WO2018198996A1 - フィルタ再生制御装置およびフィルタ再生制御方法 - Google Patents

フィルタ再生制御装置およびフィルタ再生制御方法 Download PDF

Info

Publication number
WO2018198996A1
WO2018198996A1 PCT/JP2018/016390 JP2018016390W WO2018198996A1 WO 2018198996 A1 WO2018198996 A1 WO 2018198996A1 JP 2018016390 W JP2018016390 W JP 2018016390W WO 2018198996 A1 WO2018198996 A1 WO 2018198996A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter regeneration
fuel
temperature
amount
filter
Prior art date
Application number
PCT/JP2018/016390
Other languages
English (en)
French (fr)
Inventor
遊大 景山
和貴 大石
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880023779.5A priority Critical patent/CN110494634B/zh
Publication of WO2018198996A1 publication Critical patent/WO2018198996A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Definitions

  • the present disclosure relates to a filter regeneration control device and a filter regeneration control method for controlling regeneration of a filter that collects particulate matter in exhaust gas.
  • DPF Diesel Particulate Filter
  • PM particulate Matter
  • Part of the PM collected by the DPF is burned by high-temperature exhaust gas discharged from the diesel engine (referred to as passive regeneration or continuous regeneration), and the rest is deposited on the DPF.
  • passive regeneration or continuous regeneration high-temperature exhaust gas discharged from the diesel engine
  • the amount of accumulated PM exceeds a certain amount, for example, a decrease in output of the diesel engine, a decrease in fuel consumption, and damage to the DPF due to abnormal PM combustion occur.
  • filter regeneration also referred to as forced regeneration
  • fuel injection for example, post injection or exhaust pipe injection
  • An object of the present disclosure is to provide a filter regeneration control device and a filter regeneration control method that can prevent sulfur poisoning of a filter.
  • a filter regeneration control device is provided on a downstream side of a catalyst in a flow path of an exhaust gas of an internal combustion engine of a vehicle, and a filter that collects PM contained in the exhaust gas is forced by fuel injection.
  • a filter regeneration control device for controlling the execution of filter regeneration to be regenerated, and when the vehicle is in steady running, a predetermined time period between the end of the filter regeneration and the start of the next filter regeneration
  • a control unit that controls the fuel injection device to execute a temperature determination injection for injecting a predetermined amount of the fuel for a period of time, and a temperature upstream of the filter after the temperature determination injection is determined in advance.
  • a determination unit that determines whether or not the temperature is lower than the reference temperature, and the control unit performs normal filter regeneration when the temperature is equal to or higher than the reference temperature. If the temperature is lower than the reference temperature, the fuel injection device is controlled to perform a special filter regeneration, and the normal filter regeneration is performed for a first amount of the first amount of the fuel.
  • the temperature determination injection is an operation of injecting a second amount of the fuel that is less than the first amount for a second time shorter than the first time.
  • the special filter regeneration is an operation of injecting the first amount of the fuel during a third time longer than the first time, and during the first time than the first amount. Either an operation of injecting a large third amount of the fuel, or an operation of injecting the third amount of the fuel during the third time period.
  • a filter regeneration control method includes a filter that is provided on a downstream side of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and that forcibly collects PM contained in the exhaust gas by fuel injection.
  • a filter regeneration control method for controlling the execution of filter regeneration to be performed in a predetermined period between the end of the filter regeneration and the start of the next filter regeneration when the vehicle is in steady running.
  • the fuel injection device Determining whether the temperature is lower than the reference temperature, and controlling the fuel injection device to perform normal filter regeneration when the temperature is equal to or higher than the reference temperature, Controlling the fuel injection device to perform a special filter regeneration when the temperature is lower than the reference temperature, wherein the normal filter regeneration is a first amount of time during a first time period.
  • the temperature determination injection is an operation of injecting a second amount of the fuel that is less than the first amount for a second time shorter than the first time.
  • the special filter regeneration is the operation of injecting the first amount of the fuel for a third time longer than the first time, and the first amount during the first time. Either an operation of injecting the third amount of the fuel that is greater than or an operation of injecting the third amount of the fuel during the third time period.
  • sulfur poisoning of the filter can be prevented.
  • FIG. 1 is a conceptual diagram illustrating an example of a post-processing device and its peripheral configuration according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating a configuration example of the ECU according to the embodiment of the present disclosure.
  • FIG. 3 is a flowchart illustrating an operation example of the ECU according to the embodiment of the present disclosure.
  • FIG. 1 is a conceptual diagram showing an example of a post-processing apparatus and its peripheral configuration according to the present embodiment.
  • a solid arrow indicates a gas flow
  • a broken arrow indicates a signal flow.
  • An intake passage 2 through which air taken from the outside of the vehicle flows is connected to the upstream side of a diesel engine (an example of an internal combustion engine, hereinafter referred to as an engine) 1.
  • An exhaust passage 3 through which exhaust gas flows is connected to the downstream side of the engine 1.
  • a turbocharger (supercharger) 4 is provided between the intake passage 2 and the exhaust passage 3.
  • the turbocharger 4 includes a compressor 4 a disposed in the intake passage 2 and an exhaust turbine 4 b disposed in the exhaust passage 3.
  • the compressor 4a is coaxially driven by the exhaust turbine 4b.
  • an intercooler 5 is provided in the intake passage 2.
  • the air discharged from the compressor 4 a is cooled by the intercooler 5 and flows into the combustion chambers (not shown) in the cylinders (not shown) of the engine 1.
  • the engine 1 is provided with a common rail fuel injection device (hereinafter referred to as a fuel injection device) 6 that injects fuel into a combustion chamber in each cylinder.
  • the fuel injection device 6 includes a pump 6a, a common rail 6b, and a fuel injection valve (injector) 6c.
