WO2018196466A1 - 多层复合薄膜结构的力学参数测量方法及装置 - Google Patents

多层复合薄膜结构的力学参数测量方法及装置 Download PDF

Info

Publication number
WO2018196466A1
WO2018196466A1 PCT/CN2018/076248 CN2018076248W WO2018196466A1 WO 2018196466 A1 WO2018196466 A1 WO 2018196466A1 CN 2018076248 W CN2018076248 W CN 2018076248W WO 2018196466 A1 WO2018196466 A1 WO 2018196466A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
layer composite
test structure
test
equations
Prior art date
Application number
PCT/CN2018/076248
Other languages
English (en)
French (fr)
Inventor
周再发
孙超
郭欣格
黄庆安
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US16/329,244 priority Critical patent/US11002710B2/en
Publication of WO2018196466A1 publication Critical patent/WO2018196466A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/014Resonance or resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0237Thin materials, e.g. paper, membranes, thin films
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever

Definitions

  • the invention relates to a method and a device for measuring mechanical parameters of a multilayer composite film structure, and belongs to the technical field of on-line testing of material parameters of a Micro-Electro-Mechanical System (MEMS).
  • MEMS Micro-Electro-Mechanical System
  • MEMS is called MEMS, also known as micro-electro-mechanical systems, micro-systems, micro-machines, etc. It refers to high-tech devices with dimensions of a few millimeters or even smaller. Its internal structure is generally in the order of micrometers or even nanometers. It is an independent smart system. MEMS is mainly composed of sensors, actuators (actuators) and micro energy. MEMS involves a variety of disciplines and engineering technologies in physics, semiconductors, optics, electrical engineering, chemistry, materials engineering, mechanical engineering, medicine, information engineering, and bioengineering, for intelligent systems, consumer electronics, wearables, and smart homes. The field of synthetic biology and microfluidic technology of system biotechnology has opened up a wide range of uses. Common products include MEMS accelerometers, MEMS microphones, micromotors, micropumps, micro-vibrators, MEMS pressure sensors, MEMS gyroscopes, MEMS humidity sensors, etc. and their integrated products.
  • micro-mechanical components such as micro-cantilever beams and micro-bridges
  • micro-mechanical components due to their small size, are often regarded as thin film structures in the macroscopic view.
  • mechanical behavior There are considerable differences between the mechanical behavior and the macroscopic bulk mechanical materials.
  • the mechanical parameters of macroscopic mechanical materials that we are familiar with cannot be used.
  • To measure the mechanical properties of film materials The mechanical properties of thin film materials are quite different from those of bulk materials with the same chemical composition.
  • CMOS MEMS devices Due to the relatively small size, the material parameters of thin film materials are difficult to be experimentally measured using classical macroscopic characterization techniques; on the other hand, CMOS MEMS devices often use multilayer thin film structures, and existing methods for testing mechanical properties of single-layer thin film materials. It is not easy to apply to the measurement of multilayer film material parameters. Therefore, it is very important to establish a process-compatible online test structure and test method for the mechanical parameters of multilayer film materials, to monitor the mechanical properties of MEMS film materials, predict and optimize product performance, and ensure reliable, uniform and long-term product performance. significance.
  • Chinese invention patent CN101493389 discloses "a method for online measurement of Young's modulus of MEMS film based on resonant frequency method".
  • a centrally fixed circular MEMS film is fabricated.
  • the anchor region of the film is fixed on a planar substrate, and the Young's modulus of the film material is calculated by measuring the resonant frequency of the circular MEMS film.
  • the invention is mainly applicable to single-layer films, but at present, the market demand for multilayer film material parameters is increasing, and the extraction of mechanical parameters of single-layer film materials cannot be directly applied to multilayer films.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a method for measuring the mechanical parameters of a multilayer composite film structure, based on the first-order resonant frequency and material of the multilayer composite double-ended fixed beam and the multilayer composite cantilever beam.
  • the relationship between parameters such as characteristics and structural dimensions, and the equivalent Young's modulus of each layer of the multilayer composite film structure and the equivalent residual stress of each layer are obtained in a one-time form of solving equations, which can satisfy the multilayer film material. Online testing, and the test structure, calculation method is simple, and the accuracy is higher.
