WO2018198366A1 - ベーンポンプ - Google Patents
ベーンポンプ Download PDFInfo
- Publication number
- WO2018198366A1 WO2018198366A1 PCT/JP2017/017070 JP2017017070W WO2018198366A1 WO 2018198366 A1 WO2018198366 A1 WO 2018198366A1 JP 2017017070 W JP2017017070 W JP 2017017070W WO 2018198366 A1 WO2018198366 A1 WO 2018198366A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pump
- rotor
- vane
- peripheral surface
- space
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3446—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0021—Systems for the equilibration of forces acting on the pump
- F04C29/0028—Internal leakage control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2250/00—Geometry
- F04C2250/30—Geometry of the stator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
Definitions
- the present invention relates to a vane pump.
- the capacity of the vane pump depends on the volume change of the pump chamber.
- the increase in the storage space for the purpose of increasing the capacity directly leads to an increase in the size of the vane pump itself and, in turn, the ease of mounting on vehicles. Resulting in.
- an elliptical accommodating space is defined in the cam ring, and a cylindrical rotor is disposed at the center of the ellipse inside the cam ring, so that both sides of the rotor are arranged. It defines a pair of crescent-shaped pump chambers.
- this type is referred to as a balanced type.
- a volume change is caused in each pump chamber by the vane as the rotor rotates, thereby achieving an increase in pump capacity without enlarging the accommodating space.
- the accommodation space of the non-equilibrium vane pump of Patent Document 1 is cylindrical
- the accommodation space of the equilibrium vane pump of Patent Document 2 is an elliptic cylinder, so that the rotor can be inserted through a minute gap.
- the curvature of the part facing the outer peripheral surface is large.
- the seal lengths at the two locations that define a pair of pump chambers on both sides of the rotor are very short, so to speak line contact Only.
- the minute gap can be adjusted when the rotor is assembled in the housing space, whereas in a balanced vane pump having two seal portions, the housing is accommodated.
- Two minute gaps are naturally determined by the inner dimension in the minor axis direction of the space and the outer diameter of the rotor. For this reason, when assembling the rotor in the accommodation space, it is necessary to carefully adjust so that a uniform minute gap is formed at the two seal points, and the assembly work is very complicated and the productivity is poor. There was a problem.
- the two minute gaps formed by the inner dimension in the minor axis direction of the housing space and the outer diameter of the rotor are preferably made as small as possible in order to improve pump efficiency.
- the seal length at the two locations is very short, so if each minute gap is set large, the pump efficiency will decrease due to fluid leakage.
- the minute gap is set to be small, if the adjustment at the time of assembly is insufficient, the minute gap on one side becomes too small, and the durability of the vane pump is deteriorated due to the rapid wear of the rotor.
- the pump efficiency and durability are in a trade-off relationship, and it has not been possible to achieve both at a high level.
- the present invention has been made in order to solve such problems, and the object of the present invention is to adjust the fine gap during assembly after satisfying both pump efficiency and durability at a high level.
- An object of the present invention is to provide a vane pump that can be easily implemented and can improve productivity.
- the vane pump of the present invention has a cylindrical rotor disposed in a housing space provided in a pump housing, and defines pump chambers on both sides of the rotor. Both sides of the outer peripheral surface of the rotor perpendicular to the installation direction are opposed to the inner peripheral surface of the receiving space via a small gap, respectively, and the tip of the vane provided so as to be able to appear and retract on the outer peripheral surface of the rotor as the rotor rotates is received.
- a pair of arc-shaped cross sections corresponding to the outer peripheral surface of the rotor is provided on the inner peripheral surface of the accommodating space.
- a seal surface is formed, and the outer peripheral surfaces of the rotor are opposed to each other through a minute gap in each seal surface region, and each seal surface is in a region that is biased toward the discharge side of each pump chamber in the parallel arrangement direction of the pump chambers. Formed Characterized in that that (claim 1).
- the storage space has an elliptical shape or a track shape in which the parallel direction of the pump chambers is a long axis and the direction perpendicular to the parallel direction is a short axis, and is shorter than the outer diameter of the rotor.
- the inner dimension in the axial direction is set to be short, and each sealing surface is divided into two in the major axis direction from the center in the minor axis direction toward the suction side of the pump chamber in which each is defined.
- they are formed in regions that are biased toward the discharge side of each pump chamber by being offset in opposite directions.
- each pump chamber from the center in the major axis direction of the storage space is achieved by the seal surface being inscribed on the suction side of each pump chamber with the outer peripheral surface of the rotor space. Preferably, it is formed in a region biased to the side.
- a buffer surface having a circular arc shape having a center outside the storage space is formed at the boundary between the region corresponding to the discharge side of each pump chamber on the inner peripheral surface of the storage space and each seal surface.
- the seal surfaces are formed in regions that are biased toward the discharge side of the pump chambers.
- the inner peripheral surface of the accommodating space is discontinuous at the boundary between the region corresponding to the discharge side of each pump chamber and each seal surface, but on the suction side of each seal surface and each pump chamber.
- the undulations are gently continuous at the boundary with the corresponding region, or the undulations are somewhat discontinuous If it does, it will be mild.
- the undulation is discontinuous, so the vane is instantaneously separated from the seal surface. Instantaneous leakage of fluid is prevented by the minute gap between the outer peripheral surface of the liquid and the liquid.
- the undulations are gently continuous or only a slight discontinuity. Leaks are also prevented.
- the seal length defining both pump chambers is very long.
- the amount of stationary fluid leaking through the micro gap is reduced, and good pump efficiency is maintained even if the micro gap is set slightly larger, so adjustment of the micro gap during vane pump assembly Becomes easier.
- the pump efficiency and the durability can be achieved at a high level, and the adjustment of the minute gap at the time of assembly can be easily performed, thereby improving the productivity.
- FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1 showing a rotor and vanes in the accommodation space.
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, showing a connection portion between the rotor and the output shaft of the motor.
- It is a schematic diagram which shows the shape of planar view of the accommodation space of 1st Embodiment. It is the elements on larger scale of the X area
- FIG. 1 is a perspective view showing the vacuum pump of the present embodiment
- FIG. 2 is an exploded perspective view showing the vacuum pump
- FIG. 3 is a sectional view taken along the line III-III of FIG. 1 showing the rotor and vanes in the accommodating space
- FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
- the vacuum pump 1 of the present embodiment is mounted on a vehicle and has a function of generating negative pressure by sucking and discharging air as a fluid and supplying it to a brake assist device of the vehicle.
- the vacuum pump 1 is shown in a posture when installed in the vehicle, and in the following description, the vehicle is mainly used to represent front and rear, left and right, and up and down directions.
- the vacuum pump 1 has a pump housing 2 as a center, a motor 3 fixed to the lower side, and a silencer housing 4 fixed to the upper side.
- the pump housing 2 is manufactured by aluminum die casting and has a cylindrical shape extending in the vertical direction.
- An inner peripheral wall 6 is formed so as to have a double inner / outer positional relationship with respect to the outer peripheral wall 5.
- a bottom wall 7 is integrally formed and closed at a lower portion of the inner peripheral wall 6, and an upper plate 8 is fixed to an upper opening portion of the inner peripheral wall 6 with screws 9, and these inner peripheral wall 6, bottom wall 7 and upper plate are fixed.
- a storage space 10 is defined by 8.
- the accommodation space 10 has an elliptical shape in plan view, and the shape will be described in detail later because it is related to the gist of the present invention.
- a motor 3 is fixed to the lower surface of the pump housing 2 with screws 12, and an output shaft 13 is disposed in the motor 3 along an axis L extending in the vertical direction.
- a pair of upper and lower bearings 14 (the upper side is shown in FIG. 4). ) Is rotatably supported.
- a boss portion 15 projects upward from the upper portion of the motor 3 with the output shaft 13 as a center, and a cylindrical tube portion 16 projects downward from the lower surface of the bottom wall 7 of the pump housing 2. Yes.
- the cylinder portion 16 is fitted on the boss portion 15 with an O-ring 17 interposed therebetween, whereby the pump housing 2 and the motor 3 are positioned on the axis L.
- the output shaft 13 of the motor 3 protrudes upward from the shaft hole 15 a of the boss portion 15, and the upper portion is positioned in the center of the accommodation space 10 through the cylindrical portion 16 of the pump housing 2 and the shaft hole 7 a of the bottom wall 7. .
- a cylindrical rotor 18 centering on the axis L is disposed in the accommodation space 10.
- a shaft hole 18 a is drilled along the axis L from below, and the upper part of the output shaft 13 is inserted into the rotor 18. ing.
- the relative rotation between the output shaft 13 and the rotor 18 is restricted by the rotation-preventing member 19 disposed in the shaft hole 18a, and the rotor 18 is driven to rotate counterclockwise as indicated by an arrow in FIG. It is like that.
- the lower surface of the rotor 18 is opposed to the bottom wall 7 of the accommodating space 10 via a minute gap, and the upper surface of the rotor 18 is opposed to the upper plate 8 via a minute gap.
- pump chambers 20 each having a crescent shape in plan view are defined on both front and rear sides of the rotor 18 in the accommodation space 10.
- a vane groove 18b is provided in six equally divided portions on the outer peripheral surface of the rotor 18 over the entire vertical width of the rotor 18, and a plate-like vane 21 is centered around the axis L in each vane groove 18b. It is arranged to be able to appear and retract in the inside and outside direction.
