WO2018199021A1 - コンデンサのノイズ低減回路および電源装置 - Google Patents

コンデンサのノイズ低減回路および電源装置 Download PDF

Info

Publication number
WO2018199021A1
WO2018199021A1 PCT/JP2018/016452 JP2018016452W WO2018199021A1 WO 2018199021 A1 WO2018199021 A1 WO 2018199021A1 JP 2018016452 W JP2018016452 W JP 2018016452W WO 2018199021 A1 WO2018199021 A1 WO 2018199021A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
case
noise reduction
ground path
reduction circuit
Prior art date
Application number
PCT/JP2018/016452
Other languages
English (en)
French (fr)
Inventor
吉田 敦
清水 敏久
Original Assignee
日本ケミコン株式会社
公立大学法人首都大学東京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社, 公立大学法人首都大学東京 filed Critical 日本ケミコン株式会社
Publication of WO2018199021A1 publication Critical patent/WO2018199021A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/28Structural combinations of electrolytic capacitors, rectifiers, detectors, switching devices with other electric components not covered by this subclass

Definitions

  • the present invention relates to a noise reduction technique such as a reduction in high-frequency current flowing in a ground path of a capacitor installed in a power supply device.
  • a large electrolytic capacitor is used as a DC smoothing capacitor after AC is converted to DC.
  • a capacitor comprises a metal band.
  • the metal band is a fixing means for fixing the capacitor to the device frame and is used as a safety ground.
  • This metal band is attached to the capacitor case via an insulating film.
  • a stray capacitance of about 100 [pF] is parasitic between the metal band and the capacitor case due to the contact area and the intervening insulating film.
  • the switching element of the inverter operates, a high-frequency current flows through the stray capacitance and the inductance of the ground path due to the switching. That is, the ground path including the stray capacitance is a source of noise current.
  • the stray capacitance between the case 104 and the capacitor element 106 of each capacitor 102 is Ck1
  • the stray capacitance due to the insulating film between the case 104 and the metal band 108 is Ck2.
  • the combined stray capacitance Ctam when N capacitors 102 are paralleled is proportional to the parallel number N of capacitors 102.
  • Ctam N ⁇ Cta (2) Therefore, the number of capacitors 102 increases according to the parallel number N.
  • the high-frequency currents flowing from the case 104 of each capacitor 102 to the metal band 108 are i1, i2, i3...
  • the combined stray capacitance Ctb of the stray capacitance Ck3 is proportional to the parallel number N of capacitors 102. Will increase.
  • the outer diameter of the metal band 108 is equivalent to the amount of the low dielectric constant material inserted. Only get bigger. If the low dielectric constant material is several millimeters or more, there is a problem that the diameter of the metal band 108 increases to about twice the thickness of the inserted low dielectric constant material and the installation area of the capacitor 102 is expanded. . (5) Installing a low dielectric constant material between the case 104 and the metal band 108 has a problem of increasing the installation cost and processing cost of the low dielectric constant material.
  • an object of the present invention is to reduce noise current caused by stray capacitance or parasitic capacitance in the ground path of a capacitor.
  • an earth path connected between a conductive fixing member for fixing the capacitor and an apparatus frame or an earth potential is connected to the earth path.
  • An element for reducing the flowing high-frequency current is provided.
  • the element may be installed in the ground path connected to a plurality of capacitors at once.
  • the element may include at least one of a capacitor element, an inductance element, and a resistance element.
  • the capacitor may have a cathode foil protruding from a capacitor element in contact with an inner bottom surface of the capacitor case.
  • the capacitor includes a capacitor element in which at least one of a cathode foil and an anode foil is protruded, and an insulating material is installed between the element and the case, or An insulating layer may be provided on the surface of the case that contacts the element.
  • the power supply device includes a noise reduction circuit for the capacitor.
  • any of the following effects can be obtained.
  • (1) The high-frequency current flowing in the capacitor ground path can be reduced, and the noise current can be suppressed.
  • the combined stray capacitance on the capacitor side can be reduced by serializing the elements provided in the ground path or the capacitances included in the elements, and the noise current can be suppressed. .
  • FIG. 3 is a diagram illustrating an equivalent circuit of a ground path of the capacitor module according to the first embodiment.
  • FIG. 7A is a diagram illustrating an equivalent circuit of a capacitor ground path according to the second embodiment, and FIG. 7B is a diagram illustrating an equivalent circuit of a capacitor ground path according to the third embodiment.
  • A is a diagram showing a capacitor according to the fourth embodiment, and B is a diagram showing an equivalent circuit of a ground path.
  • A is a diagram illustrating a capacitor according to the fifth embodiment, and B is a diagram illustrating an equivalent circuit of a ground path.
  • A is a diagram showing a high-frequency current reducing element according to Example 6, B is a diagram showing a high-frequency current reducing element according to Example 7, C is a diagram showing a high-frequency current reducing element according to Example 8, and D is Example 9. It is a figure which shows the high frequency current reduction element which concerns on. It is a figure which shows the equivalent circuit of the earth
  • FIG. 1 shows an inverter as an example of a power supply device which is an embodiment of a capacitor noise reduction circuit of the present invention.
  • the configuration shown in FIG. 1 is an example, and the present invention is not limited to such a configuration.
  • the inverter 2 includes a rectifying unit 4, a heat radiating unit 6, and a capacitor module 8.
  • the rectifying unit 4 includes, for example, a diode rectifier circuit, and converts an AC input such as commercial AC into DC.
  • the heat dissipating unit 6 is a heat dissipating unit such as the rectifying unit 4, is attached to a device frame (not shown) of the inverter 2, and is connected to the ground point 10.
  • the capacitor module 8 is a means for smoothing the rectified output of the rectifying unit 4 and includes, for example, capacitors 14-1, 14-2, 14-3... 14-N (not shown) as a plurality of capacitors.
  • Each of the capacitors 14-1, 14-2, 14-3,... 14-N is a large electrolytic capacitor having the same rating.
  • Each of the capacitors 14-1, 14-2, 14-3... 14 -N is connected in parallel with the conductor 16 and connected to the output unit of the rectifying unit 4.
  • Each of the capacitors 14-1, 14-2, 14-3,..., 14-N is individually attached with a metal band 18, and each metal band 18 is connected between adjacent capacitors 14-1, 14-2. 14-2 and 14-3 are connected by a fixing screw 20.
  • the metal band 18 is an example of a conductive fixing member that fixes a capacitor, such as a metal fixture.
  • a high-frequency current reducing element (hereinafter simply referred to as a “high-frequency current reducing element”) is provided between the conductor 22 and the heat radiating portion 6 connected in common to the metal band 18 of each of the capacitors 14-1, 14-2, 14-3. 24, referred to as “reducing element”. That is, although the metal bands 18 are arranged in parallel, the reduction element 24 is connected in series to the parallel circuit.
  • each metal band 18 is connected to the ground point 10 via the reduction element 24.
  • the ground point 10 is an example of a ground potential. That is, along with the parallel arrangement of the metal bands 18 by the conductor 22, the ground path 26 is formed through the reduction element 24.
  • the ground path 26 is a safety ground and functions as a high-frequency ground.
  • the metal band 18 is a means for fixing and fastening a capacitor formed of a conductive material, and constitutes a part of the ground path 26.
