WO2018196734A1 - 测试数据处理装置、测试数据处理方法和测试设备 - Google Patents

测试数据处理装置、测试数据处理方法和测试设备 Download PDF

Info

Publication number
WO2018196734A1
WO2018196734A1 PCT/CN2018/084212 CN2018084212W WO2018196734A1 WO 2018196734 A1 WO2018196734 A1 WO 2018196734A1 CN 2018084212 W CN2018084212 W CN 2018084212W WO 2018196734 A1 WO2018196734 A1 WO 2018196734A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
image
display
data processing
camera module
Prior art date
Application number
PCT/CN2018/084212
Other languages
English (en)
French (fr)
Inventor
王明珠
王斌
高权
芦炎德
姚立锋
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP18789780.6A priority Critical patent/EP3618432A4/en
Priority to KR1020197032157A priority patent/KR102290098B1/ko
Publication of WO2018196734A1 publication Critical patent/WO2018196734A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • H04L43/045Processing captured monitoring data, e.g. for logfile generation for graphical visualisation of monitoring data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof

Definitions

  • FIG. 1 shows an outline view of a conventional camera module assembly panel. As shown in FIG. 1, a plurality of identical single printed circuit boards b are mounted on the puzzle board e, and one lens is mounted on each of the printed circuit boards b, so that batch assembly of the camera modules can be realized.
  • An object of the present invention is to provide a test data processing device, a test data processing method, and a test device, which can be realized by collecting test image data of a plurality of camera modules in a test panel by an image acquisition subunit arranged in a matrix form. Acquisition and processing of image data generated by batch testing of multiple camera modules.
  • An object of the present invention is to provide a test data processing device, a test data processing method, and a test device, which can generate a 64-bit ID key of an image acquisition sub-unit by using an FPGA initialization sequence number and a chip serial number of the camera module.
  • the image acquisition sub-unit performs binding, thereby realizing the uniqueness of the position index of the corresponding multiple image acquisition sub-units on the same display interface, and ensuring the uniqueness of the position of each video stream channel.
  • the first identification information is an FPGA initialization sequence number and a chip serial number of the camera module
  • the second identification information is a 64-bit ID key.
  • a test data processing method for processing a plurality of camera modules obtained by testing a plurality of camera modules arranged in a matrix form included in a test panel.
  • Image data the test data processing method includes: collecting test image data of each of the plurality of camera modules, wherein the test is collected by using a plurality of image acquisition subunits arranged in a matrix form Image data; receiving test image data from the plurality of image acquisition subunits by multi-channel video streaming and converting to display data suitable for display, wherein each video stream channel is used to transmit an image acquisition sub-unit acquisition Test image data; and displaying an image based on the display data on a display interface, wherein a plurality of sub-display interfaces arranged in a matrix form are displayed on the display interface.
  • the first identification information is an FPGA initialization sequence number and a chip serial number of the camera module
  • the second identification information is a 64-bit ID key.
  • test data processing method further comprising: a step of selectively performing reception and conversion of test image data and a display step of displaying an image based on the data based on a predetermined operation mode.
  • the method further includes: displaying the plurality of sub display interfaces whose contents are empty without performing the step of receiving and converting the test image data.
  • the method further includes: displaying, in the case of performing the step of receiving and converting the test image data, an image on which the corresponding camera module images the test object on the plurality of sub-display interfaces.
  • the method further includes: transmitting a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receiving a response signal responsive to the detection signal; and, at a predetermined time In the case where the response signal corresponding to the specific image acquisition subunit is not received, the processing of determining the test image data of the camera module corresponding to the specific image acquisition subunit fails.
  • each of the plurality of image acquisition subunits has second identification information generated based on the first identification information of the camera module, such that the plurality of image acquisition subunits are at least partially Corresponding to the plurality of camera modules.
  • the first identification information is an FPGA initialization sequence number and a chip serial number of the camera module
  • the second identification information is a 64-bit ID key.
  • the test data processing apparatus further includes a mode switching unit for selectively turning on or off the image conversion unit and the image display unit based on a predetermined operation mode.
  • the image display unit displays the plurality of sub display interfaces whose contents are empty.
  • the test data processing apparatus further includes: an error detecting unit, configured to send a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receive the response in response to the detecting a response signal of the signal; wherein, when the error detecting unit fails to receive the response signal corresponding to the specific image capturing subunit within a predetermined time, determining test image data of the camera module corresponding to the specific image capturing subunit Processing failed.
  • an error detecting unit configured to send a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receive the response in response to the detecting a response signal of the signal; wherein, when the error detecting unit fails to receive the response signal corresponding to the specific image capturing subunit within a predetermined time, determining test image data of the camera module corresponding to the specific image capturing subunit Processing failed.
  • Figure 1 shows an outline view of a conventional camera module assembly panel
  • FIG. 2 is a schematic overall view showing a test panel according to an embodiment of the present invention.
  • FIG. 8 is a schematic overall view of a media module connected to a camera module according to an embodiment of the invention.
  • FIG. 11 is a schematic diagram of a display interface of test data according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a monitoring process of test data processing according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a test data processing method according to an embodiment of the present invention.
  • Figure 14 is a schematic block diagram of a test apparatus in accordance with an embodiment of the present invention.
  • 15 is a schematic diagram of testing a camera module disposed on a test panel according to an embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • the connection between the media module 20 and the camera module 30 is one-to-one. That is to say, the camera module 30 can complete all test operations through the media module 20 without having to repeatedly access and extract with respect to the media module 20.
  • the camera module 30 to be tested is connected and fixed to the media module 20 before starting the test operation.
  • the media module 20 will carry the camera module 30 for all tests.
  • the media module 20 will always be connected to the camera module 30 regardless of whether the camera module 30 passes the test. That is to say, the media module 20 can also assist the camera module 30 in performing the corresponding operation without passing the test for the camera module 30 that has not passed the test.
  • the media module 20 will also accompany the camera module 30 to complete other tests.
  • the camera module 30 can avoid repeated access and extraction during all tests, including the flow process, reducing the adverse effects of the test on the camera module 30, and reducing the test site of each camera module 30. It takes time to improve the overall efficiency of the test.
  • the media module 20 can simultaneously provide a stable connection of the camera module 30 to the structure and circuitry.
  • the media module 20 provides a circuit expansion of the camera module 30 for testing requirements, and indirectly causes the camera module 30 to perform various performance tests.
  • the camera module 30 can be given a certain protection by the media module 20, so that the camera module 30 can complete all test operations by the media module 20.
  • the camera module 30 can be detached from the media module 20 when needed. For example, after a certain test fails or the entire test is completed, the camera module 30 can be detached from the media module 20 after testing, and then the camera module 30 completes the test.
  • the media module 20 can be adapted to different types of camera modules 30.
  • the media module 20 is less expensive and does not require complicated processes.
  • the media module 20 can repeatedly accompany the camera module 30 for testing, thereby reducing the testing cost.
  • the media module 20 has a high degree of matching for different test items, and the media module 20 can participate in different test items.
  • the media module 20 can carry different types of camera modules 30 for testing. Therefore, for the testing process of the same camera module 30, the camera module 30 and the media module 20 correspond to each other and need not be replaced.
  • the media module 20 can be adapted, and the media module 20 can carry different camera modules 30 for testing.
  • the media module 20 has extremely high adaptability to the test equipment, and can ensure that the camera module 30 can effectively complete the test operation.
  • the media module 20 may be removed from the panel 10 or may be relocated to the panel 10. That is, the media module 20 is detachable relative to the board 10 during the overall testing process.
  • the media module 20 carries the camera module 10 and is removably disposed on the board 10 according to different needs.
  • the camera module 30 is not required to be removed, and the camera module 30 is operated by the media module 20 to provide certain protection to the camera module 30.
  • the media module 20 is preferably fabricated from a rigid material suitable for manipulation of the media module 20 using mechanical means. For example, after performing a performance test, the camera module 30 carried by one of the four media modules 20 fails to pass the test, and the corresponding media module 20 is removed, and the failed camera module 30 is removed.
  • the camera module 10 when the camera module 30 that needs to pass the test is disposed on the board body 10, the camera module 10 is placed on the board body 10 by placing the medium module 20 on the board body 10.
  • the board 10 also provides for the identification, positioning, etc. of any of the media modules 20. Therefore, the media modules 20 are in the same test environment as each other, and any of the media modules 20 can be operated separately. With the array arrangement, the media modules 20 in the board 10 can be conveniently located and positioned.
  • the media module 20 has a one-to-one correspondence with the camera module 30 during the testing process.
  • the position of the media module 20 in the board 10 is different, and the board 10 can ensure that each media module 20 is at the same height or in the same time dimension. That is to say, the camera module 30 can be operated in batches by the media module 20 and the board 10.
  • the media module 20 and the board 10 can ensure the consistency and effectiveness of each camera module 30 test.
  • direct operation of the media module 20 does not adversely affect the camera module 30.
  • the camera module 30 can be tested more efficiently.
  • both the media module 20 and the plate 10 can free up productivity and reduce production costs.
  • each camera module 30 can be consistent with the media module 20 in height, and each media module 20 is consistent with the height of the board 10, so that each camera module 30 has the same height during testing.
  • the position of each camera module 30 relative to the media module 20 is determined, and the position of the media module 20 relative to the board 10 is determined such that the camera module 30 is determined relative to the position under test.
  • the board 10 of the test panel specifically includes a support board 11 which is provided with a media module 20 so that the media module 20 can be fixed in the board 10 in a certain arrangement and passed through the test board 10 to the medium.
  • Module 20 operates.
  • the support plate 11 of the board 10 is detachably coupled to the media module 20 such that the media module 20 placed in the board 10 can be in a consistent test environment.
  • each media module 20 is detachably coupled to the support plate 11 such that the media module 20 is placed or removed as needed.
  • the media module 20 is preferably snapped to the support plate 11.
  • the media module 20 is preferably adapted to be adhered to the support plate 11 by the mother.
  • the plate body 10 according to the embodiment of the present invention may not include the above-mentioned cover plate 12.
  • the plate body 10 according to an embodiment of the present invention may include only a single support plate 11.
  • the cable can be used to transfer the circuit of the camera module to access the test equipment.
  • FIG. 4 is a schematic structural view of a support plate of the above test panel according to an embodiment of the present invention.
  • Figure 5 is a top plan view of a media module disposed on a support plate in accordance with an embodiment of the present invention.
  • Figure 6 is a bottom plan view of a media module disposed on a support plate in accordance with an embodiment of the present invention.
  • the media module 20 is disposed in the 2 ⁇ 2 array form on the support plate 11 of the board 10 of the test panel. Each media module 20 is placed in a certain determined position.
  • the support plate 11 provides at least one test bit 111, and the test block 111 correspondingly houses the media module 20, and then the camera module 30 carried by the media module 20 is placed at a certain position.
  • the support plate 11 of the test panel has four test bits 111, and correspondingly four media modules 20 can be placed.
  • the test bit 111 further includes a test interface portion 1111, an identification portion 1112, a positioning portion 1113, and a placement portion 1114. It is worth mentioning that the structure of the test bit 111 corresponds to the structure of the media module 20.
  • the interface 1111 is an interface through hole provided for the media module 20, and the identification portion 1112 is a through hole for identifying the identity of the camera module 30 carried by the media module 20, and the positioning portion 1113 is opposite.
  • the placement portion 1114 is a placement position of the camera module 30 corresponding to the media module 20.
  • the structure of each test bit 111 is consistent, which facilitates the adaptive placement of the media module 20.
  • the test interface portion 1111 is two symmetric through holes in the embodiment of the present invention, and the test interface portion 1111 allows the interface of the test device to be connected to the media module 20.
  • the identification unit 1112 is a position corresponding to the camera module 30 that is carried.
  • the identification unit 1112 is a through hole that can identify the identity of the camera module 30.
  • the identity of the camera module 30 can be identified by the recognition unit 1112.
  • the shape and form of the recognition unit 1112 can be adjusted according to the recognition mode of the camera module 30. For example, when the identification code is required to be scanned, the recognition unit 1112 is a through hole for passing light, and when it is necessary to identify the RFID information, the identification unit 1112 may be the identified corresponding position.
  • the support plate 11 of the test panel has at least one target positioning 112, and the target position 112 is located at the central axis of the support plate 11.
  • the target position 112 provides a calibration of the position of the support plate 11, that is, the specific position of the support plate 11 can be determined based on the target position 112.
  • the cover plate 12 also has a target position 122 corresponding to the support plate 11, that is, the overall position of the plate body 10 can be determined by the mutual calibration of the support plate 11 and the target position 122 of the cover plate 12. It is determined.
  • the cover 12 further provides at least one light passing opening 120 to provide a light-passing condition for testing of the camera module 30. It can be understood by those skilled in the art that the light-passing port 120 may be in one-to-one correspondence with the camera module 30, or may be provided in a one-to-many opening, and does not affect the technical features of the present invention.
  • the cover plate 12 covers and fixes the media module 20 to the support board 11.
  • a snap-fit assembly (not shown) snaps the cover 12 and the support plate 11 together, thereby fixing the position of each of the media modules 20.
  • the board 10 can stably fix each of the media modules 20, and the camera module 30 carried by each media module 20 is in the same test environment. It is worth mentioning that the position of the media module 20 between the plates 10 is relatively determined for each of the plates 10 used in the test.
  • the camera module 30 of the media module 20 can find the media module 20 of the board 10 by looking for the board 10.
  • FIG. 7 is an overall schematic diagram of the above media module according to an embodiment of the invention.
  • FIG. 8 is an overall schematic diagram of a media module connected to a camera module according to an embodiment of the invention.
  • FIG. 9 is another overall schematic diagram of a media module connected to a camera module according to an embodiment of the invention.
  • the media module 20 specifically includes a substrate 21 and an expansion circuit 22, and the expansion circuit 22 is embedded in the substrate 21, and the substrate 21 is preferably integrally formed.
  • the media module 20 is adapted to be coupled to the camera module 30.
  • the camera module 30 is connected to the test device via the media module 20 and is protected by the media module 20.
  • the substrate 21 further includes a fixing position 211 adapted to connect and fix the camera module 30. More specifically, the fixed position 211 provides a lens slot 2111 for placing the lens 31 of the camera module 30.
  • the fixed position 211 of the substrate 21 further includes a socket 2112 that can be closely connected to the plug 32 of the camera module 30. The camera module 30 can be stably fixed to the substrate 21 through the connection of the lens slot 2111 and the socket 2112.
  • the fixed position 211 has adaptability and can be placed and connected to different types of camera modules 30.
  • the camera module 30 is a single-lens camera module, and the lens slot 2111 allows the lens 31 of the camera module 30 to be completely placed.
  • the socket 2112 is also adapted to the plug 32 of the camera module 30. That is, in order to accommodate the camera module 30, the structure of the fixed bit 211 is set accordingly.
  • the fixed bit 211 not only connects the camera module 30 to the substrate 21 but also ensures that the camera module 30 always operates through the media module 20 during the testing process and in the flow.
  • each of the media modules 20 will correspond to the camera module 30 during the testing process and the flow, and the fixed bit 211 can provide stability of the camera module 30 in terms of structure and circuit connection.
  • the socket 2112 of the fixed position 211 is in the form of a connector, so that the camera module 30 is not easily dropped during operation. That is to say, by fixing the fixed bit 211, the camera module 30 will maintain a stable connection relationship with respect to the media module 20.
  • test interface 222 provides the corresponding access port of the test device to test the camera module 30 carried by the media module 20.
  • the test interface 222 is preferably disposed in the form of electrical contacts on the surface of the substrate 21 for electrically connecting the probes of the test equipment by contact. More preferably, the test interface 222 in the embodiment of the present invention adopts a distributed arrangement, so that the test interface 222 can be contacted more stably and accurately.
  • the test interface 222 is preferably symmetrically arranged on the surface of the substrate 21 in two parts. In other feasible modes, the test interface 222 may be a one-piece layout.
  • the test interface 222 is used in the embodiment of the present invention. The layout is not limited.