- the vertical width of each vane 21 is substantially the same as the vertical width of the rotor 18, and the tip (outer peripheral end) is inclined with respect to the base end (inner peripheral end) in the rotational direction of the rotor 18.
- the rotor 18 and the vane 21 are slidably contacted with each other in the housing space 10 during the operation of the vacuum pump 1, so that the rotor 18 and the vane 21 are made of self-lubricating carbon. Yes.
- a silencer housing 4 is fixed to the upper surface of the pump housing 2 with screws 22, and an expansion chamber and a resonance chamber are formed in the silencer housing 4 to relieve pulsation of air discharged from the vacuum pump 1, although not shown. Has been.
- a connector 24 for supplying power to the motor 3 and a nipple 25 connected to a brake assist device via a pneumatic hose (not shown) are provided on the front side of the outer peripheral wall 5 of the pump housing 2.
- a pair of suction ports 26 are recessed in the lower surface of the upper plate 8, and each suction port 26 opens into the pump chamber 20.
- One suction port 26 communicates with the nipple 25 via a first suction passage 27 formed in the pump housing 2 and is an annular first recess that is recessed on the lower surface of the upper plate 8 so as to surround the accommodation space 10. 2 communicates with the other suction port 26 via the suction path 28.
- discharge ports are opened in each pump chamber 20, and these discharge ports communicate with the outside from the discharge path 29 through the expansion chamber and the resonance chamber in the silencer housing 4.
- each vane 21 gradually changes the volume of the pump chamber 20 partitioned into a plurality while the tip end is in sliding contact with the inner peripheral surface of the accommodation space 10. .
- air from the brake assist device is sucked into one pump chamber 20 from one suction port 26 via the pneumatic hose, nipple 25 and first suction path 27, and the other via the second suction path 28.
- the suction port 26 is sucked into the other pump chamber 20.
- each pump chamber 20 air is transferred from the suction port 26 side to the discharge port side by the vane 21, and flows into the silencer housing 4 through the discharge path 29 from each discharge port. Air pulsation is relaxed in the process of flowing through the expansion chamber and the resonance chamber, and then air is discharged to the outside.
- An annular space 30 is formed between the inner peripheral wall 6 and the outer peripheral wall 5 of the pump housing 2, and the annular space 30 communicates with the outside through slits 31 formed on both front and rear sides of the outer peripheral wall 5.
- an engine cooling fan is disposed in front of the vacuum pump 1, and a part of the cooling air is sent to the vacuum pump 1.
- the cooling air flows into the annular space 30 from the front slit 31 and branches to the left and right, flows through both the left and right sides of the inner peripheral wall 6, joins, and is discharged from the rear slit 31 to the outside. Due to the circulation of the cooling air, the temperature rise of the vacuum pump 1 is suppressed.
- mounting flanges 33 having buffer members 32 are integrally formed on both the left and right sides of the pump housing 2, and the vacuum pump 1 is fixed to the vehicle body via these mounting flanges 33.
- the present inventor has focused on the point that all defects are caused by short seal lengths at two locations. That is, if the seal length is long, even if the minute gap between the inner peripheral surface of the accommodating space 10 and the outer peripheral surface of the rotor 18 is set slightly larger, it is possible to prevent a decrease in pump efficiency due to air leakage. If the minute gap is set to be large, even if the adjustment at the time of assembly is insufficient and the minute gap on one side is adjusted to be slightly smaller, the rotor 18 is abruptly worn and the pump durability is reduced. Since it can be suppressed and the adjustment of the minute gap is inevitably facilitated, productivity is improved.
- each vane 21 during the operation of the vacuum pump 1 receives the centrifugal force accompanying the rotation of the rotor 18 and the air pressure in the outer peripheral direction (air pressure acting on the base end-air pressure acting on the tip end),
- the protrusions and recesses are repeated in the vane groove 18b while the tip thereof is in sliding contact with the inner peripheral surface of the accommodation space 10.
- the undulation is discontinuous, so that the acceleration in the protruding direction of the vane 21 becomes abrupt, and the centrifugal force for causing the vane 21 to follow this acceleration change. Insufficient power and air pressure.
- the carbon vane 21 according to the present embodiment is light in weight and is further reduced in weight as it wears. For this reason, the tip of the vane 21 in sliding contact is separated from the inner peripheral surface, and air is leaked. Note that air leakage through the minute gap as described above is steady, whereas air leakage due to the separation of the vanes 21 occurs instantaneously in synchronization with the rotation of the rotor 18.
- the present inventor has considered the formation position of the seal surface A on the inner peripheral surface of the accommodation space 10.
- the separation phenomenon of the vanes 21 occurs at both ends of each seal surface A. Specifically, it occurs in the process in which the tip of the vane 21 moves from the elliptical surface B on the discharge side of one of the pump chambers 20 to the seal surface A, and then the suction side of the other pump chamber 20 from the seal surface A. It occurs in the process of moving to the elliptical surface B.
- the left and right pump chambers 20 are defined by a minute gap on the seal surface A, even if the vane 21 is separated, air leakage is prevented by the minute gap.
- the vane 21 is required to be prevented from separating more in the process of moving from the seal surface A to the suction side of the pump chamber 20 than in the process of moving the vane 21 from the discharge side of the pump chamber 20 to the seal surface A. I understand.
- the undulations of the inner peripheral surface of the accommodation space 10 are discontinuous at both ends of each seal surface A.
- the portions where the undulations are discontinuous are defined as the respective seal surfaces A.
- the accommodation space 10 is configured so that the undulation discontinuity is allowed on the side where the priority of the vane 21 to prevent separation is relatively low, and the undulation discontinuity is suppressed on the side where the priority of the vane 21 is high.
- the shape of the inner peripheral surface is set, and as specific examples thereof, the first to third embodiments will be sequentially described below.
- FIG. 5 is a schematic diagram showing the shape of the accommodation space 10 of the first embodiment in plan view.
- a / B is the ratio of the major axis to the minor axis of the ellipse.
- the major axis of the storage space 10 corresponds to the “parallel arrangement direction of the pump chambers” of the present invention, and the short axis of the storage space 10 corresponds to the “direction orthogonal to the parallel arrangement direction” of the present invention.
- the inner dimension in the left-right direction that is the minor axis direction of the accommodation space 10 that is elliptical compared to the outer diameter of the rotor 18 is set to be shorter by the dimension Loff.
- the dimension Loff / 2 is offset in the opposite direction from the center in the minor axis direction of the accommodation space 10 toward the suction side. More specifically, as can be seen from the positional relationship between the center of each region indicated by L ′ in FIG. 5 and the center of the storage space 10, the front region of the storage space 10 is on the right side and the rear region. Is offset to the left.
- each seal surface A is a region that is biased from the center to the discharge side of the pump chamber 20 in the major axis direction of the accommodating space 10, that is, a region between points ab shown in FIG. It is formed in a cross-sectional arc shape corresponding to the surface.
- a region other than the seal surfaces A on the inner peripheral surface of the accommodation space 10, in other words, a pair of regions that respectively define the front and rear pump chambers 20 is an elliptical surface B.
- the inner circumferential surface of the accommodating space 10 is discontinuous at the boundary between the elliptical surface B and the sealing surface A corresponding to the discharge side of each pump chamber 20 indicated by the point b, but at the point a.
- the undulations are smoothly continued at the boundary between each sealing surface A shown and the elliptical surface B corresponding to the suction side of each pump chamber 20.
- the boundary of the point a has a gentle cross-sectional shape that approximates a simple elliptical accommodation space like the vane pump of Patent Document 2.
- the undulation is discontinuous in the process in which the tip of the vane 21 at the point b shifts from the discharge side of one of the pump chambers 20 to the seal surface A.
- the tip of the vane 21 is instantaneously separated from the seal surface A.
- air leakage is prevented by the minute gap between each seal surface A and the outer peripheral surface of the rotor 18.
- the outer peripheral surface of the rotor 18 is opposed to each other through a minute gap in the entire region of each seal surface A.
- a very long region corresponding to the seal surface A is secured as the seal length in the front-rear direction that partitions the front and rear pump chambers 20.
- the linear expansion coefficient is greatly different between the aluminum pump housing 2 in which the housing space 10 is defined and the carbon rotor 18, so that the tendency for the micro gap to expand at a high temperature is remarkable.
- air leakage can be reduced by securing a long seal length. Therefore, in combination with the above-described action of preventing the vane 21 from separating, wasteful air as a whole. It is possible to improve the pump efficiency by significantly reducing the leakage of the pump.
- an advantageous feature for the steady air leak through the minute gap described above is good even if the minute gap between the seal surface A of the accommodating space 10 and the outer peripheral surface of the rotor 18 is set slightly larger. It means that pump efficiency can be maintained. For this reason, when the vacuum pump 1 is assembled, the fine gap can be easily adjusted, and the productivity can be improved.
- the minute gap is set to be large, even if the adjustment at the time of assembly is insufficient and the minute gap on one side is adjusted to be slightly smaller, rapid wear of the rotor 18 can be avoided.
- Another advantage is that the durability of 1 can be improved. As a result, according to the present embodiment, it is possible to achieve both pump efficiency and durability at a high level.
- the pair of seal surfaces A formed on the inner peripheral surface of the accommodating space 10 also has an effect of easily determining the position of the rotor 18 when the vacuum pump 1 is assembled.