  • the reduction element 24 may be any element or circuit that reduces the high-frequency current flowing through the ground path 26.
  • the reduction element 24 may include at least one of a capacitance element, an inductance element, and a resistance element.
  • Each of the capacitors 14-1, 14-2, 14-3,... 14-N includes a case 28, a capacitor element 30, an anode terminal 32-1, and a cathode terminal 32-2, as shown in FIG. . Between the anode terminal 32-1 and the cathode terminal 32-2, the rated capacity C set for each capacitor element 30 is obtained.
  • the case 28 is insulated by covering with an insulating film (not shown). As a result, a dielectric made of an insulating film is interposed between the facing surfaces of the case 28 and the metal band 18.
  • the stray capacitance Ck2 is parasitic between the metal bands 18.
  • the stray capacitance Ck1 is generated by a dielectric between the electrode of the capacitor element 30 and the case 28.
  • the stray capacitance Ck ⁇ b> 2 is generated between the facing surfaces of the case 28 using the insulating film covering the case 28 as a dielectric and the metal band 18.
  • the reduction element 24 connected between the parallel circuit of the metal band 18 and the grounding point 10 is assumed to be only the capacitor Cq.
  • This Cq is connected in series to the total combined stray capacitance Ctam. That's right.
  • the high-frequency current i is reduced by the combined capacitance Ckqa, and as a result, the noise current is suppressed. That is, Ctq ⁇ N ⁇ Cta, and the combined capacitance Ctq when the capacitance Cq is connected is greatly reduced. As a result, the high frequency current i is reduced.
  • a reduction element 24 is provided in the ground path 26 from each capacitor 14-1, 14-2... 14-N to the ground point 10. Thereby, the total combined stray capacitance Ctam of the combined stray capacitance Cta of the stray capacitances Ck1 and Ck2 can be reduced. In addition, the high-frequency current i can be reduced. (2) By reducing the high-frequency current i, the noise current at the time of driving the inverter 2, that is, at the time of driving the capacitor module 8 can be reduced and suppressed.
  • the metal band 18 can be insulated only by a conventional insulating film. Can be prevented.
  • the capacitor module 8 is not enlarged even if the reduction element 24 is installed. The volume occupied by the capacitor module 8 in the inverter 2 can be reduced.
  • FIG. 3 shows an equivalent circuit of the ground path 26 of the capacitor module 8 according to the first embodiment.
  • the metal band 18 is directly installed in each case 28 except for the resin film covering the surface of the case 28 of each capacitor 14-1, 14-2... 14-N. ing.
  • the parasitic capacitance Ck2 parasitic between the case 28 and the metal band 18 is eliminated by the direct connection of the case 28 and the metal band 18 of the capacitors 14-1, 14-2... 14-N. .
  • Example 1 ⁇ Effect of Example 1> (1) Also in Example 1, the high-frequency current can be reduced and the noise current can be suppressed as in the above-described one embodiment. (2)
  • the capacitor module 8 can be configured by using a plurality of capacitors 14-1, 14-2... 14-N from which the resin film is removed. (3)
  • the capacitance value of the reducing element 24 can be set without considering the stray capacitance Ck2 described above.
  • the capacitor module 8 is illustrated.
  • the reduction element 24 may be provided in the ground path 26 of the single capacitor 14 instead of the capacitor module 8.
  • the combined capacity Ckq can be reduced to Ck1 or less, and the same effect as in the first embodiment can be obtained.
  • FIG. 5A shows the capacitor 14 and the ground path 26 according to the fourth embodiment.
  • the cathode foil 34 is exposed from the element end face of the capacitor element 30, and the cathode foil 34 is in close contact with the bottom surface portion of the case 28.
  • the metal band 18 is connected to the ground point 10 by the conductor 22 to which the reduction element 24 is connected, and the ground path 26 is formed.
  • the capacitor module 8 can be configured using the capacitor 14 having such a configuration as shown in FIGS. 1 to 3.
  • the capacitor module 8 provided with such a capacitor 14 by providing the reduction element 24 in the ground path 26, the effect of reducing the high-frequency current i is enhanced, and a noise reduction effect is synergistically achieved.
  • FIG. 6A shows the capacitor 14 and the ground path 26 according to the fifth embodiment.
  • an insulating layer 38 is provided on the end face of the cathode foil 34 exposed on the element end face of the capacitor element 30 and is in close contact with the bottom face portion of the case 28. That is, the insulating layer 38 is interposed between the bottom surface of the case 28 and the cathode foil 34.
  • the metal band 18 is connected to the ground point 10 by the conductor 22 to which the reduction element 24 is connected, and the ground path 26 is formed.
  • the stray capacitance Ck4 due to the insulating layer 38 interposed between the case 28 and the cathode foil 34 of the capacitor element 30 is parasitic, and the earth path 26 has a stray capacitance.
  • a reduction element 24 is connected in series to Ck2 and Ck4.
  • the combined capacity Ckq can be reduced to Ckm or less, and the same effect as in the embodiment can be obtained.
  • Example 5 Compared with Example 4 in which the cathode foil 34 is in direct contact with the case 28, the heat dissipation effect of the capacitor element 30 toward the case 28 is reduced, but noise generated in the capacitor element 30 is directly applied to the case 28. There is a tendency that noise current is suppressed without being transmitted. (2) Similarly, by providing the reduction element 24 in the ground path 26, the high-frequency current i can be reduced, and as a result, the noise current can be suppressed. (3) Although the single capacitor 14 is described in the fifth embodiment, as shown in FIGS. 1 to 3, the capacitor module 8 can be configured by using the capacitor 14 having such a configuration. In the provided capacitor module 8, the reduction element 24 is provided in the ground path 26, whereby the effect of reducing the high-frequency current i is enhanced and the noise reduction effect is synergistically achieved.
  • the reduction element 24 according to the sixth embodiment can be configured with a capacitor 40 as shown in FIG. In such a configuration, the reduction element 24 can be easily realized, and the ground path 26 can be simplified.
  • the reduction element 24 according to the seventh embodiment is configured by a series circuit of a resistance element 42 and a capacitance element 44 as shown in FIG. 7B. With such a configuration, a noise reduction effect due to current consumption by the resistive element 42 can be expected.
  • the reduction element 24 includes an inductance element 46 as shown in FIG. 7C.
  • the inductance element 46 may be configured, for example, by winding a conductor of the ground path 26 around a ferrite core in a coil shape. In such a configuration, high-frequency grounding by absorption of high-frequency current by the ferrite core is possible as well as safety grounding.
  • the reduction element 24 according to the ninth embodiment is configured by a resistance element 42 except for the capacitive element 44 from the seventh embodiment.
  • a large electrolytic capacitor is illustrated as the capacitor 14, but the present invention is not limited to a large electrolytic capacitor, and is also limited to an electrolytic capacitor. Not a thing.
  • the present invention can reduce high-frequency current flowing from a capacitor such as a large electrolytic capacitor used in a power supply device or the like to the ground path, and can reduce noise current generated from the ground path.
  • Capacitor module 10 Grounding point 12 Fin 14-1, 14-2, 14-3 ... 14-N Capacitor 16 Conductor 18 Metal band 20 Fixing screw 22 Conductor 24 High frequency current reduction element 26 Ground path 28 Case 30 Capacitor element 32-1 Anode terminal 32-2 Cathode terminal 34 Cathode foil 36 Resin film 38 Insulating layer 40 Capacitor 42 Resistive element 44 Capacitance element 46 Inductive element 100 Capacitor module 102 Capacitor 104 Case 106 Capacitor element 108 Metal Band 110 ground path