  • the pump 6 a receives a predetermined amount of fuel from the fuel tank 8 storing fuel at a predetermined timing based on a control signal from the ECU 7 (details will be described later using FIG. 2). Pumped up and supplied to the fuel injection valve 6c through the common rail 6b. The fuel injection valve 6c injects the supplied fuel into the combustion chamber.
  • the exhaust passage 3 is provided with an oxidation catalyst (Diesel Oxidation Catalyst: hereinafter referred to as DOC) 10 and a DPF 11 as post-treatment devices.
  • DOC 10 Diesel Oxidation Catalyst: hereinafter referred to as DOC
  • the DOC 10 is provided on the upstream side of the DPF 11.
  • the DOC 10 oxidizes and removes hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas and oxidizes nitrogen monoxide (NO) in the exhaust gas to generate nitrogen dioxide (NO 2 ).
  • the DPF 11 collects PM such as soot contained in the exhaust gas and removes it from the exhaust gas.
  • the exhaust gas discharged from the engine 1 passes through the exhaust passage 3 and drives the exhaust turbine 4b to drive the compressor 4a coaxially. Thereafter, the exhaust gas flows in the order of DOC10 and DPF11.
  • a temperature sensor 12 that detects the temperature of the exhaust gas at the inlet of the DPF 11 (in other words, the outlet of the DOC 10) is provided on the downstream side of the DOC 10 and the upstream side of the DPF 11.
  • the temperature sensor 12 appropriately outputs a signal indicating the detected temperature (hereinafter referred to as a detected temperature) to the ECU 7.
  • the ECU 7 includes, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a working memory such as a RAM (Random Access Memory), and a communication circuit.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • ECU7 controls execution of filter regeneration for forcibly regenerating DPF11. Specifically, the ECU 7 controls execution of fuel injection (for example, post injection) of the fuel injection device 6.
  • Filter regeneration is executed when a predetermined execution condition is satisfied.
  • the execution condition is, for example, that the travel distance of the vehicle exceeds a predetermined distance, or that the estimated amount of PM deposited on the DPF 11 exceeds a predetermined amount.
  • either normal filter regeneration or special filter regeneration is executed as the filter regeneration under the control of the ECU 7. Details of normal filter regeneration and special filter regeneration will be described later.
  • the ECU 7 includes a determination unit 110 and a control unit 120.
  • Determination unit 110 performs the following vehicle speed determination and temperature determination.
  • the determination unit 110 determines whether or not the vehicle is traveling at a constant speed (whether the vehicle is traveling normally). For example, when the vehicle speed detected by a vehicle speed sensor (not shown) continues for a predetermined time, the determination unit 110 determines that the vehicle is traveling normally.
  • the determination unit 110 determines whether or not the detected temperature detected by the temperature sensor 12 is lower than a predetermined reference temperature.
  • the reference temperature is, for example, a value obtained through experiments or simulations performed in advance, and is determined for each fuel injection amount.
  • the control unit 120 performs the following normal control, temperature determination control, and special control.
  • control unit 120 When the execution condition is satisfied, the control unit 120 outputs a normal control signal that instructs the fuel injection device 6 to execute normal filter regeneration.
  • Normal filter regeneration is an operation of injecting a predetermined amount (hereinafter referred to as a first amount) of fuel for a predetermined time (hereinafter referred to as a first time).
  • the fuel injection device 6 performs normal filter regeneration when receiving a normal control signal.
  • the temperature determination injection is an operation of injecting an amount of fuel smaller than the first amount (hereinafter referred to as the second amount) during a time shorter than the first time (hereinafter referred to as the second time). is there.
  • the fuel injection device 6 executes the temperature determination injection.
  • the control unit 120 determines that the detected temperature after the temperature determination injection is executed by the determination unit 110 (for example, immediately after) is lower than the reference temperature (the temperature that should be originally when the second amount of fuel is injected). When it is determined, it is considered that the performance of the DPF 11 is deteriorated.
  • control part 120 outputs the special control signal which instruct
  • the special filter regeneration is an operation of injecting a first amount of fuel for a time longer than the first time (hereinafter referred to as a third time), and during the first time, the first amount is more than the first amount.
  • An operation for injecting a large amount of fuel hereinafter referred to as a third amount
  • a third amount an operation for raising the temperature of exhaust gas higher than that during normal filter regeneration
  • a third amount of fuel for a third time period One of the actions to be performed. Which of these operations is the special filter regeneration may be set, for example, when the ECU 7 is manufactured, or may be set by a vehicle user or the like. Further, the setting may be changed as appropriate.
  • the fuel injection device 6 When the fuel injection device 6 receives the special control signal, it performs special filter regeneration.
  • control part 120 considers that the performance of DPF11 has not fallen, when it determines with the detection temperature after injection for temperature determination being performed by the determination part 110 (for example, immediately after) being more than reference temperature. . In this case, when the execution condition is satisfied, the control unit 120 outputs a normal control signal that instructs the fuel injection device 6 to execute normal filter regeneration.
  • the determination unit 110 determines whether or not the vehicle is in steady running (step S101).
  • step S101 If the vehicle is not in steady running (step S101: NO), the flow proceeds to step S104 described later.
  • step S101 when the vehicle is in steady running (step S101: YES), the control unit 120 starts the next normal filter regeneration or special filter regeneration after either normal filter regeneration or special filter regeneration ends. Until this time, the fuel injection device 6 is controlled to execute the temperature determination injection (step S102). Thereby, the fuel injection device 6 performs temperature determination injection.
  • the determination unit 110 determines whether or not the detected temperature when the temperature determination injection is executed is lower than the reference temperature (step S103).