- the inner peripheral surface of the accommodation space does not contribute to positioning of the rotor in the front-rear direction.
- the rotor needs to be positioned at the center in the front-rear direction in the accommodation space. For this reason, in Patent Document 2, the minute gap is finely adjusted while keeping the rotor at the center position in the front-rear direction, which is a very complicated operation.
- the storage space 10 of this embodiment is provided with the seal surfaces A on the left and right sides, the rotor 18 disposed in the storage space 10 is displaced in the front-rear direction by the seal surfaces A on the left and right sides. Being regulated, it is naturally set at the center position. For this reason, it is possible to concentrate on fine adjustment of the minute gap without paying attention to the position of the rotor 18 in the front-rear direction. As a result, in combination with the setting of the larger minute gap described above, the adjustment work of the minute gap is further facilitated. Can be implemented.
- FIG. 7 is a partially enlarged view corresponding to FIG. 6 showing the periphery of the buffer surface of the accommodation space 10 of the second embodiment.
- a buffer surface C is formed at the boundary between the elliptical surface B corresponding to the discharge side of each pump chamber 20 indicated by the point b and each seal surface A.
- Each of the buffer surfaces C has a circular arc shape with a radius Rc having a center p outside the accommodating space 10, and the arc surface B and the seal surface A are connected via the buffer surface C.
- the buffer surface C is curved in a direction opposite to the curved shape of the arcuate surface B and the seal surface A by setting the position of the center p.
- the circular arc surface B and the seal surface A are concave when viewed from the inside of the accommodating space 10
- the buffer surface C is convex when viewed from the inside of the accommodating space 10.
- the tip of the vane 21 moves from the elliptical surface B corresponding to the discharge side of the pump chamber 20 to the sealing surface A via the buffer surface C. Then, the vane 21 gently increases the acceleration in the protruding direction according to the curvature of the buffer surface C by causing the tip to slide in contact with the buffer surface C. As a result, the rapid increase in acceleration in the protruding direction that occurs when the transition from the elliptical surface B directly to the sealing surface A at the point b in FIG. 6 is suppressed, and the tip of the vane 21 is separated from the sealing surface A. Maintain sliding contact. For this reason, the phenomenon that the vane 21 immediately after the separation collides with the seal surface A to generate an abnormal noise is avoided. Therefore, according to the present embodiment, it is possible to reduce the noise of the operating vacuum pump 1 while achieving the same operational effects as the first embodiment.
- the radius Rc of the buffer surface C that exhibits such an action is set so as to satisfy the following requirements.
- the acceleration in the protruding direction of the vane 21 in sliding contact with the buffer surface C depends on the curvature determined by the radius Rc of the buffer surface C.
- the vane 21 in sliding contact with the buffer surface C receives a centrifugal force with the axis L as the center, and receives an air pressure in the outer peripheral direction and is biased toward the outer peripheral side.
- the vane 21 is displaced in the projecting direction at an acceleration exceeding this urging force, the sliding contact with the buffer surface C cannot be maintained, and the tip is separated.
- the curvature of the buffer surface C and the radius Rc are determined so that the vane 21 receiving the biasing force is displaced in the protruding direction at an acceleration slightly smaller than the maximum acceleration at which the sliding contact with the buffer surface C can be maintained. It has been.
- the radius Rc of the buffer surface C is formed based on the single center p and the radius Rc.
- the present invention is not limited to this.
- the cross-sectional shape of the buffer surface C may be formed by combining a plurality of arcs having different centers and radii.
- the vacuum pump 1 of 1st and 2nd embodiment divides the accommodation space 10 into two back and forth, and offsets it in the reverse direction, and the short axis direction of the accommodation space 10 is compared with the outer diameter of the rotor 18.
- the inner dimension is set shorter by the dimension Loff.
- the volume of the storage space 10 of the present embodiment is slightly reduced under the conditions in which the front and rear and left and right dimensions of the storage space 10 are set to be the same.
- the pump capacity is also reduced. Accordingly, a third embodiment in which a measure for increasing the pump capacity without increasing the size of the pump 1 is added based on the first embodiment will be described below.
- FIG. 8 is a schematic view showing the shape of the accommodation space in the third embodiment in plan view.
- the accommodation space 10 of the vacuum pump 1 of the present embodiment has a track shape in plan view.
- a shape in which the ends of a pair of semicircles having a constant radius Rt are connected by a pair of straight lines is defined as a track shape.
- the accommodation space 10 has a width in the vertical direction, the accommodation space 10 of the present embodiment is expressed as a cross-sectional track shape in which the ends of the pair of front and rear arc surfaces D are connected by a pair of left and right parallel surfaces E. it can.
- the inner dimension in the left-right direction which is the short axis direction of the storage space 10 having a track shape, is set shorter than the outer diameter of the rotor 18 by the dimension Loff.
- each of them is formed in a circular arc shape corresponding to the outer peripheral surface of the rotor 18.
- a region other than each seal surface A on the inner peripheral surface of the accommodation space 10, in other words, a pair of regions that respectively define the front and rear pump chambers 20 is an arc surface D.
- the entire area of the parallel surface E is replaced with the seal surface A on the discharge side of the pump chamber 20, but the present invention is not limited to this.
- the inner peripheral surface of the accommodation space 10 is discontinuous at the boundary between the arc surface D and the seal surface A corresponding to the discharge side of each pump chamber 20 indicated by the point b, but at the point a.
- the undulations are smoothly continued at the boundary between each seal surface A shown and the arc surface D corresponding to the suction side of each pump chamber 20.
- the main operational effects of the vacuum pump 1 configured as described above are the same as those described in the first embodiment. That is, during the operation of the vacuum pump 1, it is possible to prevent an instantaneous air leak due to the separation of the vane 21 from the inner peripheral surface of the storage space 10, and the inner peripheral surface of the storage space 10 and each seal surface A. Due to the long seal length between the two, it is possible to reduce the amount of steady air leaking through a minute gap. As a result, the pump efficiency and the durability can be balanced at a high level, and the adjustment of the minute gap at the time of assembly can be easily performed, thereby improving the productivity.
- the elliptical feature of the first embodiment is that there is no straight region and there is no region having a constant radius Rt.
- the radius is not fixed based on 1).
- the track-like feature of the present embodiment is that it has a straight region and a circular region having a constant radius Rt.
- the pump chamber 20 of the present embodiment shown by a solid line in FIG. 8 is the first embodiment shown by a virtual line under the condition that the front and rear and left and right dimensions of the accommodation space 10 are set to be the same.
- the volume is increased by an amount corresponding to four hatched areas as compared with the pump chamber 20.
- a substantially equivalent volume of the pump chamber 20 can be obtained, and a comparable pump capacity can be secured.
- the buffer surface C described in the second embodiment can also be formed in the accommodation space 10 of the present embodiment, and in that case, the operational effect relating to the noise surface can be obtained as in the second embodiment.
- the present invention is applied to the vacuum pump 1 that generates negative pressure by sucking and discharging air as a fluid, but the type of the vane pump is not limited to this.
- the vacuum pump 1 may be embodied as an air pump that operates by supplying discharged air to an actuator, or may be embodied as a pump that sucks and discharges liquid such as oil or fuel.
- the pump housing 2 is made of aluminum die casting and the rotor 18 and the vane 21 are made of carbon.
- the material is not limited to these materials. Since the pump housing 2 may be made of a material having good heat conduction, it may be made of stainless steel or iron, for example.
- the rotor 18 and the vane 21 are not necessarily made of a material having self-lubricating properties.
- the rotor 18 and the vane 21 may be made of aluminum on the premise of lubrication with oil, or limited to carbon even in the case of no lubrication. Alternatively, other self-lubricating materials such as resin may be used.
- the outer peripheral wall 5, the inner peripheral wall 6 and the bottom wall 7 of the pump housing 2 are integrally formed.
- the present invention is not limited to this.
- the inner peripheral wall 6 is a separate cam ring
- the bottom wall 7 is The lower plate may be a separate member, and these may be assembled to the pump housing 2.
- the undulation of the inner peripheral surface of the accommodation space 10 is somewhat discontinuous on the suction side of the pump chamber 20 indicated by point a
- the degree of discontinuity is determined on the opposite pump chamber 20 indicated by point b.
- the present invention also includes such a seal surface A.
- the accommodation space 10 has an elliptical shape
- the accommodation space 10 has a track shape
- the shape of the accommodation space 10 in plan view is not limited thereto.
- an oval shape may be used.
- the oval shape can be defined as an annular shape surrounded by a curved line having at least one line-symmetrical portion, and corresponds to a superordinate concept including an elliptical shape and a track shape. Even in the case of such an oval-shaped accommodation space 10, by applying the requirements relating to the characteristic portions of the present invention described in the above embodiments, the corresponding effects can be obtained.