  • the substrate 21 of the media module 20 further includes at least one positioning member 213 which is disposed corresponding to the positioning portion 1113 of the test position 111 of the support plate 11 of the board body 10. That is to say, the positioning members 213 of the media module 20 and the positioning portions 1113 of the board body 10 are disposed corresponding to each other such that the relative positions of the media module 20 and the board body 10 are determined.
  • the media module 20 is square, and the positioning component 213 is a positioning hole in a diagonal direction with respect to the media module 20.
  • the positioning member 213 may specifically be a magnetic sheet, a snap pile or the like.
  • the positioning member 213 and the positioning portion 1113 are disposed corresponding to each other, that is, the positioning member 213 and the positioning portion 1113 are in pairs.
  • the media module 20 and the test position 111 of the board 10 are mutually determined.
  • the media module 20 is positioned with the board body 10.
  • the board 10 can be positioned by the marker bit 112, the relative position of the camera module 30 during the testing process can be determined. It can be understood that the positioning information of the media module 20 at the position of the board 10 of the camera module 30 is very important for the entire batch test.
  • a plurality of camera modules can be tested simultaneously.
  • the camera module obtains test data by imaging a test object, such as a standard.
  • a test object such as a standard.
  • the above test panel including a plurality of camera modules can perform batch test on the camera module, and each camera module generates image data for testing. Therefore, how to process the image data, such as collecting and displaying. The problem that needs to be solved.
  • FIG. 10 is a schematic block diagram of a test data processing apparatus in accordance with an embodiment of the present invention.
  • the test data processing apparatus 300 according to an embodiment of the present invention is configured to process a test of a plurality of camera modules obtained by testing a plurality of camera modules arranged in a matrix form included in a test panel. Image data.
  • the test data processing apparatus corresponding to a test panel including a plurality of camera modules in a matrix form, the test data processing apparatus also includes a plurality of image collections arranged in a matrix form.
  • the unit wherein each image acquisition subunit corresponds to a camera module, and images are acquired from the corresponding camera module during the test.
  • the number of image collection subunits in the test data processing apparatus may be the same as the number of camera modules included in the test panel, or may be smaller than the number included in the test panel.
  • the number of camera modules is, for example, half the number of camera modules included in the test panel.
  • batches of the plurality of camera modules can be realized by collecting image data of the plurality of camera modules in the test panel by the image acquisition subunits arranged in a matrix form. The acquisition and processing of image data produced by the test.
  • the test image data of the plurality of camera modules collected by the image acquisition subunit is transmitted to the image conversion unit through the multi-channel video stream transmission method, and is replaced by the image conversion unit.
  • the test image data of each channel is converted into display data suitable for display.
  • the image display unit displays an image based on the display data on the display interface
  • the test image data of the plurality of camera modules can be displayed on the same display interface in a plurality of sub-display interfaces according to the multi-channel display data.
  • the image displayed on each sub-display interface may correspond to the test image data collected by one sub-image acquisition unit, and further corresponds to one camera module on the test panel. Therefore, the test data processing apparatus according to an embodiment of the present invention can realize display of image test data that intuitively corresponds to a plurality of camera modules on the test panel.
  • the embodiment of the present invention actually provides a design scheme for dragging multiple image acquisition devices by a single computer.
  • it can support one computer to drag eight image acquisition devices, and for example, interlaced scanning can simultaneously simultaneously simultaneously
  • a camera module performs video image acquisition and display.
  • the original computer only corresponds to one image acquisition device, reduce the number of computers, reduce the labor input of the production line, reduce the space of the whole equipment, and increase the output of the single device.
  • test data processing apparatus may be performed by modifying an existing test equipment.
  • the underlying image acquisition tooling module of the existing test device may be packaged by using component technology, and the uniqueness of the FPGA and the chip factory code setting of the tested camera module is used to generate a 64-bit tooling ID key. Register binding to the tooling. In this way, the uniqueness of the position index of one computer corresponding to multiple toolings is realized, and the uniqueness of the position of each video stream channel is guaranteed.
  • the embodiment of the present invention is not limited to using the FPGA initialization serial number and the chip serial number of the camera module, nor is it limited to generating a 64-bit tooling ID key, as long as each image acquisition subunit is
  • the identification information may be in one-to-one correspondence with the identification information of each camera module.
  • each of the plurality of image acquisition subunits has second identification information generated based on the first identification information of the camera module, such that the plurality of image acquisition subunits At least partially corresponding to the plurality of camera modules.
  • the first identification information is an FPGA initialization sequence number and a chip serial number of the camera module
  • the second identification information is a 64-bit ID key.
  • test image data acquired by testing the plurality of camera modules included in the test panel is collected and processed, and as described above, each test is not lowered.
  • the resolution of the image data therefore places higher demands on the performance of the test data processing device.
  • the test data processing apparatus according to an embodiment of the present invention is implemented as a server-client architecture, there are high demands on the CPU performance of the server and the client.
  • the multi-mode mode is preferably employed.
  • the production line mode only video capture is supported, and processing and display are not performed.
  • image processing conversion and display are performed to reduce the load on the CPU. In this way, the efficiency of the multi-channel video stream algorithm operation can also be improved.
  • the engineer mode the real-time processing thread and display thread module of the image can be opened, so that the engineer can check the test image data, thereby positioning, aligning, module imaging, and equipment for the production line of the test equipment. Troubleshoot and analyze.
  • FIG. 11 is a schematic diagram of a display interface of test data in accordance with an embodiment of the present invention.
  • FIG. 11 when in the production line mode, only video stream data is collected without processing and display, thereby reducing CPU load.
  • the image conversion unit and the image display unit when in the line mode, can be directly turned off.
  • the test image data is collected, processed, and displayed, so that the test image obtained by testing the camera module can be seen on the display interface.
  • a mode switching unit for selectively turning on or off the image conversion unit and the image display unit based on a predetermined operation mode.
  • the image display unit displays the plurality of sub display interfaces whose contents are empty.
  • the image display unit displays an image of the corresponding camera module on the test object on the plurality of sub display interfaces.
  • test data processing apparatus can switch the working mode by the mode switching unit, so that the multi-mode client design can be realized, the production efficiency is improved, and the CPU usage rate is reduced.
  • test data processing apparatus switches the working mode by the mode switching unit to display different contents on the display interface, and can adapt to the dual mode of production line production and engineer debugging, wherein the production line production mode only provides the acquisition module. , cancel the display thread, process the thread, reduce the CPU load, and the engineer mode starts the acquisition, processing, display thread for the alignment mark, module imaging inspection, problem analysis and so on.
  • test data processing apparatus since the test data processing apparatus according to the embodiment of the present invention has high requirements on device performance, for example, when the server-client architecture is employed, the CPU performance for the server and the client is high. Claim. In this case, especially for clients with low CPU performance, it is very likely that a system crash will occur due to insufficient performance. Therefore, a solution to this problem is needed.
  • FIG. 12 is a schematic diagram of a monitoring process of test data processing according to an embodiment of the present invention.
  • the heartbeat command is registered by the servo server, and the heartbeat command is periodically sent to the client process.
  • the client sends a heartbeat feedback command in real time after receiving the heartbeat, so that the server can monitor the data processing and display process of the client.
  • the server sends a client timeout command to the main control software to notify the client that the process is abnormal and needs to restart the client process.
  • the main control software closes the crashed client software and restarts the client. Therefore, in the test data processing apparatus according to the embodiment of the present invention, the client is dynamically managed by the server, and the client process is abnormally crashed and started.
  • the test image data of the plurality of camera modules is collected by the plurality of image acquisition subunits, and is performed by multi-channel video stream transmission.
  • Data processing and display therefore, even if the image display unit is not an overall error, but an image acquisition sub-unit, or an error occurs in a certain video streaming channel, it can be determined by the state of the response signal. Therefore, in the test data processing apparatus according to the embodiment of the present invention, preferably, if there is a problem in the processing and display of only one test image data, it is not necessary to restart the entire data processing system, but only the image of the test is required to be restarted. The data processing part associated with the data is sufficient, which obviously helps to improve the efficiency of data processing.
  • the method further includes: an error detecting unit configured to transmit a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receive a response signal responsive to the detection signal
  • an error detecting unit configured to transmit a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receive a response signal responsive to the detection signal
  • test data processing apparatus can realize the collection and display of image data of the batch test of the camera module, thereby reducing personnel input, reducing equipment space, and improving production efficiency.
  • a test data processing method for processing a plurality of camera modules obtained by testing a plurality of camera modules arranged in a matrix form included in a test panel.
  • Test image data includes: collecting test image data of each of the plurality of camera modules, wherein the test image is acquired by using a plurality of image acquisition subunits arranged in a matrix form Data; receiving test image data from the plurality of image acquisition subunits through multi-channel video streaming and converting to display data suitable for display, wherein each video stream channel is used to transmit a test for image acquisition sub-unit acquisition Image data; and displaying an image based on the display data on the display interface, wherein a plurality of sub-display interfaces arranged in a matrix form are displayed on the display interface.
  • FIG. 13 is a schematic flowchart of a test data processing method according to an embodiment of the present invention.
  • a test data processing method according to an embodiment of the present invention is configured to process test images of a plurality of camera modules obtained by testing a plurality of camera modules arranged in a matrix form included in a test panel.
  • S101 collecting test image data of each of the plurality of camera modules, wherein the test image data is collected by using a plurality of image collection subunits arranged in a matrix form
  • S102 Multi-channel video streaming receives test image data from the plurality of image acquisition sub-units and converts them into display data suitable for display, wherein each video stream channel is used to transmit test image data acquired by one image acquisition sub-unit
  • S103 displaying an image based on the display data on the display interface, wherein a plurality of sub-display interfaces arranged in a matrix form are displayed on the display interface.
  • each of the plurality of image acquisition subunits has second identification information generated based on the first identification information of the camera module, so that the plurality of image acquisition subunits are at least partially The ground corresponds to the plurality of camera modules.
  • the first identification information is an FPGA initialization sequence number and a chip serial number of the camera module
  • the second identification information is a 64-bit ID key.
  • test data processing method further comprising: a step of selectively performing reception and conversion of test image data and a display step of displaying an image based on the data based on a predetermined operation mode.
  • the method further includes: displaying a image imaged by the corresponding camera module on the test object on the plurality of sub display interfaces in the case of performing the step of receiving and converting the test image data.
  • the method further includes: transmitting a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receiving a response signal in response to the detection signal; and, not within a predetermined time In the case where the response signal corresponding to the specific image acquisition subunit can be received, the processing of determining the test image data of the camera module corresponding to the specific image acquisition subunit fails.
  • test data processing method according to the embodiment of the present invention is completely the same as the corresponding details previously described in the test data processing apparatus according to the embodiment of the present invention, and therefore, in order to avoid redundancy, Let me repeat.
  • test data processing apparatus and the test data processing method according to the embodiments of the present invention do not necessarily correspond to the foregoing test panel structure shown in FIG. 2 to FIG.
  • the simultaneous testing of the plurality of camera modules by the board is applicable to the test data processing apparatus and the test data processing method according to the embodiment of the present invention.
  • the simultaneous testing of the plurality of camera modules is not limited to the simultaneous testing of all the camera modules on the entire test panel, or may be the simultaneous testing of some of the camera modules on the entire test panel.
  • the simultaneous testing is not limited to testing a plurality of camera modules at the same time.
  • the plurality of camera modules may be sequentially tested according to the order of the light source scanning, and corresponding test results are obtained, and the present invention is implemented. The example also includes this case.
  • a test apparatus including test data processing apparatus for processing a plurality of cameras arranged in a matrix form included in a test panel
  • the test image data of the plurality of camera modules obtained by the module is tested, and includes: an image acquisition unit, configured to collect test image data of each camera module, wherein the image acquisition unit comprises a plurality of matrix arrangement An image capturing subunit; an image converting unit, configured to receive test image data from the plurality of image capturing subunits through multichannel video streaming, and convert the data into display data suitable for display, wherein each video stream channel is used And transmitting an image based on the display data on the display interface, wherein the image display unit is displayed in a matrix form on the display interface. Multiple sub-display interfaces.
  • test image data For receiving test image data from a plurality of image acquisition subunits of the image acquisition unit 411 by multi-channel video stream transmission, and converting the display image data into display data suitable for display, wherein each video stream channel is used to transmit one image.
  • each video stream channel is used to transmit one image.
  • each of the plurality of image acquisition subunits has second identification information generated based on the first identification information of the camera module, such that the plurality of image collection subunits correspond at least partially For the plurality of camera modules.
  • the first identification information is an FPGA initialization sequence number and a chip serial number of the camera module
  • the second identification information is a 64-bit ID key.
  • the test data processing apparatus further includes: a mode switching unit for selectively turning on or off the image conversion unit and the image display unit based on a predetermined operation mode.
  • the image display unit displays the plurality of sub display interfaces whose contents are empty.
  • the image display unit displays an image of the corresponding camera module imaging the test object on the plurality of sub display interfaces.
  • the test data processing apparatus further includes: an error detecting unit, configured to send a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receive a response in response to the detection signal a signal; wherein, when the error detecting unit fails to receive the response signal corresponding to the specific image capturing subunit within a predetermined time, determining that the processing of the test image data of the camera module corresponding to the specific image capturing subunit fails.
  • an error detecting unit configured to send a detection signal to at least one of the image acquisition unit, the image conversion unit, and the image display unit, and receive a response in response to the detection signal a signal; wherein, when the error detecting unit fails to receive the response signal corresponding to the specific image capturing subunit within a predetermined time, determining that the processing of the test image data of the camera module corresponding to the specific image capturing subunit fails.
  • test apparatus 400 is shown in FIG. 14 to include only the test data processing apparatus 410, the test apparatus 400 may also include components not shown in FIG.
  • the test device 400 should include a light source, an object imaged by the camera module, such as a plate, and other components.
  • test apparatus according to embodiments of the present invention are identical to the corresponding details previously described in the test data storage apparatus according to embodiments of the present invention, and therefore will not be described again in order to avoid redundancy. .
  • the test apparatus has a test circuit 40 that is adapted to the board 10.
  • the test device is connected to the media module 20 of the board 10 through the test circuit 40, so that the plurality of media modules 20 disposed in the board 10 are connected to each other at the same time, and the camera module 30 carried by the media module 20 is simultaneously tested.
  • the connection between the media module 20 and the camera module 30 is one-to-one. That is to say, the camera module 30 can complete all test operations through the media module 20 without having to repeatedly access and extract with respect to the media module 20.
  • test data processing device the test data processing method and the test device according to the present invention can realize image data collection and display of batch test of the camera module, thereby reducing personnel input, reducing equipment space, and improving production efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