  • control unit 120 changes the filter regeneration to be executed next to normal filter regeneration. Determine (step S104).
  • control unit 120 controls the fuel injection device 6 to execute normal filter regeneration (step S105). Thereby, the fuel injection device 6 performs normal filter regeneration.
  • step S106 determines the filter regeneration to be performed next as the special filter regeneration.
  • control unit 120 controls the fuel injection device 6 so as to execute the special filter regeneration (step S107). Thereby, the fuel injection device 6 performs special filter regeneration.
  • the temperature determination injection is executed between the end of the predetermined filter regeneration and the start of the next filter regeneration, If the detected temperature at that time is lower than the reference temperature, the special filter regeneration is performed, in which at least one of the fuel injection time and the fuel injection amount is larger than the normal filter regeneration.
  • sulfur poisoning of the DPF 11 that can occur between the end of the predetermined filter regeneration and the start of the next filter regeneration can be prevented.
  • sulfur poisoning of DOC10 can also be prevented.
  • control unit 120 when the determination unit 110 determines that the detected temperature when the temperature determination injection is performed is lower than the reference temperature, the control unit 120 causes the fuel injection device 6 to perform the above-described special control (special filter regeneration). Instead of (control), interval shortening control may be performed.
  • the interval shortening control is a control for shortening an interval from the end of a predetermined filter regeneration to the start of the next filter regeneration (hereinafter referred to as a filter regeneration interval).
  • the control unit 120 determines that the detected temperature when the temperature determination injection is executed by the determination unit 110 is lower than the reference temperature regardless of whether the execution condition is satisfied. At this time, the filter regeneration to be performed next may be determined as the normal filter regeneration, and the fuel injection device 6 may be controlled to perform the normal filter regeneration.
  • the control unit 120 for example, at the time when the detection temperature when the determination unit 110 executes the temperature determination injection is determined to be lower than the reference temperature, regardless of whether or not the execution condition is satisfied.
  • the filter regeneration to be performed next is determined to be the special filter regeneration, and the fuel injection device 6 may be controlled to perform the special filter regeneration.
  • the internal combustion engine may be a gasoline engine.
  • a GPF Gas Particulate Filter
  • the sulfur poisoning of GPF can be prevented.
  • a filter regeneration control device is a filter that is provided downstream of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and forcibly regenerates a filter that collects PM contained in the exhaust gas by fuel injection.
  • a filter regeneration control device that controls the execution of regeneration, and when the vehicle is in steady running, for a predetermined time from the end of the filter regeneration until the start of the next filter regeneration, A control unit that controls the fuel injection device to execute temperature determination injection for injecting a predetermined amount of the fuel, and a reference temperature in which the temperature upstream of the filter after execution of the temperature determination injection is predetermined A determination unit that determines whether the temperature is lower, and the control unit controls the fuel injection device to perform normal filter regeneration when the temperature is equal to or higher than the reference temperature. If the temperature is lower than the reference temperature, the fuel injection device is controlled to perform a special filter regeneration, and the normal filter regeneration injects a first amount of the fuel during a first time.
  • the temperature determination injection is an operation of injecting a second amount of the fuel less than the first amount for a second time shorter than the first time
  • the regeneration is the operation of injecting the first amount of the fuel for a third time longer than the first time, the third amount being greater than the first amount during the first time. Either an operation of injecting an amount of the fuel, or an operation of injecting the third amount of the fuel during the third time period.
  • the control unit when the temperature is lower than the reference temperature, the control unit performs the special filter regeneration instead of controlling the fuel injection device to perform the special filter regeneration.
  • the fuel injection device may be controlled to be executed, and interval shortening control may be performed to shorten an interval from the end of the filter regeneration to the start of the next filter regeneration.
  • the catalyst may be an oxidation catalyst or an occlusion type nitrogen oxide reduction catalyst.
  • the internal combustion engine may be a diesel engine, and the filter may be a DPF.
  • the internal combustion engine may be a gasoline engine
  • the filter may be a GPF.
  • a filter regeneration control method is a filter that is provided downstream of a catalyst in an exhaust gas flow path of an internal combustion engine of a vehicle, and forcibly regenerates a filter that collects PM contained in the exhaust gas by fuel injection.
  • a filter regeneration control method for controlling execution of regeneration, and when the vehicle is in steady running, for a predetermined time from the end of the filter regeneration until the start of the next filter regeneration,
  • the temperature determination injection is an operation of injecting a second amount of the fuel that is less than the first amount for a second time that is shorter than the first time.
  • the filter regeneration is an operation of injecting the first amount of the fuel for a third time longer than the first time, and a third greater than the first amount during the first time. An operation of injecting the amount of the fuel, or an operation of injecting the third amount of the fuel during the third time period.
  • the present disclosure can be applied to a filter regeneration control device and a filter regeneration control method that control forced regeneration of a filter that collects PM contained in exhaust gas.
  • Diesel engine (an example of an internal combustion engine) 2 Intake passage 3 Exhaust passage 4 Turbocharger 4a Compressor 4b Exhaust turbine 5 Intercooler 6 Fuel injection device 6a Pump 6b Common rail 6c Fuel injection valve 7 ECU (an example of filter regeneration control device) 8 Fuel tank 10 DOC (Example of catalyst) 11 DPF (example of filter) 12 temperature sensor 110 determination unit 120 control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

