接收能力,从而可以避免在接收端的接收能力受限的情况下接收低优先级TB出现处理能力溢出和/或缓存溢出。
可选地,方法400还包括:
向发送端发送通知消息,该通知消息用于指示接收端接收到的数据的大小超出了接收端的接收能力。
上述方案可以及时减小信道中传输的数据量,使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,该通知消息还包括建议传输速率,该建议传输速率为与接收端的接收能力相匹配的数据传输速率。
建议传输速率为接收端基于当前第一传输时间内的接收能力确定的数据传输速率,发送端根据该建议传输速率确定速率匹配时使用的码块大小,从而可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力。
可选地,该通知消息为物理层信令或高层信令或MAC层信令。
下面,参照图11,描述本申请实施例提供的另一种解速率匹配方法1100,该方法包括S1110、S1120和S1130。
其中,S1110与上文中所描述的解速率匹配方法400中的S410相同,S1130与方法400中的S430相同,S410和S430的具体实现方式同样适用于S1110和S1130,不再赘述。
S1120与方法400中的S420类似,不同之处在于,可选地,S1120包括:
根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N和N CB,max确定N CB,其中,N为第一码块的大小,N CB为N CB,max和N中数值小的一个。
N CB,max用于指示不同情况下接收端的缓存数据量,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N ref、N和N CB,max三者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。N CB,max的计算方法可参考下文其它实施例中的计算方法。此时,可以无需获取方法400中所述的N ref
除此之外,S420的具体实现方式同样适用于S1120,不再赘述。
方法400中除了S410、S420和S430以外可包括的其他步骤及其具体实现方式也适用于方法1100,此外,方法400的技术效果以及对于所涉及的术语的解释均可适用于方法1100,不再赘述。
下面,再举出几个本申请实施例提供的速率缓存的实施例。
实施例一。
发送端按照下面的方式计算速率匹配使用的码块大小N CB,接收端按照下面的方式计算解速率匹配使用的码块大小N CB,如无特别说明,本实施例所述的载波均指传输第一TB的载波。
步骤1.采用通信标准(3GPP TS 38.212 V F.1.0)中5.4.2.1节中描述的方法,计算 TBS LBRM和N ref
步骤2.根据接收端在当前载波(即,载波i)的接收能力和当前调度的数据的第一传输时间,计算接收端在第一传输时间内能够处理的单个码块的大小的最大值N CB,max
步骤3.计算N CB,N CB=min(N,N ref,N CB,max)。
其中,N为编码后的码块大小。
其中,N CB,max的计算方式如下:
- 确定载波i的最大数据速率
Figure PCTCN2019082636-appb-000106
也称为载波i的最大传输速率或者载波i的峰值速率。
- 确定在当前第一传输时间内载波i能够处理的数据量的最大值
Figure PCTCN2019082636-appb-000107
- 根据
Figure PCTCN2019082636-appb-000108
计算N CB,max,其中一种计算方式为
Figure PCTCN2019082636-appb-000109
表示对
Figure PCTCN2019082636-appb-000110
做向下取整运算。
其中,一种
Figure PCTCN2019082636-appb-000111
的计算方式为:
Figure PCTCN2019082636-appb-000112
其中,载波i的最大数据速率
Figure PCTCN2019082636-appb-000113
的计算方式为:
Figure PCTCN2019082636-appb-000114
其中
- R max=948/1024,(“/”表示除法运算),
Figure PCTCN2019082636-appb-000115
 为CC i的最大MIMO层数,
Figure PCTCN2019082636-appb-000116
为CC i的最大调制阶数,
- f (i)为CC i的缩放因子,取值可以是1或者0.75或者其他小于1大于0的数,该值可以作为指示终端的接收能力的参数由终端上报给基站。
- μ用于表示不同的子载波间隔,如果是SCS=15kHz,则μ=0;如果SCS=30kHz,则μ=1;如果SCS=60kHz,则μ=2;如果SCS=120kHz,则μ=3。
- T s μ为1子帧(1ms)内的不同的子载波间隔所对应的平均符号长度,即
Figure PCTCN2019082636-appb-000117
Figure PCTCN2019082636-appb-000118
为终端在该给定的波段或者波段组合中所支持的最大带宽BW (i)在相应的子载波间隔μ时所对应的最大资源块(resource block,RB)数。
- OH (j)为冗余因子,根据当前的CC是上行还是下行,以及所处的频段取不同的值,例如,OH (j)取值如下:
0.14,适用于频率范围FR1以及下行(for frequency range FR1 for DL);
0.18,适用于频率范围FR2以及下行(for frequency range FR2 for DL);
0.08,适用于频率范围FR1以及上行(for frequency range FR1 for UL);
0.10,适用于频率范围FR2以及上行(for frequency range FR2 for UL)。
其中,S (i)表示第一传输块的传输时间,可以用绝对时间来表示,例如第一传输块的实
际传输时长。或者可以用第一传输块的等效传输时间来表示,例如其中一种计算方式为:
Figure PCTCN2019082636-appb-000119
其中:
- T slot为按照当前调度参数获得的时隙长度,例如,如果SCS=15kHz,则T slot=1ms;如果SCS=30kHz,则T slot=0.5ms;如果SCS=60kHz,则T slot=0.25ms;如果SCS=120kHz,则T slot=0.125ms;如果SCS=240kHz,则T slot=0.125ms。
- N RE为一个时隙的资源元素(resource element,RE)数量,按照不同的设计参数取不同的值。其中一种示例为,对于SCS=15/30/60/120,N RE=156,对于SCS=240,N RE=312。
Figure PCTCN2019082636-appb-000120
为当前调度的RE数,
Figure PCTCN2019082636-appb-000121
发送端或接收端确定分配给一个PRB内的RE的数量(N' RE),其中
Figure PCTCN2019082636-appb-000122
表示一个PRB内频域上包含12个子载波,
Figure PCTCN2019082636-appb-000123
表示承载当前数据的物理信道的符号的数量,取值可以是1-14,
Figure PCTCN2019082636-appb-000124