本发明提供了测速数据处理装置、测试数据处理方法和测试设备。该测试数据处理装置用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,包括:图像采集单元,用于采集每个摄像模组的测试图像数据,且包括以矩阵形式布置的多个图像采集子单元;图像转换单元,用于通过多通道视频流传输接收测试图像数据,并转换为适于显示的显示数据;和,图像显示单元,用于在显示界面上显示基于该显示数据的图像,其在显示界面上显示以矩阵形式布置的多个子显示界面。通过根据本发明的测速数据处理装置、测试数据处理方法和测试设备,能够实现摄像模组的批量测试的图像数据的采集和显示。

Description

测试数据处理装置、测试数据处理方法和测试设备 技术领域
本发明涉及数据处理领域,特别是用于采集摄像模组的批量测试的图像数据并进行显示的测速数据处理装置、测试数据处理方法和测试设备。
背景技术
随着智能设备的发展,越来越多的智能设备离不开图像采集功能。而且,高性能的摄像、照相功能更是被市场所追求。例如,智能手机、便携式电脑以及智能穿戴设备等等,都在向具有更高性能的摄像功能发展。性能指标也是随着市场变化,需要不断的更新。这些微型的摄像应用场合离不开摄像模组的使用。
目前,摄像模组在生产中还有很多不安定因素,制造完成的摄像模组不能直接安装于使用设备中。那么每一个摄像模组都需要被进行不同性能指标的测试,对于不满足要求的摄像模组则不能被使用。对于生产厂家而言,产品的良率非常重要,出货产品的良率更是关键。所以在摄像模组的生产中,基本是采取全部产品进行全部测试。这就无疑增加了生产成本,并且降低了生产效率。
传统的摄像模组生产过程中,采取每个摄像模组依次进行各种测试。也就是说,对于大数量的产品而言,测试还是单独进行的。但是目前生产制造中也趋向于批量化的生产,那么传统的摄像模组测试不能满足批量制造的需求。例如,图1示出了传统的摄像模组装配拼板的外形图。如图1所示,拼板e上拼装有多个相同的单一印刷电路板b,在每个印刷电路板b上安装一个镜头,这样,就可以实现摄像模组的批量装配。
但是,如何能在测试中批量的对摄像模组的各项性能进行测试是目前面临的问题。并且,与摄像模组的批量测试相关的,摄像模组的批量测试数据如何进行采集和后续处理,例如显示也是需要解决的问题。
发明内容
本发明的目的在于提供一种测试数据处理装置、测试数据处理方法和测试设 备,其能够实现摄像模组的批量测试的图像数据的采集和显示。
本发明的一个目的在于提供一种测试数据处理装置、测试数据处理方法和测试设备,通过以矩阵形式布置的图像采集子单元采集测试拼板中的多个摄像模组的测试图像数据,可以实现多个摄像模组的批量测试所产生的图像数据的采集和处理。
本发明的一个目的在于提供一种测试数据处理装置、测试数据处理方法和测试设备,通过以多通道视频流传输采集的多个摄像模组的测试图像数据,使得可以在同一显示界面上以分屏方式显示多个摄像模组的测试图像数据。
本发明的一个目的在于提供一种测试数据处理装置、测试数据处理方法和测试设备,通过以摄像模组的FPGA初始化序列号和芯片序列号生成图像采集子单元的64位ID密钥,可以对图像采集子单元进行绑定,从而实现同一显示界面上对应的多个图像采集子单元的位置索引的唯一性,并保证每路视频流通道的位置的唯一性。
本发明的一个目的在于提供一种测试数据处理装置、测试数据处理方法和测试设备,通过模式切换单元切换工作模式,可以实现多模式客户端设计,提升生产效率,降低CPU使用率。
本发明的一个目的在于提供一种测试数据处理装置、测试数据处理方法和测试设备,通过模式切换单元切换工作模式,以在显示界面上显示不同内容,可以适应产线生产和工程师调试的双重模式,其中产线生产模式只提供采集模块,取消显示线程,处理线程,降低CPU负载度,而工程师模式开启采集,处理,显示线程用于对位标版,分析问题。
本发明的一个目的在于提供一种测试数据处理装置、测试数据处理方法和测试设备,通过错误检测单元检测客户端工作情况,可以通过采用守护进程和伺服技术来保证测试进程稳定运行。
根据本发明的一方面,提供了一种测试数据处理装置,用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,所述测试数据处理装置包括:图像采集单元,用于采集每个摄像模组的测试图像数据,其中,所述图像采集单元包括以矩阵形式布置的多个图像采集子单元;图像转换单元,用于通过多通道视频流传输接收来自所述多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频 流通道用于传输一个图像采集子单元采集的测试图像数据;和,图像显示单元,用于在显示界面上显示基于所述显示数据的图像,其中,所述图像显示单元在所述显示界面上显示以矩阵形式布置的多个子显示界面。
在上述测试数据处理装置中,所述多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于所述多个摄像模组。
在上述测试数据处理装置中,所述第一标识信息是所述摄像模组的FPGA初始化序列号和芯片序列号,且所述第二标识信息是64位ID密钥。
在上述测试数据处理装置中,进一步包括:模式切换单元,用于基于预定工作模式,选择性地开启或者关闭所述图像转换单元和所述图像显示单元。
在上述测试数据处理装置中,在所述图像转换单元关闭的情况下,所述图像显示单元显示内容为空的所述多个子显示界面。
在上述测试数据处理装置中,在所述图像转换单元开启的情况下,所述图像显示单元在所述多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
在上述测试数据处理装置中,进一步包括:错误检测单元,用于向所述图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于所述检测信号的响应信号;其中,所述错误检测单元在预定时间内未能接收到对应于特定图像采集子单元的响应信号时,确定与所述特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
根据本发明的另一方面,提供了一种测试数据处理方法,用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,所述测试数据处理方法包括:采集所述多个摄像模组中的每个摄像模组的测试图像数据,其中,通过使用以矩阵形式布置的多个图像采集子单元采集所述测试图像数据;通过多通道视频流传输接收来自所述多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和,在显示界面上显示基于所述显示数据的图像,其中,在所述显示界面上显示以矩阵形式布置的多个子显示界面。
在上述测试数据处理方法中,所述多个图像采集子单元中的每个图像采集子 单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于所述多个摄像模组。
在上述测试数据处理方法中,所述第一标识信息是所述摄像模组的FPGA初始化序列号和芯片序列号,且所述第二标识信息是64位ID密钥。
在上述测试数据处理方法中,进一步包括:基于预定工作模式,选择性地执行测试图像数据的接收和转换的步骤以及基于显示数据的图像的显示步骤。
在上述测试数据处理方法中,进一步包括:在不执行测试图像数据的接收和转换的步骤的情况下,显示内容为空的所述多个子显示界面。
在上述测试数据处理方法中,进一步包括:在执行测试图像数据的接收和转换的步骤的情况下,在所述多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
在上述测试数据处理方法中,进一步包括:向所述图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于所述检测信号的响应信号;和,在预定时间内未能接收到对应于特定图像采集子单元的响应信号的情况下,确定与所述特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
根据本发明的再一方面,提供了一种测试设备,所述测试设备包括测试数据处理装置,所述测试数据处理装置用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,且包括:图像采集单元,用于采集每个摄像模组的测试图像数据,其中,所述图像采集单元包括以矩阵形式布置的多个图像采集子单元;图像转换单元,用于通过多通道视频流传输接收来自所述多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和,图像显示单元,用于在显示界面上显示基于所述显示数据的图像,其中,所述图像显示单元在所述显示界面上显示以矩阵形式布置的多个子显示界面。
在上述测试设备中,所述多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于所述多个摄像模组。
在上述测试设备中,所述第一标识信息是所述摄像模组的FPGA初始化序列 号和芯片序列号,且所述第二标识信息是64位ID密钥。
在上述测试设备中,所述测试数据处理装置进一步包括:模式切换单元,用于基于预定工作模式,选择性地开启或者关闭所述图像转换单元和所述图像显示单元。
在上述测试设备中,在所述图像转换单元关闭的情况下,所述图像显示单元显示内容为空的所述多个子显示界面。
在上述测试设备中,在所述图像转换单元开启的情况下,所述图像显示单元在所述多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
在上述测试吧中,所述测试数据处理装置进一步包括:错误检测单元,用于向所述图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于所述检测信号的响应信号;其中,所述错误检测单元在预定时间内未能接收到对应于特定图像采集子单元的响应信号时,确定与所述特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
根据本发明的测试数据处理装置、测试数据处理方法和测试设备能够实现摄像模组的批量测试的图像数据的采集和显示,从而减少人员投入,降低设备空间,并提升生产效率。
附图说明
图1示出了传统的摄像模组装配拼板的外形图;
图2是示出根据本发明实施例的测试拼板的整体示意图;
图3是示出根据本发明实施例的测试拼板的分解示意图;
图4是根据本发明实施例的测试拼板的支撑板的结构示意图;
图5是根据本发明实施例的媒介模块安置于支撑板的顶视图;
图6是根据本发明实施例的媒介模块安置于支撑板的底视图;
图7是根据本发明实施例的媒介模块的整体示意图;
图8是根据本发明实施例的媒介模块连接到摄像模组的整体示意图;
图9是根据本发明实施例的媒介模块连接到摄像模组的另一整体示意图;
图10是根据本发明实施例的测试数据处理装置的示意性框图;
图11是根据本发明实施例的测试数据的显示界面的示意图;
图12是根据本发明实施例的测试数据处理的监控进程的示意图;
图13是根据本发明实施例的测试数据处理方法的示意性流程图;
图14是根据本发明实施例的测试设备的示意性框图;
图15是根据本发明实施例的测试设备对测试拼板上安置的摄像模组进行测试的示意图。
具体实施方式
以下描述用于公开本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
以下说明书和权利要求中使用的术语和词不限于字面的含义,而是仅由本发明人使用以使得能够清楚和一致地理解本发明。因此,对本领域技术人员很明显仅为了说明的目的而不是为了如所附权利要求和它们的等效物所定义的限制本发明的目的而提供本发明的各种实施例的以下描述。
在这里使用的术语仅用于描述各种实施例的目的且不意在限制。如在此使用的,单数形式意在也包括复数形式,除非上下文清楚地指示例外。另外将理解术语“包括”和/或“具有”当在该说明书中使用时指定所述的特征、数目、步骤、操作、组件、元件或其组合的存在,而不排除一个或多个其它特征、数目、步骤、操作、组件、元件或其组的存在或者附加。