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

コンデンサ(14-1、14-2、14-3・・・14-N)を固定する導電性固定部材(金属製バンド18)と装置フレームまたはアース電位(アース点10)との間に接続したアース経路(26)が、該アース経路(26)に流れる高周波電流を低減する素子(高周波電流低減素子24)を備え、アース経路(26)に流れるノイズ電流を抑制する。これによりコンデンサのアース経路の浮遊容量または寄生容量に起因するノイズ電流の低減を実現する。

Description

コンデンサのノイズ低減回路および電源装置
 本発明はたとえば、電源装置に設置されたコンデンサのアース経路に流れる高周波電流の低減など、ノイズ低減技術に関する。
 インバータなどの電源装置では、交流を直流変換した後の直流平滑用コンデンサとして大型の電解コンデンサが用いられる。斯かるコンデンサは金属製バンドを備える。金属製バンドはコンデンサを装置フレームに固定する固定手段であるとともに、保安アースとして用いられる。この金属製バンドは絶縁用フィルムを介してコンデンサケースに取り付けられる。これにより金属製バンドとコンデンサケースの間には接触面積および介在する絶縁用フィルムにより、100〔pF〕程度の浮遊容量が寄生する。このため、インバータのスイッチング素子が動作すると、そのスイッチングにより該浮遊容量およびアース経路のインダクタンスを介して高周波電流が流れる。つまり、浮遊容量を含むアース経路がノイズ電流の発生源となる。
 このノイズ電流の低減に関し、電解コンデンサを固定する金属製バンドと装置フレームの間や、コンデンサケースと金属製バンドの間に、コンデンサケースの外面に設置される絶縁用フィルムより厚い、数ミリメートル以上のプラスチックやゴムなどの低誘電率材料を挿入して電解コンデンサを固定することが知られている(特許文献1)。
特開2005-109152号公報
 ところで、コンデンサのケースとコンデンサを固定するための金属製バンドの間に、コンデンサケースを覆う絶縁用フィルムより厚い、数ミリメートル以上のプラスチックやゴムなどの低誘電率材料を挿入すれば、コンデンサと金属製バンドとの間が絶縁されるので、結合容量が小さくなり、アース経路の高周波電流を低減できる(特許文献1)。
 しかし、斯かる技術には次のような課題がある。
 (1) 複数のコンデンサを並列化するコンデンサモジュールでは、結合容量がコンデンサの並列個数に比例して増加する。このようなコンデンサモジュールでは、そのアース経路の高周波電流を低減できるとは限らない。
 (2) 図8に示すように、コンデンサモジュール100では各コンデンサ102のケース104とコンデンサ素子106の間の浮遊容量をCk1、ケース104と金属製バンド108との間の絶縁フィルムによる浮遊容量をCk2とすれば、単一のコンデンサ102あたりの合成浮遊容量Ctaは、
      Cta=Ck1・Ck2/(Ck1+Ck2)  ・・・(1) 
となる。N個のコンデンサ102が並列化されている場合の合成浮遊容量Ctamは、コンデンサ102の並列個数Nに比例し、
     Ctam=N×Cta              ・・・(2) 
となるので、コンデンサ102の並列個数Nにより増加することになる。また、各コンデンサ102のケース104から金属製バンド108に流れる高周波電流をi1、i2、i3・・・inとすると、アース経路110の高周波電流i(=i1+i2+i3・・・+in)はコンデンサ102の並列個数Nに比例して増加することになる。そのためアース経路110の高周波電流iの低減効果は期待できない。
 (3) ケース104と金属製バンド108との間に絶縁フィルムに加えて低誘電率材料が追加挿入された場合、その浮遊容量をCk3とすれば、単一のコンデンサ102当たりの合成浮遊容量Ctbは、
      Ctb=Ck1・Ck3/(Ck1+Ck3)  ・・・(3) 
となる。これと同様に、N個のコンデンサ102が並列化されている場合の合成浮遊容量Ctbmは、コンデンサ102の並列個数Nに比例し、
     Ctbm=N×Ctb              ・・・(4) 
となる。つまり、低誘電率材料が挿入されることでコンデンサ102の1個当たりの浮遊容量がCk2からCk3に減少しても、浮遊容量Ck3の合成浮遊容量Ctbがコンデンサ102の並列個数Nに比例して増加することになる。
同様に、アース経路110の高周波電流i(=i1+i2+i3・・・+in)はコンデンサ102の並列個数Nに比例して増加することになる。そのため、低誘電率材料が挿入されることで、コンデンサ102の1個当たりの浮遊容量がCk2からCk3に減少しても、ノイズ電流の低減効果は期待できないという課題がある。
 (4) ケース104と金属製バンド108の間に、絶縁フィルムよりも十分厚いプラスチックやゴムなどの低誘電率材料を挿入すれば、金属製バンド108の外径が低誘電率材料を挿入した分だけ大きくなる。低誘電率材料が数ミリ以上であれば、挿入された低誘電率材料の厚さの2倍程度に金属製バンド108の直径が増大し、コンデンサ102の設置面積が拡大されるという課題がある。
 (5) ケース104と金属製バンド108との間に低誘電率材料を設置することは、低誘電率材料の設置コストや加工コストを増大させるという課題がある。
 (6) 複数のコンデンサ102を用いるコンデンサモジュール100では、その金属製バンド108の直径増加分がコンデンサ102の並列個数Nに比例して増加することになる。これにより、コンデンサモジュール100はモジュール体積を増大させ、製品のコストアップとなる。
 そこで、本発明の目的は上記課題に鑑み、コンデンサのアース経路の浮遊容量または寄生容量に起因するノイズ電流を低減することにある。