- Vacuum pump (vane pump) 2 Pump housing 10 Accommodating space 18 Rotor 20 Pump chamber 21 Vane A Seal surface C Buffer surface
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
ポンプハウジング2に設けた収容空間10内に円筒状のロータ18を配設して、ロータ18の両側にポンプ室20をそれぞれ画成すると共に、ポンプ室20の並設方向と直交するロータ18の外周面の両側を収容空間10の内周面にそれぞれ微小間隙を介して相対向させ、ロータ18の回転に伴いロータ18の外周面に出没可能に設けられたベーン21の先端を収容空間の内周面に摺接させながら、各ポンプ室20を容積変化させて流体を吸入・吐出するベーンポンプ1において、収容空間10の内周面に、ロータ18の外周面と対応する断面円弧状の一対のシール面Aを形成し、各シール面Aの領域で微小間隙を介してロータ18の外周面を相対向させ、各シール面Aを、ポンプ室20の並設方向において各ポンプ室20の吐出側にそれぞれ偏った領域に形成する。
Description
本発明は、ベーンポンプに関する。
この種のベーンポンプには、ポンプ室の画成状態を異にする種々の形式が存在する。例えば特許文献1の図4に記載されたベーンポンプでは、カムリングの両側面をプレートにより閉塞して円筒状をなす収容空間を画成し、その内部の偏芯位置に円筒状のロータを配置している。以下、この形式を非平衡型と称する。このような非平衡型のベーンポンプでは、収容空間内に三日月状をなす単一のポンプ室が画成され、そのポンプ室をロータの回転に伴いベーンにより容積変化させて流体を吸入・吐出している。
ベーンポンプの容量(流体の吐出量)はポンプ室の容積変化に依存するが、容量の増加を目的とした収容空間の大型化はベーンポンプ自体の大型化、ひいては車両等への搭載性の悪化に直結してしまう。
そこで、例えば特許文献2の図2に記載されたベーンポンプでは、カムリング内に楕円状をなす収容空間を画成し、その内部の楕円中心に円筒状のロータを配置することにより、ロータの両側に三日月状をなす一対のポンプ室を画成している。以下、この形式を平衡型と称する。このような平衡型のベーンポンプでは、ロータの回転に伴いベーンにより各ポンプ室で容積変化が生起され、これにより収容空間をそれほど大型化することなくポンプ容量の増加を達成している。
上記特許文献1の非平衡型のベーンポンプの収容空間が円筒状をなすのに対し、特許文献2の平衡型のベーンポンプの収容空間は楕円筒状をなしているため、微小間隙を介してロータの外周面と相対向する箇所の曲率が大きい。結果として平衡型のベーンポンプでは、ロータと収容空間との曲率に大きな格差が生じているため、ロータの両側で一対のポンプ室を区画している2箇所のシール長が非常に短く、言わば線接触に過ぎない。
そして、単一のシール箇所を有する非平衡型のベーンポンプでは、収容空間内へのロータの組付時に微小間隙を調整可能であるのに対し、2つのシール箇所を有する平衡型のベーンポンプでは、収容空間の短軸方向の内寸とロータの外径とにより2箇所の微小間隙が自ずと決定されてしまう。このため、収容空間内へのロータの組付時には、2つのシール箇所で均等な微小間隙が形成されるように入念に調整する必要があり、組付作業が非常に煩雑で生産性が悪いという問題があった。
また、収容空間の短軸方向の内寸とロータの外径とにより形成される2箇所の微小間隙は、ポンプ効率を向上させるには間隙をできる限り小さくすることが好ましいが、収容空間とロータのそれぞれの熱膨張、熱収縮による寸法変化があり、微小間隙を小さくすることに限界がある。その為、2箇所の微小間隙はある程度の間隙を設ける必要が生じるためポンプ効率の低下を招くという問題があった。
また、平衡型のベーンポンプでは2箇所のシール長が非常に短いため、それぞれの微小間隙を大きめに設定すると流体のリークによりポンプ効率が低下してしまう。逆に微小間隙を小さめに設定した場合には、組付時の調整が不十分であると片側の微小間隙が過小になるため、ロータの急激な摩耗によりベーンポンプの耐久性が低下してしまう。結果としてポンプ効率と耐久性とがトレードオフの関係になり、両者を高い次元で両立させることができなかった。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、ポンプ効率と耐久性とを高い次元で両立させた上で、組付時の微小間隙の調整を容易に実施可能として生産性を向上することができるベーンポンプを提供することにある。
上記の目的を達成するため、本発明のベーンポンプは、ポンプハウジングに設けた収容空間内に円筒状のロータを配設して、ロータの両側にポンプ室をそれぞれ画成すると共に、ポンプ室の並設方向と直交するロータの外周面の両側を収容空間の内周面にそれぞれ微小間隙を介して相対向させ、ロータの回転に伴いロータの外周面に出没可能に設けられたベーンの先端を収容空間の内周面に摺接させながら、各ポンプ室を容積変化させて流体を吸入・吐出するベーンポンプにおいて、収容空間の内周面には、ロータの外周面と対応する断面円弧状の一対のシール面が形成され、各シール面の領域でロータの外周面が微小間隙を介して相対向し、各シール面が、ポンプ室の並設方向において各ポンプ室の吐出側にそれぞれ偏った領域に形成されていることを特徴とする(請求項1)。
その他の態様として、収容空間が、ポンプ室の並設方向を長軸とし、並設方向と直交する方向を短軸とした楕円状またはトラック状をなすと共に、ロータの外径に比して短軸方向の内寸が短く設定され、各シール面が、長軸方向に2分された収容空間の領域を、それぞれが画成しているポンプ室の吸込側に向けて短軸方向の中心から互いに逆方向にオフセットさせることにより、各ポンプ室の吐出側にそれぞれ偏った領域に形成されていることが好ましい(請求項2)。
その他の態様として、各シール面が、各ポンプ室の吸込側で収容空間の内周面に対してロータの外周面が内接することにより、収容空間の長軸方向において中心から各ポンプ室の吐出側に偏った領域に形成されていることが好ましい(請求項3)。
その他の態様として、収容空間の内周面の各ポンプ室の吐出側に相当する領域と各シール面との境界に、それぞれ収容空間の外に中心を有する断面円弧状をなす緩衝面が形成されていることが好ましい(請求項4)。
本発明のベーンポンプによれば、ポンプ室の並設方向において、各シール面が各ポンプ室の吐出側にそれぞれ偏った領域に形成されている。このため、収容空間の内周面は、各ポンプ室の吐出側に相当する領域と各シール面との境界で起伏が不連続になっているものの、各シール面と各ポンプ室の吸込側に相当する領域との境界では、起伏がなだらかに連続しているか、或いは、起伏が多少不連続になるものの、反対側のポンプ室の吐出側で生じている内周面の起伏の不連続に比較すれば軽度なものとなる。
ベーンポンプの作動中において、ベーンが何れか一方のポンプ室の吐出側からシール面に移行する過程では、起伏が不連続であるためシール面からベーンが瞬間的に離間するが、各シール面とロータの外周面との間の微小間隙により流体の瞬間的なリークが防止される。また、その後にベーンがシール面から他方のポンプ室の吸込側に移行する過程では、起伏がなだらかに連続しているか或いは軽度の不連続に過ぎないため、ベーンの離間が防止されて流体の瞬間的なリークも防止される。
そして本発明では、各シール面の全領域でロータの外周面が微小間隙を介して相対向しているため、両ポンプ室を区画しているシール長が非常に長い。結果として、微小間隙を経た定常的な流体のリーク量が低減されると共に、微小間隙を多少大きめに設定しても良好なポンプ効率が維持されるため、ベーンポンプの組付時の微小間隙の調整が容易になる。また、仮に調整が不十分で片側の微小間隙が多少小さめになっても、ロータの急激な摩耗が回避される。
以上により本発明では、ポンプ効率と耐久性とを高い次元で両立させた上で、組付時の微小間隙の調整を容易に実施可能として生産性を向上することができる。
以上により本発明では、ポンプ効率と耐久性とを高い次元で両立させた上で、組付時の微小間隙の調整を容易に実施可能として生産性を向上することができる。
以下、本発明のベーンポンプをベーン式のバキュームポンプに具体化した一実施形態を説明する。
図1は本実施形態のバキュームポンプを示す斜視図、図2はバキュームポンプを示す分解斜視図、図3は収容空間内のロータ及びベーンを示す図1のIII-III線断面図、図4はロータとモータの出力軸との連結箇所を示す図3のIV-IV線断面図である。
図1は本実施形態のバキュームポンプを示す斜視図、図2はバキュームポンプを示す分解斜視図、図3は収容空間内のロータ及びベーンを示す図1のIII-III線断面図、図4はロータとモータの出力軸との連結箇所を示す図3のIV-IV線断面図である。
本実施形態のバキュームポンプ1は車両に搭載されており、流体として空気を吸入・吐出することにより負圧を発生させて車両のブレーキアシスト装置に供給する機能を奏する。各図では、車両に設置されたときの姿勢でバキュームポンプ1が示されており、以下の説明では、車両を主体として前後、左右、上下方向を表現する。
全体としてバキュームポンプ1はポンプハウジング2を中心として、その下側にモータ3を固定し、上側に消音ハウジング4を固定して構成されている。
ポンプハウジング2はアルミダイカスト成型により製作されて上下方向に延びる円筒状をなし、その外周壁5に対して内外二重の位置関係となるように内周壁6が形成されている。内周壁6の下部は底壁7が一体形成されて閉塞され、内周壁6の上方への開口部にはアッパープレート8がビス9により固定され、これらの内周壁6、底壁7及びアッパープレート8により収容空間10が画成されている。収容空間10は平面視において楕円状をなしているが、その形状は本発明の要旨に関わるため後に詳述する。