表示在调度的时间内一个PRB内解调参考信号(demodulation reference signal,DMRS)包含的RE的数量,根据当前调度的配置参数,取值可以是3-48或者其它数值。
Figure PCTCN2019082636-appb-000125
是表示开销相关的参数,其取值为{0,6,12,18}中的一个。如果高层没有配置这个参数,那么
Figure PCTCN2019082636-appb-000126
取值为0。
其中,S (i)一种计算方式为:
Figure PCTCN2019082636-appb-000127
其中:
Figure PCTCN2019082636-appb-000128
表示承载当前数据的物理信道的符号的数量,取值可以是1-14,
Figure PCTCN2019082636-appb-000129
为一个时隙内的符号数,其值可以是固定值如12,14,24,28等,根据当前的帧格式确定。
S (i)的一种计算方式为:
Figure PCTCN2019082636-appb-000130
其中,
- n PRB的取值可以为固定值,例如固定为每个成员载波(component carrier,CC)所支持的最大PRB数,如273,或者根据CC所工作的频段和带宽,取当前载波的最大带宽下的所有子载波间隔(sub-carrier spacing,SCS)对应的PRB数量中的最大PRB数量,若一个CC的最大带宽为100MHz,工作在6GHz以下频段,参照表1,对于该CC而言,n PRB=273。如该CC的最大带宽为50MHz,则该CC的n PRB=270。如果CC的最大带宽为100MHz,工作在6GHz以上频段,参照表2,对于该CC而言,n PRB=132。
表1
Figure PCTCN2019082636-appb-000131
表2
Figure PCTCN2019082636-appb-000132
Figure PCTCN2019082636-appb-000133
为当前调度数据,即第一TB的频域PRB数量。
Figure PCTCN2019082636-appb-000134
其中,S (i)的一种计算方式为
Figure PCTCN2019082636-appb-000135
其中各个参数的含义如前。
其中,另一种
Figure PCTCN2019082636-appb-000136
的实现方式为:
Figure PCTCN2019082636-appb-000137
可以根据接收端支持的最大多输入多输出(multiple-input multiple-output,MIMO)层数、最大调制阶数、最大码率计算得到,并按照载波i的最大带宽作为最大配置BWP,子载波间隔为载波i支持的最小子载波间隔,按照通信标准文档(3GPP TS 38.214 V F.1.0)的5.1.3.2节所描述的方法计算
Figure PCTCN2019082636-appb-000138
第二传输时间载波i支持的最小子载波间隔所对应的时隙长度,例如子载波间隔为30kHz,则第二传输时间长度为0.5ms。
Figure PCTCN2019082636-appb-000139
还可以根据接收端载波i的最大数据速率
Figure PCTCN2019082636-appb-000140
得到,例如
Figure PCTCN2019082636-appb-000141
其中,
Figure PCTCN2019082636-appb-000142
为第二传输时间长度。
Figure PCTCN2019082636-appb-000143
还可以根据接收端的设备类型得到,例如接收端的设备类型为LTE UE Category 6,则
Figure PCTCN2019082636-appb-000144
Figure PCTCN2019082636-appb-000145
S 2 (i)=1毫秒。
实施例二。
发送端按照下面的方式计算速率匹配使用的码块大小N CB,接收端按照下面的方式计算解速率匹配使用的码块大小N CB,如无特别说明,本实施例所述的载波均指传输第一TB的载波。
步骤1.根据接收端在当前载波(即,载波i)的接收能力和当前调度的数据的第一传输时间,计算接收端在第一传输时间内能够处理的单个码块的大小的最大值N CB,max
步骤2.计算N CB,N CB=min(N,N CB,max)。
其中,N为编码后的码块大小,N CB,max的计算方式与实施例一中N CB,max的计算方式相同,不再赘述。
实施例三。
发送端按照下面的方式计算速率匹配使用的码块大小N CB,接收端按照下面的方式计算解速率匹配使用的码块大小N CB,如无特别说明,本实施例所述的载波均指传输第一TB的载波。
步骤1.采用通信标准(3GPP TS 38.212 V F.1.0)中5.4.2.1节中描述的方法,计算TBS LBRM
步骤2.根据接收端在当前载波(即,载波i)的接收能力和当前调度的数据的第一传 输时间计算N ref',
Figure PCTCN2019082636-appb-000146
表示对
Figure PCTCN2019082636-appb-000147
做向下取整运算,其中,
Figure PCTCN2019082636-appb-000148
的计算方法参见实施例一。
另一种
Figure PCTCN2019082636-appb-000149
的实现方式为:
Figure PCTCN2019082636-appb-000150
Figure PCTCN2019082636-appb-000151
可以根据接收端支持的最大多输入多输出(multiple-input multiple-output,MIMO)层数、最大调制阶数、最大码率计算得到,并按照载波i的最大带宽作为最大配置BWP,子载波间隔为载波i支持的最小子载波间隔,按照通信标准文档(3GPP TS 38.214 V F.1.0)的5.1.3.2节所描述的方法计算
Figure PCTCN2019082636-appb-000152
第二传输时间载波i支持的最小子载波间隔所对应的时隙长度,例如子载波间隔为30kHz,则第二传输时间长度为0.5ms。
Figure PCTCN2019082636-appb-000153
还可以根据接收端载波i的最大数据速率
Figure PCTCN2019082636-appb-000154
得到,例如
Figure PCTCN2019082636-appb-000155
其中,S 2 (i)为第二传输时间长度。
Figure PCTCN2019082636-appb-000156
还可以根据接收端的设备类型得到,例如接收端的设备类型为LTE UE Category 6,则
Figure PCTCN2019082636-appb-000157
S 2 (i)=1毫秒。
步骤3.计算N CB,N CB=min(N,N ref)。
实施例四。
实施例一、实施例二和实施例三仅考虑了单载波的情况。如果接收端支持多载波,则进一步根据接收端总的最大数据速率、当前调度的所有TB的调度时长来计算N CB,以实施例一为例,对于多载波:
步骤1.采用通信标准(3GPP TS 38.212 V F.1.0)中5.4.2.1节中描述的方法,计算TBS LBRM和N ref
步骤2.根据接收端在当前载波(即,载波i)的接收能力和当前调度的数据的第一传输时间,计算接收端在第一传输时间内以及在当前载波上能够处理的单个码块的大小的最大值N CB,max
其中一种计算方式为