 上記目的を達成するため、本発明のコンデンサのノイズ低減回路の一側面によれば、コンデンサを固定する導電性固定部材と装置フレームまたはアース電位との間に接続したアース経路が、該アース経路に流れる高周波電流を低減する素子を備える。
 上記コンデンサのノイズ低減回路において、前記素子は、複数のコンデンサに一括して接続された前記アース経路に設置されてよい。
 上記コンデンサのノイズ低減回路において、前記素子は、容量素子、インダクタンス素子または抵抗素子の少なくとも一つを含んでよい。
 上記コンデンサのノイズ低減回路において、前記コンデンサは、コンデンサ素子から突出させた陰極箔を前記コンデンサのケースの内底面に接触させてよい。
 上記コンデンサのノイズ低減回路において、前記コンデンサは、陰極箔または陽極箔の少なくともいずれか一方の一部を突出させたコンデンサ素子を備え、該素子と前記ケースの間に絶縁材を設置し、または前記素子と接触する前記ケースの面部に絶縁層を備えてよい。
 上記目的を達成するため、本発明の電源装置の一側面によれば、該電源装置に上記コンデンサのノイズ低減回路を備える。
 本発明によれば、次のいずれかの効果が得られる。
 (1) コンデンサのアース経路に流れる高周波電流を低減でき、ノイズ電流を抑制することができる。
 (2) 複数のコンデンサを備えるコンデンサモジュールにおいて、コンデンサ側の合成浮遊容量を、アース経路に備えた素子または該素子に含まれる静電容量の直列化により低減でき、ノイズ電流を抑制することができる。
 (3) コンデンサケースに直結され、アース経路に流れる高周波電流を低減する素子を設置するので、コンデンサに取り付けられる金属製バンドの大型化を防止できる。
 (4) 複数のコンデンサを用いても、コンデンサを一括して形成されるアース経路上に設置した素子で高周波電流を低減することができる。
 (5) 金属製バンドによるコンデンサの設置面積の増加がないので、複数のコンデンサを用いるコンデンサモジュールの体積を増加させることがない。
 (6) 従前のように、低誘電体材料を設置する必要がなく、コンデンサのノイズ低減回路を簡略化できる。
 そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
一実施の形態に係るコンデンサモジュールのノイズ低減回路を示す図である。 コンデンサモジュールのアース経路の等価回路を示す図である。 実施例1に係るコンデンサモジュールのアース経路の等価回路を示す図である。 Aは実施例2に係るコンデンサのアース経路の等価回路を示す図、Bは実施例3に係るコンデンサのアース経路の等価回路を示す図である。 Aは実施例4に係るコンデンサを示す図、Bはアース経路の等価回路を示す図である。 Aは実施例5に係るコンデンサを示す図、Bはアース経路の等価回路を示す図である。 Aは実施例6に係る高周波電流低減素子を示す図、Bは実施例7に係る高周波電流低減素子を示す図、Cは実施例8に係る高周波電流低減素子を示す図、Dは実施例9に係る高周波電流低減素子を示す図である。 従来のコンデンサモジュールのアース経路の等価回路を示す図である。
 図1は、本発明のコンデンサのノイズ低減回路の一実施の形態である電源装置の一例としてインバータを示している。図1に示す構成は一例であり、斯かる構成に本発明が限定されるものではない。
 このインバータ2には整流部4、放熱部6およびコンデンサモジュール8が備えられる。整流部4ではたとえば、ダイオード整流回路を備えて、商用交流などの交流入力を直流に変換する。放熱部6は整流部4などの放熱手段であり、インバータ2の図示しない装置フレームに取り付けられ、アース点10に接続されている。放熱部6には導電材料および放熱材料としてたとえば、アルミニウムが用いられ、その放熱面部に複数のフィン12を備えて放熱面積を拡大している。
 コンデンサモジュール8は整流部4の整流出力の平滑手段であり、複数のコンデンサとしてたとえば、コンデンサ14-1、14-2、14-3・・・14-N(図示省略)が備えられる。各コンデンサ14-1、14-2、14-3・・・14-Nには同一定格である大型の電解コンデンサが用いられる。各コンデンサ14-1、14-2、14-3・・・14-Nは、導体16を以て並列化されて整流部4の出力部に接続されている。
 各コンデンサ14-1、14-2、14-3・・・14-Nには個別に金属製バンド18が取り付けられ、各金属製バンド18は隣り合うコンデンサ14-1、14-2間、コンデンサ14-2、14-3間で固定ねじ20により連結されている。金属製バンド18は、金属製固定具など、コンデンサを固定する導電性固定部材の一例である。この例では、各コンデンサ14-1、14-2、14-3・・・14-Nの金属製バンド18に共通に接続された導体22と放熱部6の間に高周波電流低減素子(以下単に「低減素子」と称する)24が接続されている。つまり、各金属製バンド18は並列化されているが、その並列回路に低減素子24が直列に接続される。これにより、各金属製バンド18の並列回路が低減素子24を介してアース点10に接続されている。アース点10はアース電位の一例である。つまり、導体22による各金属製バンド18の並列化とともに、低減素子24を媒介とするアース経路26が形成される。このアース経路26は、保安アースであるとともに高周波アースとして機能する。金属製バンド18は、導体材料で形成されるコンデンサの固定および締結手段であるとともに、アース経路26の一部を構成している。
 低減素子24は、アース経路26に流れる高周波電流を低減する素子または回路であればよく、たとえば、容量素子、インダクタンス素子または抵抗素子の少なくとも一つを含めばよい。
<アース経路26の等価回路>
 各コンデンサ14-1、14-2、14-3・・・14-Nには、図2に示すように、ケース28、コンデンサ素子30、陽極端子32-1および陰極端子32-2が備えられる。陽極端子32-1および陰極端子32-2間には、各コンデンサ素子30に設定された定格容量Cが得られる。ケース28には、図示しない絶縁フィルムの被覆により絶縁が施される。これにより、ケース28と金属製バンド18の対向面間には絶縁フィルムによる誘電体が介在している。