ポンプハウジング2の下面にはモータ3がビス12により固定され、モータ3内には上下方向に延びる軸線Lに沿って出力軸13が配設されて上下一対のベアリング14(図4に上側を示す)により回転可能に支持されている。モータ3の上部には出力軸13を中心としてボス部15が上方に向けて突設され、ポンプハウジング2の底壁7の下面には円筒状の筒部16が下方に向けて突設されている。筒部16はボス部15に対してOリング17を挟んで外嵌しており、これにより軸線L上でポンプハウジング2とモータ3とが位置決めされている。
モータ3の出力軸13はボス部15の軸孔15aから上方に突出し、ポンプハウジング2の筒部16内及び底壁7の軸孔7aを経て上部を収容空間10内の中心に位置させている。
収容空間10内には軸線Lを中心とした円筒状をなすロータ18が配設され、ロータ18には軸線Lに沿って下方より軸孔18aが穿設されて出力軸13の上部が挿入されている。軸孔18a内に配設された回止め部材19により出力軸13とロータ18との相対回転が規制されており、モータ3によりロータ18が図3に矢印で示す反時計回りに回転駆動されるようになっている。
ロータ18の下面は収容空間10の底壁7に対し微小間隙を介して相対向し、ロータ18の上面はアッパープレート8に対し微小間隙を介して相対向している。結果として収容空間10内のロータ18の前後両側には、平面視で三日月形状をなすポンプ室20がそれぞれ画成されている。
ロータ18の外周面の等分6箇所には、ロータ18の上下幅全体に亘ってベーン溝18bが凹設され、各ベーン溝18b内には、板状のベーン21がそれぞれ軸線Lを中心とした内外方向に出没可能に配設されている。各ベーン21の上下幅はロータ18の上下幅と略一致すると共に、その基端(内周端)に対して先端(外周端)をロータ18の回転方向に傾けた姿勢を採っている。
以下に述べるように、バキュームポンプ1の作動中にはロータ18及びベーン21が収容空間10内で無潤滑で摺接するため、これらのロータ18及びベーン21は自己潤滑性を有するカーボンにより製作されている。
ポンプハウジング2の上面には消音ハウジング4がビス22により固定され、図示はしないが消音ハウジング4内には、バキュームポンプ1から吐出される空気の脈動を緩和するための拡張室や共鳴室が形成されている。
図3に示すように、ポンプハウジング2の外周壁5の前側にはモータ3に給電するためのコネクタ24、及び図示しない空圧ホースを介してブレーキアシスト装置に接続されるニップル25が設けられている。図3に仮想線で示すように、アッパープレート8の下面には一対の吸入ポート26が凹設され、各吸入ポート26はそれぞれポンプ室20内に開口している。一方の吸入ポート26は、ポンプハウジング2に形成された第1吸入路27を介して上記ニップル25と連通すると共に、アッパープレート8の下面に収容空間10を取り囲むように凹設された環状の第2吸入路28を介して他方の吸入ポート26と連通している。
また、各ポンプ室20内には図示しない吐出ポートがそれぞれ開口し、これらの吐出ポートは吐出路29から消音ハウジング4内の拡張室及び共鳴室を介して外部と連通している。
従って、モータ3により収容空間10内でロータ18が回転駆動されると、各ベーン21は先端を収容空間10の内周面に摺接させながら、複数に区画したポンプ室20を次第に容積変化させる。これにより、ブレーキアシスト装置からの空気が空圧ホース及びニップル25及び第1吸入路27を経て一方の吸入ポート26から一方のポンプ室20内に吸入されると共に、第2吸入路28を経て他方の吸入ポート26から他方のポンプ室20内に吸入される。
各ポンプ室20内ではベーン21により空気が吸入ポート26側から吐出ポート側へと移送され、それぞれの吐出ポートから吐出路29を経て消音ハウジング4内に流入する。空気の脈動は拡張室及び共鳴室を流通する過程で緩和され、その後に空気が外部に吐出される。
ポンプハウジング2の内周壁6と外周壁5との間には環状の空間30が形成され、この環状空間30は、外周壁5の前後両側に形成されたスリット31を介してそれぞれ外部と連通している。図示はしないが、バキュームポンプ1の前方にはエンジン冷却用ファンが配設され、冷却風の一部がバキュームポンプ1に送られる。冷却風は前側のスリット31から環状空間30内に流入して左右に分岐し、内周壁6の左右両側を流通した後に合流して後側のスリット31から外部に排出される。この冷却風の流通により、バキュームポンプ1の温度上昇が抑制される。
一方、ポンプハウジング2の左右両側には緩衝部材32を備えた取付フランジ33が一体形成され、これらの取付フランジ33を介してバキュームポンプ1が車体に固定されるようになっている。
ところで、[発明が解決しようとする課題]で述べたように、本実施形態のバキュームポンプ1と同じくロータの両側に一対のポンプ室を画成した特許文献2の平衡型のベーンポンプでは、2つのシール箇所の微小間隙の調整が煩雑な上に、ポンプ効率と耐久性とを両立できないという問題があった。
以上の不具合を鑑みて本発明者は、全ての不具合が2箇所のシール長の短さに起因する点に着目した。即ち、シール長が長ければ、収容空間10の内周面とロータ18の外周面との微小間隙を多少大きめに設定しても、空気のリークによるポンプ効率の低下を防止できる。そして、微小間隙が大きめに設定されていれば、仮に組付時の調整が不十分で片側の微小間隙が多少小さめに調整されたとしても、ロータ18の急激な摩耗ひいてはポンプ耐久性の低下を抑制でき、必然的に微小間隙の調整が容易になることから生産性が向上する。
但し、平衡型のバキュームポンプ1においてシール長を延長するには、収容空間10の内周面にロータ18の外周面と対応する断面円弧状の領域を形成する必要がある。この断面円弧状の領域は収容空間10の内周面の一部に相当し、以下の説明ではシール面Aと称すると共に、元々の楕円状をなす内周面の領域を楕円面Bと称して区別する。シール面Aはロータ18の左右両側にそれぞれ形成され、ロータ18の外周面との間の微小間隙により前後のポンプ室20を区画している。しかし、各シール面Aの両端と楕円面Bとの境界では断面形状の急変により起伏が不連続になるため、摺接中のベーン21が起伏に追従できずに収容空間10の内周面(AまたはB)から離間する可能性がある。
即ち、バキュームポンプ1の作動中の各ベーン21は、ロータ18の回転に伴う遠心力及び外周方向への空圧(基端に作用する空圧-先端に作用する空圧)を受けることにより、その先端を収容空間10の内周面に摺接させながらベーン溝18b内で出没を繰り返している。しかし、ベーン21が各シール面Aの両端を通過する際には、起伏が不連続であるためベーン21の突出方向への加速度が急激になり、この加速度変化にベーン21を追従させるための遠心力及び空圧が不足する。
特に本実施形態のカーボン製のベーン21は元々軽量な上に、摩耗に伴って更に重量が軽減されるため、遠心力の不足を生じ易い。このため、摺接中のベーン21の先端が内周面から離間して、空気をリークさせてしまう。
なお、上記のような微小間隙を経た空気のリークが定常的なものであるのに対して、ベーン21の離間に起因する空気のリークはロータ18の回転に同期して瞬間的に発生する。
なお、上記のような微小間隙を経た空気のリークが定常的なものであるのに対して、ベーン21の離間に起因する空気のリークはロータ18の回転に同期して瞬間的に発生する。
以上のようなシール長を延長した場合の新たな不具合を鑑みて、本発明者は、収容空間10の内周面でのシール面Aの形成位置について考察した。
上記のようにベーン21の離間現象は、各シール面Aの両端でそれぞれ発生する。詳しくは、ベーン21の先端が何れか一方のポンプ室20の吐出側の楕円面Bからシール面Aへと移行する過程で発生し、続いて、シール面Aから他方のポンプ室20の吸込側の楕円面Bへと移行する過程で発生する。
上記のようにベーン21の離間現象は、各シール面Aの両端でそれぞれ発生する。詳しくは、ベーン21の先端が何れか一方のポンプ室20の吐出側の楕円面Bからシール面Aへと移行する過程で発生し、続いて、シール面Aから他方のポンプ室20の吸込側の楕円面Bへと移行する過程で発生する。
シール面Aでは微小間隙により左右のポンプ室20が区画されているため、仮にベーン21の離間が発生したとしても微小間隙によって空気のリークが防止される。しかし、ポンプ室20の吸込側でベーン21の離間が発生すると、微小間隙のような空気のリークを遮る要素がないことからリークに直結してしまう。結論として、ベーン21がポンプ室20の吐出側からシール面Aに移行する過程よりも、シール面Aからポンプ室20の吸込側に移行する過程で、よりベーン21の離間防止が要求されることが判る。
一方、上記説明では、各シール面Aの両端で収容空間10の内周面の起伏が不連続になるものとしたが、以下に述べるように、起伏が不連続になる箇所を各シール面Aの両端の何れか一方のみにとどめるような収容空間10の形状設定も可能である。そこで、相対的にベーン21の離間防止の優先度が低い側では起伏の不連続を容認し、ベーン21の離間防止の優先度が高い側で起伏の不連続を抑制するように、収容空間10の内周面の形状を設定したものが本発明であり、その具体例として、以下に第1~3実施形態を順次説明する。
[第1実施形態]
図5は第1実施形態の収容空間10の平面視の形状を示す模式図である。
基本的に本実施形態のバキュームポンプ1の収容空間10は、特許文献2のものと同じく平面視において楕円状をなしており、例えば、X軸及びY軸の平面上で次式(1)により表現される。
X2/A2+Y2/B2=1……(1)
ここに、A/Bは楕円の長径と短径の比率である。収容空間10の長軸は、本発明の「ポンプ室の並設方向」に相当し、収容空間10の短軸は、本発明の「並設方向と直交する方向」に相当する。
図5は第1実施形態の収容空間10の平面視の形状を示す模式図である。
基本的に本実施形態のバキュームポンプ1の収容空間10は、特許文献2のものと同じく平面視において楕円状をなしており、例えば、X軸及びY軸の平面上で次式(1)により表現される。
X2/A2+Y2/B2=1……(1)
ここに、A/Bは楕円の長径と短径の比率である。収容空間10の長軸は、本発明の「ポンプ室の並設方向」に相当し、収容空間10の短軸は、本発明の「並設方向と直交する方向」に相当する。
特許文献2の収容空間との相違点は、以下のとおりである。
