WO2018201984A1 - 数据的传输方法和设备 - Google Patents

数据的传输方法和设备 Download PDF

Info

Publication number
WO2018201984A1
WO2018201984A1 PCT/CN2018/084799 CN2018084799W WO2018201984A1 WO 2018201984 A1 WO2018201984 A1 WO 2018201984A1 CN 2018084799 W CN2018084799 W CN 2018084799W WO 2018201984 A1 WO2018201984 A1 WO 2018201984A1
Authority
WO
WIPO (PCT)
Prior art keywords
size
time
frequency resource
block
indication information
Prior art date
Application number
PCT/CN2018/084799
Other languages
English (en)
French (fr)
Inventor
杜白
董朋朋
彭金磷
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018201984A1 publication Critical patent/WO2018201984A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • H04L1/0063Single parity check
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1806Go-back-N protocols

Definitions

  • the present application relates to communication technologies, and in particular, to a data transmission method and device.
  • the 5G communication system can support different services.
  • the foregoing services may be, for example, enhanced mobile broadband (eMBB) services, mass machine type communication (MTC) services, and ultra-reliable low latency communications (URLC).
  • eMBB enhanced mobile broadband
  • MTC mass machine type communication
  • URLC ultra-reliable low latency communications
  • MBMS Multimedia Broadcast Multicast Service
  • MBMS Multimedia Broadcast Multicast Service
  • the URLLC service is an important service in the 5G communication system, and requires very high reliability and very short delay in transmission. Therefore, in order to ensure the reliability of the URLLC service, the 5G communication system allows the use of Hybrid Automatic Repeat Request (HARQ) technology when transmitting URLLC service data. That is, after receiving the transport block (including one or more coding blocks) that carries the URL LC service data sent by the first device, the second device may send the first block to the first device based on the decoding result of all the received code blocks. Feedback information to indicate through the feedback information whether the second device correctly receives all coded blocks.
  • HARQ Hybrid Automatic Repeat Request
  • the first device may retransmit the decoded error coding block to the second device based on the feedback information to improve the probability that the URLLC service data is correctly decoded by the second device. That is, after receiving the feedback information sent by the second device, the first device determines whether to retransmit the coded block that transmits the error to the second device, so that the delay between the two devices is twice. Can not meet the delay requirements of the URLLC service.
  • the present application provides a data transmission method and device, which are used to solve the technical problem of sending URLLC data transmission delay when transmitting a transport block carrying URLLC service data.
  • the application provides a data transmission method, where the method includes:
  • the first device divides the transport block to be transmitted into the first coding block and the at least one second coding block according to the size of the first coding block;
  • the first device after the TB is divided into one first CB and at least one second CB, by using the data transmission method provided by the first aspect, after the first device sends the TB to the second device,
  • the second device may first decode the first CB, and feed back the decoding result of the first CB to the first device, so that when the decoding result of the first CB is that the decoding fails, the first device may retransmit in advance, which is reduced.
  • the delay between two transmissions of the first device Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased within the delay requirement of the URLLC service.
  • the first device is a terminal device, and the first device determines a size of the preset first coding block, including:
  • the first device receives the first indication information, where the first indication information is used to indicate a size of the preset first coding block;
  • the transmission method of the data provided by the possible design enables the first device to determine the size of the preset first coding block in a flexible manner.
  • the method before the first device maps the transport block to the first time-frequency resource and sends the data to the second device, the method further includes:
  • the frequency resource is used to carry information of the first coded block.
  • the first device may be configured according to the size of the transport block, the size and location of the first time-frequency resource, the size of the first coding block, and an equivalent code rate. Adjusting a coefficient, determining a size and a location of the second time-frequency resource, so that the first CB segmented from the TB can be sent on the second time-frequency resource, so that the second device can be based on the size and location of the second time-frequency resource. Determining the first CB from the TB, and decoding the first CB, to feed back the decoding result of the first CB to the first device in advance, and then, when the decoding result of the first CB is decoding failure, the first device may advance Retransmission reduces the delay between two transmissions of the first device. Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased within the delay requirement of the URLLC service.
  • the first device determines the size of the second time-frequency resource according to the size of the transport block, the size and location of the first time-frequency resource, and the size of the first coding block. And location, including:
  • the first device is a terminal device, and the method further includes:
  • the first device receives the second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the manner in which the first device obtains the equivalent code rate adjustment coefficient is flexible.
  • the first device is a network device
  • the method further includes:
  • the first device sends second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the second time-frequency resource is located in a preset time domain symbol.
  • the first coded block is encoded using a polarized polar code
  • the at least one second coded block is encoded using a low density parity check code LDPC.
  • the application provides a data transmission method, where the method includes:
  • the second device receives a transport block from the first device, the transport block including a first coded block and at least one second coded block;
  • the second device Determining, by the second device, a size and a location of the second time-frequency resource according to a size of the transport block, a size of the first coding block, and a size and a location of the first time-frequency resource, where the second The time-frequency resource is used to carry information of the first coded block;
  • the first information is used to indicate a decoding result of the first coding block, where the first time point is earlier than the first a time point at which the second device sends the second information to the first device, where the second information is used to indicate a decoding result of the transport block.
  • the second device is a terminal device, and the second device determines a size of the preset first coding block, including:
  • the second device receives the first indication information, where the first indication information is used to indicate a size of the preset first coding block;
  • the second device determines, according to the first indication information, a size of the preset first coding block.
  • the second device determines the size of the second time-frequency resource according to the size of the transport block, the size of the first coding block, and the size and location of the first time-frequency resource.
  • the second device is a terminal device, and the method further includes:
  • the second device receives the second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the second device is a network device, and the method further includes:
  • the second device sends second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the second time-frequency resource is located in a preset time domain symbol.
  • the first coded block is encoded using a polarized polar code
  • the at least one second coded block is encoded using a low density parity check code LDPC.
  • the application provides a device, where the device is a first device, and the first device includes:
  • a processing module configured to determine a size of the preset first coding block, and divide the transmission block to be transmitted into the first coding block and the at least one second coding block according to the size of the first coding block;
  • a sending module configured to map the transport block to a first time-frequency resource, where the transport block includes the first coded block and the at least one second coded block, where The transmission time of a coded block is earlier than or equal to the transmission time of the second coded block.
  • the first device is a terminal device
  • the processing module specifically receives the first indication information, and determines a size of the preset first coding block according to the first indication information, where the first indication information is used to indicate the preset The size of the first encoding block.
  • the processing module is further configured to: before the sending module maps the transport block to the first time-frequency resource and send the data to the second device, according to the size of the transport block, Determining the size and location of the first time-frequency resource and the size of the first coding block, and determining the size and location of the second time-frequency resource; the second time-frequency resource is used to carry information of the first coded block.
  • the processing module is specifically configured to: according to a size of the transport block, a size and a location of the first time-frequency resource, a size of the first coding block, and an equivalent code rate. Adjusting the coefficient to determine the size and location of the second time-frequency resource.
  • the first device is a terminal device, and the first device further includes:
  • the receiving module is configured to receive the second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the first device is a network device
  • the sending module is further configured to send second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the second time-frequency resource is located in a preset time domain symbol.
  • the first coded block is encoded using a polarized polar code
  • the at least one second coded block is encoded using a low density parity check code LDPC.
  • the application provides a device, where the device is a second device, and the second device includes:
  • a receiving module configured to receive a transport block from the first device, where the transport block includes a first coded block and at least one second coded block;
  • a processing module configured to determine a size and a location of the second time-frequency resource according to the size of the transport block, the size of the first coding block, and the size and location of the first time-frequency resource, and according to the second Decoding and decoding the first coded block, where the second time-frequency resource is used to carry information of the first coded block;
  • a sending module configured to send first information to the first device at a first time point; the first information is used to indicate a decoding result of the first coding block, where the first time point is earlier than the first a time point at which the second device sends the second information to the first device, where the second information is used to indicate a decoding result of the transport block.
  • the second device is a terminal device
  • the processing module is configured to receive the first indication information, and determine the preset first coding block according to the first indication information.
  • the size of the first indication information is used to indicate the size of the preset first coding block;
  • the processing module is specifically configured to adjust according to a size of the transport block, a size of the first time-frequency resource, a size of the first coding block, and an equivalent code rate. a coefficient determining a size of the second time-frequency resource.
  • the second device is a terminal device
  • the receiving module is further configured to receive second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the second device is a network device
  • the sending module is further configured to send second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the second time-frequency resource is located in a preset time domain symbol.
  • the first coded block is encoded using a polarized polar code
  • the at least one second coded block is encoded using a low density parity check code LDPC.
  • the application provides a device, where the device is a first device, where the first device includes: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are coupled to the device a processor, the processor controls a receiving action of the receiver, and the processor controls a sending action of the transmitter;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the first device to perform data provided by the first aspect and the possible designs of the first aspect Transmission method.
  • the application provides a device, where the device is a second device, where the second device includes: a processor, a memory, a receiver, and a transmitter; the receiver and the transmitter are coupled to the device a processor, the processor controls a receiving action of the receiver, and the processor controls a sending action of the transmitter;
  • the memory is for storing computer executable program code, the program code comprising instructions; when the processor executes the instructions, the instructions cause the second device to perform data provided by the possible designs of the second aspect and the second aspect Transmission method.
  • a seventh aspect of the present application provides an apparatus comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • An eighth aspect of the present application provides an apparatus comprising at least one processing element (or chip) for performing the method of the above second aspect.
  • a ninth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the first aspect and the various possible designs of the first aspect.
  • a tenth aspect of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the methods of the various possible designs of the second and second aspects above.
  • An eleventh aspect of the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform the various possibilities of the first aspect and the first aspect described above The method in the design.
  • a twelfth aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform various possibilities of the second aspect and the second aspect described above The method in the design.
  • the method and device for transmitting data provided by the present application, after the first device divides the TB to be transmitted into a first CB and at least one second CB, so that the first device sends the TB to the second device,
  • the second device may first decode the first CB, and feed back the decoding result of the first CB to the first device, so that when the decoding result of the first CB is that the decoding fails, the first device may retransmit in advance, which is reduced.
  • the delay between two transmissions of the first device Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased within the delay requirement of the URLLC service.
  • Figure 1 is a block diagram of a communication system according to the present application.
  • FIG. 2 is a schematic diagram of transmitting URLLC service data by using HARQ technology
  • FIG. 3 is a schematic flowchart diagram of a data transmission method provided by the present application.
  • FIG. 4 is a schematic flowchart diagram of another data transmission method provided by the present application.
  • FIG. 5 is a signaling flowchart of still another data transmission method provided by the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus provided by the present application.
  • FIG. 7 is a schematic structural diagram of another device provided by the present application.
  • FIG. 8 is a schematic structural diagram of still another apparatus provided by the present application.
  • FIG. 9 is a schematic structural diagram of still another apparatus provided by the present application.
  • FIG. 10 is a schematic structural diagram of still another apparatus provided by the present application.
  • plural means two or more.
  • “and/or” describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/” generally indicates that the contextual object is an "or" relationship.
  • the communication system may be an LTE communication system, or may be other communication systems in the future, and is not limited herein.
  • the communication system may include a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device by means of a wireless connection, and the radio access network device is connected to the core network device by wireless or wired.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile.
  • FIG. 1 is only a schematic diagram, and the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminal devices included in the communication system.
  • the radio access network device is an access device in which the terminal device accesses the communication system in a wireless manner, and may be a base station NodeB, an evolved base station eNodeB, a base station in a 5G communication system, a base station in a future communication system, or a WiFi system.
  • the specific technology and the specific device configuration adopted by the radio access network device are not limited in the embodiment of the present application.
  • the terminal device may also be called a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), or the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • Radio access network equipment and terminal equipment can be deployed on land, including indoors or outdoors, handheld or on-board; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons and satellites.
  • the application scenarios of the radio access network device and the terminal device are not limited.
  • the embodiments of the present application can be applied to downlink signal transmission, and can also be applied to uplink signal transmission.
  • the radio access network device and the terminal device and the terminal device and the terminal device and the terminal device can communicate through a licensed spectrum, or can communicate through an unlicensed spectrum, or can simultaneously pass the licensed spectrum and Authorize the spectrum for communication.
  • the radio access network device and the terminal device and the terminal device and the terminal device can communicate through the spectrum below 6G, or can communicate through the spectrum of 6G or higher, and can simultaneously use the spectrum below 6G and the spectrum above 6G. Communicate.
  • the embodiment of the present application does not limit the spectrum resources used between the radio access network device and the terminal device.
  • the URLLC service is an important service in the future 5G communication system, requiring very high reliability and very short delay. For example: reliability 99.999%, delay 1 millisecond (millisecond, ms).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the URL of the URLLC service is 1 ms
  • the first device sends the URLLC service data to the second device as an example.
  • the second device may be a terminal device.
  • the second device may be a wireless access network device.
  • the first device may send all code blocks (CBs) of the transport block (TB) carrying the URLLC service data to the second device in the first transmission (1st TX), that is, at the initial transmission.
  • CBs code blocks
  • the second device may Sending feedback information to the first device at the corresponding feedback time point of the first transmission, for example, sending an acknowledgement (ACK) to indicate that the second device has successfully received all CBs.
  • ACK acknowledgement
  • the second device may send the corresponding feedback time point to the first time.
  • the first device sends feedback information, for example, a negative acknowledgement (NACK) to indicate that there is a CB transmission error.
  • NACK negative acknowledgement
  • the first device may perform a second transmission (2nd TX) to resend all CBs of the TB, that is, the first retransmission, to the second device.
  • 2nd TX second transmission
  • the second device may send feedback information to the first device at a feedback time point corresponding to the second transmission, for example, sending a NACK to indicate A device has a CB transmission error.
  • the first device can perform a third transmission (3rd TX) based on the feedback information, that is, a second retransmission to retransmit all CBs of the TB to the second device.
  • FIG. 2 is a schematic diagram of performing an initial transmission and two retransmissions on a CB included in a TB carrying URLLC service data within 1 ms, but the application is not limited thereto.
  • CBG code block group
  • feedback and retransmission based on code block group may be employed.
  • CBG code block group
  • the feedback instead of simply feeding back a separate ACK or NACK, feedback is made for each CBG.
  • the TB contains 4 CBGs
  • 4 ACK/NACKs are fed back to indicate, in which each CBG is received, assuming 1 for ACK, 0 for NACK, 4 CBGs for the first three CBGs, and the last CBG decoding error.
  • the feedback is 1110.
  • For each CBG, in which all CBs are decoded correctly it is considered that the CBG decoding is correct, and the ACK is fed back. If any CB decoding is wrong, the CBG decoding error is considered, and the NACK is fed back.
  • the second device after receiving the CBs of the TBs sent by the first device, the second device needs to decode all CBs of the TBs to send feedback to the first device based on the decoding results of all the CBs. information. It takes a certain time to decode all the CBs, and after receiving the feedback information sent by the second device, the first device determines whether to perform the retransmission operation based on the content indicated by the feedback information. Therefore, when the URLLC service data is transmitted in the foregoing manner, the delay between the two transmissions of the first device is large, and the delay requirement of the URLLC service cannot be met.
  • the first device may divide the TB into a first CB and at least one second CB, wherein the decoding result of the first CB may represent the decoding result of the entire TB. Therefore, after the first device sends the TB that is divided into one first CB and at least one second CB to the second device, the second device may first decode the first CB and send the feedback to the first device in advance.
  • the first information of the decoding result of the first CB and further, when the first information indicates that the decoding result of the first CB is a decoding failure, the first device may perform retransmission in advance based on the first information, reducing the first device twice. The delay between transmissions, which in turn increases the number of retransmissions of the URLLC service within the delay requirement.
  • the data transmission method provided by the present application may also be applied to the application scenario of performing URLLC service data transmission by using multiple repeated transmission manners, that is, the first device repeatedly sends the TB that carries the URLLC service data multiple times. Until the second device successfully receives all CBs of the TB. The second device does not need to send any feedback information to the first device before successfully receiving all CBs of the TB. In this scenario, after the first device sends the TB that is divided into one first CB and at least one second CB to the second device, the second device may first decode the first CB.
  • the second device may send the first information for feeding back the decoding result of the first CB to the first device in advance.
  • the first device may stop the sending of the TB to the second device in advance based on the first information, thereby improving the transmission efficiency of the URLLC service data.
  • FIG. 3 is a schematic flowchart diagram of a data transmission method provided by the present application.
  • the embodiment relates to a process in which the first device divides the TB into the first CB and the at least one second CB.
  • the method may include:
  • the first device determines a size of the first CB.
  • the first device may first determine a size of the first CB to be segmented from the TB.
  • the first device may determine the size of the first CB by using the following methods:
  • the first way the first device determines the size of the preset first CB.
  • the first device may determine the size of the preset first CB according to a predefined definition of the protocol.
  • the size of the preset first CB may be, for example, 10 bits.
  • the first device may according to one of the pre-defined protocols, the current communication scenario, and the capabilities of the second device (eg, the receiving antenna) The number, etc., determines the size of a preset first CB from the sizes of the plurality of preset first CBs.
  • the first device when the first device is a terminal device, the first device may further receive the first indication information from the radio access network device.
  • the first indication information is used to indicate a size of the preset first coding block. Therefore, the first device may further determine a size of the preset first coding block according to the first indication information. In this way, the size of the preset first coding block can be dynamically indicated to the first device to meet the requirement of the size of the first coding block in different communication scenarios.
  • the first indication information may be sent in any signaling such as physical layer signaling, radio resource control (RRC) signaling, and media access control (MAC) signaling. Give the first device.
  • RRC radio resource control
  • MAC media access control
  • the first device may further receive two indication information from the radio access network device.
  • an indication information is used to indicate a size of a plurality of preset first CBs predefined by the communication protocol.
  • Another indication information is used to indicate an identifier of the size of a preset first CB that is currently required to be used. Therefore, the first device may further determine the size of a preset first coding block by combining the two indication information.
  • the indication information for indicating the size of the plurality of preset first CBs that are predefined by the communication protocol may be carried in any signaling such as physical layer signaling, RRC signaling, and MAC signaling.
  • Another indication information may be carried in, for example, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first device when the first device is a network device, the first device may further send the first indication information to the terminal device.
  • the first indication information is used to indicate a size of the preset first coding block.
  • the terminal device After receiving the first indication information, the terminal device may determine, according to the first indication information, a size of the preset first coding block. In this way, the size of the preset first coding block can be dynamically indicated to the terminal device to meet the requirements of the size of the first coding block in different communication scenarios.
  • the first indication information may be carried in any signaling such as physical layer signaling, radio resource control (RRC) signaling, and media access control (MAC) signaling.
  • RRC radio resource control
  • MAC media access control
  • the first device may further send two indication information to the terminal device.
  • an indication information is used to indicate a size of a plurality of preset first CBs predefined by the communication protocol.
  • Another indication information is used to indicate an identifier of the size of a preset first CB that is currently required to be used.
  • the terminal device may determine the size of the preset first coding block according to the two indication information.
  • the foregoing indication information indicating the size of the plurality of preset first CBs that are predefined by the communication protocol may be carried in any signaling such as physical layer signaling, RRC signaling, and MAC signaling.
  • Another indication information may be carried in, for example, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the second mode the first device determines the size of the first CB according to the preset scaling factor and the size of the TB.
  • the preset scaling factor may be a ratio of the size of the first CB to the size of the TB, and the preset scaling factor may be, for example, 1/10, that is, the size of the first CB is one tenth of the size of the TB.
  • the data size of the first CB may be processed, for example, by using upward or upward.
  • the processing method of rounding down can also be rounded off.
  • the first device may first determine a preset scaling factor according to a predefined definition of the protocol. Then, the first device may use the product of the preset scale factor and the size of the TB as the size of the first CB. For example, if the size of the TB is 100 bits and the preset scale factor is 1/10, the size of the first CB is 10 bits.
  • the first device may determine a preset scaling factor from the plurality of preset scaling factors according to the predefined configuration of the protocol and the current communication scenario. Then, the first device may use the product of the preset scale factor and the size of the TB as the size of the first CB.
  • the first device when the first device is a terminal device, the first device may further receive indication information from the radio access network device.
  • the indication information is used to indicate a preset scale factor. Therefore, the first device may further determine a preset scaling factor according to the indication information. Then, the first device may use the product of the preset scale factor and the size of the TB as the size of the first CB. In this way, the preset scaling factor can be dynamically indicated to the device, and the size of the first coding block is dynamically indicated in an implicit manner to meet the requirements of the size of the first coding block in different communication scenarios.