フィルタの硫黄被毒を防止するフィルタ再生制御装置およびフィルタ再生制御方法。ECU(7)は、車両が定常走行中である場合、フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に温度判定用噴射を実行するように燃料噴射装置(6)を制御する制御部(120)と、温度判定用噴射の実行後のDPF(11)の上流側の検出温度が基準温度より低いか否かを判定する判定部(110)と、を有する。制御部(120)は、検出温度が基準温度以上である場合、通常フィルタ再生を実行するように燃料噴射装置(6)を制御する一方、検出温度が基準温度より低い場合、特別フィルタ再生を実行するように燃料噴射装置(6)を制御する。

Description

フィルタ再生制御装置およびフィルタ再生制御方法
 本開示は、排ガス中の粒子状物質を捕集するフィルタの再生を制御するフィルタ再生制御装置およびフィルタ再生制御方法に関する。
 従来、ディーゼルエンジンの排ガス中に含まれる粒子状物質(Particulate Matter:以下、PMという)を捕集するDPF(Diesel Particulate Filter)が知られている。
 DPFで捕集されたPMのうち、一部は、ディーゼルエンジンから排出される高温の排ガスによって燃焼し(パッシブ再生、または、連続再生と呼ばれる)、残りは、DPFに堆積する。そして、PMの堆積量が一定量を超えると、例えば、ディーゼルエンジンの出力の低下、燃費の低下、および、PMの異常燃焼によるDPFの損傷などが発生する。
 そこで、DPFに堆積したPMを、燃料噴射(例えば、ポスト噴射または排気管噴射)により強制的に燃焼させることで、フィルタを再生させるフィルタ再生(強制再生ともいう)を実行することが知られている(例えば、特許文献1参照)。
日本国特開2005-54631号公報
 しかしながら、硫黄濃度が高い燃料を使用した場合、DPFが硫黄被毒し、DPFの性能が著しく低下するという問題がある。
 本開示の目的は、フィルタの硫黄被毒を防止できるフィルタ再生制御装置およびフィルタ再生制御方法を提供することである。
 本開示の一態様に係るフィルタ再生制御装置は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御装置であって、前記車両が定常走行中である場合、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に、所定時間の間、所定量の前記燃料を噴射する温度判定用噴射を実行するように燃料噴射装置を制御する制御部と、前記温度判定用噴射の実行後の前記フィルタの上流側の温度が予め定められた基準温度より低いか否かを判定する判定部と、を有し、前記制御部は、前記温度が前記基準温度以上である場合、通常フィルタ再生を実行するように前記燃料噴射装置を制御する一方、前記温度が前記基準温度より低い場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記温度判定用噴射は、前記第1の時間よりも短い第2の時間の間、前記第1の量より少ない第2の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第3の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第3の量の前記燃料を噴射する動作、または、前記第3の時間の間、前記第3の量の前記燃料を噴射する動作、のいずれかである。
 本開示の一態様に係るフィルタ再生制御方法は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御方法であって、前記車両が定常走行中である場合、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に、所定時間の間、所定量の前記燃料を噴射する温度判定用噴射を実行するように燃料噴射装置を制御するステップと、前記温度判定用噴射の実行後の前記フィルタの上流側の温度が予め定められた基準温度より低いか否かを判定するステップと、前記温度が前記基準温度以上である場合、通常フィルタ再生を実行するように前記燃料噴射装置を制御する一方、前記温度が前記基準温度より低い場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御するステップと、を有し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記温度判定用噴射は、前記第1の時間よりも短い第2の時間の間、前記第1の量より少ない第2の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第3の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第3の量の前記燃料を噴射する動作、または、前記第3の時間の間、前記第3の量の前記燃料を噴射する動作、のいずれかである。
 本開示によれば、フィルタの硫黄被毒を防止することができる。
図1は、本開示の実施の形態に係る後処理装置とその周辺構成の一例を示す概念図である。 図2は、本開示の実施の形態に係るECUの構成例を示すブロック図である。 図3は、本開示の実施の形態に係るECUの動作例を示すフローチャートである。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。
 まず、本開示の実施の形態に係る後処理装置とその周辺構成について、図1を用いて説明する。
 図1は、本実施の形態に係る後処理装置とその周辺構成の一例を示す概念図である。図1において、実線の矢印は気体の流れを示し、破線の矢印は信号の流れを示している。
 図1に示す各構成要素は、例えば、車両に搭載される。
 ディーゼルエンジン(内燃機関の一例。以下、エンジンという)1の上流側には、車両の外部から取り込まれた空気が流れる吸気通路2が接続されている。また、エンジン1の下流側には、排ガスが流れる排気通路3が接続されている。
 吸気通路2と排気通路3との間には、ターボチャージャ(過給機)4が設けられている。ターボチャージャ4は、吸気通路2に配置されたコンプレッサ4aと、排気通路3に配置された排気タービン4bとを有する。コンプレッサ4aは、排気タービン4bによって同軸駆動される。
 吸気通路2には、インタークーラ5が設けられている。コンプレッサ4aから吐出された空気は、インタークーラ5で冷却され、エンジン1の各シリンダ(図示略)内の燃焼室(図示略)に流入する。
 エンジン1には、各シリンダ内の燃焼室に燃料を噴射するコモンレール燃料噴射装置(以下、燃料噴射装置という)6が設けられている。燃料噴射装置6は、ポンプ6a、コモンレール6b、および燃料噴射弁(インジェクタ)6cを有する。
 例えば、燃料噴射装置6において、ポンプ6aは、ECU7(詳細は図2を用いて後述)からの制御信号に基づいて、燃料が貯留されている燃料タンク8から所定のタイミングで所定量の燃料を汲み上げ、コモンレール6bを介して燃料噴射弁6cに供給する。燃料噴射弁6cは、供給された燃料を、燃焼室に噴射する。
 排気通路3には、後処理装置として、酸化触媒(Diesel Oxidation Catalyst:以下、DOCという)10およびDPF11が設けられている。DOC10は、DPF11の上流側に設けられている。