本领域技术人员应理解的是,在本发明的公开中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
包括技术和科学术语的在这里使用的术语具有与本领域技术人员通常理解的术语相同的含义,只要不是不同地限定该术语。应当理解在通常使用的词典中限定的术语具有与现有技术中的术语的含义一致的含义。
如上所述,为了解决摄像模组的批量测试的问题,本发明实施例提供了一种摄像模组测试拼板,以对两个或者两个以上的摄像模组进行测试。图2是示出根据本发明实施例的测试拼板的整体示意图。如图2所示,测试拼板包括:板体10和多个媒介模块20,其中媒介模块20连接于摄像模组30,且摄像模组30为装配完成后的待测试的成品,摄像模组30连接于媒介模块20以进行各项对摄像模组30的性能测试。摄像模组30可以连接并可拆卸地固定于媒介模块20,媒介模块20可以携带摄像模组30进行所有的测试操作。值得一提的是,媒介模块20与摄像模组30的连接为一对一的。也就是说,摄像模组30可以通过媒介模块20完成全部的测试操作,不必相对于媒介模块20反复的进行接入和摘取。例如,在开始测试操作前,待测试的摄像模组30连接并固定于媒介模块20。媒介模块20将携带摄像模组30进行全部的测试,无论摄像模组30是否通过测试,媒介模块20都将始终连接摄像模组30。也就是说,媒介模块20对于没有通过测试的摄像模组30,媒介模块20也可以辅助摄像模组30进行未通过测试相应的操作。对于通过测试的摄像模组30,媒介模块20也将陪同摄像模组30完成其他测试。藉由媒介模块20,摄像模组30在全部的测试,包括流转过程,都可以避免反复的接入和摘取,减少测试对摄像模组30的不利影响,减少每个摄像模组30测试所需时间,提高测试的整体效率。
另外,媒介模块20可以同时提供结构和电路上对摄像模组30的稳定地连接。媒介模块20提供摄像模组30对测试需求的电路扩展,间接地使得摄像模组30被进行各项性能测试。而且,摄像模组30可以由媒介模块20给予一定的保护,进而使得摄像模组30能藉由媒介模块20完成全部测试操作。当然,摄像模组30在需要时可以脱离媒介模块20。例如,在某项测试未通过,或者完成全部的测试后,摄像模组30测试完毕可以从媒介模块20脱离,进而使得摄像模组30完成测试。需要说明的是,媒介模块20可以适配于不同类型的摄像模组30。而且,媒介模块20的成本较低,不需要复杂的工艺。这样,媒介模块20可以反复的陪同摄像模组30进行测试,降低测试成本。而且,媒介模块20对不同的测试项目的匹配度很高,媒介模块20可以参与不同的测试项目。对于同一待测试的摄像模组30,不必更换相连接的媒介模块20。也就是说,媒介模块20可以携带不同类型的摄像模组30进行测试。因此,对于同一摄像模组30的测试过程,摄像模组30与媒介模块20是相互对应的,不必更换的。对于不同类型的摄像模组 30,媒介模块20都可以进行适配,媒介模块20可以携带不同的摄像模组30进行测试。对于不同类型的测试项目,媒介模块20对测试设备具有极高的适配性,可以保证摄像模组30有效地完成测试操作。
另外,本发明实施例提供的板体10安置有多个媒介模块20,以供测试中可以对多个摄像模组30进行测试。优选地,板体10可以安置有m×n个媒介模块20,并以阵列的形式排列,其中m,n均为大于等于2的整数。板体10将呈阵列形式的媒介模块20固定,在测试过程中保证媒介模块20所处的环境一致。也就是说,安置于测试板的所有媒介模块20的测试条件一致。这样,就可以保证媒介模块20所携带的摄像模组30的测试环境稳定。例如,如图2所示,根据本发明实施例,测试板10可以安置有四个媒介模块20,每个媒介模块20相应地连接到摄像模组30。
在测试过程中,媒介模块20可以被摘出板体10,也可以被重新安置于板体10。也就是说,在整体的测试过程中,媒介模块20相对于板体10是可拆卸地。根据不同的需要,媒介模块20携带摄像模组10被可移除地安置于板体10。那么在测试过程中,不需要对摄像模组30进行摘取,而且藉由媒介模块20对摄像模组30进行操作,对摄像模组30提供一定的保护。而且媒介模块20优选地采用坚硬的材质制造,适于利用机械对媒介模块20进行操控。例如,在进行某一项性能测试后,四个媒介模块20中的一个所携带的摄像模组30未能通过测试,那么相对应的媒介模块20被摘出,进而将未通过的摄像模组30摘出。相对应地,当需要测试通过的摄像模组30安置于板体10时,也是藉由对媒介模块20安置于板体10进而将所携带的摄像模组30安置于板体10。当然,除了对板体10的中任一媒介模块20进行摘出和安置之外,板体10也提供对任一媒介模块20进行标识、定位等操作。因此,媒介模块20相互所处于的测试环境是一致的,也可以对任一的媒介模块20进行单独的操作。利用阵列排列的形式,板体10中的媒介模块20可以被方便地寻找和定位。
值得一提的是,媒介模块20在测试过程中与摄像模组30是一一对应的。媒介模块20在板体10中的位置不同外,板体10可以保证每个媒介模块20处于相同的高度或者相同的时间维度中。也就是说,藉由媒介模块20和板体10,摄像模组30得以批量地操作。特别是,对批量的摄像模组30的测试操作而言,媒介模块20和板体10可以保证每个摄像模组30测试的一致性、有效性。而且,对 媒介模块20的直接操作,不会对摄像模组30造成不利的影响。通过板体10的相对应的媒介模块20的间接操作,摄像模组30可以被更有效率的测试。优选地,对于机械化或者自动化的测试线,媒介模块20和板体10均可以解放生产力、降低生产成本。
特别地,测试拼板的板体10和板体10与媒介模块20之间、媒介模块20和摄像模组30之间都有相对应的定位结构来保证测试流转和过程中对测试板10、媒介模块20以及摄像模组30的寻找。优选地,对于每个摄像模组30可以在高度上与媒介模块20保持一致,每个媒介模块20与板体10的高度上保持一致,从而使得每个摄像模组30在测试中的高度一致。优选地,每个摄像模组30相对于媒介模块20的位置确定,媒介模块20相对于板体10的位置确定,从而使得摄像模组30相对于测试中的位置确定。
图3是示出根据本发明实施例的测试拼板的分解示意图。如图3所示,测试拼板的板体10具体包括支撑板11,该支撑板11安置有媒介模块20,使得媒介模块20可以按照一定排列固定在板体10中并通过测试板10对媒介模块20操作。板体10的支撑板11可拆卸地连接媒介模块20,使得置于板体10的媒介模块20可以处于一致的测试环境中。优选地,每个媒介模块20可拆卸地连接于支撑板11,使得媒介模块20根据需要被安置或摘出板体10。媒介模块20优选地被卡扣于支撑板11。媒介模块20优选适合于地被子母黏连于支撑板11。媒介模块20优选地适合于被磁吸于支撑板11。媒介模块20优选地适合于被柱孔连接于支撑板11。板体10进一步包括盖板12以及卡合组件13,其中盖板12被可拆卸地覆盖于支撑板11以保护安置于支撑板11的媒介模块20,其中卡合组件13被设置于支撑板11和盖板12以将盖板12可拆卸地连接于支撑板11。显而易见的是,当媒介模块20安置于支撑板11后,卡合组件13将盖板12固定于支撑板11,那么媒介模块20就不能被摘出板体10。相应地,需要将媒介模块20摘出板体10时,卡合组件13被打开使得盖板12可以脱离支撑板11,便可以将媒介模块20拿出。
这里,本领域技术人员可以理解,根据本发明实施例的板体10也可以不包括上述盖板12。例如,当媒介模块20直接固定于支撑板11上的情况下,根据本发明实施例的板体10可以仅包括单一的支撑板11。
并且,虽然在上述实施例中,以本发明实施例的板体10结合媒介模块20使 用作为实施例,但是本领域技术人员可以理解,本发明实施例的板体10与媒介模块20相结合的测试拼板也可以单独使用。例如,可以直接将测试拼板直接与摄像模组30连接,而没有媒介模块20。这样,通过在根据本发明实施例的测试拼板上连接多个摄像模组30,同样可以实现摄像模组30的光学性能的批量测试,从而实现提高测试效率的效果。或者,测试拼板可以为媒介模块20与板体10一体成型地制造,那么,摄像模组30也可以直接连接于测试拼板进行测试。
例如,在没有媒介模块20的情况下,将摄像模组的所有引脚接出来,利用至少两层卡扣将摄像模组安装在板体10中。由于接触的引脚比较集中,可以利用排线来转接摄像模组的电路,从而接入测试设备。
也就是说,根据本发明实施例的测试拼板可以仅容纳组装完成的摄像模组,仅容纳与摄像模组连接的媒介模块,或者同时容纳摄像模组和媒介模块两者。藉由测试拼板,摄像模组30在全部的测试,包括流转过程,都可以实现批量处理,减少每个摄像模组30测试所需时间,提高测试的整体效率。
下面,将对根据本发明实施例的测试拼板的结构进行进一步的详细说明。图4是根据本发明实施例的上述测试拼板的支撑板的结构示意图。图5是根据本发明实施例的媒介模块安置于支撑板的顶视图。图6是根据本发明实施例的媒介模块安置于支撑板的底视图。如图4至图6所示,根据本发明实施例,媒介模块20按照2×2的阵列形式安置于测试拼板的板体10的支撑板11。每个媒介模块20都按照一定的确定位置安置。支撑板11提供至少一个测试位111,该测试位111相对应的安置媒介模块20,进而将媒介模块20所携带的摄像模组30置于确定的位置。测试拼板的支撑板11具有四个测试位111,相应地可以放置四个媒介模块20。测试位111进一步包括一测试接口部1111,一识别部1112、一定位部1113,以及一放置部1114。值得一提的是,测试位111的结构与媒介模块20的结构是相对应的。也就是说,在本优选实施例中,接口1111为给媒介模块20提供的接口通孔,识别部1112为给媒介模块20所携带的摄像模组30识别身份的通孔,定位部1113为相对于媒介模块20的定位结构,放置部1114为对应媒介模块20的摄像模组30的放置位置。值得一提的是,每个测试位111的结构都是一致的,方便媒介模块20适应性的放置。更具体地,测试接口部1111在本发明实施例中为两个对称的通孔,测试接口部1111允许测试设备的接口与媒介模块20连接。当然,根据媒介模块20的设计,测试接口部1111的位置和形状需 要相应的调整。识别部1112是对应携带的摄像模组30标识的位置。在本发明实施例中,识别部1112为可以对摄像模组30身份识别的通孔。通过识别部1112,摄像模组30的身份可以被识别。当然,识别部1112的形状和形式都可以根据摄像模组30识别方式而进行相应的调整。例如,需要通过扫描身份码识别时,识别部1112为通光的通孔,需要识别RFID信息识别时,识别部1112可以是识别的相应位置。定位部1113为与媒介模块20相互位置确定的结构,使得测试接口部1111和识别部1112相对于支撑板11的位置确定。每个定位部1113与媒介模块20的位置相互确定,也就是可以保证所有媒介模块20相对支撑板11的位置确定。这有利于对媒介模块20测试操作的效率提高。本发明实施例中,媒介模块20为方形,定位部1113为相对于媒介模块20对角方向的定位柱。在其他可行的实施例中,定位部1113具体地可为磁吸片、卡扣桩等等。放置部1114为固定于测试位111的柔性片,为媒介模块20的摄像模组30提供高度的补差和缓冲。当然,放置部1114的设计也可以根据媒介模块20的设计而调整。具体地如图5和图6所示,测试部111的设计与媒介模块20的设计是相对应的,每个测试部111的具体结构主要是为了满足媒介模块20的稳定和通电条件。
值得一提的是,本发明实施例中,测试拼板的支撑板11具有至少一个标定位112,标定位112位于支撑板11的中轴线。标定位112提供对支撑板11位置的标定,也就是说,根据标定位112可以确定支撑板11的具体位置。另外,在盖板12也具有与支撑板11相对应的标定位122,也就是说,通过支撑板11的标定为112和盖板12的标定位122的相互标定,板体10的整体位置可以被确定。另外,盖板12进一步提供至少一通光口120,为摄像模组30的测试提供通光条件。本领域的技术人员可以理解的是,通光口120可以为与摄像模组30一一对应的,也可以为一对多的开口设置,并不影响本发明的技术特征。