Figure PCTCN2019082636-appb-000158
表示对
Figure PCTCN2019082636-appb-000159
做向下取整运算,P max为接收端能够处理的总的最大数据速率,
Figure PCTCN2019082636-appb-000160
Figure PCTCN2019082636-appb-000161
其中,BWP (i)为当前传输载波i的部分带宽(bandwidth part,BWP),K active为接收端当前所有激活的接收载波的总的激活的BWP个数,BWP (k)为传输载波i在当前被调度的BWP带宽。在上述P max的公式中,j的取值可以为i。
其中,S (i)的计算方法与实施例一中的S (i)的计算方法相同。
步骤3.计算N CB,N CB=min(N,N ref,N CB,max)。
其中,N为编码后的码块大小。
实施例五。
实施例一、实施例二和实施例三仅考虑了单载波的情况。如果接收端支持多载波,则进一步根据接收端总的最大数据速率、当前调度的所有TB的调度时长来计算N CB,以实施例一为例,对于多载波:
步骤1.根据接收端在当前载波(即,载波i)的接收能力和当前调度的数据的第一传输时间,计算接收端在第一传输时间内以及在当前载波上能够处理的单个码块的大小的最大值N CB,max
其中一种计算方式为
Figure PCTCN2019082636-appb-000162
表示对
Figure PCTCN2019082636-appb-000163
做向下取整运算,P max为接收端能够处理的总的最大数据速率,
Figure PCTCN2019082636-appb-000164
Figure PCTCN2019082636-appb-000165
其中,BWP (i)为当前传输载波i的部分带宽(bandwidth part,BWP),K active为接收端当前所有激活的接收载波的总的激活的BWP个数,BWP (k)为传输载波i在当前被调度的BWP带宽。在上述P max的公式中,j的取值可以为i。
其中,S (i)的计算方法与实施例一中的S (i)的计算方法相同。
步骤2.计算N CB,N CB=min(N,N CB,max)。
其中,N为编码后的码块大小。
实施例六。
进一步的,当发送同时传输多个TB时,发送端和接收端还可以根据TB的不同优先级确定不同TB的码块在速率匹配时使用的码块大小,保证高优先级的业务(高优先级TB)能够以较低的码率传输。
例如,对于高优先级TB,可以按照下面的方式计算:
步骤1.采用通信标准(3GPP TS 38.212 V F.1.0)中5.4.2.1节中描述的方法,计算TBS LBRM和N ref
步骤2.根据接收端的接收能力和当前调度的数据的第一传输时间,计算当前数据第一传输时间内载波i能够处理的最大数据量N CB,max。其中一种计算方式为
Figure PCTCN2019082636-appb-000166
P max为接收端能够处理的总的最大数据速率,
Figure PCTCN2019082636-appb-000167
其中,S (i)的计算方法与实施例一中S (i)的计算方法相同。在上述P max的公式中,j的取值可以为i。
步骤3.N CB=min(N,N ref,N CB,max)
其中,N为编码后的码块大小。
实施例七。
进一步的,当发送同时传输多个TB时,发送端和接收端还可以根据TB的不同优先级确定不同TB的码块在速率匹配时使用的码块大小,保证高优先级的业务(高优先级TB)能够以较低的码率传输。
例如,对于高优先级TB,可以按照下面的方式计算:
步骤1.根据接收端的接收能力和当前调度的数据的第一传输时间,计算当前数据第一传输时间内载波i能够处理的最大数据量N CB,max。其中一种计算方式为
Figure PCTCN2019082636-appb-000168
P max为接收端能够处理的总的最大数据速率,
其中,S (i)的计算方法与实施例一中S (i)的计算方法相同。在上述P max的公式中,j的取值可以为i。
步骤2.N CB=min(N,N CB,max)
其中,N为编码后的码块大小。
实施例八。
对于低优先级的业务,则利用高优先调度之后剩余的资源进行传输。令高优先级TB的码块在速率匹配时使用的码块大小为N CB,hp,N CB,hp=N CB,高优先级TB的码块数量为C hp,则高优先级的码块用后剩余的资源为P max·S (i)/R LBRM-C hp·N CB,hp,具体的:
步骤1.采用通信标准(3GPP TS 38.212 V F.1.0)中5.4.2.1节中描述的方法,计算TBS LBRM和N ref
步骤2.根据接收端的接收能力和当前调度的数据的第一传输时间,计算当前数据第一传输时间内传输载波能够处理的最大数据量N CB,max。其中一种计算方式为
Figure PCTCN2019082636-appb-000170
表示对
Figure PCTCN2019082636-appb-000171
做向下取整运算。
步骤3.N CB,lp=min(N,N ref,N CB,max,lp)。
其中,N为编码后的码块大小。
实施例九。
对于低优先级的业务,则利用高优先调度之后剩余的资源进行传输。令高优先级TB的码块在速率匹配时使用的码块大小为N CB,hp,N CB,hp=N CB,高优先级TB的码块数量为C hp,则高优先级的码块用后剩余的资源为P max·S (i)/R LBRM-C hp·N CB,hp,具体的:
步骤1.根据接收端的接收能力和当前调度的数据的第一传输时间,计算当前数据第一传输时间内传输载波能够处理的最大数据量N CB,max。其中一种计算方式为
Figure PCTCN2019082636-appb-000172
表示对
Figure PCTCN2019082636-appb-000173
做向下取整运算。
步骤2.N CB,lp=min(N,N CB,max,lp)。
本申请中,所述的“载波”亦可以称为“小区”,本申请中二者等同。
其中,N为编码后的码块大小。
上文详细介绍了本申请实施例提供的速率匹配和解速率匹配的方法示例。可以理解的是,发送端和接收端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图5示出了本申请实施例提供的速率匹配装置的结构示意图,该装置500包括:
处理单元510,用于确定接收端的接收能力,该接收能力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于传输第一码块所属的第一传输块;
处理单元510还用于:根据接收能力确定N CB,N CB为进行速率匹配时使用的码块大小;
处理单元510还用于:根据N CB对上述第一码块进行速率匹配。
可选地,处理单元510具体用于:
根据
Figure PCTCN2019082636-appb-000174
和S (i)确定接收端的接收能力,其中,
Figure PCTCN2019082636-appb-000175
为载波i的最大数据速率,载波i用于传输第一传输块,S (i)为第一传输时间的时长,接收能力与
Figure PCTCN2019082636-appb-000176
正相关,并且,接收能力与S (i)正相关。
可选地,处理单元510具体用于:
根据
Figure PCTCN2019082636-appb-000177
和S (i)确定接收能力,其中,
Figure PCTCN2019082636-appb-000178