  • the indication information may be carried in any signaling such as physical layer signaling, radio resource control (RRC) signaling, and media access control (MAC) signaling. a device.
  • RRC radio resource control
  • MAC media access control
  • the first device may further receive two indication information from the radio access network device.
  • an indication information is used to indicate a plurality of preset scaling factors predefined by the communication protocol.
  • Another indication is used to indicate the identity of a preset scale factor that is currently needed to be used. Therefore, the first device may further determine a preset proportional coefficient by combining the two indication information.
  • the foregoing indication information for indicating a plurality of preset scaling factors that are predefined by the communication protocol may be carried in any signaling such as physical layer signaling, RRC signaling, and MAC signaling, and sent to the first device. .
  • Another indication information may be carried in, for example, Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • the first device when the first device is a network device, the first device may further send the indication information to the terminal device.
  • the indication information is used to indicate a preset scale factor.
  • the terminal device After receiving the indication information, the terminal device may determine a preset proportional coefficient according to the indication information. Then, the terminal device can use the product of the preset scale factor and the size of the TB as the size of the first CB.
  • the preset scaling factor can be dynamically indicated to the terminal device, and the size of the first coding block is dynamically indicated in an implicit manner to meet the requirements of the size of the first coding block in different communication scenarios.
  • the foregoing indication information may be sent to the first device in any signaling such as physical layer signaling, RRC signaling, or MAC signaling.
  • the first device may further send two indication information to the terminal device.
  • an indication information is used to indicate a plurality of preset scaling factors predefined by the communication protocol.
  • Another indication is used to indicate the identity of a preset scale factor that is currently needed to be used.
  • the terminal device may determine a preset proportional coefficient according to the two indication information.
  • the foregoing indication information for indicating a plurality of preset scaling factors that are predefined by the communication protocol may be carried in any signaling such as physical layer signaling, RRC signaling, and MAC signaling, and sent to the first device. .
  • Another indication may be carried, for example, in the DCI.
  • the first device may calculate the size of the candidate first CB according to the preset scaling factor and the size of the TB, and may be predetermined. Among the sizes of the plurality of CBs, the size of one CB closest to the size of the candidate first CB is selected, and the size of the CB is taken as the size of the first CB. For example, a value smaller than the size of the candidate first CB may be selected, or a value larger than the size of the candidate first CB may be selected.
  • the first device divides the TB to be sent into the first CB and the at least one second CB according to the size of the first CB.
  • the first device may divide the TB into the first CB and the at least one second CB according to the size of the first CB.
  • the second CB mentioned here is a CB obtained by continuing to segment the remaining data after dividing the first CB from the TB.
  • the foregoing first CB may be a CB for predicting a decoding result of the entire TB. That is, the decoding result of the first CB can characterize the decoding result of the entire TB. For example, when the decoding result of the first CB is that the decoding is successful, the decoding result of the entire TB is that the decoding is successful; or, when the decoding result of the first CB is the decoding failure, the decoding result of the entire TB is a decoding failure. That is, after the second device receiving the TB feeds back the decoding result of the first CB to the first device, the first device may determine the decoding result of the entire TB by using the decoding result of the first CB.
  • the second device may first decode the first CB, and The decoding result of a CB is sent to the first device in advance.
  • the first device can determine the decoding result of the entire TB in advance based on the decoding result of the first CB.
  • the decoding result of the entire TB is a decoding failure (that is, the decoding result of the first CB is a decoding failure)
  • the first device may perform a retransmission operation in advance to reduce the delay between the two transmissions of the first device. Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased in the URLLC service within the delay requirement.
  • This embodiment does not limit the manner in which the first device divides the TB into the first CB and the at least one second CB.
  • the first device may randomly select the same size as the first CB from the TB as the first CB. . Then, the remaining data in the TB is divided into at least one second CB according to the existing TB segmentation.
  • the first device may further use the first bit of the TB as a starting point of the first CB, determine data of the same size as the first coding block from the TB, and use the partial data as the first CB. Then, the remaining data in the TB is divided into at least one second CB according to the existing TB segmentation.
  • the foregoing first CB may also be data in a non-TB, for example, the foregoing first CB may be part or all of data in a sequence predefined in the communication protocol. Specifically, it may be determined according to the size of the first CB and the size of the predefined sequence. Alternatively, the first CB may be control information or the like.
  • the method for transmitting data provided by the present application the first device, after dividing the TB to be transmitted into a first CB and at least one second CB, so that the first device sends the TB to the second device, and then the second device
  • the device may first decode the first CB, and feed back the decoding result of the first CB in advance to the first device, so that when the decoding result of the first CB is that the decoding fails, the first device may perform retransmission in advance. Since the size of the first CB may be much smaller than the size of the second CB, the decoding delay of the corresponding first CB is much smaller than the decoding delay of the second CB, so the data transmission method in the embodiment of the present application is reduced. The delay between two transmissions of the first device. Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased within the delay requirement of the URLLC service.
  • FIG. 4 is a schematic flowchart diagram of another data transmission method provided by the present application.
  • the embodiment relates to a process in which the first device sends the TB divided into the first CB and the at least one second CB to the second device.
  • the method may include:
  • the first device determines a size of the preset first CB.
  • the first device divides the TB to be sent into the first CB and the at least one second CB according to the size of the first CB.
  • the first device maps the transport block to the first time-frequency resource and sends the data to the second device.
  • the first device may separately encode and modulate the first CB and the at least one second CB, and then map to the first time-frequency resource. Send to the second device.
  • the first time-frequency resource carries the information of the TB, that is, the first CB and the at least one second CB that are encoded and modulated. It should be noted that the process of encoding and modulating the first CB and the at least one second CB by the foregoing first device may be referred to the prior art, and details are not described herein.
  • the sending time of the first CB is earlier than or equal to the sending time of the second coding block. That is, the time domain symbol occupied by the first CB on the first time-frequency resource is earlier than or equal to the time domain symbol occupied by any one of the second CBs on the first time-frequency resource. That is to say, when the first device maps the TB to the first time-frequency resource, the first CB adopts a mapping manner of the pre-frequency domain and the time domain. For example, the first CB may be first mapped on the first time domain symbol of the first time-frequency resource. When all the frequency domain resources on the first time domain symbol cannot map the first CB, the first time is The first CB continues to be mapped on the second time domain symbol of the frequency resource until the mapping of the first CB is completed.
  • the second device as the receiving end may start decoding by receiving several complete CBs of the entire TB, by this way, the first CB is mapped on the first time-domain symbol in the first time-frequency resource, After the second device receives the first CB, the first CB may be first decoded to obtain the decoding result of the first CB in advance, thereby improving the efficiency of obtaining the decoding result of the first CB.
  • HARQ combining can be performed on the first CB in different transmissions.
  • the first device sends an initial transmission to the second device, and two retransmissions, each time sending the first CB, and the first CB sent three times can perform HARQ combining.
  • whether the method provided in this embodiment is adopted may be notified through physical layer signaling or RRC.
  • the method for transmitting data provided by the present application the first device, after dividing the TB to be transmitted into a first CB and at least one second CB, so that the first device sends the TB to the second device, and then the second device
  • the device may first decode the first CB, and feed back the decoding result of the first CB in advance to the first device, so that when the decoding result of the first CB is decoding failure, the first device may retransmit in advance, reducing the first The delay between two transmissions of the device. Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased within the delay requirement of the URLLC service.
  • the first device may separately encode and modulate the first CB and the at least one second CB after dividing the TB into the first CB and the at least one second CB. Then, the mapping to the first time-frequency resource is sent to the second device.
  • the first device encodes and modulates the first CB and the at least one second CB respectively, at least one of the encoding manner and the equivalent code rate of the first CB and the second CB is different, the first CB and the first The modulation of the two CBs is the same.
  • the coding method mentioned here may be, for example, any one of the following coding methods: a polarized polar code, a Low Density Parity Check Code (LDPC), and a Reed-Muller Code (Reed-Muller Code). , RMC) and Golay-Based Block Code (GBBC).
  • the equivalent code rate mentioned here is the ratio of the number of bits of CB before encoding to the number of bits mapped to physical resources after encoding and rate matching.
  • the modulation method mentioned here can be any of the following: Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude (Quadrature Amplitude) Modulation, QAM), 64QAM and 128QAM, but the embodiment of the present application does not limit the modulation method.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM
  • 128QAM 128QAM
  • the coding mode of the first CB and the coding mode of the second CB, and the modulation mode of the first CB and the second CB may be specifically determined in the manner of the prior art, and details are not described herein.
  • the first embodiment emphasizes that before the first device maps the transport block to the first time-frequency resource and sends the data to the second device, according to the size of the transport block, the size and location of the first time-frequency resource, and the first coded block.
  • the process of determining the size and location of the second time-frequency resource, before the foregoing S203, the method may further include:
  • the size and location of the second time-frequency resource Determining, by the first device, the size and location of the second time-frequency resource according to the size of the TB, the size and location of the first time-frequency resource, and the size of the first CB; wherein the size of the first time-frequency resource is used to represent the first The number of REs included in the time-frequency resource.
  • the size of the second time-frequency resource is used to represent the number of REs included in the second time-frequency resource.
  • the second time-frequency resource is used to carry information of the first coding block, that is, the encoded and modulated first CB.
  • the first device may determine the equivalent code rate of the TB by using the following formula (1), and the formula (1) may be, for example, as follows:
  • the above C TB is an equivalent code rate of TB.
  • the above TB Size is the size of TB, and the unit of the TB Size may be a bit.
  • the above N TB is a first time-frequency resource, and the unit of the N TB is an RE.
  • Q TB is the number of bits that can be carried on one modulation symbol when TB data is modulated by the modulation method of the TB. For example, when the modulation mode is QPSK, Q TB takes a value of 2; when the modulation mode is 16QAM, Q TB The value is 4; when the modulation mode is 64QAM, the Q TB value is 6; when the modulation mode is 256QAM, the Q TB value is 6.
  • the modulation mode of the second CB can be used as a modulation mode of the TB.
  • the first device may determine the size of the second time-frequency resource by using the following formula (2), and the formula (2) may be, for example, as follows:
  • the N CB is a second time-frequency resource, and the unit of the N CB is an RE.
  • the CB Size is the size of the first CB, and the unit of the CB Size may be a bit.
  • the above K is an equivalent code rate adjustment coefficient.
  • the Q CB is the number of bits that can be carried on one modulation symbol when the data of the first CB is modulated by the modulation method of the first CB. In this embodiment, the modulation manners of the first CB and the second CB are the same as the modulation mode of the TB. Therefore, in some embodiments, the Q CB in the above formula (2) may be replaced by Q TB , which is implemented. The effect is the same, and will not be described in detail.
  • the equivalent code rate adjustment coefficient involved in the above formula (2) is a ratio of the equivalent code rate of the first CB to the equivalent code rate of the second CB.
  • the foregoing equivalent rate adjustment coefficient may also be a ratio of an equivalent code rate of the first CB to an equivalent code rate of the TB.
  • the following example introduces the above equivalent rate adjustment factor by taking the equivalent code rate of the second CB as an example, specifically:
  • each equivalent code rate adjustment coefficient table is used to indicate an equivalent code rate adjustment coefficient corresponding to one transmission parameter.
  • the transmission parameters mentioned herein include one or more of the following: coding mode, channel model, moving speed of the terminal device, number of receiving antenna ports of the terminal device, transmission mode of the terminal device, and the like.
  • the channel model mentioned herein may be, for example, an Extended Pedestrian A Model (EPA), an Extended Vehicular A Model (EVA), or an Extended Typical Urban Model (Extended Typical Urban Model). ETU), Tapped Delay Line (TDL) model, etc.
  • the transmission mode of the terminal device mentioned here may be, for example, Multiple-Input Multiple-Output (MIMO), closed-loop MIMO, and Multi-User Multiple-Input Multiple-Output (Multi-User Multiple-Input Multiple-Output, MU-MIMO), beamforming, etc.
  • MIMO Multiple-Input Multiple-Output
  • MU-MIMO Multi-User Multiple-Input Multiple-Output
  • beamforming etc.
  • the predefined equivalent rate adjusting coefficient table may be as shown in Table 1 below:
  • the above K1, K2, K3, K4, K5, and K6 are equivalent code rate adjustment coefficients.
  • the equivalent code rate adjustment coefficient K1 when the first CB is encoded by the LDPC code and the second CB is encoded by the polar, and the current moving speed of the terminal device is less than or equal to 3 km/h, the first CB is used.
  • the equivalent code rate is the product of the equivalent code rate of the second CB and the equivalent code rate adjustment coefficient K1.
  • the equivalent code rate adjustment factor K6 as an example, when the first CB is encoded by the polar code and the second CB is coded by the LDPC, and the current moving speed of the terminal device is greater than 60 km/h, the equivalent code of the first CB is used.
  • the rate is the product of the equivalent code rate of the second CB and the equivalent code rate adjustment coefficient K6.
  • the meanings represented by the equivalent rate adjustment factor table shown in Table 1 above are only one indication.
  • the above table 1 may also be in the coding mode of the second CB that has been constrained.
  • the equivalent code rate adjustment coefficient corresponding to the coding of the first CB by using the polar code, and the equivalent code rate adjustment coefficient corresponding to the coding of the first CB by using the LDPC may be determined according to a predefined manner of the communication protocol. This application does not limit this.
  • the equivalent code rate adjustment coefficient in the foregoing plurality of equivalent code rate adjustment coefficient tables may be specifically according to the coding mode of the first CB, the size of the first CB, and the coding mode of the second CB.
  • the size of the second CB is determined.
  • the coding performance of the first CB is better because the code block is larger.
  • the smaller the code block the worse the performance of the code. Therefore, in order to ensure the coding performance of the small code block, it is necessary to adopt a lower equivalent code rate for the small code block to compensate for the loss of the coding gain.
  • the equivalent code of the second CB needs to be adopted for the first CB.
  • the low rate of equivalent code rate is ensured to ensure that the coding performance of the first CB and the at least one second CB are the same (or approximately the same), such that the correct probability of decoding of the first CB is close to the correct probability of decoding of the at least one second CB.
  • the above equivalent code rate adjustment coefficient may be 0.5.
  • the coding mode of the first CB is different from the coding mode of the second CB, and the coding mode of the first CB is assumed to be the coding mode using the polar code, and the second CB.
  • the coding mode is the coding mode using LDPC coding. Since the coding performance of the polar code is better than the coding performance of the LDPC, the coding performance of coding the small code block using the polar code is approximately equivalent to encoding the large code block by using LDPC. Coding performance.
  • the coding mode of the first CB is the coding mode using the polar code
  • the coding mode of the second CB is the coding mode using the LDPC coding.
  • the same equivalent code rate can be used for the first CB and the second CB to ensure the same coding performance of the first CB and the at least one second CB. (or approximately the same) such that the correct probability of decoding of the first CB is close to the decoding correct probability of at least one second CB.
  • the above equivalent code rate adjustment coefficient may be 1, for example.
  • the value of the above-mentioned equivalent code rate coefficient may further be determined according to an application scenario.
  • the equivalent code rate adjustment coefficient may be slightly lower than the normal value, so that the decoding performance of the first CB is better than that of the second CB. Coding performance.
  • the normal value mentioned above may be: the value of the equivalent code rate adjustment coefficient determined from the equivalent code rate adjustment coefficient table.
  • the equivalent code rate adjustment coefficient may be 0.9 in this scenario.
  • the coding mode of the first CB is different from the coding mode of the second CB, and the equivalent code rate of the first CB is different from the equivalent code rate of the second CB.
  • the above-mentioned equivalent code rate adjustment coefficient may be slightly higher than the normal value, so that the decoding performance of the first CB is lower than that of the second CB. Coding performance. In this way, if the decoding of the first CB with lower decoding performance is successful, it can be determined that the decoding of the second CB with higher decoding performance is also successful, and then the decoding result of the entire TB can be determined to be successful. In this way, it can be ensured that the decoding result of the first CB can reflect the decoding result of the entire TB.
  • the equivalent code rate adjustment coefficient may be, for example, 1.1.
  • the first device may obtain an equivalent code according to the coding mode of the first CB, the coding mode of the second CB, and the current transmission parameter. Rate adjustment factor. Then, the first device may multiply the equivalent code rate adjustment coefficient by the equivalent code rate of the second CB to obtain an equivalent code rate of the first CB.
  • the first device may further obtain the equivalent code rate adjustment coefficient by receiving the second indication information from the radio access network device.
  • the equivalent code rate adjustment coefficient may be that the radio access network device obtains an equivalent code rate adjustment coefficient according to the first CB coding mode, the second CB coding mode, and the current transmission parameter.
  • the foregoing second indication information may be sent to the first device in any signaling such as physical layer signaling, RRC signaling, or MAC signaling.
  • the foregoing second indication information may also be a DCI.
  • the first device when the first device is a network device, the first device may further send the second indication information to the terminal device.
  • the indication information is used to indicate an equivalent code rate adjustment coefficient.
  • the terminal device After receiving the equivalent code rate adjustment coefficient, the terminal device may determine, according to the second indication information, the second time frequency according to the size of the transport block, the size and location of the first time-frequency resource, and the size of the first coding block. The size and location of the resource.
  • the equivalent rate adjustment coefficient can be dynamically indicated to the terminal device, and the size of the second time-frequency resource is dynamically indicated in an implicit manner to meet the size of the second time-frequency resource in different communication scenarios.
  • the foregoing second indication information may be sent to the first device in any signaling such as physical layer signaling, RRC signaling, or MAC signaling.
  • the foregoing second indication information may also be a DCI.
  • the first device may further determine an equivalent code rate adjustment coefficient according to a preset rule.
  • the preset rule may be, for example, when the first CB and the second CB use the same coding mode, and the equivalent code rate adjustment coefficient is 0.5; when the first CB uses polar and the second CB uses LDPC, the equivalent code rate The adjustment factor is 1 and so on.
  • the first device may determine the location of the second time-frequency resource at the location of the first time-frequency resource according to the size of the second time-frequency resource. specifically:
  • the transmission time of the first CB is earlier than or equal to the transmission time of the second coding block. Therefore, when determining, by the first device, the location of the second time-frequency resource from the location of the first time-frequency resource, the first device may determine the manner of the pre-frequency domain and the time domain. For example, if the second time-frequency resource includes 10 REs and the first time-frequency resource has 12 REs on the first symbol, the first device may use 10 REs on the first symbol as the second time-frequency resource. If the second time-frequency resource includes 10 REs, the first time-frequency resource has 8 REs on the first symbol, and the second symbol has 2 REs, the first device may have 8 symbols on the first symbol. The RE and the 2 REs on the 2nd symbol are used as the second time-frequency resource.
  • the first device may be configured according to the number of REs in the preset time domain symbol and the number of REs of the second time-frequency resource in the first time-frequency resource.
  • the location of the second time-frequency resource is determined at the location. For example, it is assumed that the preset time domain symbol is the first 1-2 symbol of the first time-frequency resource, and if the second time-frequency resource includes 10 REs, the first time-frequency resource has 12 REs on the first symbol. Then, the first device may use 10 REs on the first symbol as the second time-frequency resource.
  • the first device may have 8 symbols on the first symbol.
  • the RE and the 2 REs on the 2nd symbol are used as the second time-frequency resource.
  • the second time-frequency resource includes 10 REs, the first time-frequency resource has 6 REs on the first symbol, and the second symbol has 2 REs, then in the implementation manner, the second time-frequency resource needs The number of REs is reduced to the first symbol on the first time-frequency resource and the number of all REs included on the second symbol (in this example, the number of REs is eight). At this time, the first device may use 6 REs on the first symbol and 2 REs on the second symbol as the second time-frequency resource.
  • only one preset time domain symbol may be predefined, or multiple preset time domain symbols may be predefined.
  • each preset time domain symbol may correspond to a first time-frequency resource of a time domain length.
  • the preset time-domain symbol is the first symbol of the first time-frequency resource.
  • the preset time domain symbol is the 1-2th symbol of the first time-frequency resource.
  • each preset time domain symbol may have a different bandwidth occupied by the corresponding first time-frequency resource. For example, when the bandwidth of the first time-frequency resource is greater than x, the preset time domain symbol is the first symbol of the first time-frequency resource. When the bandwidth of the first time-frequency resource is less than or equal to x, the preset time domain symbol is the 1-2th symbol of the first time-frequency resource.
  • the first symbol described above may be the first symbol except the time domain symbol for transmitting the PDCCH on the first time-frequency resource, and the first symbol described above.
  • the symbols may be the first 1-2 symbols except the time domain symbol of the PDCCH to be transmitted on the first time-frequency resource, which is not limited thereto.
  • the first device when the first device is a terminal device, the first device may further receive indication information from the radio access network device.
  • the indication information is used to indicate a preset time domain symbol. Therefore, the first device may further determine a preset time domain symbol according to the indication information. Then, the first device may determine the location of the second time-frequency resource on the first time-frequency resource according to the number of REs in the preset time-domain symbol and the number of REs of the second time-frequency resource.
  • the preset time domain symbol can be dynamically indicated to the device, and the location of the second time-frequency resource can be dynamically indicated in an implicit manner to meet the requirements of the location of the second time-frequency resource in different communication scenarios.
  • the foregoing indication information may be sent to the first device in any signaling such as physical layer signaling, RRC signaling, or MAC signaling.
  • the first device After the first device determines the size and location of the second time-frequency resource according to the size of the TB, the size and location of the first time-frequency resource, and the size of the first CB, the first CB may be mapped on the second time-frequency resource.
  • Ground
  • the first device may determine, according to the number of REs included in the second time-frequency resource, the number of bits that the second time-frequency resource can bear. Then, the first device determines information of the first CB mapped on the second time-frequency resource based on the first CB encoded by the mother code rate. For example, the second time-frequency resource includes 10 REs, and the first CB has a modulation order of 2. The first device determines, according to the information, that the number of bits that the second time-frequency resource can carry is 20. Then, the number of bits of the first CB encoded by the first device at the mother code rate is 10, and the information of the first CB mapped on the second time-frequency resource is: 2 first CBs encoded at the mother code rate.
  • the second time-frequency resource includes 10 REs
  • the first CB has a modulation order of 2.
  • the first device determines, according to the information, that the number of bits that the second time-frequency resource can carry is 20. Then, the number of bits of the first CB encoded by the first device at the mother code rate is 15, and the information of the first CB mapped on the second time-frequency resource is: 1 first CB encoded at a mother code rate, and Half of the data in the first CB encoded at the mother code rate.
  • the ratio of the size of the first CB to the size of the information of the first CB mapped on the second time-frequency resource is the equivalent code rate of the first CB.