当媒介模块20安置于板体10的支撑板11上,盖板12将媒介模块20覆盖并固定于支撑板11。这时,卡合组件(未示出)将盖板12和支撑板11卡合并固定,进而固定每个媒介模块20的位置。在测试过程和流转中,板体10可以稳定地将每个媒介模块20固定,将每个媒介模块20携带的摄像模组30处于同一测试环境中。值得一提的是,在测试中所使用的每个板体10,板体10之间的媒介模块20的位置都是相对确定的。媒介模块20的摄像模组30可以通过寻找板体10,寻找板体10的媒介模块20。
下面,将对本发明实施例中的媒介模块进行进一步的详细描述。图7是根据本发明实施例的上述媒介模块的整体示意图。图8是根据本发明实施例的媒介模块连接到摄像模组的整体示意图。图9是根据本发明实施例的媒介模块连接到摄像模组的另一整体示意图。如图7至图9所示,媒介模块20具体包括基板21和扩展电路22,扩展电路22被预埋于基板21,基板21优选为一体成型的。媒介模块20适于连接到摄像模组30。摄像模组30通过媒介模块20连接于测试设备,并由媒介模块20保护。在测试过程和流转中对摄像模组30的操作都通过媒介模块20完成。为方便说明,这里示出摄像模组30的具体结构,主要包括镜头31、插头32以及标识33,其中标识33用于摄像模组30的身份标识。如图8所示,基板21进一步包括一固定位211适于连接并固定摄像模组30。更具体地,固定位211提供一镜头槽2111用于放置摄像模组30的镜头31。基板21的固定位211进一步包括一插座2112,插座2112可以紧密地连接摄像模组30的插头32。通过镜头槽2111和插座2112的连接,摄像模组30可以被稳定的固定于基板21。而且固定位211具有适配性,可以被放置并连接不同型号的摄像模组30。本发明实施例中,摄像模组30为单镜头摄模模组,镜头槽2111可以使得摄像模组30的镜头31完整地被放置。插座2112也同摄像模组30的插头32相互适配。也就是说,为了适应摄像模组30,固定位211的结构被相应地设置。但是,固定位211不仅将摄像模组30连接于基板21同时也保证在测试过程和流转中摄像模组30始终通过媒介模块20操作。更具体地,在测试过程和流转中每个媒介模块20都将对应摄像模组30,那么固定位211可以提供摄像模组30在结构上和电路连接上的稳定性。值得一提的是,本发明实施例中,固定位211的插座2112采用连接器的形式,使得摄像模组30在操作中不容易掉落。也就是说,通过固定位211的固定,摄像模组30将相对于媒介模块20保持稳定的连接关系。
更具体地,媒介模块20的扩展电路22进一步包括模组接口221、测试接口222以及连接于模组接口221和测试接口222的走线223。模组接口221和测试接口222通过走线223相对应地连接。优选地,模组接口221和测试接口222是以一定的方式和对应关系相互连接的。模组接口221被内置于固定位211的插座2112中,使得摄像模组30的插头32被连接于插座2112的时候,摄像模组30的电路便与扩展电路22相互连接。更多地,摄像模组30的电路被连通于扩展电路22,使得通过扩展电路22的测试接口222,摄像模组30可以被测试。也就是 说,当摄像模组30连接于扩展电路22后,摄像模组30的测试可以通过扩展电路22的测试接口222进行。而测试接口222提供给测试设备相应的接入口对媒介模块20所携带的摄像模组30进行测试。本发明实施例中,测试接口222优选地以电气触点的形式设置于基板21的表面,供测试设备的探针通过接触而电连接。更优选地,本发明实施例中的测试接口222采用分布式布置方式,使得测试接口222可以被更稳定、更精准的接触。本发明实施例中,测试接口222优选地分为两部分地对称地在基板21表面被布置,在其他可行的模式中,测试接口222可以为一块式布局,这里本发明实施例对测试接口222的布局方式并不限制。
更多地,媒介模块20的基板21进一步包括至少一定位件213,定位件213与板体10的支撑板11的测试位111的定位部1113相对应地设置。也就是说,媒介模块20的定位件213与板体10的定位部1113相互对应的设置,使得媒介模块20与板体10的相对位置确定。本发明实施例中,媒介模块20为方形,定位件213为相对于媒介模块20对角方向的定位孔。在其他可行的优选实施例中,定位件213具体地可为磁吸片、卡扣桩等等。值得注意的是,定位件213与定位部1113为相互对应的设置,也就是说,定位件213和定位部1113是成对的存在。当定位件213与定位部1113相互对应地匹配后,媒介模块20便与板体10测试位111相互确定位置。板体10中的每个媒介模块20都通过定位件213与定位部1113相互确定位置后,那么媒介模块20都与板体10确定了位置。那么可以理解地是,当摄像模组30与媒介模块20相互固定,媒介模块20与板体10相互确定位置,那么每个摄像模组30在板体10中的位置也可以被确定。进一步地,因为板体10可以通过标记位112被确定位置,那么摄像模组30在测试过程的相对位置可以被确定。可以理解的是,摄像模组30在哪块板体10的位置的媒介模块20的定位信息对于整个批量测试来说是十分重要的。
通过本发明实施例的上述测试拼板,以及优选地,媒介模块,可以同时对多个摄像模组进行测试。在测试过程中,摄像模组通过对测试对象,例如标版进行成像而获得测试数据。通过对于测试数据的处理,可以了解摄像模组是否通过了特定测试。上述包括多个摄像模组的测试拼板由于可以对摄像模组进行批量测试,每个摄像模组都会产生测试用的图像数据,因此,如何对上述图像数据进行处理,比如采集和显示就成了需要解决的问题。
因此,根据本发明的另一实施例,提供了一种测试数据处理装置,用于处理 通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,该测试数据处理装置包括:图像采集单元,用于采集每个摄像模组的测试图像数据,其中,该图像采集单元包括以矩阵形式布置的多个图像采集子单元;图像转换单元,用于通过多通道视频流传输接收来自该多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和,图像显示单元,用于在显示界面上显示基于该显示数据的图像,其中,该图像显示单元在该显示界面上显示以矩阵形式布置的多个子显示界面。
图10是根据本发明实施例的测试数据处理装置的示意性框图。如图10所示,根据本发明实施例的测试数据处理装置300用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据。更具体地,测试数据处理装置300包括:图像采集单元301,用于采集每个摄像模组的测试图像数据,其中,图像采集单元301包括以矩阵形式布置的多个图像采集子单元;图像转换单元302,用于通过多通道视频流传输接收来自图像采集单元301的多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和图像显示单元303,用于在显示界面上显示基于图像转换单元302所转换的显示数据的图像,其中,图像显示单元303在该显示界面上显示以矩阵形式布置的多个子显示界面。
也就是说,在根据本发明实施例的测试数据处理装置中,对应于以矩阵形式包括多个摄像模组的测试拼板,该测试数据处理装置同样包括以矩阵形式布置的多个图像采集子单元,其中,每个图像采集子单元对应于一个摄像模组,并在测试过程中从对应的摄像模组采集图像。
这里,本领域技术人员可以理解,根据本发明实施例的测试数据处理装置中的图像采集子单元的数目可以与测试拼板中包括的摄像模组的数目相同,也可以小于测试拼板中包括的摄像模组的数目,例如是测试拼板中包括的摄像模组的数目的一半。这样,当测试拼板中包括的摄像模组的数目较大时,不需要相应地匹配过多数量的图像采集子单元,从而降低整个测试系统的复杂度,也利于成本的优化。
因此,在根据本发明实施例的测试数据处理装置中,通过以矩阵形式布置的 图像采集子单元采集测试拼板中的多个摄像模组的测试图像数据,可以实现多个摄像模组的批量测试所产生的图像数据的采集和处理。
此外,在根据本发明实施例的测试数据处理装置中,该图像采集子单元所采集的多个摄像模组的测试图像数据通过多通道视频流传输方式传送到图像转换单元,并由图像转换单元将每个通道的测试图像数据转换为适于显示的显示数据。这样,当图像显示单元在显示界面上显示基于该显示数据的图像时,就可以根据多通道的显示数据来在同一显示界面上以多个子显示界面的方式显示多个摄像模组的测试图像数据。并且,每个子显示界面上显示的图像可以对应于一个子图像采集单元采集的测试图像数据,并进而对应于测试拼板上的一个摄像模组。所以,根据本发明实施例的测试数据处理装置可以实现直观地对应于测试拼板上的多个摄像模组的图像测试数据的显示。
由于目前模组行业主流视频图像传输最多只支持800万像素的单通道视频流传输,如果以传统方式采集并显示通过对测试拼板中包括的多个摄像模组进行测试而获取的测试图像数据,则难免会出现效率低下的问题。例如,当以一台电脑查看摄像模组的测试数据时,由于一台电脑在同一时间只能够查看一个摄像模组的测试图像,为了提高测试效率,需要增加电脑的数目以同时查看多个摄像模组的测试图像。但是,这一方面由于增加电脑的数目而提高了成本,另一方面,每台电脑都需要注册或者登录等操作才能够查看摄像模组的测试图像数据,也需要增加产线的人力投入。
所以,本发明实施例实际上提供了一种单台电脑拖多台图像采集装置的设计方案,例如,可以支持一台电脑拖八台图像采集装置,通过例如隔行扫描的方式,可以同时对16个摄像模组进行视频图像采集和显示。这样,能够克服原先一台电脑仅对应一台图像采集装置的问题,减少电脑数量,减少产线人力投入,并减少了整机设备空间,增加单台设备的产出。
在根据本发明实施例的测试数据处理装置的实现过程中,可以通过对现有的测试设备的改造来进行。具体地,可以通过采用组件技术对现有的测试设备的底层图像采集工装模块进行封装,利用所测试的摄像模组的FPGA与芯片出厂编码设置的唯一性,生成64位的工装ID密钥,对工装进行注册绑定。这样,就实现了一台电脑对应多台工装的位置索引的唯一性,并保证每路视频流通道的位置的唯一性。
但是,本领域技术人员可以理解,本发明实施例并不限于使用摄像模组的FPGA初始化序列号和芯片序列号,也不限于生成64位的工装ID密钥,只要每个图像采集子单元的标识信息与每个摄像模组的标识信息一一对应即可。
因此,在上述测试数据处理装置中,该多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于该多个摄像模组。
并且,在上述测试数据处理装置中,该第一标识信息是该摄像模组的FPGA初始化序列号和芯片序列号,且该第二标识信息是64位ID密钥。
因此,根据本发明实施例的测试数据处理装置通过以摄像模组的FPGA初始化序列号和芯片序列号生成图像采集子单元的64位ID密钥,可以对图像采集子单元进行绑定,从而实现同一显示界面上对应的多个图像采集子单元的位置索引的唯一性,并保证每路视频流通道的位置的唯一性。
在根据本发明实施例的测试数据处理装置中,由于对测试拼板中包括的多个摄像模组进行测试而获取的测试图像数据进行采集和处理,并且如上所述,并不降低每个测试图像数据的分辨率,因此对于测试数据处理装置的性能提出了更高的要求。例如,在根据本发明实施例的测试数据处理装置实现为服务器-客户端架构的情况下,对于服务器和客户端的CPU性能都有很高的要求。
因此,在根据本发明实施例的测试数据处理装置中,优选地采用多模式方式。其中在产线模式下,只支持视频采集,不进行处理和显示,当需要进行算法运算的时候才进行图像处理转换和显示,以减少CPU的负载。这样,也可以提升多通道视频流算法运算的效率。另外,在工程师模式下,可以开启图像的实时处理线程和显示线程模块,这样,工程师可以对于测试图像数据进行检查,从而对于测试设备的产线标版的定位、对位、模组成像、设备异常等进行排查和分析。