 各コンデンサ14-1、14-2、14-3・・・14-Nのコンデンサ素子30の陰極側とアース点10の間には、コンデンサ素子30-ケース28間の浮遊容量Ck1、ケース28-金属製バンド18間に浮遊容量Ck2が寄生することになる。浮遊容量Ck1は、コンデンサ素子30の電極とケース28の間の誘電体により生成される。浮遊容量Ck2は、ケース28を覆う絶縁フィルムを誘電体とするケース28と金属製バンド18の対向面間で生成される。これら浮遊容量Ck1、Ck2は直列化されているので、浮遊容量Ck1、Ck2の合成浮遊容量Ctaは、式(1) と同様に、
    Cta=Ck1×Ck2/(Ck1+Ck2)    ・・・(5) 
となる。
 金属製バンド18は導体22によって並列化されているから、N個のトータル合成浮遊容量Ctamは、式(2) と同様に、
   Ctam=N×Cta                ・・・(6) 
となる。各コンデンサ14-1、14-2、14-3・・・14-N側では、ひとつのコンデンサ14のN倍の浮遊容量になる。
 金属製バンド18の並列回路とアース点10の間に接続された低減素子24が説明を容易にするため、容量Cqのみであるとすれば、このCqがトータル合成浮遊容量Ctamに直列に接続されたことになる。この場合、この容量Cqを含むアース経路26の合成容量Ckqaは、
 Ckqa=Ctam×Cq/(Ctam+Cq)
     =N×Cta×Cq/(N×Cta+Cq)    ・・・(7) 
となる。ここで、容量Cqについて、Cta=Cqと仮定すると、式(7) は、
 Ckqa=N×Cta×Cta/(N×Cta+Cta)
     =N×Cta×Cta/Cta(N+1)
     =Cta×N/(N+1)<Cta        ・・・(8) 
となる。故に、低減素子24として容量Cqを直列に接続すると、各コンデンサ14-1、14-2、14-3・・・14-Nの合成浮遊容量をコンデンサひとつ分の合成浮遊容量Cta以下に低減できることになる。
 ここで、コンデンサ14-1、14-2・・・14-Nの各ケース28からアース経路26に流れ込む高周波電流をi1、i2・・・inとすれば、アース経路26の高周波電流iは、
     i=i1+i2+・・・+in          ・・・(9) 
となるが、この高周波電流iが合成容量Ckqaにより低減され、この結果、ノイズ電流が抑制されることになる。つまり、Ctq<N×Ctaであり、静電容量Cqを接続した際の合成容量Ctqは大幅に低下する。この結果、高周波電流iが低減される。
<一実施の形態の効果>
 (1) 各コンデンサ14-1、14-2・・・14-Nからアース点10に至るアース経路26内に低減素子24を備える。これにより各浮遊容量Ck1、Ck2の合成浮遊容量Ctaのトータル合成浮遊容量Ctamを低減できる。また、高周波電流iの低減化を図ることができる。
 (2) 高周波電流iの低減化により、インバータ2の駆動時、つまり、コンデンサモジュール8の駆動時のノイズ電流を低減し、抑制できる。
 (3) 金属製バンド18と各コンデンサ14-1、14-2・・・14-Nの各ケース28との間には従前の絶縁フィルムのみで絶縁することができ、金属製バンド18の大型化を防止できる。
 (4) 金属製バンド18の大型化を回避できるとともに、低減素子24を設置してもコンデンサモジュール8を大型化することがない。そしてインバータ2におけるコンデンサモジュール8が占める体積を低減できる。
 (5) 従前の金属製バンド18と各コンデンサ14-1、14-2・・・14-Nの各ケース28との間に低誘電体材料を設置する必要がない。たとえば、単一の低減素子24の設置のみで、ノイズ低減が可能であり、ノイズ低減回路の簡略化を図ることができる。
 図3は、実施例1に係るコンデンサモジュール8のアース経路26の等価回路を示している。
 この実施例1のコンデンサモジュール8では、各コンデンサ14-1、14-2・・・14-Nのケース28の表面を覆う樹脂フィルムを除き、各ケース28に直に金属製バンド18を設置している。
 斯かる構成では、コンデンサ14-1、14-2・・・14-Nのケース28と金属製バンド18の直結化により、ケース28と金属製バンド18の間に寄生する浮遊容量Ck2が除かれる。
<実施例1の効果>
 (1) 実施例1においても、既述の一実施の形態と同様に高周波電流を低減でき、ノイズ電流を抑制することができる。
 (2) 樹脂フィルムが除かれた複数のコンデンサ14-1、14-2・・・14-Nを用いてコンデンサモジュール8を構成できる。
 (3) 既述の浮遊容量Ck2を考慮することなく、低減素子24の容量値を設定することができる。
 図1および図2に示す一実施の形態ではコンデンサモジュール8を例示したが、図4のAに示すように、コンデンサモジュール8に代えて単一のコンデンサ14のアース経路26に低減素子24を備えてもよい。
 この低減素子24を容量Cqとし、式(7) において、N=1とすれば、
   Ckqa=Cta×Cq/(Cta+Cq)     ・・・(10)
となり、合成容量Ckqaは、Cta以下に低減でき、一実施の形態と同様の効果が得られる。
 図3に示す実施例1ではコンデンサモジュール8を例示したが、図4のBに示すように、コンデンサモジュール8に代えて単一のコンデンサ14のアース経路26に低減素子24を備えてもよい。
 この低減素子24を容量Cqとし、合成容量Ckqは、
   Ckq=Ck1×Cq/(Ck1+Cq)      ・・・(11)
となり、合成容量CkqはCk1以下に低減でき、実施例1と同様の効果が得られる。
 図5のAは、実施例4に係るコンデンサ14およびアース経路26を示している。この実施例4のコンデンサ14では、コンデンサ素子30の素子端面から陰極箔34を露出させ、この陰極箔34をケース28の底面部に密着させている。