 DOC10は、排ガス中の炭化水素(HC)や一酸化炭素(CO)を酸化除去するとともに、排ガス中の一酸化窒素(NO)を酸化して二酸化窒素(NO)を生成する。
 DPF11は、上述したとおり、排ガス中に含まれるススなどのPMを捕集し、排ガスから除去する。
 エンジン1から排出された排ガスは、排気通路3を通って、排気タービン4bを駆動してコンプレッサ4aを同軸駆動させる。その後、排ガスは、DOC10、DPF11の順に流れる。
 DOC10の下流側かつDPF11の上流側には、DPF11の入口(換言すれば、DOC10の出口)における排ガスの温度を検出する温度センサ12が設けられている。温度センサ12は、検出した温度(以下、検出温度という)を示す信号を、適宜、ECU7へ出力する。
 以上、本実施の形態に係る後処理装置とその周辺構成について説明した。
 次に、本実施の形態に係るECU7(フィルタ再生制御装置の一例)の構成について、図2を用いて説明する。
 ECU7は、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路を有する。以下に説明する図2の各部の機能は、CPUが制御プログラムを実行することにより実現される。
 ECU7は、DPF11を強制的に再生させるフィルタ再生の実行を制御する。具体的には、ECU7は、燃料噴射装置6の燃料噴射(例えば、ポスト噴射)の実行を制御する。
 フィルタ再生は、所定の実行条件が満たされたときに実行される。実行条件は、例えば、車両の走行距離が予め定められた距離を超えること、または、DPF11に堆積したPMの推定量が予め定められた量を超えること、などである。
 本実施の形態では、ECU7の制御により、上記フィルタ再生として、通常フィルタ再生または特別フィルタ再生のいずれかが実行される。通常フィルタ再生および特別フィルタ再生の詳細については、後述する。
 図2に示すように、ECU7は、判定部110および制御部120を有する。
 判定部110は、以下の車速判定および温度判定を行う。
 [車速判定]
 判定部110は、車両が一定速度で走行しているか(定常走行中であるか)否かを判定する。例えば、判定部110は、車速センサ(図示略)により検出された車速が所定時間継続した場合、定常走行中であると判定する。
 [温度判定]
 判定部110は、温度センサ12より検出された検出温度が予め定められた基準温度より低いか否かを判定する。
 上記基準温度は、例えば予め実施された実験やシミュレーションで得られた値であり、燃料噴射量毎に定められている。
 制御部120は、以下の通常制御、温度判定用制御、および特別制御を行う。
 [通常制御]
 制御部120は、上記実行条件が満たされた場合、燃料噴射装置6に対し、通常フィルタ再生の実行を指示する通常制御信号を出力する。
 通常フィルタ再生とは、所定時間(以下、第1の時間という)の間、所定量(以下、第1の量という)の燃料を噴射する動作である。
 燃料噴射装置6は、通常制御信号を受け取った場合、通常フィルタ再生を実行する。
 [温度判定用制御]
 制御部120は、判定部110によって車両が定常走行中であると判定された場合、通常フィルタ再生または特別フィルタ再生(詳細は後述)のいずれかが終了してから次の通常フィルタ再生または特別フィルタ再生が開始されるまでの間に温度判定用噴射の実行を指示する温度判定用制御信号を燃料噴射装置6へ出力する。
 温度判定用噴射とは、第1の時間よりも短い時間(以下、第2の時間という)の間、第1の量より少ない量(以下、第2の量という)の燃料を噴射する動作である。
 燃料噴射装置6は、温度判定用制御信号を受け取った場合、温度判定用噴射を実行する。
 [特別制御]
 制御部120は、判定部110によって温度判定用噴射が実行された後(例えば、直後)の検出温度が基準温度(第2の量の燃料が噴射されたときに本来あるべき温度)より低いと判定された場合、DPF11の性能が低下しているとみなす。
 そして、制御部120は、上記実行条件が満たされた場合、燃料噴射装置6に対し、特別フィルタ再生の実行を指示する特別制御信号を出力する。
 特別フィルタ再生とは、第1の時間よりも長い時間(以下、第3の時間という)の間、第1の量の燃料を噴射する動作、第1の時間の間、第1の量よりも多い量(以下、第3の量という)の燃料を噴射する動作(通常フィルタ再生時よりも排ガスの温度を高くする動作)、または、第3の時間の間、第3の量の燃料を噴射する動作、のいずれかである。これらの動作のうちどの動作を特別フィルタ再生とするかは、例えば、ECU7の製造時に設定されてもよいし、車両のユーザ等により設定されてもよい。また、その設定を適宜変更できるようにしてもよい。
 燃料噴射装置6は、特別制御信号を受け取った場合、特別フィルタ再生を実行する。
 なお、制御部120は、判定部110によって温度判定用噴射が実行された後(例えば、直後)の検出温度が基準温度以上であると判定された場合、DPF11の性能が低下していないとみなす。この場合、制御部120は、上記実行条件が満たされた場合、燃料噴射装置6に対し、通常フィルタ再生の実行を指示する通常制御信号を出力する。
 以上、本実施の形態に係るECU7の構成について説明した。
 次に、本実施の形態に係るECU7(フィルタ再生制御方法の一例)の動作について、図3を用いて説明する。図3のフローは、車両の走行中、繰り返し行われる。
 まず、判定部110は、車両が定常走行中であるか否かを判定する(ステップS101)。
 車両が定常走行中ではない場合(ステップS101:NO)、フローは、後述のステップS104へ進む。
 一方、車両が定常走行中である場合(ステップS101:YES)、制御部120は、通常フィルタ再生または特別フィルタ再生のいずれかが終了してから次の通常フィルタ再生または特別フィルタ再生が開始されるまでの間に温度判定用噴射を実行するように燃料噴射装置6を制御する(ステップS102)。これにより、燃料噴射装置6は、温度判定用噴射を実行する。
 判定部110は、温度判定用噴射が実行されたときの検出温度が基準温度より低いか否かを判定する(ステップS103)。
 検出温度が基準温度以上である場合(ステップS103:NO)、または、車両が定常走行中ではない場合(ステップS101:NO)、制御部120は、次に実行すべきフィルタ再生を通常フィルタ再生に決定する(ステップS104)。
 そして、制御部120は、実行条件が満たされると、通常フィルタ再生を実行するように燃料噴射装置6を制御する(ステップS105)。これにより、燃料噴射装置6は、通常フィルタ再生を実行する。
 一方、検出温度が基準温度より低い場合(ステップS103:YES)、制御部120は、次に実行すべきフィルタ再生を特別フィルタ再生に決定する(ステップS106)。
 そして、制御部120は、実行条件が満たされると、特別フィルタ再生を実行するように燃料噴射装置6を制御する(ステップS107)。これにより、燃料噴射装置6は、特別フィルタ再生を実行する。
 以上、本実施の形態に係るECU7の動作について説明した。
 詳述してきたように、本実施の形態によれば、車両が定常走行中に、所定のフィルタ再生の終了時から次のフィルタ再生の開始時までの間に温度判定用噴射を実行し、そのときの検出温度が基準温度よりも低い場合、通常フィルタ再生に比べて、燃料噴射時間および燃料噴射量のうち少なくとも一方の値が大きい特別フィルタ再生を実行することを特徴とする。