图11是根据本发明实施例的测试数据的显示界面的示意图。如图11所示,当处于产线模式下时,仅采集视频流数据,而不进行处理和显示,从而降低CPU负载。这里,如图11所示,当处于产线模式下时,图像转换单元和图像显示单元可以直接关闭。但是,为了提高模式之间的转换速度,避免转换到工程师模式下时图形处理单元(GPU)和显示器的启动时间,也可以在显示界面上显示空的内容。而在处于工程师模式下时,进行测试图像数据的采集、处理和显示,从而可以在显示界面上看到对摄像模组进行测试而获取的测试图像。
因此,在上述测试数据处理装置中,进一步包括:模式切换单元,用于基于预定工作模式,选择性地开启或者关闭该图像转换单元和该图像显示单元。
并且,在上述测试数据处理装置中,在该图像转换单元关闭的情况下,该图像显示单元显示内容为空的该多个子显示界面。
此外,在上述测试数据处理装置中,在该图像转换单元开启的情况下,该图像显示单元在该多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
这样,根据本发明实施例的测试数据处理装置通过模式切换单元切换工作模式,可以实现多模式客户端设计,提升生产效率,降低CPU使用率。
并且,根据本发明实施例的测试数据处理装置通过模式切换单元切换工作模式,以在显示界面上显示不同内容,可以适应产线生产和工程师调试的双重模式,其中产线生产模式只提供采集模块,取消显示线程,处理线程,降低CPU负载度,而工程师模式开启采集,处理,显示线程用于对位标版,模组成像检查、问题分析等。
并且,如上所述,因为根据本发明实施例的测试数据处理装置对于装置性能的要求较高,例如,当采用服务器-客户端架构的情况下,对于服务器和客户端的CPU性能都有很高的要求。在这种情况下,尤其是CPU性能较低的客户端,很可能发生由于性能不足而造成系统崩溃的情况,因此,需要针对该问题的应对方案。
图12是根据本发明实施例的测试数据处理的监控进程的示意图。如图12所示,利用伺服服务器注册心跳命令,定时向客户端进程发送心跳命令。客户端接收到心跳后实时发送心跳反馈命令,以使得伺服服务器能够监控客户端的数据处理和显示进程。当伺服服务器在单位时间内发现心跳反馈命令接收失败,伺服服务器向主控制软件发送客户端超时命令,通知客户端进程异常和需要重启客户端进程。之后,主控制软件关闭崩溃的客户端软件并重启客户端。因此,在根据本发明实施例的测试数据处理装置中,采用伺服服务器动态管理客户端,实现了客户端进程异常崩溃自启动。
此外,本领域技术人员可以理解,由于在根据本发明实施例的测试数据处理装置中,通过多个图像采集子单元采集多个摄像模组的测试图像数据,并通过多通道视频流传输来进行数据处理和显示,因此,即使图像显示单元不是整体出错, 而是某个图像采集子单元,或者某个视频流传输通道出现错误时,也可以通过响应信号的状态进行确定。因此,在根据本发明实施例的测试数据处理装置中,优选地,如果仅是一路测试图像数据的处理和显示出现问题,则不需要重启整个数据处理系统,而仅需要重启与该路测试图像数据相关联的数据处理部分即可,这显然有助于提高数据处理的效率。
因此,在上述测试数据处理装置中,进一步包括:错误检测单元,用于向该图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于该检测信号的响应信号;其中,该错误检测单元在预定时间内未能接收到对应于特定图像采集子单元的响应信号时,确定与该特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
并且,通过错误检测单元检测客户端工作情况,可以通过采用守护进程和伺服技术来保证测试进程稳定运行。
综上所述,通过根据本发明实施例的测试数据处理装置,能够实现摄像模组的批量测试的图像数据的采集和显示,从而减少人员投入,降低设备空间,并提升生产效率。
根据本发明实施例的另一方面,提供了一种测试数据处理方法,用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,该测试数据处理方法包括:采集该多个摄像模组中的每个摄像模组的测试图像数据,其中,通过使用以矩阵形式布置的多个图像采集子单元采集该测试图像数据;通过多通道视频流传输接收来自该多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和,在显示界面上显示基于该显示数据的图像,其中,在该显示界面上显示以矩阵形式布置的多个子显示界面。
图13是根据本发明实施例的测试数据处理方法的示意性流程图。如图13所示,根据本发明实施例的测试数据处理方法用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,且包括:S101,采集该多个摄像模组中的每个摄像模组的测试图像数据,其中,通过使用以矩阵形式布置的多个图像采集子单元采集该测试图像数据;S102,通过多通道视频流传输接收来自该多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集 的测试图像数据;和S103,在显示界面上显示基于该显示数据的图像,其中,在该显示界面上显示以矩阵形式布置的多个子显示界面。
在上述测试数据处理方法中,该多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于该多个摄像模组。
在上述测试数据处理方法中,该第一标识信息是该摄像模组的FPGA初始化序列号和芯片序列号,且该第二标识信息是64位ID密钥。
在上述测试数据处理方法中,进一步包括:基于预定工作模式,选择性地执行测试图像数据的接收和转换的步骤以及基于显示数据的图像的显示步骤。
在上述测试数据处理方法中,进一步包括:在不执行测试图像数据的接收和转换的步骤的情况下,显示内容为空的该多个子显示界面。
在上述测试数据处理方法中,进一步包括:在执行测试图像数据的接收和转换的步骤的情况下,在该多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
在上述测试数据处理方法中,进一步包括:向该图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于该检测信号的响应信号;和,在预定时间内未能接收到对应于特定图像采集子单元的响应信号的情况下,确定与该特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
这里,本领域技术人员可以理解,根据本发明实施例的测试数据处理方法的其他细节与之前关于根据本发明实施例的测试数据处理装置中描述的相应细节完全相同,因此为了避免冗余将不再赘述。
此外,本领域技术人员还可以理解,根据本发明实施例的测试数据处理装置和测试数据处理方法并不一定对应于前述如图2到图6所示的测试拼板结构,只要可以通过测试拼板实现多个摄像模组的同时测试,都适用于根据本发明实施例的测试数据处理装置和测试数据处理方法。并且,这里多个摄像模组的同时测试并不限于整个测试拼板上所有摄像模组的同时测试,也可以是整个测试拼板上的部分摄像模组的同时测试。此外,该同时测试并不限于必须在同一时刻对多个摄像模组进行测试,例如,可以按照光源扫描的顺序,依次对多个摄像模组进行测试并得到相应的测试结果,而本发明实施例同样包括这种情况。
根据本发明实施例的再一方面,提供了一种测试设备,该测试设备包括测试 数据处理装置,该测试数据处理装置用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,且包括:图像采集单元,用于采集每个摄像模组的测试图像数据,其中,该图像采集单元包括以矩阵形式布置的多个图像采集子单元;图像转换单元,用于通过多通道视频流传输接收来自该多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和,图像显示单元,用于在显示界面上显示基于该显示数据的图像,其中,该图像显示单元在该显示界面上显示以矩阵形式布置的多个子显示界面。
图14是根据本发明实施例的测试设备的示意性框图。如图14所示,根据本发明实施例的测试设备400包括测试数据处理装置410。测试数据处理装置410用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据。具体地,测试数据处理装置410包括:图像采集单元411,用于采集每个摄像模组的测试图像数据,其中,图像采集单元411包括以矩阵形式布置的多个图像采集子单元;图像转换单元412,用于通过多通道视频流传输接收来自图像采集单元411的多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和图像显示单元413,用于在显示界面上显示基于图像转换单元412所转换的显示数据的图像,其中,图像显示单元413在该显示界面上显示以矩阵形式布置的多个子显示界面。
在上述测试设备中,该多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于该多个摄像模组。
在上述测试设备中,该第一标识信息是该摄像模组的FPGA初始化序列号和芯片序列号,且该第二标识信息是64位ID密钥。
在上述测试设备中,该测试数据处理装置进一步包括:模式切换单元,用于基于预定工作模式,选择性地开启或者关闭该图像转换单元和该图像显示单元。
在上述测试设备中,在该图像转换单元关闭的情况下,该图像显示单元显示内容为空的该多个子显示界面。
在上述测试设备中,在该图像转换单元开启的情况下,该图像显示单元在该多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
在上述测试吧中,该测试数据处理装置进一步包括:错误检测单元,用于向该图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于该检测信号的响应信号;其中,该错误检测单元在预定时间内未能接收到对应于特定图像采集子单元的响应信号时,确定与该特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
这里,本领域技术人员可以理解,虽然在图14中示出测试设备400仅包括测试数据处理装置410,测试设备400也可以包括图14中没有示出的部件。例如,为了对摄像模组进行测试,测试设备400应当包括光源,摄像模组成像的对象,例如标版,以及其他部件。
并且,本领域技术人员可以理解,根据本发明实施例的测试设备的其他细节与之前关于根据本发明实施例的测试数据存储装置中描述的相应细节完全相同,因此为了避免冗余将不再赘述。
图15是根据本发明实施例的测试设备对测试拼板上安置的摄像模组进行测试的示意图。如图15所示,测试设备具有与板体10相适配的一测试电路40。测试设备通过测试电路40与板体10的媒介模块20的连接,使得同时对板体10中安置的多个媒介模块20相互连接,并得以对媒介模块20所携带的摄像模组30同时进行测试。另外,媒介模块20与摄像模组30的连接为一对一的。也就是说,摄像模组30可以通过媒介模块20完成全部的测试操作,不必相对于媒介模块20反复的进行接入和摘取。例如,在开始测试操作前,待测试的摄像模组30被连接并固定于媒介模块20。媒介模块20将携带摄像模组30进行全部的测试,无论摄像模组30是否通过测试,媒介模块20都将始终连接摄像模组30。也就是说,媒介模块20对于没有通过测试的摄像模组30,媒介模块20也可以辅助摄像模组30进行未通过测试相应的操作。对于通过测试的摄像模组30,媒介模块20也将陪同摄像模组30完成其他测试。又因为媒介模块20提供了适配的测试接口,测试电路40只需要相对应的接口,媒介模块20便可以完成不同的性能测试项目。藉由媒介模块20,摄像模组30在全部的测试,包括流转过程,都可以避免反复的接入和摘取,减少每个摄像模组30测试所需时间,提高测试的整体效率,适于进行摄像模组30的批量测试。
根据本发明的测试数据处理装置、测试数据处理方法和测试设备能够实现摄像模组的批量测试的图像数据的采集和显示,从而减少人员投入,降低设备空间, 并提升生产效率。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离原理下,本发明的实施方式可以有任何变形或修改。