 そして、金属製バンド18は低減素子24を接続した導体22によりアース点10に接続され、アース経路26が形成されている。
 このアース経路26では、図5のBに示すように、ケース28にコンデンサ素子30の陰極箔34が直結されて既述の浮遊容量Ck1は解消され、アース経路26にはケース28、樹脂フィルム36および金属製バンド18による既述の浮遊容量Ck2および低減素子24のみとなる。
 この場合、合成容量Ckqは、
   Ckq=Ck2×Cq/(Ck2+Cq)      ・・・(12)
となる。これにより合成容量CkqはCk2以下に低減でき、一実施の形態と同様の効果が得られる。
<実施例4の効果>
 (1) 陰極箔34をケース28に直接接触させると、コンデンサ素子30の熱がケース28に伝わり、放熱効果を高めることができる。
 (2) 陰極箔34をケース28に直接接触させると、コンデンサ素子30で生じたノイズが直接ケース28に伝達され、ノイズ電流が大きくなる傾向を呈する。しかし、ケース28の外面に樹脂フィルム36を備えたことや、また、低減素子24をアース経路26に備えたことにより、高周波電流iを低減でき、この高周波電流iの低減と相乗的にノイズ電流を抑制することができる。
 (3) 実施例4では単一のコンデンサ14を記載しているが、図1ないし図3に示すように、斯かる構成のコンデンサ14を用いてコンデンサモジュール8を構成できる。斯かるコンデンサ14を備えたコンデンサモジュール8では、低減素子24をアース経路26に備えることにより、高周波電流iの低減効果が高められ、相乗的にノイズ低減効果が図られる。
 図6のAは、実施例5に係るコンデンサ14およびアース経路26を示している。
 この実施例5のコンデンサ14では、コンデンサ素子30の素子端面に露出させた陰極箔34の端面に絶縁層38を備えてケース28の底面部に密着させている。つまり、ケース28の底面と陰極箔34との間に絶縁層38を介在させている。
 そして、金属製バンド18は低減素子24を接続した導体22によりアース点10に接続され、アース経路26が形成されている。
 このアース経路26では、図6のBに示すように、ケース28とコンデンサ素子30の陰極箔34との間に介在させた絶縁層38による浮遊容量Ck4が寄生し、アース経路26には浮遊容量Ck2、Ck4に対して低減素子24が直列に接続される。
 この場合、浮遊容量Ck2、Ck4の合成浮遊容量Ckmは、
 Ckm=Ck2×Ck4/(Ck2+Ck4)      ・・・(13)
となる。そこで、低減素子24の容量Cqを含むアース経路26の合成容量Ckqは、
 Ckq=Ckm×Cq/(Ckm+Cq)        ・・・(14)
となり、合成容量CkqはCkm以下に低減でき、一実施の形態と同様の効果が得られる。
<実施例5の効果>
 (1) 陰極箔34をケース28に直接接触させた実施例4に比較すれば、ケース28側へのコンデンサ素子30の放熱効果は低下するが、コンデンサ素子30で生じたノイズが直接ケース28に伝達されることがなく、ノイズ電流が抑制される傾向となる。
 (2) 同様に、低減素子24をアース経路26に備えたことにより、高周波電流iを低減でき、この結果、ノイズ電流を抑制できる。
 (3) 実施例5では単一のコンデンサ14を記載しているが、図1ないし図3に示すように、斯かる構成のコンデンサ14を用いてコンデンサモジュール8を構成でき、斯かるコンデンサ14を備えたコンデンサモジュール8では、低減素子24をアース経路26に備えることにより、高周波電流iの低減効果が高められ、相乗的にノイズ低減効果が図られる。
 実施例6に係る低減素子24は、図7のAに示すように、コンデンサ40で構成できる。
 斯かる構成では、容易に低減素子24を実現でき、アース経路26の簡略化を図ることができる。
 実施例7に係る低減素子24は、図7のBに示すように、抵抗素子42および容量素子44の直列回路で構成されている。
 斯かる構成では、抵抗素子42による電流消費でのノイズ低減効果が期待できる。
 実施例8に係る低減素子24は、図7のCに示すように、インダクタンス素子46で構成されている。このインダクタンス素子46はたとえば、フェライトコアにアース経路26の導線をコイル状に巻き付けて構成すればよい。
 斯かる構成では、保安接地とともに、フェライトコアによる高周波電流の吸収による高周波接地が可能である。
 実施例9に係る低減素子24は、図7のDに示すように、実施例7から容量素子44を除き、抵抗素子42で構成している。
〔他の実施の形態〕
 (1) 上記実施の形態または実施例では、コンデンサ14について、大型の電解コンデンサを例示しているが、本発明は大型の電解コンデンサに限定されるものではなく、また、電解コンデンサに限定されるものでもない。
 以上、本発明の最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
 本発明は、電源装置などに用いられる大型の電解コンデンサなどのコンデンサからアース経路に流れる高周波電流を低減し、アース経路から生ずるノイズ電流を低減することができる。
 2 インバータ
 4 整流部
 6 放熱部
 8 コンデンサモジュール
 10 アース点
 12 フィン
 14-1、14-2、14-3・・・14-N コンデンサ
 16 導体
 18 金属製バンド
 20 固定ねじ
 22 導体
 24 高周波電流低減素子
 26 アース経路
 28 ケース
 30 コンデンサ素子
 32-1 陽極端子
 32-2 陰極端子
 34 陰極箔
 36 樹脂フィルム
 38 絶縁層
 40 コンデンサ
 42 抵抗素子
 44 容量素子
 46 インダクタンス素子
 100 コンデンサモジュール
 102 コンデンサ
 104 ケース
 106 コンデンサ素子
 108 金属製バンド
 110 アース経路