本実施形態においては、ロータ18の外径に比して楕円状をなす収容空間10の短軸方向である左右方向の内寸が寸法Loffだけ短く設定されている。そして、中心(=軸線L)を境界として収容空間10は長軸方向である前後に2分され、これらの2分された半楕円状の領域は、それぞれが画成しているポンプ室20の吸込側に向けて収容空間10の短軸方向の中心から互いに逆方向に寸法Loff/2だけオフセットされている。より具体的には、図5中にL’で示した各領域の中心と収容空間10の中心との位置関係から判るように、収容空間10の前側の領域は右方に、後側の領域は左方にオフセットされている。
本実施形態においては、ロータ18の外径に比して楕円状をなす収容空間10の短軸方向である左右方向の内寸が寸法Loffだけ短く設定されている。そして、中心(=軸線L)を境界として収容空間10は長軸方向である前後に2分され、これらの2分された半楕円状の領域は、それぞれが画成しているポンプ室20の吸込側に向けて収容空間10の短軸方向の中心から互いに逆方向に寸法Loff/2だけオフセットされている。より具体的には、図5中にL’で示した各領域の中心と収容空間10の中心との位置関係から判るように、収容空間10の前側の領域は右方に、後側の領域は左方にオフセットされている。
結果として各ポンプ室20の吸込側では、収容空間10の内周面に対してロータ18の外周面が内接している。内接とは、内外の円弧同士が相互に接した関係を表し、内接位置を図5中にポイントaで示す。このため各シール面Aは、収容空間10の長軸方向において中心からポンプ室20の吐出側に偏った領域、即ち、図5中に示すポイントa-b間の領域で、それぞれロータ18の外周面と対応する断面円弧状をなして形成されている。また、収容空間10の内周面の各シール面A以外の領域、換言すると、前後のポンプ室20をそれぞれ画成している一対の領域が楕円面Bとなる。
このため収容空間10の内周面は、ポイントbで示す各ポンプ室20の吐出側に相当する楕円面Bと各シール面Aとの境界では起伏が不連続になっているものの、ポイントaで示す各シール面Aと各ポンプ室20の吸込側に相当する楕円面Bとの境界では起伏がなだらかに連続している。換言するとポイントaの境界は、特許文献2のベーンポンプのような単なる楕円形状の収容空間と近似した、なだらかな断面形状をなしている。
以上のように構成されたバキュームポンプ1の作動中において、ポイントbのベーン21の先端が何れか一方のポンプ室20の吐出側からシール面Aに移行する過程では、起伏が不連続であるためベーン21の先端がシール面Aから瞬間的に離間する。しかし、上記のように空気のリークは各シール面Aとロータ18の外周面との間の微小間隙によって防止される。
また、その後のポイントaで示すベーン21がシール面Aから他方のポンプ室20の吸込側に移行する過程では、シール面Aの曲率から楕円面Bの曲率へと起伏がなだらかに連続していることから、楕円面Bからのベーン21の離間が防止される。このため微小間隙のような空気のリークを遮る要素がなくても、各ポンプ室20内でのリークが防止される。
結果として、収容空間10の内周面に形成した断面円弧状のシール面Aに起因するベーン21の離間、ひいては、それに起因するロータ18の回転に同期した瞬間的な空気のリークを確実に防止することができる。
結果として、収容空間10の内周面に形成した断面円弧状のシール面Aに起因するベーン21の離間、ひいては、それに起因するロータ18の回転に同期した瞬間的な空気のリークを確実に防止することができる。
そして本実施形態では、各シール面Aの全領域でロータ18の外周面が微小間隙を介して相対向している。即ち、前後のポンプ室20を区画している前後方向のシール長として、シール面Aに相当する非常に長い領域が確保されており、特許文献2のベーンポンプの線接触に対して、言わば面接触と表現できる。従って、空気がリークする際には、シール長に相当する微小間隙の長い経路を通過する必要があるため、特許文献2のものに比較して微小間隙を経た定常的な空気のリーク量を格段に低減できる。
特に本実施形態では、収容空間10が画成されているアルミ製のポンプハウジング2とカーボン製のロータ18とで線膨張係数が大きく相違するため、高温時に微小間隙が拡大する傾向が顕著である。しかし、このようなバキュームポンプ1の仕様であっても、長いシール長の確保により空気のリークを低減できることから、上記したベーン21の離間防止の作用と相俟って、全体としての無駄な空気のリークを大幅に低減してポンプ効率を向上することができる。
加えて、以上の微小間隙を経た定常的な空気のリークに対して有利な特徴は、収容空間10のシール面Aとロータ18の外周面との微小間隙を多少大きめに設定しても良好なポンプ効率を維持できることを意味する。このため、バキュームポンプ1の組付の際に微小間隙の調整を容易に実施可能となり、その生産性を向上することができる。
また、微小間隙が大きめに設定されていれば、仮に組付時の調整が不十分で片側の微小間隙が多少小さめに調整されたとしても、ロータ18の急激な摩耗を回避できるため、バキュームポンプ1の耐久性を向上できるという別の利点も得られる。結果として本実施形態によれば、ポンプ効率と耐久性とを高い次元で両立させることができる。
一方、収容空間10の内周面に形成された一対のシール面Aは、バキュームポンプ1の組付の際にロータ18の位置を定め易くする作用も奏する。例えば特許文献2の楕円状の収容空間では、組付のために収容空間内にロータを配置したときに、収容空間の内周面はロータの前後方向の位置決めには何ら貢献しない。ロータの左右両側の微小間隙を微調整するには、ロータが収容空間内の前後方向の中心に位置している必要がある。このため特許文献2では、ロータを前後方向の中心位置に保ちながら、微小間隙を微調整することになり非常に煩雑な作業になる。
これに対して本実施形態の収容空間10は左右両側にシール面Aを備えているため、収容空間10内に配置されたロータ18は、左右両側のシール面Aにより前後方向への位置変位を規制されて自ずと中心位置に定められる。このため、ロータ18の前後方向の位置に注意を払うことなく微小間隙の微調整に専念でき、結果として上記した大きめの微小間隙の設定と相俟って、微小間隙の調整作業を一層容易に実施することができる。
ところで本実施形態は、ポイントbで示す各ポンプ室20の吐出側に相当する楕円面Bと各シール面Aとの境界では、ベーン21が離間しても微小間隙によって空気のリークが防止されるとの観点に基づき、起伏の不連続を容認した。
結果として図6の部分拡大図に示すように、ベーン21の先端がポンプ室20の吐出側に相当する楕円面Bからシール面Aへと移行する過程で、起伏の不連続によりシール面Aから離間する。無論、このとき空気のリークは微小間隙により防止されるが、ベーン21は離間直後にシール面Aに衝突して異音を発生させるため、ポンプ1の騒音低減の観点から、ポイントbでもベーン21の離間を防止することが望ましい。
そこで、本実施形態をベースとして、ポイントbでベーン21の離間を防止する対策を加えた第2実施形態を以下に述べる。
そこで、本実施形態をベースとして、ポイントbでベーン21の離間を防止する対策を加えた第2実施形態を以下に述べる。
[第2実施形態]
図7は第2実施形態の収容空間10の緩衝面の周辺を示す図6に対応する部分拡大図である。
本実施形態では、ポイントbで示す各ポンプ室20の吐出側に相当する楕円面Bと各シール面Aとの境界に、それぞれ緩衝面Cが形成されている。これらの緩衝面Cは、それぞれ収容空間10外に中心pを有する半径Rcの断面円弧状をなし、この緩衝面Cを介して円弧面Bとシール面Aとが接続されている。このような中心pの位置の設定により緩衝面Cは、円弧面Bやシール面Aの湾曲形状とは逆方向に湾曲している。具体的には、円弧面Bやシール面Aが収容空間10内から見て凹をなしているのに対し、緩衝面Cは収容空間10内から見て凸をなしている。
図7は第2実施形態の収容空間10の緩衝面の周辺を示す図6に対応する部分拡大図である。
本実施形態では、ポイントbで示す各ポンプ室20の吐出側に相当する楕円面Bと各シール面Aとの境界に、それぞれ緩衝面Cが形成されている。これらの緩衝面Cは、それぞれ収容空間10外に中心pを有する半径Rcの断面円弧状をなし、この緩衝面Cを介して円弧面Bとシール面Aとが接続されている。このような中心pの位置の設定により緩衝面Cは、円弧面Bやシール面Aの湾曲形状とは逆方向に湾曲している。具体的には、円弧面Bやシール面Aが収容空間10内から見て凹をなしているのに対し、緩衝面Cは収容空間10内から見て凸をなしている。
従って、バキュームポンプ1の作動中において、ベーン21の先端はポンプ室20の吐出側に相当する楕円面Bから緩衝面Cを経てシール面Aへと移行する。そして、先端を緩衝面Cに摺接させることにより、ベーン21は緩衝面Cの曲率に倣って突出方向への加速度を緩やかに増加させる。結果として、図6中のポイントbで楕円面Bからシール面Aへと直接的に移行した場合に生じる突出方向への加速度の急増が抑制され、ベーン21の先端がシール面Aから離間することなく摺接を維持する。このため、離間直後のベーン21がシール面Aに衝突して異音を発生させる現象が未然に回避される。
よって本実施形態によれば、第1実施形態と同様の作用効果を達成した上で、作動中のバキュームポンプ1の騒音を低減することができる。
よって本実施形態によれば、第1実施形態と同様の作用効果を達成した上で、作動中のバキュームポンプ1の騒音を低減することができる。
このような作用を奏する緩衝面Cの半径Rcは、以下の要件を満たすように設定される。
上記したように緩衝面Cを摺接中のベーン21の突出方向への加速度は、緩衝面Cの半径Rcで定まる曲率に依存する。一方で、緩衝面Cを摺接中のベーン21は、軸線Lを中心とした遠心力を受けると共に、外周方向への空圧を受けて外周側に付勢されている。この付勢力を上回る加速度でベーン21が突出方向に位置変位した場合に、緩衝面Cへの摺接が維持できずに先端の離間が生じる。
上記したように緩衝面Cを摺接中のベーン21の突出方向への加速度は、緩衝面Cの半径Rcで定まる曲率に依存する。一方で、緩衝面Cを摺接中のベーン21は、軸線Lを中心とした遠心力を受けると共に、外周方向への空圧を受けて外周側に付勢されている。この付勢力を上回る加速度でベーン21が突出方向に位置変位した場合に、緩衝面Cへの摺接が維持できずに先端の離間が生じる。