Claims (15)

  1. 一种测试数据处理装置,用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,所述测试数据处理装置包括:
    图像采集单元,用于采集每个摄像模组的测试图像数据,其中,所述图像采集单元包括以矩阵形式布置的多个图像采集子单元;
    图像转换单元,用于通过多通道视频流传输接收来自所述多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和
    图像显示单元,用于在显示界面上显示基于所述显示数据的图像,其中,所述图像显示单元在所述显示界面上显示以矩阵形式布置的多个子显示界面。
  2. 根据权利要求1所述的测试数据处理装置,其中,所述多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于所述多个摄像模组。
  3. 根据权利要求2所述的测试数据处理装置,其中,所述第一标识信息是所述摄像模组的FPGA初始化序列号和芯片序列号,且所述第二标识信息是64位ID密钥。
  4. 根据权利要求1到3中任意一项所述的测试数据处理装置,其特征在于,进一步包括:
    模式切换单元,用于基于预定工作模式,选择性地开启或者关闭所述图像转换单元和所述图像显示单元。
  5. 根据权利要求4所述的测试数据处理装置,其特征在于,在所述图像转换单元关闭的情况下,所述图像显示单元显示内容为空的所述多个子显 示界面。
  6. 根据权利要求4所述的测试数据处理装置,其特征在于,在所述图像转换单元开启的情况下,所述图像显示单元在所述多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
  7. 根据权利要求1到3中任意一项所述的测试数据处理装置,其特征在于,进一步包括:
    错误检测单元,用于向所述图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于所述检测信号的响应信号;
    其中,所述错误检测单元在预定时间内未能接收到对应于特定图像采集子单元的响应信号时,确定与所述特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
  8. 一种测试数据处理方法,用于处理通过对测试拼板中包括的以矩阵形式布置的多个摄像模组进行测试而获取的多个摄像模组的测试图像数据,所述测试数据处理方法包括:
    采集所述多个摄像模组中的每个摄像模组的测试图像数据,其中,通过使用以矩阵形式布置的多个图像采集子单元采集所述测试图像数据;
    通过多通道视频流传输接收来自所述多个图像采集子单元的测试图像数据,并转换为适于显示的显示数据,其中,每个视频流通道用于传输一个图像采集子单元采集的测试图像数据;和
    在显示界面上显示基于所述显示数据的图像,其中,在所述显示界面上显示以矩阵形式布置的多个子显示界面。
  9. 根据权利要求8所述的测试数据处理方法,其中,所述多个图像采集子单元中的每个图像采集子单元具有基于摄像模组的第一标识信息生成的第二标识信息,以使得多个图像采集子单元至少部分地对应于所述多个摄像模组。
  10. 根据权利要求9所述的测试数据处理方法,其中,所述第一标识信息是所述摄像模组的FPGA初始化序列号和芯片序列号,且所述第二标识信息是64位ID密钥。
  11. 根据权利要求8到10中任意一项所述的测试数据处理方法,其特征在于,进一步包括:
    基于预定工作模式,选择性地执行测试图像数据的接收和转换的步骤以及基于显示数据的图像的显示步骤。
  12. 根据权利要求11所述的测试数据处理方法,其特征在于,进一步包括:
    在不执行测试图像数据的接收和转换的步骤的情况下,显示内容为空的所述多个子显示界面。
  13. 根据权利要求11所述的测试数据处理方法,其特征在于,进一步包括:
    在执行测试图像数据的接收和转换的步骤的情况下,在所述多个子显示界面上显示相对应的摄像模组对测试对象成像的图像。
  14. 根据权利要求8到10中任意一项所述的测试数据处理方法,其特征在于,进一步包括:
    向所述图像采集单元、图像转换单元和图像显示单元中的至少一个发送检测信号,并接收响应于所述检测信号的响应信号;和
    在预定时间内未能接收到对应于特定图像采集子单元的响应信号的情况下,确定与所述特定图像采集子单元对应的摄像模组的测试图像数据的处理失败。
  15. 一种测试设备,包括根据权利要求1到7中的任意一项所述的测试数据处理装置。
PCT/CN2018/084212 2017-04-26 2018-04-24 测试数据处理装置、测试数据处理方法和测试设备 WO2018196734A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18789780.6A EP3618432A4 (en) 2017-04-26 2018-04-24 TEST DATA PROCESSING DEVICE, TEST DATA PROCESSING METHOD, AND TEST APPARATUS
KR1020197032157A KR102290098B1 (ko) 2017-04-26 2018-04-24 점검 데이터 처리장치, 점검 데이터 처리방법과 점검기기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710282917.9 2017-04-26
CN201710282917.9A CN108810324B (zh) 2017-04-26 2017-04-26 测试数据处理装置、测试数据处理方法和测试设备