Claims (6)

  1.  コンデンサを固定する導電性固定部材と装置フレームまたはアース電位との間に接続したアース経路が、該アース経路に流れる高周波電流を低減する素子を備えることを特徴とするコンデンサのノイズ低減回路。
  2.  前記素子は、複数のコンデンサに一括して接続された前記アース経路に設置されたことを特徴とする請求項1に記載のコンデンサのノイズ低減回路。
  3.  前記素子は、容量素子、インダクタンス素子または抵抗素子の少なくとも一つを含むことを特徴とする請求項1または請求項2に記載のコンデンサのノイズ低減回路。
  4.  前記コンデンサは、コンデンサ素子から突出させた陰極箔を前記コンデンサのケースの内底面に接触させたことを特徴とする請求項1ないし請求項3のいずれかの請求項に記載のコンデンサのノイズ低減回路。
  5.  前記コンデンサは、陰極箔または陽極箔の少なくともいずれか一方の一部を突出させたコンデンサ素子を備え、該素子と前記ケースの間に絶縁材を設置し、または前記素子と接触する前記ケースの面部に絶縁層を備えたことを特徴とする請求項1ないし請求項3のいずれかの請求項に記載のコンデンサのノイズ低減回路。
  6.  請求項1ないし5に記載の前記コンデンサのノイズ低減回路を備えたことを特徴とする電源装置。