 これにより、所定のフィルタ再生の終了時から次のフィルタ再生の開始時までの間に生じうるDPF11の硫黄被毒を防止することができる。また、DOC10の硫黄被毒も防止できる。
 以上、本開示の実施の形態について詳述してきたが、本開示は、上述の実施の形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。以下、各変形例について説明する。
 [変形例1]
 上記実施の形態では、判定部110によって温度判定用噴射が実行されたときの検出温度が基準温度より低いと判定された場合、特別フィルタ再生が行われる場合を例に挙げて説明したが、これに限定されない。
 例えば、判定部110によって温度判定用噴射が実行されたときの検出温度が基準温度より低いと判定された場合、制御部120は、上述した特別制御(特別フィルタ再生を燃料噴射装置6に実行させる制御)の代わりに、間隔短縮制御を行ってもよい。
 間隔短縮制御とは、所定のフィルタ再生の終了時から次のフィルタ再生の開始時までの間隔(以下、フィルタ再生間隔という)を短縮する制御である。
 間隔短縮制御を行う場合、制御部120は、例えば、実行条件が満たされたか否かに係わらず、判定部110によって温度判定用噴射が実行されたときの検出温度が基準温度より低いと判定された時点で、次に実行すべきフィルタ再生を通常フィルタ再生に決定し、通常フィルタ再生を実行するように燃料噴射装置6を制御してもよい。
 なお、上記説明では、特別制御の代わりに間隔短縮制御を行う場合を例に挙げたが、それら2つの制御を組み合わせてもよい。その場合、制御部120は、例えば、実行条件が満たされたか否かに係わらず、判定部110によって温度判定用噴射が実行されたときの検出温度が基準温度より低いと判定された時点で、次に実行すべきフィルタ再生を特別フィルタ再生に決定し、特別フィルタ再生を実行するように燃料噴射装置6を制御してもよい。
 [変形例2]
 上記実施の形態では、フィルタ再生時の燃料噴射がポスト噴射である場合を例に挙げて説明したが、排気通路3に設けられた燃料噴射弁(図示略)により燃料噴射(いわゆる排気管噴射)を行ってもよい。
 [変形例3]
 上記実施の形態では、DPF11の上流側にDOC10が備えられる場合を例に挙げて説明したが、これに限定されない。例えば、図1において、DOC10の代わりに、吸蔵型窒素酸化物還元触媒(LNT)が備えられてもよい。その場合、LNTの硫黄被毒を防止できる。
 [変形例4]
 上記実施の形態では、内燃機関がディーゼルエンジンである場合を例に挙げて説明したが、内燃機関はガソリンエンジンであってもよい。その場合、図1において、DPF11の代わりに、ガソリンエンジンの排ガス中に含まれる粒子状物質を捕集するGPF(Gasoline Particulate Filter)が備えられる。よって、GPFの硫黄被毒を防止できる。
 <本開示のまとめ>
 本開示のフィルタ再生制御装置は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御装置であって、前記車両が定常走行中である場合、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に、所定時間の間、所定量の前記燃料を噴射する温度判定用噴射を実行するように燃料噴射装置を制御する制御部と、前記温度判定用噴射の実行後の前記フィルタの上流側の温度が予め定められた基準温度より低いか否かを判定する判定部と、を有し、前記制御部は、前記温度が前記基準温度以上である場合、通常フィルタ再生を実行するように前記燃料噴射装置を制御する一方、前記温度が前記基準温度より低い場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記温度判定用噴射は、前記第1の時間よりも短い第2の時間の間、前記第1の量より少ない第2の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第3の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第3の量の前記燃料を噴射する動作、または、前記第3の時間の間、前記第3の量の前記燃料を噴射する動作、のいずれかである。
 なお、上記フィルタ再生制御装置において、前記制御部は、前記温度が前記基準温度より低い場合、前記特別フィルタ再生を実行するように前記燃料噴射装置を制御する代わりに、または、前記特別フィルタ再生を実行するように前記燃料噴射装置を制御するとともに、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間隔を短縮する間隔短縮制御を実行してもよい。
 また、上記フィルタ再生制御装置において、前記触媒は、酸化触媒または吸蔵型窒素酸化物還元触媒であってもよい。
 また、上記フィルタ再生制御装置において、前記内燃機関は、ディーゼルエンジンであり、前記フィルタは、DPFであってもよい。
 また、上記フィルタ再生制御装置において、前記内燃機関は、ガソリンエンジンであり、前記フィルタは、GPFであってもよい。
 本開示のフィルタ再生制御方法は、車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御方法であって、前記車両が定常走行中である場合、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に、所定時間の間、所定量の前記燃料を噴射する温度判定用噴射を実行するように燃料噴射装置を制御するステップと、前記温度判定用噴射の実行後の前記フィルタの上流側の温度が予め定められた基準温度より低いか否かを判定するステップと、前記温度が前記基準温度以上である場合、通常フィルタ再生を実行するように前記燃料噴射装置を制御する一方、前記温度が前記基準温度より低い場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御するステップと、を有し、前記通常フィルタ再生は、第1の時間の間、第1の量の前記燃料を噴射する動作であり、前記温度判定用噴射は、前記第1の時間よりも短い第2の時間の間、前記第1の量より少ない第2の量の前記燃料を噴射する動作であり、前記特別フィルタ再生は、前記第1の時間よりも長い第3の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第3の量の前記燃料を噴射する動作、または、前記第3の時間の間、前記第3の量の前記燃料を噴射する動作、のいずれかである。
 本出願は、2017年4月24日付で出願された日本国特許出願(特願2017-085341)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、排ガスに含まれるPMを捕集するフィルタの強制再生を制御するフィルタ再生制御装置およびフィルタ再生制御方法に適用できる。
 1 ディーゼルエンジン(内燃機関の一例)
 2 吸気通路
 3 排気通路
 4 ターボチャージャ
 4a コンプレッサ
 4b 排気タービン
 5 インタークーラ
 6 燃料噴射装置
 6a ポンプ
 6b コモンレール
 6c 燃料噴射弁
 7 ECU(フィルタ再生制御装置の一例)
 8 燃料タンク
 10 DOC(触媒の一例)
 11 DPF(フィルタの一例)
 12 温度センサ
 110 判定部
 120 制御部