  • the first device determines the size of the TB, the modulation order of the TB, the size of the first time-frequency resource, and the equivalent code rate. After adjusting the coefficient, the modulation order of the first CB, and the size of the second time-frequency resource, the first device further determines the size of the first CB by using the following formula (3), and the formula (3) can be, for example, as follows:
  • the method for transmitting data provided by the present application the first device, after dividing the TB to be transmitted into a first CB and at least one second CB, so that the first device sends the TB to the second device, and then the second device
  • the device may first decode the first CB, and feed back the decoding result of the first CB in advance to the first device, so that when the decoding result of the first CB is decoding failure, the first device may retransmit in advance, reducing the first The delay between two transmissions of the device. Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased in the URLLC service within the delay requirement.
  • FIG. 5 is a signaling flowchart of still another data transmission method provided by the present application.
  • the first device divides the TB into the first CB and the at least one second CB according to the size of the first CB, and then sends the process to the second device.
  • the method includes:
  • the first device determines a size of the first CB.
  • the first device divides the TB to be sent into the first CB and the at least one second CB according to the size of the first CB.
  • the first device sends the TB to the first time-frequency resource and sends the TB to the second device.
  • the TB includes a first CB and at least one second CB; the sending time of the first CB is earlier than or equal to the sending time of the second CB.
  • the second device receives the TB from the first device.
  • the TB includes a first CB and at least one second CB.
  • the second device determines a size of the TB, a size of the first CB, and a size and a location of the first time-frequency resource.
  • the first time-frequency resource is used to carry information about the TB.
  • the second device may determine the size of the TB according to the size of the TB sent by the first device indicated by the second device. If the second device is the terminal device, the second device may determine the size of the TB according to the indication information sent from the radio access network device for indicating the size of the TB.
  • the indication information mentioned here may be, for example, DCI.
  • the second device may determine the size and location of the first time-frequency resource according to the size and location of the first time-frequency resource that is scheduled by the first device. If the second device is the terminal device, the second device may determine the size and location of the first time-frequency resource according to the indication information sent by the radio access network device for indicating the size and location of the first time-frequency resource.
  • the indication information mentioned here may be, for example, DCI.
  • the second device determines, according to the size of the TB, the size of the first CB, and the size and location of the first time-frequency resource, the size and location of the second time-frequency resource.
  • the second time-frequency resource is used to carry information of the first CB.
  • the first device may determine the second time-frequency resource according to the size of the TB, the size and location of the first time-frequency resource, and the size of the first CB. The description of size and location is not described here.
  • the second device demodulates and decodes the first CB according to the size and location of the second time-frequency resource.
  • the second device may separately perform demodulation and decoding on the data received on the second time-frequency resource.
  • the data received on the second time-frequency resource is the first CB. That is, the second device distinguishes between the received data and the data from the first CB by the size and location of the second time-frequency resource. Then, the second device obtains the decoding result of the first CB by separately demodulating and decoding the first CB.
  • the second device needs to determine the coding mode of the first CB, the equivalent code rate of the first CB, and the modulation mode of the first CB.
  • the coding mode of the first CB and the modulation mode of the first CB may be specifically determined according to the manner of the prior art, and details are not described herein again.
  • For the manner of determining the equivalent code rate of the first CB refer to the specific process of determining the equivalent code rate of the first CB by the foregoing first device, and details are not described herein again.
  • the second device sends the first information to the first device at the first time.
  • the first information is used to indicate the decoding result of the first CB.
  • the first time point is earlier than the time point when the second device sends the second information to the first device, and the second information is used to indicate the decoding result of the TB.
  • the second information may be, for example, an Ack/Nack signal used in the prior art to indicate a decoding result of the TB.
  • the second device may send a decoding to indicate the first CB to the first device at a time earlier than the second information is sent.
  • the first information of the result indicates the decoding result of the entire TB indirectly by the decoding result of the first CB.
  • the first device can determine the decoding result of the entire TB in advance based on the decoding result of the first CB.
  • the decoding result of the entire TB is a decoding failure (that is, the decoding result of the first CB is a decoding failure)
  • the first device may perform a retransmission operation in advance to reduce the delay between the two transmissions of the first device. Therefore, when the TB carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased in the URLLC service within the delay requirement.
  • the first device divides the TB to be transmitted into one first CB and at least one second CB by determining a size of the preset first CB, so that the second device may be based on the first
  • the decoding result of the CB determines the decoding result of the entire TB, so that the second device can feed back the decoding result of the TB to the first device in advance to reduce the delay between the two transmissions of the first device. Therefore, when the transport block carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased in the URLLC service within the delay requirement.
  • the method may further include the following steps before the sending, by the second device, the first information to the first device at the first time, that is, before the S308. : The second device determines the first point in time.
  • the foregoing second device may determine the first time point in the following manners, specifically:
  • the first mode the second device determines the first time point according to the time domain information of the second time-frequency resource.
  • the first device and the second device may obtain the predefined "The relative position of the first time point and the second time-frequency resource in the time domain".
  • the second device may be based on the time domain of the second time-frequency resource.
  • the information determines the first time domain symbol of the second time-frequency resource, and further adds n symbols after the first time domain symbol of the second time-frequency resource to obtain the first time point.
  • the second device may be configured according to the time domain of the second time-frequency resource.
  • the information determines the first time domain symbol of the second time-frequency resource, and further adds n symbols after the last time domain symbol of the second time-frequency resource to obtain the first time point. It may also be other symbols in the second time-frequency resource as a starting point, and n symbols are added to obtain the first time point mentioned above.
  • the second device may obtain time domain information of the second time-frequency resource according to the size and location of the second time-frequency resource determined by the foregoing embodiment, and details are not described herein again.
  • the first device may also determine the first time point in the foregoing manner, and then receive the first information at the first time point, and details are not described herein again.
  • the second mode the second device determines the first time point according to the time point at which the second information is sent.
  • the predefined device when the relative position of the first time point and the time point of transmitting the second information is predefined in the communication protocol, the predefined device may be obtained in the first device and the second device. The relative position of the first time point and the time point at which the second information is transmitted.
  • the second device may subtract m symbols from the time point of sending the second information.
  • the first time point mentioned above is obtained.
  • the time point at which the second information is sent may be obtained in the foregoing first device and the second device, and the time point at which the second information is sent may be scheduled by the radio access network device, or may be predefined.
  • the second device when the second device is a terminal device, the second device may receive, by using the radio access network device, indication information indicating that “the time point of sending the second information” is received. Obtaining a time point for transmitting the second information scheduled by the radio access network device.
  • the indication information mentioned herein may be carried in the DCI, for example, or carried in any signaling such as physical layer signaling, RRC signaling, and MAC signaling.
  • the first device may also determine the first time point in the foregoing manner, and then receive the first information at the first time point, and details are not described herein again.
  • the third mode the second device determines the first time point according to the time range of the first time point.
  • the time range of the predefined first time point may be acquired in the first device and the second device. That is, the second device can transmit the first information at any point in time within the range.
  • the first device and the second device may obtain a predefined “the starting point of the time range of the first time point and the relative position of the second time-frequency resource in the time domain”, “ The relative position of the end point of the time range of the first time point and the time point at which the second information is transmitted”.
  • the starting point of the time range of the first time point may be: n symbols after the time domain information of the second time-frequency resource
  • the end of the time range of the first time point may be: the time point of sending the second information. The previous m symbols, etc.
  • the second device may further add n symbols to the time domain information of the second time-frequency resource before determining the first time point according to the time range of the first time point, to obtain the time range of the first time point.
  • the starting point is obtained by subtracting m symbols from the time point at which the second information is transmitted, and the end point of the time range of the first time point is obtained.
  • the terminal device may further receive the first time point before determining the first time point according to the time range of the first time point.
  • the indication information may indicate a time range of the first time point by carrying a start time of the time range of the first time point and a time length of the time range of the first time point.
  • the indication information may indicate a time range of the first time point by carrying an end point of the time range of the first time point and a time length of the time range of the first time point.
  • the indication information may indicate a time range of the first time point by carrying a start point and an end point of the time range of the first time point.
  • the indication information may indicate a time range of the first time point by carrying a start point, an end point, and a length of time of the time range of the first time point.
  • the indication information may be carried in the DCI, or carried in any signaling such as physical layer signaling, RRC signaling, and MAC signaling to the second device.
  • the first device may also determine the first time point in the foregoing manner, and then receive the first information at the first time point, and details are not described herein again.
  • the second device may further determine the first time point by receiving the indication information that is sent by the terminal device to indicate the first time point.
  • the indication information may be, for example, a DCI.
  • the time point for sending the second information may also be carried in the foregoing indication information, or the time point for transmitting the second information may carry any signaling such as physical layer signaling RRC signaling, MAC signaling, and the like. Sent to the second device.
  • the first device may also determine the first time point in the foregoing manner, and then receive the first information at the first time point, and details are not described herein again.
  • the second device may determine the first time point, so that after receiving the TB transmitted by the first device, the second device may send the first CB in advance at the first time point. Decode the first information of the result without waiting for the feedback time point of the TB to feedback.
  • the first device can receive the first information in advance, and can further determine the decoding result of the entire TB in advance based on the decoding result of the first CB, so that when the decoding result of the entire TB is decoding failure, the second The device initiates a retransmission, which reduces the delay between the two transmissions of the first device. Therefore, when the transport block carrying the URLLC service data is transmitted in this manner, the delay between the two transmissions can be reduced, and the number of retransmissions can be increased in the URLLC service within the delay requirement.
  • the first time point mentioned above is used to feed back the decoding result of the first CB in advance, and the feedback content may be correct or wrong.
  • the correct or erroneous feedback of the first CB can independently determine its own feedback time point, and the determination method is the same as the first time point.
  • the method may further include the following steps before the sending, by the second device, the first information to the first device at the first time, that is, before the S308.
  • the second device determines whether the first information is sent in advance.
  • the sending manner of the TB sent by the first device may include: performing a HARQ-based transmission mode (that is, all CBs of the initial TB, and retransmitting all CBs of the TB according to the receiving result fed back by the receiving end, until the TB is successfully received. All CB), based on the transmission mode of multiple repeated transmissions (that is, all CBs of the TB are repeatedly transmitted until the receiving end successfully receives all CBs of the TB, and the receiving end does not need to send any transmission to the transmitting end before successfully receiving all CBs of the TB. Feedback).
  • a HARQ-based transmission mode that is, all CBs of the initial TB
  • All CB based on the transmission mode of multiple repeated transmissions (that is, all CBs of the TB are repeatedly transmitted until the receiving end successfully receives all CBs of the TB, and the receiving end does not need to send any transmission to the transmitting end before successfully receiving all CBs of the TB. Feedback).
  • the second device may determine to send the first information indicating the decoding result of the first CB in advance. In this way, when determining that the first information is sent in advance, the second device sends the first information to the first device at the first time point. After receiving the first information in advance, the first device may stop transmitting all CBs of the entire TB to the second device in advance, thereby improving the transmission efficiency of the first device.
  • the decoding result of the first CB is a decoding failure
  • the decoding result of the entire TB is a decoding failure.
  • the sending manner of the TB sent by the first device is a sending manner based on multiple repeated transmissions
  • the first device sends the entire TB to the second device regardless of whether the second device sends the first information indicating that the decoding fails. All CB. Therefore, in this case, the second device can determine that the first information does not need to be transmitted in advance to save overhead.
  • the second device may determine to send the first information indicating the decoding result of the first CB in advance. In this way, when determining that the first information is sent in advance, the second device sends the first information to the first device at the first time point. After receiving the first information in advance, the first device may determine to fail to the second device in advance, so that the first device may perform a retransmission operation in advance, reducing the delay between the two transmissions of the first device.
  • the decoding result of the first CB is that the decoding is successful
  • the decoding result of the entire TB is that the decoding is successful.
  • the sending manner of the TB sent by the first device is the HARQ-based transmission mode
  • the first device does not perform any subsequent processing to the second device, regardless of whether the second device sends the first information indicating that the decoding is successful in advance. operating. Therefore, in this case, the second device may determine that the first information does not need to be sent in advance, and may also determine to send the first information in advance, which may be specifically set according to the needs of the user.
  • the second device when the second device is a terminal device, the second device may further receive, according to the received indication, “instructing whether the second device sends the first information in advance” The information determines whether the first information is sent in advance. In this way, the second device sends the first information to the first device at the first time point when it is determined that the first information is sent in advance based on the indication information.
  • the second device when the second device is a terminal device, the second device may further receive, according to the received “information indicating the type of information sent in advance”. In this way, the second device determines the type of the information to be sent in advance based on the indication information, so that the second device can determine whether to send the first information in advance according to the decoding result of the first CB and the type of information sent in advance.
  • the type of the first information mentioned above may be used for indicating
  • the second device may determine not to transmit the first information in advance. If the type of the information sent in advance is: information indicating that the decoding is successful. At this time, if the first information is information indicating that the decoding is successful, the second device may determine to send the first information in advance. If the type of the information sent in advance is: information indicating that the decoding failed. At this time, if the first information is information for indicating decoding failure, the second device may determine to transmit the first information in advance. If the type of the information sent in advance is: information indicating that the decoding failed. At this time, if the first information is information indicating that the decoding is successful, the second device may not be sure to send the first information in advance.
  • the second device may determine whether to send the first information in advance according to the actual application scenario, and then send the first device to the first device at the first time point when determining to send the first information in advance. a message. In this way, it can be ensured that the second device can transmit the valid first information to improve the accuracy of the first information transmission.
  • FIG. 6 is a schematic structural diagram of an apparatus provided by the present application.
  • the device may be a first device, and the first device may include: a processing module 11 and a sending module 12. among them,
  • the processing module 11 is configured to determine a size of the preset first coding block, and divide the transmission block to be transmitted into the first coding block and the at least one second coding block according to the size of the first coding block;
  • a sending module 12 configured to map the transport block to a first time-frequency resource, where the transport block includes the first coded block and the at least one second coded block, where The transmission time of the first coding block is earlier than or equal to the transmission time of the second coding block.
  • the processing module 11 may be configured to receive the first indication information, and determine the preset first encoding according to the first indication information. a size of the block, where the first indication information is used to indicate a size of the preset first coding block.
  • the first coding block is encoded using a polarization polar code
  • the at least one second coding block is encoded using a low density parity check code LDPC.
  • the processing module 11 is further configured to: before the sending module 12 maps the transport block to the first time-frequency resource, before sending to the second device, according to the size of the transport block, Determining the size and location of the first time-frequency resource and the size of the first coding block, and determining the size and location of the second time-frequency resource; the second time-frequency resource is used to carry information of the first coded block.
  • the processing module 11 is specifically configured to: according to the size of the transport block, the size and location of the first time-frequency resource, the size of the first coding block, and an equivalent code rate adjustment coefficient, Determining the size and location of the second time-frequency resource.
  • the foregoing second time-frequency resource may be located in a preset time domain symbol.
  • the sending module 12 is further configured to send the second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • FIG. 7 is a schematic structural diagram of another device provided by the present application.
  • the first device when the first device is a terminal device, the first device may further include: a receiving module 13. among them,
  • the receiving module 13 is configured to receive second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the device provided in this application can perform the action on the first device side in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of still another apparatus provided by the present application.
  • the device may be a second device, and the second device may include: a receiving module 21, a processing module 22, and a sending module 23. among them,
  • the receiving module 21 is configured to receive a transport block from the first device, where the transport block includes a first coding block and at least one second coding block;
  • the processing module 22 is configured to determine a size and a location of the second time-frequency resource according to the size of the transport block, the size of the first coding block, and the size and location of the first time-frequency resource, and according to the Decoding and decoding the first coded block, where the second time-frequency resource is used to carry information of the first coded block;
  • the sending module 23 is configured to send first information to the first device at a first time point; the first information is used to indicate a decoding result of the first coding block, where the first time point is earlier than a time point at which the second device sends the second information to the first device, where the second information is used to indicate a decoding result of the transport block.
  • the processing module 22 is specifically configured to receive the first indication information, and determine the preset number according to the first indication information. a size of the coding block, wherein the first indication information is used to indicate a size of the preset first coding block.
  • the first coding block is encoded using a polarization polar code
  • the at least one second coding block is encoded using a low density parity check code LDPC.
  • the processing module 22 is specifically configured to: according to a size of the transport block, a size of the first time-frequency resource, a size of the first coding block, and an equivalent code rate. Adjusting the coefficient to determine the size of the second time-frequency resource.
  • the foregoing second time-frequency resource may be located in a preset time domain symbol.
  • the sending module 23 is further configured to send the second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the receiving module 21 is further configured to receive the second indication information, where the second indication information is used to indicate the equivalent code rate adjustment coefficient.
  • the device provided in the present application can perform the action on the second device side in the foregoing method embodiment, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • each module on a device may be integrated into one physical entity in whole or in part, or may be physically separated.
  • all the modules on one device can be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
  • the processing module may be a separately set processing component, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of one of the devices in the form of program code, by one of the devices.
  • the processing component invokes and performs the functions of the above processing module.
  • the implementation of other modules is similar.
  • all or part of these modules on one device can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities.
  • each step of the foregoing method or each of the above modules on a device may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing component may be a general purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
  • CPU central processing unit
  • these modules on a device can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 9 is a schematic structural diagram of still another apparatus provided by the present application.
  • the device is a first device, and the first device may include: a processor 31 (for example, a CPU), a memory 32, a receiver 33, and a transmitter 34.
  • the receiver 33 and the transmitter 34 are both coupled to the processing.
  • the processor 31 controls the receiving action of the receiver 33
  • the processor 31 controls the transmitting action of the transmitter 34
  • the memory 32 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory.
  • Various instructions may be stored in memory 32 for performing various processing functions and implementing the method steps of the present application.
  • the first device involved in the present application may further include: a power source 35, a communication bus 36, and a communication port 37.
  • the receiver 33 and the transmitter 34 may be integrated in the transceiver of the first device, or may be an independent transceiver antenna on the first device.
  • Communication bus 36 is used to implement a communication connection between components.
  • the communication port 37 is used to implement connection communication between the first device and other peripheral devices.
  • the memory 32 is used to store computer executable program code, and the program code includes instructions.
  • the processor 31 executes the instruction, the instruction causes the first device to perform the action on the first device side in the foregoing method embodiment, which is implemented. The principle and technical effects are similar and will not be described here.
  • FIG. 10 is a schematic structural diagram of still another apparatus provided by the present application.
  • the device is a second device, and the second device may include a processor 41 (eg, a CPU), a memory 42, a receiver 43, and a transmitter 44; the receiver 43 and the transmitter 44 are both coupled to the processing.
  • the processor 41 controls the receiving operation of the receiver 43, the processor 41 controls the transmitting operation of the transmitter 44;
  • the memory 42 may include a high speed RAM memory, and may also include a non-volatile memory NVM, such as at least one disk memory.
  • Various instructions may be stored in memory 42 for performing various processing functions and implementing the method steps of the present application.
  • the second device involved in the present application may further include: a power source 45, a communication bus 46, and a communication port 47.
  • the receiver 43 and the transmitter 44 may be integrated in the transceiver of the second device, or may be an independent transceiver antenna on the second device.
  • Communication bus 46 is used to implement a communication connection between components.
  • the communication port 47 is used to implement connection communication between the second device and other peripheral devices.
  • the memory 42 is used to store computer executable program code, and the program code includes instructions.
  • the processor 41 executes the instruction, the instruction causes the second device to perform the action on the second device side in the foregoing method embodiment, which is implemented.
  • the principle and technical effects are similar and will not be described here.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据的传输方法和设备,该方法包括:第一设备确定预设的第一编码块的大小;第一设备根据第一编码块的大小,将待发送的传输块分割成第一编码块和至少一个第二编码块;第一设备将传输块映射到第一时频资源上发送给第二设备,其中,传输块包括第一编码块和至少一个第二编码块,第一编码块的发送时间早于或等于第二编码块的发送时间。本申请提供的数据的传输方法和设备,传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务的时延要求内,增加重传次数。