为载波i在第二传输时间内能够传输的最大传输块的大小,S (i)为第一传输时间的时长,载波i用于传输第一传输块,接收能力与所述
Figure PCTCN2019082636-appb-000179
正相关,且接收能力与S (i)正相关。
可选地,处理单元510具体还用于:
根据接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与所接收能力正相关;
根据N ref、N和所述N CB,max确定N CB,其中,N ref为第一参考码块大小,N为第一码块的大小,N CB为N CB,max、N ref和N中数值最小的一个。
可选地,处理单元510具体还用于:
根据U (i)和接收能力确定N CB,max,其中,N CB,max还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值,载波i用于传输第一传输块。
可选地,处理单元510具体还用于:
根据TBS LBRM和载波i在第一传输时间内的最大数据传输量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据传输量二者中的最小值正相关,最大数据传输量与
Figure PCTCN2019082636-appb-000180
和S (i)正相关,
Figure PCTCN2019082636-appb-000181
为载波i的最大数据速率,S (i)为第一传输时间的时长;
根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
可选地,上述最大数据传输量还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值。
装置500还可以包括其它单元,例如,接收单元和发送单元,接收单元用于接收来自接收端的通知消息,该通知消息用于指示接收端接收到的数据的大小超出了接收端的接收能力;发送单元用于根据该通信消息减小单位时间内发送的数据的大小。
可选地,通知消息还包括建议传输速率,该建议传输速率为与接收端的接收能力相匹配的数据传输速率。
可选地,通知消息为物理层信令或高层信令或MAC层信令。
应理解,上述各个单元的划分仅仅是功能上的划分,实际实现时可能会有其它的划分方法,例如,发送单元与接收单元位于一个通信模块中。
下面,参照图12,描述本申请实施例提供的另一种速率匹配装置1200,该装置包括处理单元1210。
其中,处理单元1210与上文中所描述的速率匹配装置500中的处理单元510类似,不同之处在于,可选地,处理单元1210还用于:
根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N和N CB,max确定N CB,其中,N为第一码块的大小,N CB为N CB,max和N中数值小的一个。
N CB,max用于指示不同情况下接收端的缓存数据量,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N ref、N和N CB,max三者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。N CB,max的计算方法可参考下文其它实施例中的计算方法。此时,可以无需获取装置500中所述的N ref
除此之外,处理单元510的具体实现方式同样适用于处理单元1210,不再赘述。
装置500中除了处理单元510以外可包括的其他单元及其具体实现方式也适用于装置1200,此外,装置500的技术效果以及对于所涉及的术语的解释均可适用于装置1200,不再赘述。
图6示出了本申请实施例提供的一种解速率匹配装置的结构示意图,该装置600包括:处理单元610,其中,
处理单元610用于确定接收端的接收能力,该接收能力用于指示接收端在第一传输时间内的最大数据处理量,和/或,该接收能力用于指示接收端在第一传输时间内的最大数据缓存量,第一传输时间用于接收第一码块所属的第一传输块;
处理单元610还用于:根据接收能力确定N CB,N CB为进行解速率匹配时使用的码块大小;
处理单元610还用于:根据N CB对第一码块进行解速率匹配。
可选地,处理单元610具体用于:
根据
Figure PCTCN2019082636-appb-000182
和S (i)确定接收端的接收能力,其中,
Figure PCTCN2019082636-appb-000183
为载波i的最大数据速率,载波i用于传输第一传输块,S (i)为第一传输时间的时长,接收能力与
Figure PCTCN2019082636-appb-000184
正相关,并且,接收能力与S (i)正相关。
可选地,处理单元610具体用于:
根据
Figure PCTCN2019082636-appb-000185
和S (i)确定接收能力,其中,
Figure PCTCN2019082636-appb-000186
为载波i在第二传输时间内能够传输的最大传输块的大小,S (i)为第一传输时间的时长,载波i用于传输第一传输块,接收能力与所述
Figure PCTCN2019082636-appb-000187
正相关,且接收能力与S (i)正相关。
可选地,处理单元610具体还用于:
根据接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与所接收能力正相关;
根据N ref、N和所述N CB,max确定N CB,其中,N ref为第一参考码块大小,N为第一码块的大小,N CB为N CB,max、N ref和N中数值最小的一个。
可选地,处理单元610具体还用于:
根据U (i)和接收能力确定N CB,max,其中,N CB,max还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值,载波i用于传输第一传输块。
可选地,处理单元610具体还用于:
根据TBS LBRM和载波i在第一传输时间内的最大数据传输量确定N' ref,其中,TBS LBRM为参考传输块大小,载波i用于传输第一传输块,N' ref为第二参考码块大小,N' ref与TBS LBRM和最大数据传输量二者中的最小值正相关,最大数据传输量与
Figure PCTCN2019082636-appb-000188
和S (i)正相关,
Figure PCTCN2019082636-appb-000189
为载波i的最大数据速率,S (i)为第一传输时间的时长;
根据N和N' ref确定N CB,其中,N为第一码块的大小,N CB为N' ref和N中数值小的一个。
可选地,上述最大数据传输量还与U (i)正相关,U (i)为载波i的激活的BWP的传输带宽值与接收端的所有激活的接收载波的激活的BWP的传输带宽值的和的比值。
装置600还可以包括其它单元,例如,发送单元,用于向发送端发送通知消息,该通知消息用于指示接收端接收到的数据的大小超出了接收端的接收能力。
可选地,该通知消息还包括建议传输速率,该建议传输速率为与接收端的接收能力相匹配的数据传输速率。
可选地,该通知消息为物理层信令或高层信令或MAC层信令。
应理解,上述各个单元的划分仅仅是功能上的划分,实际实现时可能会有其它的划分方法。
本领域的技术人员可以清楚地了解到,上述描述的装置和单元的具体工作过程以及执行步骤所产生的技术效果,可以参考前述对应的方法实施例中的描述,为了简洁,在此不再赘述。