Claims (6)

  1.  車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御装置であって、
     前記車両が定常走行中である場合、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に、所定時間の間、所定量の前記燃料を噴射する温度判定用噴射を実行するように燃料噴射装置を制御する制御部と、
     前記温度判定用噴射の実行後の前記フィルタの上流側の温度が予め定められた基準温度より低いか否かを判定する判定部と、
     を有し、
     前記制御部は、
     前記温度が前記基準温度以上である場合、通常フィルタ再生を実行するように前記燃料噴射装置を制御する一方、前記温度が前記基準温度より低い場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御し、
     前記通常フィルタ再生は、
     第1の時間の間、第1の量の前記燃料を噴射する動作であり、
     前記温度判定用噴射は、
     前記第1の時間よりも短い第2の時間の間、前記第1の量より少ない第2の量の前記燃料を噴射する動作であり、
     前記特別フィルタ再生は、
     前記第1の時間よりも長い第3の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第3の量の前記燃料を噴射する動作、または、前記第3の時間の間、前記第3の量の前記燃料を噴射する動作、のいずれかである、
     フィルタ再生制御装置。
  2.  前記制御部は、
     前記温度が前記基準温度より低い場合、前記特別フィルタ再生を実行するように前記燃料噴射装置を制御する代わりに、または、前記特別フィルタ再生を実行するように前記燃料噴射装置を制御するとともに、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間隔を短縮する間隔短縮制御を実行する、
     請求項1に記載のフィルタ再生制御装置。
  3.  前記触媒は、酸化触媒または吸蔵型窒素酸化物還元触媒である、
     請求項1に記載のフィルタ再生制御装置。
  4.  前記内燃機関は、ディーゼルエンジンであり、
     前記フィルタは、DPFである、
     請求項1に記載のフィルタ再生制御装置。
  5.  前記内燃機関は、ガソリンエンジンであり、
     前記フィルタは、GPFである、
     請求項1に記載のフィルタ再生制御装置。
  6.  車両の内燃機関の排ガスの流路において触媒の下流側に設けられ、前記排ガスに含まれるPMを捕集するフィルタを、燃料の噴射により強制的に再生させるフィルタ再生の実行を制御するフィルタ再生制御方法であって、
     前記車両が定常走行中である場合、前記フィルタ再生が終了してから次のフィルタ再生が開始されるまでの間に、所定時間の間、所定量の前記燃料を噴射する温度判定用噴射を実行するように燃料噴射装置を制御するステップと、
     前記温度判定用噴射の実行後の前記フィルタの上流側の温度が予め定められた基準温度より低いか否かを判定するステップと、
     前記温度が前記基準温度以上である場合、通常フィルタ再生を実行するように前記燃料噴射装置を制御する一方、前記温度が前記基準温度より低い場合、特別フィルタ再生を実行するように前記燃料噴射装置を制御するステップと、を有し、
     前記通常フィルタ再生は、
     第1の時間の間、第1の量の前記燃料を噴射する動作であり、
     前記温度判定用噴射は、
     前記第1の時間よりも短い第2の時間の間、前記第1の量より少ない第2の量の前記燃料を噴射する動作であり、
     前記特別フィルタ再生は、
     前記第1の時間よりも長い第3の時間の間、前記第1の量の前記燃料を噴射する動作、前記第1の時間の間、前記第1の量よりも多い第3の量の前記燃料を噴射する動作、または、前記第3の時間の間、前記第3の量の前記燃料を噴射する動作、のいずれかである、
     フィルタ再生制御方法。
PCT/JP2018/016390 2017-04-24 2018-04-23 フィルタ再生制御装置およびフィルタ再生制御方法 WO2018198996A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880023779.5A CN110494634B (zh) 2017-04-24 2018-04-23 过滤器再生控制装置及过滤器再生控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017085341A JP6733595B2 (ja) 2017-04-24 2017-04-24 フィルタ再生制御装置およびフィルタ再生制御方法
JP2017-085341 2017-04-24