Description

数据的传输方法和设备
本申请要求于2017年05月05日提交中国专利局、申请号为201710313170.9、申请名称为“数据的传输方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术,尤其涉及一种数据的传输方法和设备。
背景技术
5G通信系统可以支持不同的业务。上述所说的业务例如可以为增强的移动宽带(enhanced Mobile Broadband,eMBB)业务、海量机器类型通信(massive Machine Type Communication,MTC)业务、超可靠低延迟通信(Ultra-reliable and low latency communications,URLLC)业务、多媒体广播多播(Multimedia Broadcast Multicast Service,MBMS)业务和定位业务等。其中,每种业务可以通过该业务对应的业务承载进行传输。
URLLC业务为5G通信系统中的一个重要的业务,传输时要求非常高的可靠性和非常短的时延。因此,为了保证URLLC业务的可靠性,5G通信系统在传输URLLC业务数据时允许使用混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)技术。即,第二设备在接收到第一设备发送的承载URLLC业务数据的传输块(包括一个或多个编码块)后,可以基于对所接收到的所有编码块的解码结果,向第一设备发送反馈信息,以通过反馈信息指示第二设备是否正确接收到所有编码块。若反馈信息指示一个或多个编码块解码错误,则第一设备可以基于该反馈信息,向第二设备重传解码错误的编码块,以提高URLLC业务数据被第二设备正确解码的概率。也就是说,上述第一设备在接收到第二设备发送的反馈信息后,才会决定是否向第二设备重传传输错误的编码块,使得第一设备两次传输之间的时延较大,无法满足URLLC业务对时延的要求。
因此,在传输承载URLLC业务数据的传输块时,如何发送URLLC数据,以降低传输时延是一个亟待解决的问题。
发明内容
本申请提供一种数据的传输方法和设备,用于解决在传输承载URLLC业务数据的传输块时,发送URLLC数据传输时延较大的技术问题。
第一方面,本申请提供一种数据的传输方法,其特征在于,所述方法包括:
第一设备确定预设的第一编码块的大小;
所述第一设备根据所述第一编码块的大小,将待发送的传输块分割成所述第一编码块和至少一个第二编码块;
所述第一设备将所述传输块映射到第一时频资源上发送给第二设备,其中,所述传输 块包括所述第一编码块和所述至少一个第二编码块,所述第一编码块的发送时间早于或等于所述第二编码块的发送时间。
通过第一方面提供的数据的传输方法,第一设备通过将待传输的TB分割成一个第一CB和至少一个第二CB的方式,使得第一设备在将该TB发送给第二设备后,第二设备可以先对第一CB进行解码,并向第一设备提前反馈第一CB的解码结果,进而在第一CB的解码结果为解码失败时,第一设备可以提前进行重传,减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务的时延要求内,增加重传次数。
在一种可能的设计中,所述第一设备为终端设备,所述第一设备确定预设的第一编码块的大小,包括:
所述第一设备接收第一指示信息,其中,所述第一指示信息用于指示所述预设的第一编码块的大小;
所述第一设备根据所述第一指示信息,确定所述预设的第一编码块的大小。
通过该可能的设计提供的数据的传输方法,使得第一设备确定预设的第一编码块的大小的方式灵活多样。
在一种可能的设计中,所述第一设备将所述传输块映射到第一时频资源上发送给第二设备之前,所述方法还包括:
所述第一设备根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置;所述第二时频资源用于承载所述第一编码块的信息。
通过该可能的设计提供的数据的传输方法,第一设备可以根据所述传输块的大小、所述第一时频资源的大小和位置、所述第一编码块的大小,以及等效码率调整系数,确定所述第二时频资源的大小和位置,从而可以在第二时频资源上发送从TB分割出来的第一CB,使得第二设备可以根据第二时频资源的大小和位置,从TB中确定出第一CB,并对第一CB进行解码,以向第一设备提前反馈第一CB的解码结果,进而在第一CB的解码结果为解码失败时,第一设备可以提前进行重传,减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务的时延要求内,增加重传次数。
在一种可能的设计中,所述第一设备根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置,包括:
所述第一设备根据所述传输块的大小、所述第一时频资源的大小和位置、所述第一编码块的大小,以及等效码率调整系数,确定所述第二时频资源的大小和位置。
在一种可能的设计中,所述第一设备为终端设备,所述方法还包括:
所述第一设备接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
通过该可能的设计提供的数据的传输方法,使得第一设备获取等效码率调整系数的方式灵活多样。
在一种可能的设计中,所述第一设备为网络设备,所述方法还包括:
所述第一设备发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调 整系数。
在一种可能的设计中,所述第二时频资源位于预设的时域符号内。
在一种可能的设计中,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
第二方面,本申请提供一种数据的传输方法,该方法包括:
第二设备接收来自第一设备的传输块,所述传输块包括第一编码块和至少一个第二编码块;
所述第二设备确定所述传输块的大小、预设的所述第一编码块的大小以及第一时频资源的大小和位置,所述第一时频资源用于承载所述传输块的信息;
所述第二设备根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小和位置,其中,所述第二时频资源用于承载所述第一编码块的信息;
所述第二设备根据所述第二时频资源的大小和位置,对所述第一编码块进行解调和解码;
所述第二设备在第一时间点向所述第一设备发送第一信息;所述第一信息用于指示所述第一编码块的解码结果;其中,所述第一时间点早于第二设备向第一设备发送第二信息的时间点,所述第二信息用于指示所述传输块的解码结果。
在一种可能的设计中,所述第二设备为终端设备,所述第二设备确定预设的第一编码块的大小,包括:
所述第二设备接收第一指示信息,其中,所述第一指示信息用于指示所述预设的第一编码块的大小;
所述第二设备根据所述第一指示信息,确定所述预设的第一编码块的大小。
在一种可能的设计中,所述第二设备根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小,包括:
所述第二设备根据所述传输块的大小、所述第一时频资源的大小、所述第一编码块的大小,以及,等效码率调整系数,确定所述第二时频资源的大小。
在一种可能的设计中,所述第二设备为终端设备,所述方法还包括:
所述第二设备接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在一种可能的设计中,所述第二设备为网络设备,所述方法还包括:
所述第二设备发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在一种可能的设计中,所述第二时频资源位于预设的时域符号内。
在一种可能的设计中,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
上述第二方面和第二方面的各可能的设计所提供的数据的传输方法,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第三方面,本申请提供一种设备,该设备为第一设备,所述第一设备包括:
处理模块,用于确定预设的第一编码块的大小,并根据所述第一编码块的大小,将待 发送的传输块分割成所述第一编码块和至少一个第二编码块;
发送模块,用于将所述传输块映射到第一时频资源上发送给第二设备,其中,所述传输块包括所述第一编码块和所述至少一个第二编码块,所述第一编码块的发送时间早于或等于所述第二编码块的发送时间。
在一种可能的设计中,所述第一设备为终端设备,
所述处理模块,具体接收第一指示信息,并根据所述第一指示信息,确定所述预设的第一编码块的大小,其中,所述第一指示信息用于指示所述预设的第一编码块的大小。
在一种可能的设计中,所述处理模块,还用于在所述发送模块将所述传输块映射到第一时频资源上发送给第二设备之前,根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置;所述第二时频资源用于承载所述第一编码块的信息。
在一种可能的设计中,所述处理模块,具体用于根据所述传输块的大小、所述第一时频资源的大小和位置、所述第一编码块的大小,以及等效码率调整系数,确定所述第二时频资源的大小和位置。
在一种可能的设计中,所述第一设备为终端设备,所述第一设备还包括:
接收模块,用于接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在一种可能的设计中,所述第一设备为网络设备,所述发送模块,还用于发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在一种可能的设计中,所述第二时频资源位于预设的时域符号内。
在一种可能的设计中,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
上述第三方面和第三方面的各可能的设计所提供的设备,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种设备,所述设备为第二设备,所述第二设备包括:
接收模块,用于接收来自第一设备的传输块,所述传输块包括第一编码块和至少一个第二编码块;
处理模块,用于根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小和位置,并根据所述第二时频资源的大小和位置,对所述第一编码块进行解调和解码,其中,所述第二时频资源用于承载所述第一编码块的信息;
发送模块,用于在第一时间点向所述第一设备发送第一信息;所述第一信息用于指示所述第一编码块的解码结果;其中,所述第一时间点早于第二设备向第一设备发送第二信息的时间点,所述第二信息用于指示所述传输块的解码结果。
在一种可能的设计中,所述第二设备为终端设备,所述处理模块,具体用于接收第一指示信息,并根据所述第一指示信息,确定所述预设的第一编码块的大小,其中,所述第一指示信息用于指示所述预设的第一编码块的大小;
在一种可能的设计中,所述处理模块,具体用于根据所述传输块的大小、所述第一时频资源的大小、所述第一编码块的大小,以及,等效码率调整系数,确定所述第二时频资 源的大小。
在一种可能的设计中,所述第二设备为终端设备,所述接收模块,还用于接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在一种可能的设计中,所述第二设备为网络设备,所述发送模块,还用于发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在一种可能的设计中,所述第二时频资源位于预设的时域符号内。
在一种可能的设计中,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
上述第四方面和第四方面的各可能的设计所提供的设备,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不再赘述。
第五方面,本申请提供一种设备,所述设备为第一设备,所述第一设备包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述第一设备执行如第一方面和第一方面的各可能的设计所提供的数据的传输方法。
上述第五方面所提供的设备,其有益效果可以参见上述第一方面和第一方面的各可能的设计所带来的有益效果,在此不再赘述。
第六方面,本申请提供一种设备,所述设备为第二设备,所述第二设备包括:处理器、存储器、接收器、发送器;所述接收器和所述发送器均耦合至所述处理器,所述处理器控制所述接收器的接收动作,所述处理器控制所述发送器的发送动作;
其中,存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述的第二设备执行如第二方面和第二方面的各可能的设计所提供的数据的传输方法。
上述第六方面所提供的设备,其有益效果可以参见上述第二方面和第二方面的各可能的设计所带来的有益效果,在此不再赘述。
本申请第七方面提供一种设备,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
本申请第八方面提供一种设备,包括用于执行以上第二方面的方法的至少一个处理元件(或芯片)。
本申请第九方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面和第一方面的各种可能的设计中的方法。
本申请第十方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面和第二方面的各种可能的设计中的方法。
本申请第十一方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面和第一方面的各种可能的设计中的方法。
本申请第十二方面提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面和第二方面的各种可能的设 计中的方法。
本申请提供的数据的传输方法和设备,第一设备通过将待传输的TB分割成一个第一CB和至少一个第二CB的方式,使得第一设备在将该TB发送给第二设备后,第二设备可以先对第一CB进行解码,并向第一设备提前反馈第一CB的解码结果,进而在第一CB的解码结果为解码失败时,第一设备可以提前进行重传,减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务的时延要求内,增加重传次数。
附图说明
图1为本申请涉及的通信系统的框架图;
图2为一种采用HARQ技术传输URLLC业务数据的示意图;
图3为本申请提供的一种数据传输方法的流程示意图;
图4为本申请提供的另一种数据传输方法的流程示意图;
图5为本申请提供的又一种数据传输方法的信令流程图;
图6为本申请提供的一种设备的结构示意图;
图7为本申请提供的另一种设备的结构示意图;
图8为本申请提供的又一种设备的结构示意图;
图9为本申请提供的又一种设备的结构示意图;
图10为本申请提供的又一种设备的结构示意图。
具体实施方式
本申请中,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1为本申请涉及的通信系统的框架图。如图1所示,该通信系统可以是LTE通信系统,也可以是未来其他通信系统,在此不作限制。该通信系统可以包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备是终端设备通过无线方式接入到该通信系统中的接入设备,可以是基站NodeB、演进型基站eNodeB、5G通信系统中的基站、未来通信系统中的基站或WiFi系统中的接入节点等,本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端(Terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
以未来5G通信系统为例,URLLC业务是未来5G通信系统中的一个重要业务,要求非常高的可靠性和非常短的时延。例如:可靠性99.999%、时延1毫秒(millisecond,ms)。目前,为了保证URLLC业务的可靠性,可以采用混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)技术对URLLC业务数据进行传输,以提高URLLC业务数据被正确解码的概率。具体地:
图2为一种采用HARQ技术传输URLLC业务数据的示意图。如图2所示,以URLLC业务的时延要求为1ms、第一设备向第二设备发送URLLC业务数据为例。其中,当第一设备为无线接入网设备时,第二设备可以为终端设备。或者,当第一设备为终端设备时,第二设备可以为无线接入网设备。
第一设备在第一次传输(1st TX)中,即初传时,可以将承载URLLC业务数据的传输块(Transport Block,TB)的所有编码块(Code Block,CB)发送给第二设备。第二设备在接收到第一次传输的所有CB之后,若第二设备对此次传输的所有CB均成功解码,说明第二设备成功接收到第一次传输的所有CB,则第二设备可以在第一次传输对应的反馈时间点向第一设备发送反馈信息,例如,发送肯定应答(acknowledgement,ACK),以指示第二设备已经成功接收所有CB。若第二设备对第一次传输的一个或多个CB解码失败,说明第二设备未能成功接收到该一个或多个CB,则第二设备可以在第一次传输对应的反馈时间点向第一设备发送反馈信息,例如,发送否定应答(negative acknowledgement,NACK),以指示有CB传输错误。
然后,第一设备在接收到该NACK之后,可以进行第二次传输(2nd TX),以向第二设备重新发送该TB的所有CB,即第一次重传。此时,若第二设备仍未能成功解码该TB中的某些CB,则第二设备可以在第二次传输对应的反馈时间点向第一设备发送反馈信息,例如发送NACK,以指示第一设备有CB传输错误。这样,第一设备可以在基于该反馈信 息进行第三次传输(3rd TX),即第二次重传,以将该TB的所有CB重新发送给第二设备。以此类推,直至第二设备在URLLC业务的时延要求内,成功接收此次发送的TB。若在URLLC业务的时延要求内,第二设备未能成功接收此次发送的TB,则URLLC业务传输失败。需要说明的是,虽然图2示出的是以1ms内对承载URLLC业务数据的TB所包括的CB进行了一次初传和两次重传的示意图,但是本申请并不以此为限。
此外,在5G中,可能会采用基于编码块组(code block group,CBG)的反馈和重传。在反馈时,不再简单的反馈单独的ACK或者NACK,而是对每个CBG都进行反馈。例如TB中包含4个CBG,则反馈4个ACK/NACK来指示,其中每个CBG的接收情况,假设1代表ACK,0代表NACK,4个CBG前三个CBG解码正确,最后一个CBG解码错误,则反馈为1110。对于每个CBG,其中所有的CB都解码正确,则认为此CBG解码正确,反馈ACK,其中任何一个CB解码错误,则认为此CBG解码错误,反馈NACK。
通过上述描述可以看出,第二设备在每次接收到第一设备发送的TB的所有CB之后,需要对该TB的所有CB进行解码,以基于该所有CB的解码结果向第一设备发送反馈信息。由于上述对所有CB进行解码需要一定的时间,且第一设备在接收到第二设备发送的反馈信息后,才会基于该反馈信息所指示的内容,确定是否执行重传操作。因此,在通过上述方式进行URLLC业务数据的传输时,第一设备两次传输之间的时延较大,无法满足URLLC业务对时延的要求。
因此,本申请提供的数据的传输方法,第一设备可以将TB分割成一个第一CB和至少一个第二CB,其中,第一CB的解码结果可以表征整个TB的解码结果。因此,第一设备在将分割成一个第一CB和至少一个第二CB的TB发送给第二设备后,第二设备可以先对第一CB进行解码,并向第一设备提前发送用于反馈第一CB的解码结果的第一信息,进而在第一信息指示第一CB的解码结果为解码失败时,第一设备可以基于该第一信息,提前进行重传,减少了第一设备两次传输之间的时延,进而增加了URLLC业务在时延要求内的重传次数。
需要说明的是,本申请提供的数据的传输方法,还可以适用于采用多次重复发送的方式进行URLLC业务数据传输的应用场景,即第一设备对承载URLLC业务数据的TB进行多次重复发送,直至第二设备成功接收该TB的所有CB。第二设备在成功接收该TB的所有CB之前,不需要向第一设备发送任何反馈信息。在该场景下,第一设备在将分割成一个第一CB和至少一个第二CB的TB发送给第二设备后,第二设备可以先对第一CB进行解码。在第一CB的解码结果为解码成功时,第二设备可以向第一设备提前发送用于反馈第一CB的解码结果的第一信息。第一设备在接收到该第一信息后,可以基于该第一信息,提前停止向第二设备继续发送该TB的动作,提高了URLLC业务数据的传输效率。
下面通过一些实施例对本申请的技术方案进行详细说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不加赘述。
图3为本申请提供的一种数据传输方法的流程示意图。本实施例涉及的是第一设备将TB分割成第一CB和至少一个第二CB的过程。如图3所示,该方法可以包括:
S101、第一设备确定第一CB的大小。
具体的,当第一设备需要向第二设备发送某一TB(即待发送的TB)时,第一设备可以先确定要从该TB中分割出的第一CB的大小(size)。具体实现时,第一设备可以通过 如下几种方式确定第一CB的大小:
第一种方式:第一设备确定预设的第一CB的大小。
例如,当通信协议预定义有上述预设的第一CB的大小时,上述第一设备可以根据协议的预定义,确定预设的第一CB的大小。该预设的第一CB的大小例如可以为10比特。
当通信协议预定义有多个预设的第一CB的大小时,第一设备可以根据协议的预定义、当前的通信场景以及第二设备的能力中的一个或多个参数(例如:接收天线数目等),从该多个预设的第一CB的大小中确定出一个预设的第一CB的大小。
在本申请的另一实现方式中,在上述第一设备为终端设备时,第一设备还可以接收来自无线接入网设备的第一指示信息。其中,该第一指示信息用于指示预设的第一编码块的大小。因此,上述第一设备还可以根据该第一指示信息,确定预设的第一编码块的大小。通过这种方式,可以动态的向第一设备指示预设的第一编码块的大小,以满足不同的通信场景对第一编码块的大小的要求。具体实现时,上述第一指示信息可以携带在物理层信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等任一信令中发送给第一设备。
或者,在上述第一设备为终端设备时,第一设备还可以接收来自无线接入网设备的两个指示信息。其中,一个指示信息用于指示通信协议预定义的多个预设的第一CB的大小。另外一个指示信息用于指示当前需要使用的一个预设的第一CB的大小的标识。因此,上述第一设备还可以结合该两个指示信息,确定一个预设的第一编码块的大小。具体实现时,上述用于指示通信协议预定义的多个预设的第一CB的大小的指示信息,可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。另外一个指示信息例如可以携带在下行控制信息(Downlink Control Information,DCI)中。
在本申请的另一实现方式中,在上述第一设备为网络设备时,第一设备还可以向终端设备发送第一指示信息。其中,该第一指示信息用于指示预设的第一编码块的大小。终端设备在接收到该第一指示信息后,可以根据该第一指示信息,确定预设的第一编码块的大小。通过这种方式,可以动态的向终端设备指示预设的第一编码块的大小,以满足不同的通信场景对第一编码块的大小的要求。具体实现时,上述第一指示信息可以携带在物理层信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等任一信令中。
或者,在上述第一设备为网络设备时,第一设备还可以向终端设备发送两个指示信息。其中,一个指示信息用于指示通信协议预定义的多个预设的第一CB的大小。另外一个指示信息用于指示当前需要使用的一个预设的第一CB的大小的标识。终端设备在接收到该两个指示信息后,可以根据该两个指示信息,确定预设的第一编码块的大小。具体实现时,上述用于指示通信协议预定义的多个预设的第一CB的大小的指示信息,可以携带在物理层信令、RRC信令、MAC信令等任一信令中。另外一个指示信息例如可以携带在下行控制信息(Downlink Control Information,DCI)中。