上述速率匹配装置和解速率匹配装置可以是一个芯片,处理单元可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理单元可以是逻辑电路、集成电路等;当通过软件来实现时,该处理单元可以是一个通用处理器,通过读取存储单元中存储的软件代码来实现,该存储单元可以集成在处理器中,也可以位于所述处理器之外,独立存在。
下面,参照图13,描述本申请实施例提供的另一种解速率匹配装置1300,该装置包括处理单元1310。
其中,处理单元1310与上文中所描述的解速率匹配装置600中的处理单元610类似,不同之处在于,可选地,处理单元1310还用于:
根据接收端的接收能力确定N CB,max,N CB,max为接收端在第一传输时间内能够处理的单个码块的大小的最大值,N CB,max与接收端的接收能力正相关;根据N和N CB,max确定N CB,其中,N为第一码块的大小,N CB为N CB,max和N中数值小的一个。
N CB,max用于指示不同情况下接收端的缓存数据量,N CB,max是基于第一传输时间内接收端的接收能力得到的值(该第一传输时间内接收端的接收能力可能受限),发送端将N ref、N和N CB,max三者之间的最小值作为速率匹配时使用的码块大小(N CB),可以使得信道中实际传输的数据量不超过接收端的处理能力和/或缓存能力,从而可以避免在接收端的接收能力受限的情况下出现处理能力溢出和/或缓存溢出。例如,若在第一传输时间内接收端的接收能力受限,而第一传输块太大,则N大于N CB,max,发送端可以将N CB,max作为速率匹配时使用的码块大小(N CB)。N CB,max的计算方法可参考下文其它实施例中的计算方法。此时,可以无需获取装置600中所述的N ref
除此之外,处理单元610的具体实现方式同样适用于处理单元1310,不再赘述。
装置600中除了处理单元610以外可包括的其他单元及其具体实现方式也适用于装置1300,此外,装置600的技术效果以及对于所涉及的术语的解释均可适用于装置1300,不再赘述。
下面以发送端为接入网设备、接收端为终端设备为例对本申请实施例提供的发送端和接收端做进一步描述。
图7是本申请实施例提供的一种终端设备的结构示意图。该终端设备可适用于图1所示出的通信系统中,执行上述方法实施例中接收端的功能。为了便于说明,图7仅示出了终端设备的主要部件。如图7所示,终端设备70包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持 终端设备执行上述方法实施例中所描述的动作,如,确定接收端的接收能力,根据接收能力确定N CB,根据N CB对第一码块进行速率匹配等。存储器主要用于存储软件程序和数据,例如存储上述实施例中所描述的第一传输块和第一码块等。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,处理器可以包括基带处理器和/或中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图7中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备70的收发单元701,例如,用于支持终端设备执行如方法400所述的接收功能和发送功能。将具有处理功能的处理器视为终端设备70的处理单元702。如图7所示,终端设备70包括收发单元701和处理单元702。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元701中用于实现接收功能的器件视为接收单元,将收发单元701中用于实现发送功能的器件视为发送单元,即收发单元701包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。示例性的,收发单元701可以不包括天线,而仅包括电路部分,使得天线外置于所述收发单元。
处理器702可用于执行该存储器存储的指令,以控制收发单元701接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元701的功能可以考虑通过收发电路或者收发的专用芯片实现。在执行各类信号的收发时,如接收第一码块,则处理器702控制收发单元701实现所述接收。因此处理器702 是信号收发决定者,并发起数据收发操作,收发单元701是信号收发的执行者。
图8是本申请实施例提供的一种接入网设备的结构示意图,该接入网设备例如可以为基站。如图8所示,该基站可应用于如图1所示的通信系统中,执行上述方法实施例中发送端的功能。基站80可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)801和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))802。所述RRU 801可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线8011和射频单元8012。所述RRU 801部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于发送上述方法实施例中第一码块。所述BBU 802部分主要用于进行基带处理,对基站进行控制等。所述RRU 801与BBU 802可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 802为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)802可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,所述BBU 802可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。所述BBU 802还包括存储器8021和处理器8022,所述存储器8021用于存储必要的指令和数据。例如存储器8021存储上述方法实施例中的第一码块。所述处理器8022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器8021和处理器8022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图9给出了一种通信装置900的结构示意图。装置900可用于执行上述方法实施例所描述的方法的步骤,可以参见上述方法实施例中的说明。所述通信装置900可以是芯片,接入网设备(如基站),终端设备或者其它通信设备等。
所述通信装置900包括一个或多个处理器901。所述处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述通信装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,通信装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端或基站或其他通信设备。又如,通信装置可以为终端或基站或其它通信设备,所述收发单元可以为收发器,射频芯片等。
所述通信装置900包括一个或多个所述处理器901,所述一个或多个处理器901可实现图3和/或图4所示的实施例中方法的执行设备的功能。
在一种可能的设计中,所述通信装置900包括用于对第一码块进行速率匹配的部件,以及用于发送第一码块的部件。可以通过一个或多个处理器来实现对第一码块进行速率匹配部件的功能,并通过收发器、或输入/输出电路、或芯片的接口发送所述第 一码块。对第一码块进行速率匹配的方法可以参见上述方法实施例中的相关描述。