Publications (1)

Publication Number Publication Date
WO2018196734A1 true WO2018196734A1 (zh) 2018-11-01

Family

ID=63919450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084212 WO2018196734A1 (zh) 2017-04-26 2018-04-24 测试数据处理装置、测试数据处理方法和测试设备

Country Status (4)

Country Link
EP (1) EP3618432A4 (zh)
KR (1) KR102290098B1 (zh)
CN (1) CN108810324B (zh)
WO (1) WO2018196734A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112235500A (zh) * 2020-12-09 2021-01-15 荣旗工业科技(苏州)股份有限公司 基于深度学习的视觉检测系统及方法
CN113836021A (zh) * 2021-09-24 2021-12-24 昆仑芯(北京)科技有限公司 测试方法、装置、电子设备及介质
CN115396634A (zh) * 2022-08-25 2022-11-25 昆山软龙格自动化技术有限公司 一种基于FPGA的camerlink采集装置
CN116256267A (zh) * 2023-05-15 2023-06-13 微网优联科技(成都)有限公司 一种感应式整机测试装置
CN116381468A (zh) * 2023-06-05 2023-07-04 浙江瑞测科技有限公司 一种单一图像采集卡支持多芯片并行测试的方法及装置
CN117274720A (zh) * 2023-11-16 2023-12-22 深圳市七彩虹禹贡科技发展有限公司 一种计算机硬件异常检测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111866500B (zh) * 2020-08-05 2022-07-26 昆山软龙格自动化技术有限公司 一种基于fpga和cpu、wifi 6的影像测试装置
CN114281447B (zh) * 2021-12-02 2024-03-19 武汉华工激光工程有限责任公司 一种载板激光加工软件界面处理方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628495A1 (en) * 2004-08-17 2006-02-22 Dialog Semiconductor GmbH Multi-processing of a picture to speed up calculation for this picture
CN103412781A (zh) * 2013-08-27 2013-11-27 信利光电股份有限公司 一次性可编程芯片的烧录方法
CN203327181U (zh) * 2013-06-21 2013-12-04 豪威科技(上海)有限公司 多摄像头模组测试工装
CN205961333U (zh) * 2016-08-30 2017-02-15 昆山软龙格自动化技术有限公司 一种手机摄像头模组多模组同时测试装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3007698B2 (ja) * 1991-01-25 2000-02-07 オリンパス光学工業株式会社 内視鏡システム
KR100814426B1 (ko) * 2001-07-14 2008-03-18 삼성전자주식회사 다 채널 영상 중계 처리기 및 이를 적용한 다 채널 영상보안 시스템
JP4102163B2 (ja) * 2002-11-11 2008-06-18 日本政策投資銀行 Catv伝送路監視装置、方法及びプログラム
KR100534023B1 (ko) * 2004-01-08 2005-12-07 주식회사 고영테크놀러지 카메라모듈 검사장치
KR100574974B1 (ko) * 2004-02-26 2006-05-02 삼성전자주식회사 암호화된 방송 데이터를 위한 제한수신기능과복제방지기능을 구비하는 장치 및 방법
KR100822882B1 (ko) * 2007-05-10 2008-04-16 주식회사 엔텍로직 카메라 모듈 검사장치 및 방법
KR20080114324A (ko) * 2007-06-27 2008-12-31 엘지이노텍 주식회사 카메라 모듈, 이의 검사 장치 및 검사 방법
US8736751B2 (en) * 2008-08-26 2014-05-27 Empire Technology Development Llc Digital presenter for displaying image captured by camera with illumination system
WO2010134890A1 (en) * 2009-05-21 2010-11-25 Esa Group Pte Ltd System and method for testing and managing camera modules
PL2812675T3 (pl) * 2012-02-06 2021-12-13 The Regents Of The University Of California Przenośny czytnik szybkich testów diagnostycznych
CN103162940B (zh) * 2013-02-22 2016-01-06 宁波舜宇光电信息有限公司 一种手机摄像模组自动测试机
US9225977B2 (en) * 2013-02-25 2015-12-29 Teradyne, Inc. Matrix testing targets
US8866912B2 (en) * 2013-03-10 2014-10-21 Pelican Imaging Corporation System and methods for calibration of an array camera using a single captured image
CN203340224U (zh) * 2013-07-23 2013-12-11 江阴新晟电子有限公司 手机摄像头模组用测试装置
CN105592308A (zh) * 2014-10-21 2016-05-18 鸿富锦精密工业(深圳)有限公司 测试图纸、采用该测试图纸的摄像模组检测方法及系统
US10448007B2 (en) * 2015-07-28 2019-10-15 Spirent Communications, Inc. Discovery and identification of layer 2 coax problems in MoCA networks
US9838679B2 (en) * 2015-07-28 2017-12-05 Viavi Solutions Inc. Distance to fault measurements in cable TV networks
CN105812638B (zh) * 2016-05-13 2019-09-24 昆山丘钛微电子科技有限公司 摄像头模组pdaf多工位测试烧录一体化机台
CN106231259B (zh) * 2016-07-29 2019-05-21 北京小米移动软件有限公司 监控画面的显示方法、视频播放器及服务器
CN106210713A (zh) * 2016-08-30 2016-12-07 昆山软龙格自动化技术有限公司 一种手机摄像头模组多模组同时测试装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628495A1 (en) * 2004-08-17 2006-02-22 Dialog Semiconductor GmbH Multi-processing of a picture to speed up calculation for this picture
CN203327181U (zh) * 2013-06-21 2013-12-04 豪威科技(上海)有限公司 多摄像头模组测试工装
CN103412781A (zh) * 2013-08-27 2013-11-27 信利光电股份有限公司 一次性可编程芯片的烧录方法
CN205961333U (zh) * 2016-08-30 2017-02-15 昆山软龙格自动化技术有限公司 一种手机摄像头模组多模组同时测试装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618432A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112235500A (zh) * 2020-12-09 2021-01-15 荣旗工业科技(苏州)股份有限公司 基于深度学习的视觉检测系统及方法
CN112235500B (zh) * 2020-12-09 2021-03-02 荣旗工业科技(苏州)股份有限公司 基于深度学习的视觉检测系统及方法
CN113836021A (zh) * 2021-09-24 2021-12-24 昆仑芯(北京)科技有限公司 测试方法、装置、电子设备及介质
CN115396634A (zh) * 2022-08-25 2022-11-25 昆山软龙格自动化技术有限公司 一种基于FPGA的camerlink采集装置
CN115396634B (zh) * 2022-08-25 2024-01-26 昆山软龙格自动化技术有限公司 一种基于FPGA的camerlink采集装置
CN116256267A (zh) * 2023-05-15 2023-06-13 微网优联科技(成都)有限公司 一种感应式整机测试装置
CN116256267B (zh) * 2023-05-15 2023-08-01 微网优联科技(成都)有限公司 一种感应式整机测试装置
CN116381468A (zh) * 2023-06-05 2023-07-04 浙江瑞测科技有限公司 一种单一图像采集卡支持多芯片并行测试的方法及装置
CN116381468B (zh) * 2023-06-05 2023-08-22 浙江瑞测科技有限公司 一种单一图像采集卡支持多芯片并行测试的方法及装置
CN117274720A (zh) * 2023-11-16 2023-12-22 深圳市七彩虹禹贡科技发展有限公司 一种计算机硬件异常检测方法及系统
CN117274720B (zh) * 2023-11-16 2024-05-14 深圳市七彩虹禹贡科技发展有限公司 一种计算机硬件异常检测方法及系统

Also Published As

Publication number Publication date
KR102290098B1 (ko) 2021-08-13
EP3618432A4 (en) 2020-05-13
EP3618432A1 (en) 2020-03-04
CN108810324A (zh) 2018-11-13
KR20190132481A (ko) 2019-11-27
CN108810324B (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2018196734A1 (zh) 测试数据处理装置、测试数据处理方法和测试设备
WO2018040142A1 (zh) 一种手机摄像头模组多模组同时测试装置
US8886513B2 (en) Embedded bus emulation
US20080294939A1 (en) Debugging device and method using the lpc/pci bus
EP3007110B1 (en) Cable connection verification system, method and program
US11615041B2 (en) Configurable input / output connector in a camera
JP2006332417A (ja) チップのピックアップ装置およびピックアップ方法
WO2017041449A1 (zh) 测试装置及采用该测试装置的测试方法
WO2018196735A1 (zh) 模组信息存储方法、模组信息检索方法、模组信息存储装置和测试设备
US8487833B2 (en) Sensor driven automatic display configuration system and method
CN106405383B (zh) 基于视觉检测技术的嵌入式板卡自动测试系统及方法
CN206894813U (zh) 一种摄像头测试系统
TWI570566B (zh) 實作輸入輸出(io)擴充卡之技術
US20070109307A1 (en) Apparatus for video graphics array testing
TWM558360U (zh) 半導體元件影像測試裝置
TWI636261B (zh) 半導體元件影像測試裝置
TWM420703U (en) Power on self test card for mainboard
WO2018171556A1 (zh) 摄像模组测试媒介模块、测试拼板及测试板
US9244794B2 (en) Modular computing architecture enabling diagnostics
US20220254248A1 (en) Cable erroneous disconnection prevention system, management apparatus, cable erroneous disconnection prevention method, and program
CN104205081A (zh) 信息处理系统、信息处理方法、服务器、服务器的控制方法和控制程序
KR20230000096A (ko) 디바이스 테스트 지그 및 이를 포함하는 디바이스 테스트 시스템
WO2014180137A1 (zh) 显示板检测装置的连接头、显示板检测装置和方法
KR101853694B1 (ko) 캐리어 보드를 이용한 단일 모듈화 장치
TWM603182U (zh) 人體發燒病徵快篩系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032157

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018789780

Country of ref document: EP

Effective date: 20191126