そこで、付勢力を受けたベーン21が緩衝面Cへの摺接を維持可能な最大限の加速度よりも若干小さな加速度で突出方向に位置変位するように、緩衝面Cの曲率ひいては半径Rcが定められている。このような緩衝面Cの半径Rcの設定により、上記瞬間的な空気のリークに関する作用効果が確実に得られる。
なお本実施形態では、単一の中心p及び半径Rcに基づき緩衝面Cを形成したが、これに限るものではない。例えば、中心及び半径が異なる複数の円弧を組み合わせて緩衝面Cの断面形状を形成してもよい。
なお本実施形態では、単一の中心p及び半径Rcに基づき緩衝面Cを形成したが、これに限るものではない。例えば、中心及び半径が異なる複数の円弧を組み合わせて緩衝面Cの断面形状を形成してもよい。
ところで、第1及び第2実施形態のバキュームポンプ1は、収容空間10を前後に2分して逆方向にオフセットさせるために、ロータ18の外径に比して収容空間10の短軸方向の内寸を寸法Loffだけ短く設定している。このため、例えば単なる楕円状をなす特許文献2の収容空間と比較した場合、収容空間10の前後及び左右寸法を同一に設定した条件では、本実施形態の収容空間10の容積が若干小さくなり、それに伴いポンプ容量も小さなものとなる。
そこで、第1実施形態をベースとして、ポンプ1を大型化することなくポンプ容量を増加する対策を加えた第3実施形態を以下に述べる。
そこで、第1実施形態をベースとして、ポンプ1を大型化することなくポンプ容量を増加する対策を加えた第3実施形態を以下に述べる。
[第3実施形態]
図8は第3実施形態の収容空間の平面視の形状を示す模式図である。
基本的に本実施形態のバキュームポンプ1の収容空間10は、平面視においてトラック状をなしている。本発明では、一定半径Rtを有する一対の半円の互いの端部を一対の直線で接続した形状をトラック状と定義する。収容空間10は上下方向に幅を有することから、本実施形態の収容空間10は、前後一対の円弧面Dの互いの端部を左右一対の平行面Eで接続してなる断面トラック状と表現できる。
図8は第3実施形態の収容空間の平面視の形状を示す模式図である。
基本的に本実施形態のバキュームポンプ1の収容空間10は、平面視においてトラック状をなしている。本発明では、一定半径Rtを有する一対の半円の互いの端部を一対の直線で接続した形状をトラック状と定義する。収容空間10は上下方向に幅を有することから、本実施形態の収容空間10は、前後一対の円弧面Dの互いの端部を左右一対の平行面Eで接続してなる断面トラック状と表現できる。
そして、第1実施形態と同様に、ロータ18の外径に比してトラック状をなす収容空間10の短軸方向である左右方向の内寸が寸法Loffだけ短く設定されている。中心(=軸線L)を境界として収容空間10は長軸方向である前後に2分され、これらの2分された半楕円状の領域は、それぞれが画成しているポンプ室20の吸込側に向けて収容空間10の短軸方向の中心から逆方向に寸法Loff/2だけオフセットされている。
結果として、各ポンプ室20の吸込側では、図8中にポイントaで示すように収容空間10の内周面に対してロータ18の外周面が内接し、各シール面Aは、収容空間10の長軸方向において中心からポンプ室20の吐出側に偏ったポイントa-b間の領域で、それぞれロータ18の外周面と対応する断面円弧状をなして形成されている。また、収容空間10の内周面の各シール面A以外の領域、換言すると、前後のポンプ室20をそれぞれ画成している一対の領域が円弧面Dとなる。
なお、この例では、ポンプ室20の吐出側において平行面Eの全ての領域がシール面Aに置き換えられているが、これに限るものではない。
なお、この例では、ポンプ室20の吐出側において平行面Eの全ての領域がシール面Aに置き換えられているが、これに限るものではない。
このため収容空間10の内周面は、ポイントbで示す各ポンプ室20の吐出側に相当する円弧面Dと各シール面Aとの境界で起伏が不連続になっているものの、ポイントaで示す各シール面Aと各ポンプ室20の吸込側に相当する円弧面Dとの境界では起伏がなだらかに連続している。
以上のように構成されたバキュームポンプ1による主たる作用効果は、第1実施形態で述べたものと同様である。即ち、バキュームポンプ1の作動中において、収容空間10の内周面からのベーン21の離間に起因する瞬間的な空気のリークを防止できると共に、収容空間10の内周面と各シール面Aとの間の長いシール長により、微小間隙を経た定常的な空気のリーク量を低減できる。結果として、ポンプ効率と耐久性とを高い次元で両立させた上で、組付時の微小間隙の調整を容易に実施可能として生産性を向上することができる。
そして、本実施形態と第1実施形態との収容空間10の形状を比較すると、第1実施形態の楕円状の特徴は、直線領域を備えない点、及び一定半径Rtの領域はなく、式(1)に基づくことで半径が定まっていない点である。これとは逆に本実施形態のトラック状の特徴は、直線領域を備える点、及び一定半径Rtの円弧領域を備える点である。
そして、このような相違に起因して、収容空間10の前後及び左右寸法を同一に設定した条件において、図8に実線で示す本実施形態のポンプ室20は、仮想線で示す第1実施形態のポンプ室20よりも4箇所のハッチング領域相当分だけ容積が増加している。また、オフセット無しの楕円状をなす特許文献2の収容空間と比較した場合でも、ほぼ同等のポンプ室20の容積が得られ、遜色無いポンプ容量を確保することができる。
結果として本実施形態のバキュームポンプ1によれば、大型化による車両への搭載性の悪化を未然に回避した上で、十分なポンプ容量を実現することができる。
なお、第2実施形態で説明した緩衝面Cを本実施形態の収容空間10に形成することもでき、その場合には第2実施形態と同じく騒音面に関する作用効果が得られる。
なお、第2実施形態で説明した緩衝面Cを本実施形態の収容空間10に形成することもでき、その場合には第2実施形態と同じく騒音面に関する作用効果が得られる。
以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記各実施形態では、流体として空気を吸入・吐出して負圧を発生させるバキュームポンプ1に適用したが、ベーンポンプの種類はこれに限るものではない。例えば、吐出した空気をアクチュエータに供給して作動させる空気ポンプとして具体化してもよいし、オイルや燃料等の液体を吸入・吐出するポンプとして具体化してもよい。
また上記各実施形態では、ポンプハウジング2をアルミダイカスト製とし、ロータ18及びベーン21をカーボン製としたが、それらの材料に限るものではない。ポンプハウジング2については熱伝導の良好な材料であれば良いため、例えばステンレス製或いは鉄製としてもよい。またロータ18及びベーン21については、必ずしも自己潤滑性を有する材料とする必要はなく、例えばオイルによる潤滑を前提としてアルミにより製作してもよいし、無潤滑の場合であってもカーボンに限る必要はなく、他の自己潤滑性を有する材料、例えば樹脂製としてもよい。
また上記各実施形態では、ポンプハウジング2の外周壁5、内周壁6及び底壁7を一体形成したが、これに限るものではなく、例えば内周壁6を別部材のカムリングとし、底壁7を別部材のロアプレートとし、これらをポンプハウジング2に対して組み付けるようにしてもよい。
また上記各実施形態では、収容空間10の長軸方向において中心からポンプ室20の吐出側に偏ったポイントa-b間の領域にシール面Aを形成したが、本発明はこれに限るものではない。例えば、図9に示すように、収容空間10の長軸方向においてシール面Aが中心(=軸線L)を超えて反対側のポンプ室20の吸込側まで延設されていたとしても、全体としてシール面Aがポンプ室20の吐出側に偏った領域に形成されていればよい。
この場合には、ポイントaで示すポンプ室20の吸込側で収容空間10の内周面の起伏が多少不連続になるものの、その不連続の程度は、ポイントbで示す反対側のポンプ室20の吐出側で生じている内周面の起伏に比較すれば軽度なものとなる。このため、ベーン21がシール面Aからポンプ室20の吸込側に移行した際に、上記実施形態と同様にベーン21の離間を防止できることから、このようなシール面Aも本発明は含むものとする。
また、上記第1及び第2実施形態では収容空間10を楕円状とし、第3実施形態では収容空間10をトラック状としたが、平面視での収容空間10の形状はこれらに限るものではなく、例えばオーバル状としてもよい。オーバル状とは、少なくとも1箇所に線対称な箇所を有する曲線で囲まれた環状と定義でき、楕円状及びトラック状を含む上位概念に相当する。このようなオーバル状の収容空間10の場合でも、上記各実施形態で述べた本発明の特徴部分に関わる各要件を適用することにより、それぞれに対応する作用効果を得ることができる。
1 バキュームポンプ(ベーンポンプ)
2 ポンプハウジング
10 収容空間
18 ロータ
20 ポンプ室
21 ベーン
A シール面
C 緩衝面
2 ポンプハウジング
10 収容空間
18 ロータ
20 ポンプ室
21 ベーン
A シール面
C 緩衝面
Claims (4)
- ポンプハウジングに設けた収容空間内に円筒状のロータを配設して、該ロータの両側にポンプ室をそれぞれ画成すると共に、前記ポンプ室の並設方向と直交する前記ロータの外周面の両側を前記収容空間の内周面にそれぞれ微小間隙を介して相対向させ、前記ロータの回転に伴い該ロータの外周面に出没可能に設けられたベーンの先端を前記収容空間の内周面に摺接させながら、前記各ポンプ室を容積変化させて流体を吸入・吐出するベーンポンプにおいて、
前記収容空間の内周面には、前記ロータの外周面と対応する断面円弧状の一対のシール面が形成され、各シール面の領域で前記ロータの外周面が前記微小間隙を介して相対向し、
前記各シール面は、前記ポンプ室の並設方向において各ポンプ室の吐出側にそれぞれ偏った領域に形成されている
ことを特徴とするベーンポンプ。 - 前記収容空間は、前記ポンプ室の並設方向を長軸とし、該並設方向と直交する方向を短軸とした楕円状またはトラック状をなすと共に、前記ロータの外径に比して前記短軸方向の内寸が短く設定され、