在另一种可能的设计中,所述通信装置900包括用于对第一码块进行解速率匹配的部件,以及用于接收第一码块的部件。可以通过一个或多个处理器来实现所述对第一码块进行解速率匹配的部件的功能,并且通过收发器、或输入/输出电路、或芯片的接口接收第一码块。对第一码块进行解速率匹配的方法可以参见上述方法实施例中的相关描述。
可选地,处理器901除了实现图3和/或图4所示的实施例的功能,还可以实现其它功能。
可选的,一种设计中,处理器901可以执行指令,使得所述通信装置900执行上述方法实施例中描述的步骤。所述指令可以全部或部分存储在所述处理器内,如指令903,也可以全部或部分存储在与所述处理器耦合的存储器902中,如指令904,也可以通过指令903和904共同使得通信装置900执行上述方法实施例中描述的步骤。
在又一种可能的设计中,通信装置900也可以包括电路,所述电路可以实现前述方法实施例中网络设备或终端设备的功能。
在又一种可能的设计中,通信装置900中可以包括一个或多个存储器902,其上存有指令904,所述指令可在所述处理器上被运行,使得所述通信装置900执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有数据。可选地,处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器902可以存储上述实施例中所描述的对应关系,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置900还可以包括收发单元905以及天线906。所述处理器901也可以称为处理单元,对通信装置(终端或者基站)进行控制。所述收发单元905可以称为收发机、收发电路、或者收发器等,用于通过天线906实现通信装置的收发功能。
本申请还提供一种通信系统,其包括前述的一个或多个接入网设备,和,一个或多个终端设备。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请各实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或 可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例的功能。
本申请还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,说明书通篇中提到的“实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各个实施例未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下UE或者基站会做出相应的处理,并非是限定时间,且也不要求UE或基站实现时一定要有判断的动作,也不意味着存在其它限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”, 仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本申请所使用的,盘(disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常使用磁性来复制数据,而碟则使用激光来复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种速率匹配方法,其特征在于,包括:
    确定接收端的接收能力,所述接收能力用于指示所述接收端在第一传输时间内的最大数据处理量,和/或,所述接收能力用于指示所述接收端在第一传输时间内的最大数据缓存量,所述第一传输时间用于传输第一码块所属的第一传输块;
    根据所述接收能力确定N CB,所述N CB为进行速率匹配时使用的码块大小;
    根据所述N CB对所述第一码块进行速率匹配。
  2. 一种解速率匹配方法,其特征在于,包括:
    确定接收端的接收能力,所述接收能力用于指示所述接收端在第一传输时间内的最大数据处理量,和/或,所述接收能力用于指示所述接收端在第一传输时间内的最大数据缓存量,所述第一传输时间用于接收第一传输块;
    根据所述接收能力确定N CB,所述N CB为进行解速率匹配时使用的码块大小;
    根据所述N CB对所述第一传输块进行解速率匹配。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定接收端的接收能力,包括:
    根据
    Figure PCTCN2019082636-appb-100001
    和S (i)确定所述接收能力,其中,所述
    Figure PCTCN2019082636-appb-100002
    为载波i的最大数据速率,所述载波i用于传输所述第一传输块,所述S (i)为所述第一传输时间的时长,所述接收能力与所述
    Figure PCTCN2019082636-appb-100003
    正相关,并且,所述接收能力与所述S (i)正相关。
  4. 根据权利要求1或2所述的方法,其特征在于,所述确定接收端的接收能力,包括:
    根据
    Figure PCTCN2019082636-appb-100004
    和S (i)确定所述接收能力,其中,所述
    Figure PCTCN2019082636-appb-100005
    为载波i在第二传输时间内能够传输的最大传输块的大小,所述S (i)为所述第一传输时间的时长,所述载波i用于传输所述第一传输块,所述接收能力与所述
    Figure PCTCN2019082636-appb-100006
    正相关,所述接收能力与所述S (i)正相关。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述接收能力确定N CB,包括:
    根据所述接收能力确定N CB,max,所述N CB,max为所述接收端在所述第一传输时间内能够处理的单个码块的大小的最大值,所述N CB,max与所述接收能力正相关;
    根据N ref、N和所述N CB,max确定所述N CB,其中,所述N ref为第一参考码块大小,所述N为所述第一码块的大小,所述N CB为所述N CB,max、所述N ref和所述N中数值最小的一个。
  6. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述接收能力确定N CB,包括:
    根据所述接收能力确定N CB,max,所述N CB,max为所述接收端在所述第一传输时间内能够处理的单个码块的大小的最大值,所述N CB,max与所述接收能力正相关;
    根据N和所述N CB,max确定所述N CB,其中,所述N为所述第一码块的大小,所述N CB为所述N CB,max和所述N中数值小的一个。
  7. 根据权利要求5或6所述的方法,其特征在于,所述根据所述接收能力确定 N CB,max,包括:
    根据U (i)和所述接收能力确定所述N CB,max,其中,所述N CB,max还与所述U (i)正相关,所述U (i)为载波i的激活部分带宽BWP的传输带宽值与所述接收端的所有激活接收载波的激活BWP的传输带宽值的和的比值,所述载波i用于传输所述第一传输块。
  8. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述接收能力确定N CB,包括:
    根据TBS LBRM和载波i在所述第一传输时间内的最大数据处理量确定N' ref,其中,TBS LBRM为参考传输块大小,所述载波i用于传输所述第一传输块,所述N' ref为第二参考码块大小,所述N' ref与所述TBS LBRM和所述最大数据处理量二者中的最小值正相关,所述最大数据处理量与
    Figure PCTCN2019082636-appb-100007
    和S (i)正相关,所述
    Figure PCTCN2019082636-appb-100008
    为所述载波i的最大数据速率,所述S (i)为所述第一传输时间的时长;
    根据N和所述N' ref确定N CB,其中,所述N为所述第一码块的大小,所述N CB为所述N' ref和所述N中数值小的一个。
  9. 根据权利要求8所述的方法,其特征在于,所述最大数据处理量还与U (i)正相关,所述U (i)为所述载波i的激活BWP的传输带宽值与所述接收端的所有激活接收载波的激活BWP的传输带宽值的和的比值。
  10. 一种速率匹配装置,其特征在于,包括:
    处理单元,用于确定接收端的接收能力,所述接收能力用于指示所述接收端在第一传输时间内的最大数据处理量,和/或,所述接收能力用于指示所述接收端在第一传输时间内的最大数据缓存量,所述第一传输时间用于传输第一码块所属的第一传输块;
    所述处理单元还用于:根据所述接收能力确定N CB,所述N CB为进行速率匹配时使用的码块大小;
    所述处理单元还用于:根据所述N CB对所述第一码块进行速率匹配。
  11. 一种解速率匹配装置,其特征在于,包括:
    处理单元,用于确定接收端的接收能力,所述接收能力用于指示所述接收端在第一传输时间内的最大数据处理量,和/或,所述接收能力用于指示所述接收端在第一传输时间内的最大数据缓存量,所述第一传输时间用于接收第一传输块;
    所述处理单元还用于:根据所述接收能力确定N CB,所述N CB为进行解速率匹配时使用的码块大小;
    所述处理单元还用于:根据所述N CB对所述第一传输块进行解速率匹配。
  12. 根据权利要求10或11所述的装置,其特征在于,所述处理单元具体用于:
    根据
    Figure PCTCN2019082636-appb-100009
    和S (i)确定所述接收能力,其中,所述
    Figure PCTCN2019082636-appb-100010
    为载波i的最大数据速率,所述载波i用于传输所述第一传输块,所述S (i)为所述第一传输时间的时长,所述接收能力与所述
    Figure PCTCN2019082636-appb-100011
    正相关,并且,所述接收能力与所述S (i)正相关。
  13. 根据权利要求10或11所述的装置,其特征在于,所述处理单元具体用于:
    根据
    Figure PCTCN2019082636-appb-100012
    和S (i)确定所述接收能力,其中,所述
    Figure PCTCN2019082636-appb-100013
    为载波i在第二传输时间内能够传输的最大传输块的大小,所述S (i)为所述第一传输时间的时长,所述载波i用于传输所述第一传输块,所述接收能力与所述
    Figure PCTCN2019082636-appb-100014
    正相关,所述接收能力与所述S (i) 正相关。
  14. 根据权利要求10至13中任一项所述的装置,其特征在于,所述处理单元具体还用于:
    根据所述接收能力确定N CB,max,所述N CB,max为所述接收端在所述第一传输时间内能够处理的单个码块的大小的最大值,所述N CB,max与所述接收能力正相关;
    根据N ref、N和所述N CB,max确定所述N CB,其中,所述N ref为第一参考码块大小,所述N为所述第一码块的大小,所述N CB为所述N CB,max、所述N ref和所述N中数值最小的一个。
  15. 根据权利要求10至13中任一项所述的装置,其特征在于,所述处理单元具体还用于:
    根据所述接收能力确定N CB,max,所述N CB,max为所述接收端在所述第一传输时间内能够处理的单个码块的大小的最大值,所述N CB,max与所述接收能力正相关;
    根据N和所述N CB,max确定所述N CB,其中,所述N为所述第一码块的大小,所述N CB为所述N CB,max和所述N中数值小的一个。
  16. 根据权利要求14或15所述的装置,其特征在于,所述处理单元具体还用于:
    根据U (i)和所述接收能力确定所述N CB,max,其中,所述N CB,max还与所述U (i)正相关,所述U (i)为载波i的激活部分带宽BWP的传输带宽值与所述接收端的所有激活接收载波的激活BWP的传输带宽值的和的比值,所述载波i用于传输所述第一传输块。
  17. 根据权利要求10至13中任一项所述的装置,其特征在于,所述处理单元具体还用于:
    根据TBS LBRM和载波i在所述第一传输时间内的最大数据处理量确定N' ref,其中,TBS LBRM为参考传输块大小,所述载波i用于传输所述第一传输块,所述N' ref为第二参考码块大小,所述N' ref与所述TBS LBRM和所述最大数据处理量二者中的最小值正相关,所述最大数据处理量与
    Figure PCTCN2019082636-appb-100015
    和S (i)正相关,所述
    Figure PCTCN2019082636-appb-100016
    为所述载波i的最大数据速率,所述S (i)为所述第一传输时间的时长;
    根据N和所述N' ref确定N CB,其中,所述N为所述第一码块的大小,所述N CB为所述N' ref和所述N中数值小的一个。
  18. 根据权利要求14或15所述的装置,其特征在于,所述最大数据传输量还与U (i)正相关,所述U (i)为所述载波i的激活BWP传输带宽值与所述接收端的所有激活接收载波的激活BWP的传输带宽值的和的比值。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备执行权利要求1至9中任一项所述的方法。
  20. 一种通信装置,其特征在于,所述装置包括处理器和存储介质,所述存储介质存储有指令,所述指令被所述处理器运行时,使得所述处理器执行根据权利要求1至9任一项所述的方法。
PCT/CN2019/082636 2018-04-16 2019-04-15 速率匹配的方法和装置,以及解速率匹配的方法和装置 WO2019201196A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19789165.8A EP3751765A4 (en) 2018-04-16 2019-04-15 METHOD AND DEVICE FOR RATE ADJUSTMENT AND METHOD AND DEVICE FOR CANCELING RATE ADJUSTMENT
US17/028,651 US11558305B2 (en) 2018-04-16 2020-09-22 Rate matching method and apparatus, and rate de-matching method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810339728 2018-04-16