第二种方式:第一设备根据预设的比例系数和TB的大小,确定第一CB的大小。其中,上述预设的比例系数可以为第一CB的大小与TB的大小的比例,该预设的比例系数例如可以为1/10,即第一CB的大小为TB的大小的十分之一。可选的,当第一设备根据预设的比例系数和TB的大小的乘积,得到的第一CB的大小为非整数时,可以对第一CB 的大小进行数据处理,例如:采用向上或者向下取整的处理方式,也可以四舍五入的处理方式。
例如,当通信协议预定义有上述预设的比例系数时,上述第一设备可以先根据协议的预定义,确定预设的比例系数。然后,第一设备可以将预设的比例系数与TB的大小的乘积,作为第一CB的大小。例如:TB的大小为100比特,预设的比例系数为1/10,则第一CB的大小即为10比特。
当通信协议预定义有多个预设的比例系数时,上述第一设备可以根据协议的预定义以及当前的通信场景,从该多个预设的比例系数中确定出一个预设的比例系数。然后,第一设备可以将该预设的比例系数与TB的大小的乘积,作为第一CB的大小。
在本申请的另一实现方式中,在上述第一设备为终端设备时,第一设备还可以接收来自无线接入网设备的指示信息。其中,该指示信息用于指示预设的比例系数。因此,上述第一设备还可以根据该指示信息,确定预设的比例系数。然后,第一设备可以将预设的比例系数与TB的大小的乘积,作为第一CB的大小。通过这种方式,可以动态的向设备指示预设的比例系数,以隐式的方式动态的指示第一编码块的大小,以满足不同的通信场景对第一编码块的大小的要求。具体实现时,上述指示信息可以携带在物理层信令、无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Media Access Control,MAC)信令等任一信令中发送给第一设备。
或者,在上述第一设备为终端设备时,第一设备还可以接收来自无线接入网设备的两个指示信息。其中,一个指示信息用于指示通信协议预定义的多个预设的比例系数。另外一个指示信息用于指示当前需要使用的一个预设的比例系数的标识。因此,上述第一设备还可以结合该两个指示信息,确定一个预设的比例系数。具体实现时,上述用于指示通信协议预定义的多个预设的比例系数的指示信息,可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。另外一个指示信息例如可以携带在下行控制信息(Downlink Control Information,DCI)中。
在本申请的另一实现方式中,在上述第一设备为网络设备时,第一设备还可以向终端设备发送指示信息。其中,该指示信息用于指示预设的比例系数。终端设备在接收到该指示信息后,可以根据该指示信息,确定预设的比例系数。然后,终端设备可以将预设的比例系数与TB的大小的乘积,作为第一CB的大小。通过这种方式,可以动态的向终端设备指示预设的比例系数,以隐式的方式动态的指示第一编码块的大小,以满足不同的通信场景对第一编码块的大小的要求。具体实现时,上述指示信息可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。
或者,在上述第一设备为网络设备时,第一设备还可以向终端设备发送两个指示信息。其中,一个指示信息用于指示通信协议预定义的多个预设的比例系数。另外一个指示信息用于指示当前需要使用的一个预设的比例系数的标识。终端设备在接收到该两个指示信息后,可以根据该两个指示信息,确定一个预设的比例系数。具体实现时,上述用于指示通信协议预定义的多个预设的比例系数的指示信息,可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。另外一个指示信息例如可以携带在DCI中。
可选的,当通信协议在编码时预定有多个CB的大小时,上述第一设备在根据预设的比例系数和TB的大小,计算出候选的第一CB的大小之后,可以从预定的多个CB的大小 中,选择与候选的第一CB的大小最接近的一个CB的大小,并将该CB的大小作为第一CB的大小。例如:可以选择小于候选的第一CB的大小的一个值,也可以选择一个大于候选的第一CB的大小的一个值等。
S102、第一设备根据第一CB的大小,将待发送的TB分割成第一CB和至少一个第二CB。
具体的,第一设备在确定第一CB的大小之后,可以根据该第一CB的大小,将TB分割成第一CB和至少一个第二CB。其中,这里所说的第二CB为从该TB中分割出第一CB之后对剩余数据继续进行分段所得到的CB。
在本实施例中,上述第一CB可以为用于预测整个TB的解码结果的CB。即,第一CB的解码结果能够表征整个TB的解码结果。例如:当第一CB的解码结果为解码成功时,说明整个TB的解码结果为解码成功;或者,当第一CB的解码结果为解码失败时,说明整个TB的解码结果为解码失败。也就是说,接收上述TB的第二设备在将第一CB的解码结果反馈给第一设备后,第一设备可以通过第一CB的解码结果,确定整个TB的解码结果。
因此,通过上述将TB分割成第一CB和至少一个第二CB的方式,使得第一设备在将该TB发送给第二设备后,第二设备可以先对第一CB进行解码,并将第一CB的解码结果提前发送给第一设备。这样,第一设备可以基于该第一CB的解码结果,提前确定整个TB的解码结果。进而,在整个TB的解码结果为解码失败时(即第一CB的解码结果为解码失败),第一设备可以提前执行重传的操作,以减少第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务在时延要求内,增加重传次数。
本实施例不限定上述第一设备将TB分割成第一CB和至少一个第二CB的方式,例如:上述第一设备可以从TB中随机选择出与第一CB大小相同的数据作为第一CB。然后,根据现有的TB分段的方式,将TB中剩余的数据分割成至少一个第二CB。或者,上述第一设备还可以将TB的第一个比特作为第一CB的起点,从TB中确定出与第一编码块的大小相同的数据,并将该部分数据作为第一CB。然后,根据现有的TB分段的方式,将TB中剩余的数据分割成至少一个第二CB。
需要说明的是,虽然上述示例以从TB的数据中分割出一个CB的方式,对数据的传输方法进行了介绍。但是本领域技术人员可以理解的是,在一些实施例中,上述第一CB还可以是非TB中的数据,例如:上述第一CB可以为通信协议中预定义的一个序列中的部分或全部数据,具体可以根据第一CB的大小和预定义的序列的大小确定。或者,上述第一CB可以为控制信息等。
本申请提供的数据的传输方法,第一设备通过将待传输的TB分割成一个第一CB和至少一个第二CB的方式,使得第一设备在将该TB发送给第二设备后,第二设备可以先对第一CB进行解码,并向第一设备提前反馈第一CB的解码结果,进而在第一CB的解码结果为解码失败时,第一设备可以提前进行重传。由于第一CB的大小可能比第二CB的大小小很多,对应的第一CB的解码时延比第二CB的解码时延小很多,因此采用本申请的实施例中的数据传输方法减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC 业务的时延要求内,增加重传次数。
图4为本申请提供的另一种数据传输方法的流程示意图。本实施例涉及的是第一设备将分割成第一CB和至少一个第二CB的TB发送给第二设备的过程。如图4所示,该方法可以包括:
S201、第一设备确定预设的第一CB的大小。
S202、第一设备根据第一CB的大小,将待发送的TB分割成第一CB和至少一个第二CB。
其中,S201-S202的描述可以参见上述S101-S102的描述。
S203、第一设备将传输块映射到第一时频资源上发送给第二设备。
具体的,上述第一设备在将TB分割成第一CB和至少一个第二CB之后,可以将该第一CB和至少一个第二CB分别进行编码和调制后,映射到第一时频资源上发送给第二设备。此时,第一时频资源上承载的是TB的信息,即进行编码和调制后的第一CB和至少一个第二CB。需要说明的是,上述第一设备将该第一CB和至少一个第二CB分别进行编码和调制的过程,可以参见现有技术,对此不加赘述。
其中,第一CB的发送时间早于或等于第二编码块的发送时间。即,第一CB在第一时频资源上占用的时域符号,在时间上早于或等于任何一个第二CB在第一时频资源上占用的时域符号。也就是说,第一设备在将TB映射到第一时频资源上时,对第一CB采用先频域后时域的映射方式。例如,可以先在第一时频资源的第一个时域符号上映射第一CB,在第一时域符号上的所有频域资源无法将第一CB映射完时,才会在第一时频资源的第二个时域符号上继续映射第一CB,直至完成第一CB的映射。
由于作为接收端的第二设备可能是接收到整个TB的若干个完整的CB就开始解码,因此,通过这种将第一CB映射在第一时频资源中靠前的时域符号上的方式,使得第二设备在接收到第一CB之后,可以先对第一CB进行解码,以提前获取到第一CB的解码结果,提高了获取第一CB的解码结果的效率。
另外,本领域技术人员可以理解的是在任意一次传输中,可以采用或不采用本实施例所提供的方法。在不同次的传输中的第一CB,可以进行HARQ合并。例如,第一设备向第二设备发送了一次初传,和两次重传,每次都发了第一CB,这三次发送的第一CB可以进行HARQ合并。具体实现时,可以通过物理层信令或者RRC来通知是否采用本实施例所提供的方法。
本申请提供的数据的传输方法,第一设备通过将待传输的TB分割成一个第一CB和至少一个第二CB的方式,使得第一设备在将该TB发送给第二设备后,第二设备可以先对第一CB进行解码,并向第一设备提前反馈第一CB的解码结果,进而在第一CB的解码结果为解码失败时,第一设备可以提前进行重传,减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务的时延要求内,增加重传次数。
如上述实施例所说,在上述步骤S203中,上述第一设备在将TB分割成第一CB和至少一个第二CB之后,可以将该第一CB和至少一个第二CB分别进行编码和调制后,映射到第一时频资源上发送给第二设备。其中,上述第一设备在对第一CB和至少一个第二CB分别进行编码和调制时,第一CB和第二CB的编码方式和等效码率中至少有一个不同, 第一CB和第二CB的调制方式相同。这里所说的编码方式例如可以为以下编码方式中的任意一种:极化polar码、低密度奇偶校验码(Low Density Parity Check Code,LDPC)、里德-穆勒码(Reed-Muller Code,RMC)和戈利块编码(Golay-Based Block Code,GBBC)。这里所说的等效码率为CB在编码前的比特数与经过编码和速率匹配后映射到物理资源上的比特数之比。这里所说的调制方式可以为以下任意一种:二进制相移键控(Binary Phase Shift Keying,BPSK),正交相移键控(Quadrature Phase Shift Keying,QPSK),16正交幅度调制(Quadrature Amplitude Modulation,QAM),64QAM和128QAM,但本申请的实施例对调制方式不做限定。
第一CB的编码方式和第二CB的编码方式、第一CB和第二CB的调制方式具体可以沿用现有技术的方式确定,对此不加赘述。本实施例重点强调的是上述第一设备将传输块映射到第一时频资源上发送给第二设备之前,根据传输块的大小、第一时频资源的大小和位置以及第一编码块的大小,确定第二时频资源的大小和位置的过程,则在上述S203之前,该方法还可以包括:
第一设备根据TB的大小、第一时频资源的大小和位置以及第一CB的大小,确定第二时频资源的大小和位置;其中,上述第一时频资源的大小用于表征第一时频资源包括的RE个数。上述第二时频资源的大小用于表征第二时频资源包括的RE个数。第二时频资源用于承载第一编码块的信息,即经过编码和调制后的第一CB。
具体的,第一设备可以采用下述公式(1),确定TB的等效码率,该公式(1)例如可以如下:
Figure PCTCN2018084799-appb-000001
其中,上述C TB为TB的等效码率。上述TB Size为TB的大小,该TB Size的单位可以为比特。上述N TB为第一时频资源,该N TB的单位为RE。Q TB为采用该TB的调制方式对TB的数据进行调制时一个调制符号上所能承载的比特数,例如:调制方式为QPSK时,Q TB取值为2;调制方式为16QAM时,Q TB取值为4;调制方式为64QAM时,Q TB取值为6;调制方式为256QAM时,Q TB取值为6。当将TB分成一个第一CB和至少一个第二CB时,可以将第二CB的调制方式作为TB的调制方式。
然后,第一设备可以采用下述公式(2),确定第二时频资源的大小,该公式(2)例如可以如下:
Figure PCTCN2018084799-appb-000002
其中,上述N CB为第二时频资源,该N CB的单位为RE。上述CB Size为第一CB的大小,该CB Size的单位可以为比特。上述K为等效码率调整系数。上述Q CB为采用第一CB的调制方式对第一CB的数据进行调制时一个调制符号上所能承载的比特数。在本实施例中,第一CB和第二CB的调制方式与TB的调制方式相同,因此,在一些实施例中,也可以上述公式(2)中的Q CB采用Q TB进行替换,其实现效果相同,对此不加赘述。
需要说明的是,上述公式(2)中所涉及的等效码率调整系数为第一CB的等效码率与第二CB的等效码率的比值。可选的,在一些实施例中,上述等效码率调整系数也可以为第一CB的等效码率与TB的等效码率的比值。下述示例以第二CB的等效码率为例,介绍上述等效码率调整系数,具体地:
当通信协议中预定义了多个等效码率调整系数表,每个等效码率调整系数表用于指示 一种传输参数对应的等效码率调整系数。这里所说的传输参数包括下述一项或多项:编码方式、信道模型、终端设备的移动速度、终端设备的接收天线端口数、终端设备的传输模式等。其中,这里所说的信道模型例如可以为:扩展步行者信道模型(Extended Pedestrian A Model,EPA)、扩展车辆信道模型(Extended Vehicular A Model,EVA)、扩展典型城市信道模型(Extended Typical Urban Model,ETU)、抽头延迟线(Tapped Delay Line,TDL)模型等。这里所说的终端设备的传输模式例如可以为开环多入多出技术(Multiple-Input Multiple-Output,MIMO)、闭环MIMO、多用户多入多出(Multi-User Multiple-Input Multiple-Output,MU-MIMO)、波束赋形(Beamforming)等。需要强调的是,在上述第一设备为终端设备时,上述传输参数中所涉及的终端设备的相关参数即为第一设备的参数。在接收上述第一设备发送的TB的第二设备为终端设备时,上述传输参数中所涉及的终端设备的相关参数即为第二设备的参数。
示例性的,以采用polar码进行编码的编码方式和采用LDPC进行编码的编码方式为例,预定义的等效码率调整系数表,可以如下述表1所示:
表1
Figure PCTCN2018084799-appb-000003
其中,上述K1、K2、K3、K4、K5、K6为等效码率调整系数。以等效码率调整系数K1为例,当上述第一CB采用LDPC码进行编码、第二CB采用polar进行编码,且终端设备当前的移动速度小于或等于3km/h时,则第一CB的等效码率为第二CB的等效码率与等效码率调整系数K1的乘积。以等效码率调整系数K6为例,当上述第一CB采用polar码进行编码、第二CB采用LDPC进行编码,且终端设备当前的移动速度大于60km/h时,第一CB的等效码率为第二CB的等效码率与等效码率调整系数K6的乘积。
可以理解的是,上述表1所示的等效码率调整系数表所表征的含义仅为一种示意,在一些实施例中,上述表1还可以为在已约束第二CB的编码方式下,第一CB采用polar码进行编码时所对应的等效码率调整系数,以及,第一CB采用LDPC进行编码时所对应的等效码率调整系数,具体可以根据通信协议的预定义方式确定,本申请对此不进行限定。
需要说明的是,上述预定义的多个等效码率调整系数表中的等效码率调整系数,具体可以根据第一CB的编码方式、第一CB的大小、第二CB的编码方式和第二CB的大小确定。
以第一CB的大小小于第二CB的大小、第一CB的编码方式和第二CB的编码方式相同为例,在采用同一编码方式进行编码时,由于码块越大,编码的性能越好,而码块越小,编码的性能越差。因此,为了确保小码块的编码性能,需要对小码块采用较低的等效码率,以弥补编码增益的损失。对应到本申请中,在第一CB的大小小于第二CB的大小、且第一CB和第二CB采用相同的编码方式进行编码时,需要对第一CB采用比第二CB的等效码率低的等效码率,以确保第一CB和至少一个第二CB的编码性能相同(或者近似相同),从而使得第一CB的解码的正确概率接近至少一个第二CB的解码正确概率。示例性的, 在该场景下,上述等效码率调整系数可以为0.5。
以第一CB的大小小于第二CB的大小、第一CB的编码方式与第二CB的编码方式不同为例,假定第一CB的编码方式为采用polar码进行编码的编码方式、第二CB的编码方式为采用LDPC进行编码的编码方式,由于polar码的编码性能优于LDPC的编码性能,因此,采用polar码对小码块进行编码的编码性能近似等同于采用LDPC对大码块进行编码的编码性能。对应到本申请中,在第一CB的大小小于第二CB的大小、第一CB的编码方式为采用polar码进行编码的编码方式、第二CB的编码方式为采用LDPC进行编码的编码方式时(即第一CB的编码方式与第二CB的编码方式不同),可以对第一CB和第二CB采用相同的等效码率,以确保第一CB和至少一个第二CB的编码性能相同(或者近似相同),从而使得第一CB的解码的正确概率接近至少一个第二CB的解码正确概率。示例性的,在该场景下,上述等效码率调整系数例如可以为1。
作为本申请的另一实现方式,上述等效码率系数的取值还可以进一步根据应用场景确定。
例如:当应用场景为:需要通过第一CB获知整个TB是否会解码失败,则上述等效码率调整系数可以略低于正常取值,以使得第一CB的解码性能优于第二CB的编码性能。其中,上述所说的正常取值可以为:从等效码率调整系数表中确定的等效码率调整系数的取值。这样,若对解码性能较高的第一CB解码失败,则可以确定解码性能较低的第二CB的解码也会失败,进而可以确定整个TB的解码结果为解码失败。通过这种方式,可以确保第一CB的解码结果能够反映出整个TB的解码结果。以上述等效码率调整系数取值为1为例,则在该场景下,等效码率调整系数例如可以为0.9。此时,第一CB的编码方式与第二CB的编码方式不同、且第一CB的等效码率与第二CB的等效码率不同。
例如:当应用场景为:需要通过第一CB获知整个TB是否会解码成功,则上述等效码率调整系数可以略高于正常取值,以使得第一CB的解码性能低于第二CB的编码性能。这样,若对解码性能较低的第一CB解码成功,则可以确定解码性能较高的第二CB的解码也会成功,进而可以确定整个TB的解码结果为解码成功。通过这种方式,可以确保第一CB的解码结果能够反映出整个TB的解码结果。以上述等效码率调整系数取值为1为例,则在该场景下,等效码率调整系数例如可以为1.1。
若上述第一设备可以获取预定义的等效码率调整系数表,则上述第一设备可以根据第一CB的编码方式、第二CB的编码方式以及当前的传输参数,查表得到等效码率调整系数。然后,第一设备可以将等效码率调整系数与第二CB的等效码率相乘,得到第一CB的等效码率。
在上述第一设备为终端设备时,上述第一设备还可以通过接收来自无线接入网设备的第二指示信息,来获取该等效码率调整系数。此时,该等效码率调整系数可以为无线接入网设备根据第一CB的编码方式、第二CB的编码方式以及当前的传输参数,查表得到等效码率调整系数。具体实现时,上述第二指示信息可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。可选的,上述第二指示信息还可以为DCI。
在本申请的另一实现方式中,在上述第一设备为网络设备时,第一设备还可以向终端设备发送第二指示信息。其中,该指示信息用于指示等效码率调整系数。终端设备在接收到该等效码率调整系数后,可以根据该第二指示信息,根据传输块的大小、第一时频资源 的大小和位置以及第一编码块的大小,确定第二时频资源的大小和位置。通过这种方式,可以动态的向终端设备指示等效码率调整系数,以隐式的方式动态的指示第二时频资源的大小,以满足不同的通信场景对第二时频资源的大小的要求。具体实现时,上述第二指示信息可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。可选的,上述第二指示信息还可以为DCI。
上述第一设备还可以根据预设规则,来确定等效码率调整系数。其中,该预设规则例如可以为:当第一CB和第二CB使用相同编码方式,等效码率调整系数为0.5;当第一CB用polar,第二CB使用LDPC时,等效码率调整系数为1等。
第一设备在确定第二时频资源的大小之后,可以根据第二时频资源的大小,在第一时频资源的位置上,确定第二时频资源的位置。具体地:
如前述实施例所说,第一CB的发送时间早于或等于第二编码块的发送时间。因此,第一设备在从第一时频资源的位置上确定第二时频资源的位置时,可以采用先频域后时域的方式确定。例如:若第二时频资源包括10个RE,第一时频资源的第1个符号上有12个RE,则第一设备可以将第1个符号上10个RE作为第二时频资源。若第二时频资源包括10个RE,第一时频资源的第1个符号上有8个RE,第2个符号上有2个RE,则第一设备可以将第1个符号上8个RE和第2个符号上的2个RE作为第二时频资源。
若当通信协议预定义有预设的时域符号,则上述第一设备可以根据预设的时域符号内的RE个数,与第二时频资源的RE个数,在第一时频资源的位置上确定第二时频资源的位置。例如:假定预设的时域符号为第一时频资源的第1-2个符号,若第二时频资源包括10个RE,第一时频资源的第1个符号上有12个RE,则第一设备可以将第1个符号上10个RE作为第二时频资源。若第二时频资源包括10个RE,第一时频资源的第1个符号上有8个RE,第2个符号上有2个RE,则第一设备可以将第1个符号上8个RE和第2个符号上的2个RE作为第二时频资源。若第二时频资源包括10个RE,第一时频资源的第1个符号上有6个RE,第2个符号上有2个RE,则在该实现方式下,第二时频资源需要将RE数量缩减为第一时频资源上的第1个符号和第2个符号上包括的所有RE个数(在该示例中该RE个数即为8个)。此时,第一设备可以将第一个符号上6个RE和第2个符号上的2个RE作为第二时频资源。
可选的,上述通信协议中可以只预定义一个预设的时域符号,也可以预定义多个预设的时域符号。
在上述通信协议中预定义有多个预设的时域符号时,每个预设的时域符号可以对应一种时域长度的第一时频资源。例如:在第一时频资源的时域为2个时域符号的迷你时隙时,预设的时域符号为该第一时频资源的第1个符号。在第一时频资源的时域为7个时域符号的时隙时,预设的时域符号为该第一时频资源的第1-2个符号。
在上述通信协议中预定义有多个预设的时域符号时,每个预设的时域符号可以对应的第一时频资源占用的带宽大小不同。例如:在第一时频资源的带宽大于x时,预设的时域符号为该第一时频资源的第1个符号。在第一时频资源的带宽小于或等于x时,预设的时域符号为该第一时频资源的第1-2个符号。
需要说明的是,在一些实现方式中,上述所描述的第1个符号可以为第一时频资源上除发送PDCCH的时域符号之外的第1个符号,上述所描述的第1-2个符号可以为第一时 频资源上除发送PDCCH的时域符号之外的第1-2个符号,对此不进行限定。
在本申请的另一实现方式中,在上述第一设备为终端设备时,第一设备还可以接收来自无线接入网设备的指示信息。其中,该指示信息用于指示预设的时域符号。因此,上述第一设备还可以根据该指示信息,确定预设的时域符号。然后,第一设备可以根据预设的时域符号内的RE个数,与第二时频资源的RE个数,在第一时频资源上确定第二时频资源的位置。通过这种方式,可以动态的向设备指示预设的时域符号,以隐式的方式动态的指示第二时频资源的位置,以满足不同的通信场景对第二时频资源的位置的要求。具体实现时,上述指示信息可以携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第一设备。