前記各シール面は、前記長軸方向に2分された前記収容空間の領域を、それぞれが画成しているポンプ室の吸込側に向けて前記短軸方向の中心から互いに逆方向にオフセットさせることにより、前記各ポンプ室の吐出側にそれぞれ偏った領域に形成されている
ことを特徴とする請求項1に記載のベーンポンプ。 - 前記各シール面は、前記各ポンプ室の吸込側で前記収容空間の内周面に対して前記ロータの外周面が内接することにより、前記収容空間の長軸方向において中心から前記各ポンプ室の吐出側に偏った領域に形成されている
ことを特徴とする請求項1または2に記載のベーンポンプ。 - 前記収容空間の内周面の前記各ポンプ室の吐出側に相当する領域と前記各シール面との境界に、それぞれ前記収容空間の外に中心を有する断面円弧状をなす緩衝面が形成されている
ことを特徴とする請求項1乃至3の何れか1項に記載のベーンポンプ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112017007487.8T DE112017007487B4 (de) | 2017-04-28 | 2017-04-28 | Flügelzellenpumpe |
JP2019515065A JP6916273B2 (ja) | 2017-04-28 | 2017-04-28 | ベーンポンプ |
CN201780090060.9A CN110573740B (zh) | 2017-04-28 | 2017-04-28 | 叶片泵 |
PCT/JP2017/017070 WO2018198366A1 (ja) | 2017-04-28 | 2017-04-28 | ベーンポンプ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/017070 WO2018198366A1 (ja) | 2017-04-28 | 2017-04-28 | ベーンポンプ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018198366A1 true WO2018198366A1 (ja) | 2018-11-01 |
Family
ID=63920218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/017070 WO2018198366A1 (ja) | 2017-04-28 | 2017-04-28 | ベーンポンプ |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6916273B2 (ja) |
CN (1) | CN110573740B (ja) |
DE (1) | DE112017007487B4 (ja) |
WO (1) | WO2018198366A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2831631A (en) * | 1953-07-27 | 1958-04-22 | Petersen Entpr | Rotary compressor |
US2990109A (en) * | 1959-01-21 | 1961-06-27 | Ingersoll Rand Co | Double acting rotary compressor |
JPS57146090A (en) * | 1981-03-06 | 1982-09-09 | Hitachi Ltd | Vane compressor |
JP2000199485A (ja) * | 1998-12-28 | 2000-07-18 | Kayaba Ind Co Ltd | ベ―ンポンプ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1409548A (en) * | 1920-10-20 | 1922-03-14 | Imhoff Floyd Nelson | Rotary pump |
ES272619A1 (es) * | 1961-01-23 | 1962-03-01 | Whirlpool Co | Un dispositivo compresor para fluidos |
JPS5898689A (ja) * | 1981-12-08 | 1983-06-11 | Howa Mach Ltd | ロ−タリ−コンプレツサ− |
JP4481090B2 (ja) | 2004-06-08 | 2010-06-16 | 東京計器株式会社 | ベーンポンプ |
JP5901189B2 (ja) | 2011-09-12 | 2016-04-06 | 株式会社ミクニ | ベーンポンプ |
WO2014132969A1 (ja) * | 2013-03-01 | 2014-09-04 | Horiuchi Masaharu | ベーン式回転装置 |
-
2017
- 2017-04-28 JP JP2019515065A patent/JP6916273B2/ja active Active
- 2017-04-28 WO PCT/JP2017/017070 patent/WO2018198366A1/ja active Application Filing
- 2017-04-28 DE DE112017007487.8T patent/DE112017007487B4/de active Active
- 2017-04-28 CN CN201780090060.9A patent/CN110573740B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2831631A (en) * | 1953-07-27 | 1958-04-22 | Petersen Entpr | Rotary compressor |
US2990109A (en) * | 1959-01-21 | 1961-06-27 | Ingersoll Rand Co | Double acting rotary compressor |
JPS57146090A (en) * | 1981-03-06 | 1982-09-09 | Hitachi Ltd | Vane compressor |
JP2000199485A (ja) * | 1998-12-28 | 2000-07-18 | Kayaba Ind Co Ltd | ベ―ンポンプ |
Also Published As
Publication number | Publication date |
---|---|
DE112017007487T5 (de) | 2020-01-09 |
JPWO2018198366A1 (ja) | 2020-03-26 |
CN110573740B (zh) | 2021-08-24 |
CN110573740A (zh) | 2019-12-13 |
JP6916273B2 (ja) | 2021-08-11 |
DE112017007487B4 (de) | 2024-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20140027144A (ko) | 회전식 엔진 회전자 | |
US11022118B2 (en) | Concentric vane compressor | |
US20160017885A1 (en) | Electric motor vehicle vacuum pump arrangement | |
JP5261390B2 (ja) | ベーンを備えたロータリー・ポンプ | |
JPWO2013105386A1 (ja) | ベーン型圧縮機 | |
US8690557B2 (en) | Variable displacement vane pump | |
JP6444166B2 (ja) | 可変容量ポンプ | |
WO2018198366A1 (ja) | ベーンポンプ | |
WO2018084105A1 (ja) | ベーンポンプ | |
KR101297743B1 (ko) | 드라이 펌프 | |
JP2014173588A (ja) | 可変容量型ベーンポンプ | |
WO2018198369A1 (ja) | ベーンポンプ | |
WO2018198370A1 (ja) | ベーンポンプ | |
CN109923282B (zh) | 旋转活塞和缸体装置 | |
JP4927750B2 (ja) | 油吐出用の可変吐出量羽根式ポンプ | |
US10662944B2 (en) | Vane pump device having multiple discharge pressures | |
US11149730B2 (en) | Vane pump driven by an engine of an automobile | |
KR960010645B1 (ko) | 사판식 압축기 | |
US7097437B2 (en) | Rotary fluid machine | |
JP2006200506A (ja) | ベーン式真空ポンプ | |
KR100779067B1 (ko) | 가변용량형 사판식 압축기 | |
JP2016079824A (ja) | バキュームポンプ | |
WO2019049660A1 (ja) | ポンプ装置 | |
JPS59215987A (ja) | 回転圧縮機 | |
JP2019218939A (ja) | ベーンポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907248 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019515065 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907248 Country of ref document: EP Kind code of ref document: A1 |