CN201810339728.5 2018-04-16
CN201810351167.0 2018-04-18
CN201810351167.0A CN110391870B (zh) 2018-04-16 2018-04-18 速率匹配的方法和装置,以及解速率匹配的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/028,651 Continuation US11558305B2 (en) 2018-04-16 2020-09-22 Rate matching method and apparatus, and rate de-matching method and apparatus

Publications (1)

Publication Number Publication Date
WO2019201196A1 true WO2019201196A1 (zh) 2019-10-24

Family

ID=68240462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082636 WO2019201196A1 (zh) 2018-04-16 2019-04-15 速率匹配的方法和装置,以及解速率匹配的方法和装置

Country Status (1)

Country Link
WO (1) WO2019201196A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337684A (zh) * 2014-07-25 2016-02-17 华为技术有限公司 一种传输、存储下行数据的方法、基站及终端
CN106416113A (zh) * 2014-12-30 2017-02-15 联发科技股份有限公司 叠加编码中的速率匹配和软信道比特存储
CN106850169A (zh) * 2016-11-29 2017-06-13 上海华为技术有限公司 一种资源调度分配的方法以及通信设备
WO2018052659A1 (en) * 2016-09-19 2018-03-22 Qualcomm Incorporated Per-symbol k-bit interleaver
CN107852274A (zh) * 2015-07-24 2018-03-27 高通股份有限公司 多传输块传输的码块分段和速率匹配

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105337684A (zh) * 2014-07-25 2016-02-17 华为技术有限公司 一种传输、存储下行数据的方法、基站及终端
CN106416113A (zh) * 2014-12-30 2017-02-15 联发科技股份有限公司 叠加编码中的速率匹配和软信道比特存储
CN107852274A (zh) * 2015-07-24 2018-03-27 高通股份有限公司 多传输块传输的码块分段和速率匹配
WO2018052659A1 (en) * 2016-09-19 2018-03-22 Qualcomm Incorporated Per-symbol k-bit interleaver
CN106850169A (zh) * 2016-11-29 2017-06-13 上海华为技术有限公司 一种资源调度分配的方法以及通信设备

Also Published As

Publication number Publication date
CN114944886A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
CN110391870B (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置
RU2652418C1 (ru) Система и способ совместной передачи в лицензируемых и нелицензируемых диапазонах с использованием фонтанных кодов
US20210258104A1 (en) Harq design for wireless communications
JP2019523574A (ja) Puschにおけるharq−ack多重化
CN111108692B (zh) 用于3gpp新无线电的基础图选择
CN110999147B (zh) 相等大小码块的传输块大小确定
US11038644B2 (en) Data communication method, network device, and terminal device
US20220368494A1 (en) Uplink re-transmission with compact memory usage
WO2018228288A1 (zh) 传输数据的方法、终端设备和网络设备
WO2019047819A1 (zh) 发送上行控制信道的方法和装置
US20210337528A1 (en) Network access node and client device for indication of multiple data channels in a single control message
WO2019104470A1 (zh) 一种被用于非授权频谱的基站设备中的方法和装置
WO2020063838A1 (zh) 传输数据的方法及装置
WO2018188637A1 (zh) 发送信息的方法及其装置和接收信息的方法及其装置
US11139917B2 (en) Communication method and apparatus using segmented bit sequences
WO2018024150A1 (zh) 一种被用于低延迟通信的用户设备、基站中的方法和装置
CN114157400B (zh) 一种码本的处理方法及装置
CN110224788B (zh) 一种数据传输的方法及装置
WO2019047050A1 (zh) 一种被用于低延迟通信的用户、基站中的方法和装置
EP3496480A1 (en) Method, apparatus and system for sending control information
WO2019201196A1 (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置
CN114944886B (zh) 速率匹配的方法和装置,以及解速率匹配的方法和装置
CN112970216A (zh) 用于在无线通信系统中发送和接收数据及反馈的方法和装置
WO2022120600A1 (zh) 重复传输方法、装置、设备及存储介质
US11984977B2 (en) Code block segmentation for new radio

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019789165

Country of ref document: EP

Effective date: 20200910

NENP Non-entry into the national phase

Ref country code: DE