第一设备根据TB的大小、第一时频资源的大小和位置以及第一CB的大小,确定第二时频资源的大小和位置之后,可以在第二时频资源上映射第一CB,具体地:
第一设备可以根据第二时频资源包括的RE个数,确定第二时频资源所能承载的比特数。然后,第一设备以采用母码率编码的第一CB为基准,确定在第二时频资源上映射的第一CB的信息。例如:第二时频资源包括的RE个数为10个,第一CB的调制阶数为2,则第一设备根据该信息,确定第二时频资源所能承载的比特数为20。然后,第一设备以母码率编码的第一CB的比特数为10,则在第二时频资源上映射的第一CB的信息为:2个以母码率编码的第一CB。例如:第二时频资源包括的RE个数为10个,第一CB的调制阶数为2,则第一设备根据该信息,确定第二时频资源所能承载的比特数为20。然后,第一设备以母码率编码的第一CB的比特数为15,则在第二时频资源上映射的第一CB的信息为:1个以母码率编码的第一CB,和,以母码率编码的第一CB中的一半数据。在该场景下,上述第一CB的大小,与,上述在第二时频资源上映射的第一CB的信息的大小的比值即为第一CB的等效码率。
在本申请的一种实现方式中,基于上述公式(1)和公式(2),第一设备在确定了TB的大小、TB的调制阶数、第一时频资源的大小、等效码率调整系数、第一CB的调制阶数、第二时频资源的大小之后,第一设备还采用下述公式(3),确定第一CB的大小,该公式(3)例如可以如下:
Figure PCTCN2018084799-appb-000004
本申请提供的数据的传输方法,第一设备通过将待传输的TB分割成一个第一CB和至少一个第二CB的方式,使得第一设备在将该TB发送给第二设备后,第二设备可以先对第一CB进行解码,并向第一设备提前反馈第一CB的解码结果,进而在第一CB的解码结果为解码失败时,第一设备可以提前进行重传,减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务在时延要求内,增加重传次数。
图5为本申请提供的又一种数据传输方法的信令流程图。如图5所示,在本实施例中,上述第一设备根据第一CB的大小,将TB分割成第一CB和至少一个第二CB后,发送给第二设备的过程。如图5所示,该方法包括:
S301、第一设备确定第一CB的大小。
S302、第一设备根据第一CB的大小,将待发送的TB分割成第一CB和至少一个第二CB。
S303、第一设备将TB映射到第一时频资源上发送给第二设备。
其中,TB包括第一CB和至少一个第二CB;第一CB的发送时间早于或等于第二CB的发送时间。
S304、第二设备接收来自第一设备的TB。
其中,上述TB包括第一CB和至少一个第二CB。
S305、第二设备确定TB的大小、第一CB的大小以及第一时频资源的大小和位置。
其中,第一时频资源用于承载TB的信息。
具体的,若第二设备为无线接入网设备,则第二设备可以根据自己所指示的第一设备发送的TB的大小,确定TB的大小。若第二设备为终端设备,则第二设备可以根据来自无线接入网设备发送的用于指示TB的大小的指示信息,确定TB的大小。其中,这里所说的指示信息例如可以为DCI。
上述第二设备确定第一CB的大小的方式,可以参见上述S101的描述,对此不再赘述。
若第二设备为无线接入网设备,则第二设备可以根据自己为第一设备调度的第一时频资源的大小和位置,确定第一时频资源的大小和位置。若第二设备为终端设备,则第二设备可以根据来自无线接入网设备发送的用于指示第一时频资源的大小和位置的指示信息,确定第一时频资源的大小和位置。其中,这里所说的指示信息例如可以为DCI。
S306、第二设备根据TB的大小、第一CB的大小以及第一时频资源的大小和位置确定第二时频资源的大小和位置。
其中,第二时频资源用于承载第一CB的信息。
上述第二设备确定预设的第一CB的大小的方式,可以参见上述第一设备根据TB的大小、第一时频资源的大小和位置以及第一CB的大小,确定第二时频资源的大小和位置的描述,对此不再赘述。
S307、第二设备根据第二时频资源的大小和位置,对第一CB进行解调和解码。
具体的,第二设备在确定第二时频资源的大小和位置之后,可以对在第二时频资源上接收到的数据,单独进行解调和解码。此时,该在第二时频资源上接收到的数据即为第一CB。也就是说,第二设备通过第二时频资源的大小和位置来区分所接收到的数据哪些是来自第一CB的数据。然后,第二设备通过对第一CB单独进行解调和解码的方式,得到第一CB的解码结果。
其中,第二设备对第一CB进行解调和解码的方式可以参见现有技术,对此不再赘述。
可选的,第二设备在第一CB进行借条和解码之前,需要先确定第一CB的编码方式、第一CB的等效码率、第一CB的调制方式。对于第一CB的编码方式和第一CB的调制方式具体可以沿用现有技术的方式确定,对此不再赘述。对于确定第一CB的等效码率的方式可以参见上述第一设备确定第一CB的等效码率的具体过程,对此不再赘述。
S308、第二设备在第一时间点向第一设备发送第一信息。
其中,第一信息用于指示第一CB的解码结果,第一时间点早于第二设备向第一设备发送第二信息的时间点,第二信息用于指示TB的解码结果。可选的,第二信息例如可以为现有技术所说的用于指示TB的解码结果的Ack/Nack信号。
为了能够使第一设备能够提前得到第一CB的解码结果,在本实施例中,第二设备可以在早于发送第二信息的时间点,向第一设备发送用于指示第一CB的解码结果的第一信 息,以通过第一CB的解码结果间接的指示整个TB的解码结果。这样,第一设备可以基于该第一CB的解码结果,提前确定整个TB的解码结果。进而,在整个TB的解码结果为解码失败时(即第一CB的解码结果为解码失败),第一设备可以提前执行重传的操作,以减少第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的TB时,可以减少两次传输之间的时延,进而可以在URLLC业务在时延要求内,增加重传次数。
本申请提供的数据的传输方法,第一设备通过确定预设的第一CB的大小,将待传输的TB分割成一个第一CB和至少一个第二CB,使得第二设备可以基于对第一CB的解码结果,确定整个TB的解码结果,从而使得第二设备可以提前向第一设备反馈TB的解码结果,以减少第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的传输块时,可以减少两次传输之间的时延,进而可以在URLLC业务在时延要求内,增加重传次数。
进一步地,在上述实施例的基础上,本实施例涉及的是在上述第二设备在第一时间点向第一设备发送第一信息之前,即在上述S308之前,该方法还可以包括如下步骤:第二设备确定第一时间点。
其中,上述第二设备可以采用如下几种方式确定上述第一时间点,具体地:
第一种方式:第二设备根据第二时频资源的时域信息,确定第一时间点。
具体的,在本实施例中,当通信协议中预定义了“第一时间点与第二时频资源在时域上的相对位置”,则上述第一设备和第二设备可以获取预定义的“第一时间点与第二时频资源在时域上的相对位置”。
例如:当通信协议中预定义了第一时间点为第二时频资源的第1个时域符号之后的第n个时域符号,则上述第二设备可以根据第二时频资源的时域信息,确定第二时频资源的第1个时域符号,进而在第二时频资源的第1个时域符号之后,加上n个符号,得到上述第一时间点。或者,当通信协议中预定义了第一时间点为第二时频资源的最后1个时域符号之后的第n个时域符号,则上述第二设备可以根据第二时频资源的时域信息,确定第二时频资源的第1个时域符号,进而在第二时频资源的最后1个时域符号之后,加上n个符号,得到上述第一时间点。也可以是第二时频资源中的其它符号作为起始点,加上n个符号,得到上述第一时间点。
其中,上述第二设备可以根据前述实施例所确定的第二时频资源的大小和位置,获取第二时频资源的时域信息,对此不再赘述。
相应地,第一设备也可以采用上述方式,确定第一时间点,进而在第一时间点接收第一信息,对此不再赘述。
第二种方式:第二设备根据发送第二信息的时间点,确定第一时间点。
具体的,在本实施例中,当通信协议中预定义了“第一时间点与发送第二信息的时间点的相对位置”,则上述第一设备和第二设备中可以获取预定义的“第一时间点与发送第二信息的时间点的相对位置”。
例如:当通信协议中预定义了第一时间点为发送第二信息的时间点之前的第m个时域符号,则上述第二设备可以将发送第二信息的时间点减去m个符号,得到上述第一时间点。
上述第一设备和第二设备中可以获取发送第二信息的时间点,该发送第二信息的时间 点可以为无线接入网设备调度的,也可以为预定义的。则在本申请的一种实现方式中,当上述第二设备为终端设备时,第二设备可以通过接收来着无线接入网设备的用于指示“发送第二信息的时间点”的指示信息,获取无线接入网设备调度的发送第二信息的时间点。其中,这里所说的指示信息例如可以携带在DCI中,或者,携带在物理层信令、RRC信令、MAC信令等任一信令中。
相应地,第一设备也可以采用上述方式,确定第一时间点,进而在第一时间点接收第一信息,对此不再赘述。
第三种方式:第二设备根据第一时间点的时间范围,确定第一时间点。
具体的,在本实施例中,当通信协议中预定义了“第一时间点的时间范围”,则上述第一设备和第二设备中可以获取预定义的第一时间点的时间范围。也就是说,第二设备可以在该范围内的任一时间点发送第一信息。
在本申请的另一实现方式中,上述第一设备和第二设备中可以获取预定义的“第一时间点的时间范围的起点与第二时频资源在时域上的相对位置”、“第一时间点的时间范围的终点与发送第二信息的时间点的相对位置”。例如:上述第一时间点的时间范围的起点可以为:第二时频资源的时域信息之后的n个符号,上述第一时间点的时间范围的终点可以为:发送第二信息的时间点之前的m个符号等。因此,上述第二设备在根据第一时间点的时间范围,确定第一时间点之前,还可以在第二时频资源的时域信息上加上n个符号,得到第一时间点的时间范围的起点,将发送第二信息的时间点减去m个符号,得到上述第一时间点的时间范围的终点。
在本申请的另一实现方式中,若上述第二设备为终端设备,则上述终端设备在根据第一时间点的时间范围,确定第一时间点之前,还可以接收用于指示第一时间点的时间范围的指示信息,以通过指示信息获取第一时间点的时间范围。该指示信息可以通过携带第一时间点的时间范围的起点和第一时间点的时间范围的时间长度,来指示第一时间点的时间范围。或者,该指示信息可以通过携带第一时间点的时间范围的终点和第一时间点的时间范围的时间长度,来指示第一时间点的时间范围。或者,该指示信息可以通过携带第一时间点的时间范围的起点和终点,来指示第一时间点的时间范围。或者,该指示信息可以通过携带第一时间点的时间范围的起点、终点、时间长度,来指示第一时间点的时间范围。具体实现时,该指示信息例如可以携带在DCI中,或者,携带在物理层信令、RRC信令、MAC信令等任一信令中发送给第二设备。
相应地,第一设备也可以采用上述方式,确定第一时间点,进而在第一时间点接收第一信息,对此不再赘述。
在本申请的另一实现方式中,若上述第二设备为终端设备,则上述第二设备还可以通过接收终端设备发送的用于指示第一时间点的指示信息,来确定第一时间点。其中,该指示信息例如可以为DCI。在该实现方式下,上述发送第二信息的时间点也可以携带在上述指示信息,或者,上述发送第二信息的时间点可以携带理层信令RRC信令、MAC信令等任一信令中发送给第二设备。相应地,第一设备也可以采用上述方式,确定第一时间点,进而在第一时间点接收第一信息,对此不再赘述。
本申请提供的数据的传输方法,第二设备可以确定第一时间点,从而使得第二设备在接收到第一设备传输的TB之后,可以在该第一时间点提前发送能够反馈第一CB的解码 结果的第一信息,而不用再等到TB的反馈时间点再反馈。通过这种方式,使得第一设备可以提前接收到第一信息,进而可以基于第一CB的解码结果,提前确定整个TB的解码结果,以在整个TB的解码结果为解码失败时,向第二设备发起重传,减少了第一设备两次传输之间的时延。因此,在采用这种方式传输承载URLLC业务数据的传输块时,可以减少两次传输之间的时延,进而可以在URLLC业务在时延要求内,增加重传次数。
上述的第一时间点用于提前反馈第一CB的解码结果,反馈内容可以是正确或者错误。此外,第一CB的解码正确或者错误的反馈可以独立确定自己的反馈时间点,确定方法和第一时间点的方法相同。
进一步地,在上述实施例的基础上,本实施例涉及的是在上述第二设备在第一时间点向第一设备发送第一信息之前,即在上述S308之前,该方法还可以包括如下步骤:第二设备确定是否提前发送第一信息。
具体的,上述第一设备发送TB的发送方式可以包括:基于HARQ的发送方式(即初传TB的全部CB,并根据接收端反馈的接收结果,重传发送TB的全部CB,直至成功接收TB的所有CB)、基于多次重复发送的发送方式(即重复发送TB的全部CB,直至接收端成功接收TB的所有CB,接收端在成功接收TB的所有CB之前,不需要向发送端发送任何反馈信息)。
若第一CB的解码结果为解码成功,说明整个TB的解码结果为解码成功。此时,若第一设备发送TB的发送方式为基于多次重复发送的发送方式,则第二设备可以确定提前发送用于指示第一CB的解码结果的第一信息。这样,第二设备在确定提前发送第一信息时,在第一时间点向第一设备发送第一信息。第一设备在提前接收到该第一信息后,可以提前停止向第二设备发送整个TB的所有CB,提高了第一设备的发送效率。
若第一CB的解码结果为解码失败,说明整个TB的解码结果为解码失败。此时,若第一设备发送TB的发送方式为基于多次重复发送的发送方式,则不管第二设备是否发送用于指示解码失败的第一信息,第一设备都会向第二设备发送整个TB的所有CB。因此,在这种情况下,第二设备可以确定不需要提前发送第一信息,以节省开销。
若第一CB的解码结果为解码失败,说明整个TB的解码结果为解码失败。此时,若第一设备发送TB的发送方式为基于HARQ的发送方式,则第二设备可以确定提前发送用于指示第一CB的解码结果的第一信息。这样,第二设备在确定提前发送第一信息时,在第一时间点向第一设备发送第一信息。第一设备在提前接收到该第一信息后,可以提前确定向第二设备失败,从而使得第一设备可以提前执行重传操作,减少了第一设备两次传输之间的时延。
若第一CB的解码结果为解码成功,说明整个TB的解码结果为解码成功。此时,若第一设备发送TB的发送方式为基于HARQ的发送方式,则不管第二设备是否提前发送用于指示解码成功的第一信息,第一设备后续都不会向第二设备执行任何操作。因此,在这种情况下,第二设备可以确定不需要提前发送第一信息,也可以确定提前发送第一信息,具体可以根据用户的需求设定。
可选的,在本申请的另一实现方式中,在上述第二设备为终端设备时,第二设备还可以根据所接收到的“用于指示第二设备是否提前发送第一信息”的指示信息,确定是否提前发送上述第一信息。这样,第二设备在基于指示信息,确定提前发送第一信息时,才会 在第一时间点向第一设备发送第一信息。
可选的,在本申请的另一实现方式中,在上述第二设备为终端设备时,第二设备还可以根据所接收到的“用于指示提前发送的信息的类型”的指示信息。这样,第二设备在基于指示信息,确定提前发送的信息的类型,进而使得第二设备可以根据所述第一CB的解码结果、提前发送的信息的类型,确定是否提前发送第一信息。其中,上述所说的第一信息的类型可以为用于指示
例如:若上述提前发送的信息的类型为:用于指示解码成功的信息。此时,若第一信息为用于指示解码失败的信息,则第二设备可以确定不提前发送第一信息。若上述提前发送的信息的类型为:用于指示解码成功的信息。此时,若第一信息为用于指示解码成功的信息,则第二设备可以确定提前发送第一信息。若上述提前发送的信息的类型为:用于指示解码失败的信息。此时,若第一信息为用于指示解码失败的信息,则第二设备可以确定提前发送第一信息。若上述提前发送的信息的类型为:用于指示解码失败的信息。此时,若第一信息为用于指示解码成功的信息,则第二设备可以不确定提前发送第一信息。
本申请提供的数据的传输方法,第二设备可以结合实际的应用场景,确定是否提前发送第一信息,进而在确定提前发送第一信息时,才会在第一时间点向第一设备发送第一信息。通过这种方式,可以确保第二设备能够发送有效的第一信息,以提高第一信息发送的准确性。
图6为本申请提供的一种设备的结构示意图。如图6所示,该设备可以为第一设备,第一设备可以包括:处理模块11和发送模块12。其中,
处理模块11,用于确定预设的第一编码块的大小,并根据所述第一编码块的大小,将待发送的传输块分割成所述第一编码块和至少一个第二编码块;
发送模块12,用于将所述传输块映射到第一时频资源上发送给第二设备,其中,所述传输块包括所述第一编码块和所述至少一个第二编码块,所述第一编码块的发送时间早于或等于所述第二编码块的发送时间。
在本申请的一些实施例中,当上述第一设备为终端设备,上述处理模块11具体可以用于接收第一指示信息,并根据所述第一指示信息,确定所述预设的第一编码块的大小,其中,所述第一指示信息用于指示所述预设的第一编码块的大小。
在本申请的一些实施例中,上述第一编码块采用极化polar码进行编码,上述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
在本申请的一些实施例中,上述处理模块11,还用于在发送模块12将所述传输块映射到第一时频资源上发送给第二设备之前,根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置;所述第二时频资源用于承载所述第一编码块的信息。可选的,上述处理模块11,具体可以用于根据所述传输块的大小、所述第一时频资源的大小和位置、所述第一编码块的大小,以及等效码率调整系数,确定所述第二时频资源的大小和位置。可选的,上述第二时频资源可以位于预设的时域符号内。
在上述实现方式下,当上述第一设备为网络设备时,上述发送模块12,还用于发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
图7为本申请提供的另一种设备的结构示意图。在上述图6所示的框图的基础上,如 图7所示,在上述实现方式下,当上述第一设备为终端设备时,上述第一设备还可以包括:接收模块13。其中,
接收模块13,用于接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
本申请提供的设备,可以执行上述方法实施例中第一设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
图8为本申请提供的又一种设备的结构示意图。如图8所示,该设备可以为第二设备,第二设备可以包括:接收模块21、处理模块22和发送模块23。其中,
接收模块21,用于接收来自第一设备的传输块,所述传输块包括第一编码块和至少一个第二编码块;
处理模块22,用于根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小和位置,并根据所述第二时频资源的大小和位置,对所述第一编码块进行解调和解码,其中,所述第二时频资源用于承载所述第一编码块的信息;
发送模块23,用于在第一时间点向所述第一设备发送第一信息;所述第一信息用于指示所述第一编码块的解码结果;其中,所述第一时间点早于第二设备向第一设备发送第二信息的时间点,所述第二信息用于指示所述传输块的解码结果。
在本申请的一些实施例中,在上述第二设备为终端设备时,所述处理模块22,具体用于接收第一指示信息,并根据所述第一指示信息,确定所述预设的第一编码块的大小,其中,所述第一指示信息用于指示所述预设的第一编码块的大小。
在本申请的一些实施例中,上述第一编码块采用极化polar码进行编码,上述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
在本申请的一些实施例中,上述处理模块22,具体用于根据所述传输块的大小、所述第一时频资源的大小、所述第一编码块的大小,以及,等效码率调整系数,确定所述第二时频资源的大小。可选的,上述第二时频资源可以位于预设的时域符号内。
在上述实现方式下,当上述第二设备为网络设备时,上述发送模块23,还用于发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
在上述实现方式下,当上述第二设备为终端设备时,上述接收模块21,还用于接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
本申请提供的设备,可以执行上述方法实施例中第二设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
需要说明的是,应理解以上发送模块实际实现时可以为发送器,接收模块实际实现时可以为接收器。而处理模块等的划分仅仅是一种逻辑功能的划分,实际实现时一个设备上的各个模块可以全部或部分集成到一个物理实体上,也可以物理上分开。且一个设备上的这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,处理模块可以为单独设立的处理元件,也可以集成在上述设备的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述某一设备的存储器中,由该设备的某一个处理元件调 用并执行以上处理模块的功能。其它模块的实现与之类似。此外一个设备上的这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或一个设备上的以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,简称CPU)或其它可以调用程序代码的处理器。再如,一个设备上的这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
图9为本申请提供的又一种设备的结构示意图。如图9所示,该设备为第一设备,该第一设备可以包括:处理器31(例如CPU)、存储器32、接收器33、发送器34;接收器33和发送器34均耦合至处理器31,处理器31控制接收器33的接收动作、处理器31控制发送器34的发送动作;存储器32可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器32中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的第一设备还可以包括:电源35、通信总线36以及通信端口37。接收器33和发送器34可以集成在第一设备的收发信机中,也可以为第一设备上独立的收发天线。通信总线36用于实现元件之间的通信连接。上述通信端口37用于实现第一设备与其他外设之间进行连接通信。
在本申请中,上述存储器32用于存储计算机可执行程序代码,程序代码包括指令;当处理器31执行指令时,指令使第一设备执行上述方法实施例中第一设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
图10为本申请提供的又一种设备的结构示意图。如图10所示,该设备为第二设备,该第二设备可以包括:处理器41(例如CPU)、存储器42、接收器43、发送器44;接收器43和发送器44均耦合至处理器41,处理器41控制接收器43的接收动作、处理器41控制发送器44的发送动作;存储器42可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器42中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。可选的,本申请涉及的第二设备还可以包括:电源45、通信总线46以及通信端口47。接收器43和发送器44可以集成在第二设备的收发信机中,也可以为第二设备上独立的收发天线。通信总线46用于实现元件之间的通信连接。上述通信端口47用于实现第二设备与其他外设之间进行连接通信。
在本申请中,上述存储器42用于存储计算机可执行程序代码,程序代码包括指令;当处理器41执行指令时,指令使第二设备执行上述方法实施例中第二设备侧的动作,其实现原理和技术效果类似,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、 或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (32)