                                                                                    
PCT/JP2018/016452 2017-04-24 2018-04-23 コンデンサのノイズ低減回路および電源装置 WO2018199021A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-085213 2017-04-24
JP2017085213A JP6948821B2 (ja) 2017-04-24 2017-04-24 コンデンサのノイズ低減回路および電源装置

Publications (1)

Publication Number Publication Date
WO2018199021A1 true WO2018199021A1 (ja) 2018-11-01

Family

ID=63918316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016452 WO2018199021A1 (ja) 2017-04-24 2018-04-23 コンデンサのノイズ低減回路および電源装置

Country Status (2)

Country Link
JP (1) JP6948821B2 (ja)
WO (1) WO2018199021A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220346U (ja) * 1988-07-27 1990-02-09
JPH11274001A (ja) * 1998-01-19 1999-10-08 Hitachi Ltd 電力貯蔵装置及びこれを用いた電力変換装置
JP2000040637A (ja) * 1998-07-23 2000-02-08 Yaskawa Electric Corp パワー回路用配線基板のコンデンサ実装構造
JP2003309902A (ja) * 2002-04-11 2003-10-31 Hitachi Ltd 車両用電力変換装置
JP2004104860A (ja) * 2002-09-05 2004-04-02 Mitsubishi Electric Corp 電力変換装置の変換部
JP2007014085A (ja) * 2005-06-29 2007-01-18 Honda Motor Co Ltd コンデンサ搭載型インバータユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220346U (ja) * 1988-07-27 1990-02-09
JPH11274001A (ja) * 1998-01-19 1999-10-08 Hitachi Ltd 電力貯蔵装置及びこれを用いた電力変換装置
JP2000040637A (ja) * 1998-07-23 2000-02-08 Yaskawa Electric Corp パワー回路用配線基板のコンデンサ実装構造
JP2003309902A (ja) * 2002-04-11 2003-10-31 Hitachi Ltd 車両用電力変換装置
JP2004104860A (ja) * 2002-09-05 2004-04-02 Mitsubishi Electric Corp 電力変換装置の変換部
JP2007014085A (ja) * 2005-06-29 2007-01-18 Honda Motor Co Ltd コンデンサ搭載型インバータユニット

Also Published As

Publication number Publication date
JP2018186117A (ja) 2018-11-22
JP6948821B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2012090307A1 (ja) 電力変換装置
JP6395095B2 (ja) 非接触給電装置および非接触給電システム
US20150364249A1 (en) Integrated transformer
US8228152B2 (en) Transforming device of power source and transformer thereof
JP2010136618A (ja) 高電圧分離機能を有する変圧器
US9461549B2 (en) Electric power source device
CN106068679A (zh) 通过具有阻尼网络的电容屏蔽罩对开关‑模式功率变换器进行共模噪声抑制
EP2587651B1 (en) Switching regulator and power supply device including the same
US20150372505A1 (en) Power transmission device and power reception device
US20210185817A1 (en) Circuit device and power conversion apparatus
EP2958118A1 (en) Inductor assembly comprising at least one inductor coil thermally coupled to a metallic inductor housing
US9479064B2 (en) Switching control circuit and switching power supply device
WO2018199021A1 (ja) コンデンサのノイズ低減回路および電源装置
JP6530987B2 (ja) 電力変換装置
JP2011134744A (ja) スイッチングトランス及びスイッチング電源
JP6528385B2 (ja) 電力変換装置
US9742307B2 (en) Rectifying circuit for high-frequency power supply
JP2016119395A (ja) 電源装置
US3454841A (en) Neutralized solid-state rectifier
US3278826A (en) Rectifier assembly
CN212676110U (zh) 低电感电容器和电容器组
KR102437998B1 (ko) 디씨-디씨 컨버터
JP2014217244A (ja) 絶縁型スイッチング電源装置および絶縁型スイッチング電源装置の製造方法
JP4552753B2 (ja) マグネトロン駆動電源
US20190221497A1 (en) Holding device for semiconductor element, and power conversion device using holding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791469

Country of ref document: EP

Kind code of ref document: A1