Publications (1)

Publication Number Publication Date
WO2018198996A1 true WO2018198996A1 (ja) 2018-11-01

Family

ID=63920400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016390 WO2018198996A1 (ja) 2017-04-24 2018-04-23 フィルタ再生制御装置およびフィルタ再生制御方法

Country Status (3)

Country Link
JP (1) JP6733595B2 (ja)
CN (1) CN110494634B (ja)
WO (1) WO2018198996A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293340A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2007032366A (ja) * 2005-07-25 2007-02-08 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007247595A (ja) * 2006-03-17 2007-09-27 Isuzu Motors Ltd 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2008121629A (ja) * 2006-11-15 2008-05-29 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2011153537A (ja) * 2010-01-26 2011-08-11 Hino Motors Ltd パティキュレートフィルタの再生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4175281B2 (ja) * 2004-03-31 2008-11-05 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
EP1936160B1 (en) * 2006-12-22 2012-07-11 Volvo Car Corporation Exhaust gas treatment device regeneration inhibiting fuel combustion in an engine cylinder
US9394837B2 (en) * 2012-08-13 2016-07-19 Ford Global Technologies, Llc Method and system for regenerating a particulate filter
EP2955346B8 (en) * 2013-02-08 2018-10-17 Toyota Jidosha Kabushiki Kaisha Exhaust purification apparatus for internal combustion engine
JP2015059476A (ja) * 2013-09-18 2015-03-30 いすゞ自動車株式会社 内燃機関の排気浄化装置
JP5905427B2 (ja) * 2013-09-27 2016-04-20 三菱重工業株式会社 Dpf再生制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004293340A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2007032366A (ja) * 2005-07-25 2007-02-08 Toyota Motor Corp 内燃機関の排気浄化装置
JP2007247595A (ja) * 2006-03-17 2007-09-27 Isuzu Motors Ltd 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2008121629A (ja) * 2006-11-15 2008-05-29 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP2011153537A (ja) * 2010-01-26 2011-08-11 Hino Motors Ltd パティキュレートフィルタの再生方法

Also Published As

Publication number Publication date
CN110494634B (zh) 2021-04-02
CN110494634A (zh) 2019-11-22
JP6733595B2 (ja) 2020-08-05
JP2018184841A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
JP5118331B2 (ja) 排気浄化装置
US8549843B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
US9664131B2 (en) Exhaust injection control method for exhaust gas post-treatment device
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP4022714B2 (ja) 内燃機関の排気浄化装置
JP5830832B2 (ja) フィルタ再生装置
US9683504B2 (en) Internal combustion engine equipped with an aftertreatment device
KR20120011563A (ko) 배기가스 후처리 시스템 및 이 제어방법
WO2018194160A1 (ja) フィルタ再生制御装置およびフィルタ再生制御方法
JP4613787B2 (ja) 内燃機関の排気浄化装置
JP2010116817A (ja) エンジンの排気浄化装置
JP4424159B2 (ja) 内燃機関の排気浄化装置
WO2016132875A1 (ja) 内燃機関の排気ガス浄化システム、内燃機関及び内燃機関の排気ガス浄化方法
JP6070941B2 (ja) 内燃機関の排気浄化装置
JP5131477B2 (ja) エンジンの排気浄化装置
WO2018198996A1 (ja) フィルタ再生制御装置およびフィルタ再生制御方法
JP2006266221A (ja) 後処理装置の昇温制御装置
JP2010174794A (ja) 排ガス浄化装置
JP2005163652A (ja) 排気浄化装置
JP2006266220A (ja) 後処理装置の昇温制御装置
JP2007040223A (ja) 排気浄化装置
JP4325580B2 (ja) 内燃機関の制御装置
JP2007154773A (ja) 排気浄化装置
JP2009121267A (ja) 排気浄化装置
JP6197663B2 (ja) Egr制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789812

Country of ref document: EP

Kind code of ref document: A1