  1. 一种数据的传输方法,其特征在于,所述方法包括:
    第一设备确定预设的第一编码块的大小;
    所述第一设备根据所述第一编码块的大小,将待发送的传输块分割成所述第一编码块和至少一个第二编码块;
    所述第一设备将所述传输块映射到第一时频资源上发送给第二设备,其中,所述传输块包括所述第一编码块和所述至少一个第二编码块,所述第一编码块的发送时间早于或等于所述第二编码块的发送时间。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备为终端设备,所述第一设备确定预设的第一编码块的大小,包括:
    所述第一设备接收第一指示信息,其中,所述第一指示信息用于指示所述预设的第一编码块的大小;
    所述第一设备根据所述第一指示信息,确定所述预设的第一编码块的大小。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一设备将所述传输块映射到第一时频资源上发送给第二设备之前,所述方法还包括:
    所述第一设备根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置,其中,所述第二时频资源用于承载所述第一编码块的信息。
  4. 根据权利要求3所述的方法,其特征在于,所述第一设备根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置,包括:
    所述第一设备根据所述传输块的大小、所述第一时频资源的大小和位置、所述第一编码块的大小,以及等效码率调整系数,确定所述第二时频资源的大小和位置。
  5. 根据权利要求4所述的方法,其特征在于,所述第一设备为终端设备,所述方法还包括:
    所述第一设备接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  6. 根据权利要求4所述的方法,其特征在于,所述第一设备为网络设备,所述方法还包括:
    所述第一设备发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  7. 根据权利要求3-6任一项所述的方法,其特征在于,所述第二时频资源位于预设的时域符号内。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
  9. 一种数据的传输方法,其特征在于,所述方法包括:
    第二设备接收来自第一设备的传输块,所述传输块包括第一编码块和至少一个第二编码块;
    所述第二设备确定所述传输块的大小、预设的所述第一编码块的大小以及第一时频资源的大小和位置,所述第一时频资源用于承载所述传输块的信息;
    所述第二设备根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小和位置,其中,所述第二时频资源用于承载所述第一编码块的信息;
    所述第二设备根据所述第二时频资源的大小和位置,对所述第一编码块进行解调和解码;
    所述第二设备在第一时间点向所述第一设备发送第一信息;所述第一信息用于指示所述第一编码块的解码结果;其中,所述第一时间点早于第二设备向第一设备发送第二信息的时间点,所述第二信息用于指示所述传输块的解码结果。
  10. 根据权利要求9所述的方法,其特征在于,所述第二设备为终端设备,所述第二设备确定预设的第一编码块的大小,包括:
    所述第二设备接收第一指示信息,其中,所述第一指示信息用于指示所述预设的第一编码块的大小;
    所述第二设备根据所述第一指示信息,确定所述预设的第一编码块的大小。
  11. 根据权利要求9或10所述的方法,其特征在于,所述第二设备根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小,包括:
    所述第二设备根据所述传输块的大小、所述第一时频资源的大小、所述第一编码块的大小,以及,等效码率调整系数,确定所述第二时频资源的大小。
  12. 根据权利要求11所述的方法,其特征在于,所述第二设备为终端设备,所述方法还包括:
    所述第二设备接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  13. 根据权利要求11所述的方法,其特征在于,所述第二设备为网络设备,所述方法还包括:
    所述第二设备发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  14. 根据权利要求9-13任一项所述的方法,其特征在于,所述第二时频资源位于预设的时域符号内。
  15. 根据权利要求9-14任一项所述的方法,其特征在于,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
  16. 一种设备,其特征在于,所述设备为第一设备,所述第一设备包括:
    处理模块,用于确定预设的第一编码块的大小,并根据所述第一编码块的大小,将待发送的传输块分割成所述第一编码块和至少一个第二编码块;
    发送模块,用于将所述传输块映射到第一时频资源上发送给第二设备,其中,所述传输块包括所述第一编码块和所述至少一个第二编码块,所述第一编码块的发送时间早于或等于所述第二编码块的发送时间。
  17. 根据权利要求16所述的设备,其特征在于,所述第一设备为终端设备,
    所述处理模块,具体接收第一指示信息,并根据所述第一指示信息,确定所述预设的第一编码块的大小,其中,所述第一指示信息用于指示所述预设的第一编码块的大小。
  18. 根据权利要求16或17所述的设备,其特征在于,所述处理模块,还用于在所述发送模块将所述传输块映射到第一时频资源上发送给第二设备之前,根据所述传输块的大小、所述第一时频资源的大小和位置以及所述第一编码块的大小,确定第二时频资源的大小和位置;所述第二时频资源用于承载所述第一编码块的信息。
  19. 根据权利要求18所述的设备,其特征在于,所述处理模块,具体用于根据所述传输块的大小、所述第一时频资源的大小和位置、所述第一编码块的大小,以及等效码率调整系数,确定所述第二时频资源的大小和位置。
  20. 根据权利要求19所述的设备,其特征在于,所述第一设备为终端设备,所述第一设备还包括:
    接收模块,用于接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  21. 根据权利要求19所述的设备,其特征在于,所述第一设备为网络设备,所述发送模块,还用于发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  22. 根据权利要求18-21任一项所述的设备,其特征在于,所述第二时频资源位于预设的时域符号内。
  23. 根据权利要求16-22任一项所述的设备,其特征在于,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
  24. 一种设备,其特征在于,所述设备为第二设备,所述第二设备包括:
    接收模块,用于接收来自第一设备的传输块,所述传输块包括第一编码块和至少一个第二编码块;
    处理模块,用于根据所述传输块的大小、所述第一编码块的大小以及所述第一时频资源的大小和位置确定第二时频资源的大小和位置,并根据所述第二时频资源的大小和位置,对所述第一编码块进行解调和解码,其中,所述第二时频资源用于承载所述第一编码块的信息;
    发送模块,用于在第一时间点向所述第一设备发送第一信息;所述第一信息用于指示所述第一编码块的解码结果;其中,所述第一时间点早于第二设备向第一设备发送第二信息的时间点,所述第二信息用于指示所述传输块的解码结果。
  25. 根据权利要求24所述的设备,其特征在于,所述第二设备为终端设备,所述处理模块,具体用于接收第一指示信息,并根据所述第一指示信息,确定所述预设的第一编码块的大小,其中,所述第一指示信息用于指示所述预设的第一编码块的大小。
  26. 根据权利要求24或25所述的设备,其特征在于,所述处理模块,具体用于根据所述传输块的大小、所述第一时频资源的大小、所述第一编码块的大小,以及,等效码率调整系数,确定所述第二时频资源的大小。
  27. 根据权利要求26所述的设备,其特征在于,所述第二设备为终端设备,所述接收模块,还用于接收第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  28. 根据权利要求26所述的设备,其特征在于,所述第二设备为网络设备,所述发送模块,还用于发送第二指示信息,其中,所述第二指示信息用于指示所述等效码率调整系数。
  29. 根据权利要求24-28任一项所述的设备,其特征在于,所述第二时频资源位于预设的时域符号内。
  30. 根据权利要求24-29任一项所述的设备,其特征在于,所述第一编码块采用极化polar码进行编码,所述至少一个第二编码块采用低密度奇偶校验码LDPC进行编码。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至8或9至15任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1至8或9至15任一项所述的方法。
PCT/CN2018/084799 2017-05-05 2018-04-27 数据的传输方法和设备 WO2018201984A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710313170.9A CN108809495B (zh) 2017-05-05 2017-05-05 数据的传输方法和设备
CN201710313170.9 2017-05-05

Publications (1)

Publication Number Publication Date
WO2018201984A1 true WO2018201984A1 (zh) 2018-11-08

Family

ID=64015836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084799 WO2018201984A1 (zh) 2017-05-05 2018-04-27 数据的传输方法和设备

Country Status (2)

Country Link
CN (1) CN108809495B (zh)
WO (1) WO2018201984A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983824A (zh) * 2019-02-22 2019-07-05 北京小米移动软件有限公司 数据传输方法、装置及存储介质
EP4145733A4 (en) * 2020-06-02 2023-09-27 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109889308B (zh) * 2019-01-28 2021-09-03 中国人民解放军陆军工程大学 物联网中联合极化编译码的混合自动重传请求方法
WO2024092575A1 (zh) * 2022-11-02 2024-05-10 华为技术有限公司 通信方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255712A (zh) * 2011-07-18 2011-11-23 东南大学 长期演进系统混合自动要求重传过程软量存储分配方法
CN105612706A (zh) * 2013-10-09 2016-05-25 高通股份有限公司 具有不相等码块大小的数据传输方案
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端
CN106160937A (zh) * 2015-04-15 2016-11-23 中兴通讯股份有限公司 一种实现码块分割的方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867440A (zh) * 2009-04-15 2010-10-20 中兴通讯股份有限公司 码块分割预处理方法
CN102237953B (zh) * 2010-05-05 2014-06-11 中兴通讯股份有限公司 一种lte下行业务信道解速率匹配的方法及装置
CN102055558A (zh) * 2011-01-04 2011-05-11 上海华为技术有限公司 传输块分段译码方法、装置和一种多输入多输出接收机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255712A (zh) * 2011-07-18 2011-11-23 东南大学 长期演进系统混合自动要求重传过程软量存储分配方法
CN105612706A (zh) * 2013-10-09 2016-05-25 高通股份有限公司 具有不相等码块大小的数据传输方案
CN106160937A (zh) * 2015-04-15 2016-11-23 中兴通讯股份有限公司 一种实现码块分割的方法及装置
CN105979597A (zh) * 2016-06-27 2016-09-28 宇龙计算机通信科技(深圳)有限公司 通信资源的分配方法、分配装置、基站和终端

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109983824A (zh) * 2019-02-22 2019-07-05 北京小米移动软件有限公司 数据传输方法、装置及存储介质
EP4145733A4 (en) * 2020-06-02 2023-09-27 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE

Also Published As

Publication number Publication date
CN108809495A (zh) 2018-11-13
CN108809495B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN110235398B (zh) 接收和执行部分重传的方法以及相关无线设备和网络节点
CN108781140B (zh) 用于针对缩短的tti确定harq-ack传输定时的系统和方法
WO2018201984A1 (zh) 数据的传输方法和设备
WO2017000291A1 (zh) 传输上行数据的方法和设备
US10194462B2 (en) Transmission of uplink control information for link-budget-limited devices
WO2018201831A1 (zh) 通信方法和装置
KR20210006884A (ko) 비-지상 네트워크용 하이브리드 자동 반복 요청(harq) 기술
US11728931B2 (en) Communication method, network device, and terminal
WO2021197270A1 (zh) 信息传输方法、装置及系统
US20220368494A1 (en) Uplink re-transmission with compact memory usage
WO2019192355A1 (zh) 一种通信方法、装置以及系统
US20210337528A1 (en) Network access node and client device for indication of multiple data channels in a single control message
WO2022030525A1 (en) Code rate determination for multiplexing of harq-ack with different priorities on pucch with separate coding
WO2019056369A1 (zh) 通信方法和装置
CN104938010A (zh) 用于发送和接收反馈信息的设备
TWI759507B (zh) 回饋應答訊息的傳輸方法、裝置及系統
WO2021203976A1 (zh) 数据处理方法、装置及系统
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
CN105075361B (zh) 用于发送和接收反馈信息的设备
WO2019238014A1 (zh) 反馈信息的传输方法和装置
CN109474405A (zh) 多载波系统中的计数方法、装置及系统
US11895534B2 (en) Data transmission method and communication apparatus
WO2022009702A1 (en) Multiplexing of harq-ack with different priorities on pucch
WO2022140907A1 (zh) 一种数据发送方法及装置
WO2018152791A1 (zh) 通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794112

Country of ref document: EP

Kind code of ref document: A1