  • the method for measuring mechanical parameters of a multilayer composite film structure comprising the following steps: Step 1, using the multilayer composite
  • the preparation process of the film structure prepares a set of at least N initial flat N-layer composite cantilever beam test structures and a set of at least N initial flat N-layer composite double-end fixed beam test structures, each test structure except geometric size
  • the other material parameters are the same; for each test structure, the vector composed of the width and length of each layer of each test structure is used as the size vector of the test structure, and the size vector group of the test structure is linearly independent;
  • Step 2 Measure the first-order resonant frequency of each test structure
  • Step 3 Substituting the first-order resonant frequency of the N-layer composite cantilever beam test structure into the first-order resonant frequency expression of the N-layer composite cantilever beam, thereby obtaining a system of equations composed of at least N linear equations;
  • the equivalent Young's modulus of each layer of the multilayer composite film structure; the expression of the first-order resonance frequency f 1cf of the N-layer composite cantilever beam is as follows:
  • l is the length of the N-layer composite cantilever test structure; the width of the i-th film material is w i , and the thickness is
  • the material density is ⁇ i
  • the equivalent Young's modulus is z i is the position of the top surface of the i-th film material on the z-axis, and z c is the neutral plane height;
  • Step 4 Substituting the first-order resonance frequency of the N-layer composite double-ended fixed beam test structure and the equivalent Young's modulus of each layer of the multilayer composite film structure obtained in step 3 into the first-order resonance of the N-layer composite double-ended fixed beam Frequency expression, thereby obtaining a system of equations composed of at least N equations; solving the equations to obtain equivalent residual stress of each layer of the multilayer composite film structure; first-order resonance of the N-layer composite double-ended fixed beam
  • the expression of the frequency f 1s is as follows:
  • l is the length of the test structure of the N-layer composite double-ended fixed beam; the width of the i-th film material is w i , the thickness is h i , the material density is ⁇ i , and the equivalent Young's modulus is , the equivalent residual stress is z c is the neutral height.
  • a mechanical parameter measuring device for a multilayer composite film structure the multilayer composite film structure being an initially flat N-layer composite film structure, N being an integer greater than or equal to 2; the device comprising: a set of at least N initial straight
  • the N-layer composite cantilever beam test structure is prepared by the preparation process of the multi-layer composite film structure, and the other material parameters except the geometrical dimensions of the test structures are the same; the vector composed of the width and length of each layer of each test structure As the size vector of the test structure, the size vector group of the set of test structures is linearly independent;
  • a set of at least N initial flat N-layer composite double-ended fixed beam test structures are prepared by the preparation process of the multi-layer composite film structure, and the other material parameters of the test structures except the geometrical dimensions are the same;
  • the vector composed of the width and length of each layer of the test structure is used as the size vector of the test structure, and the size vector group of the test structure is linearly independent;
  • a resonant frequency measuring unit for measuring a first-order resonant frequency of each test structure
  • a calculation unit for substituting the first-order resonance frequency of the N-layer composite cantilever beam test structure into the first-order resonance frequency expression of the N-layer composite cantilever beam thereby obtaining a system of equations composed of at least N linear equations, and solving the equations Obtaining the equivalent Young's modulus of each layer of the multilayer composite film structure; then, the first-order resonant frequency of the N-layer composite double-ended fixed beam test structure and the equivalent Young's modulus of each layer of the multilayer composite film structure
  • the quantities are substituted into the first-order resonant frequency expression of the N-layer composite double-ended fixed beam, thereby obtaining a system of equations composed of at least N equations, and solving the equations to obtain the equivalent residual of each layer of the multilayer composite film structure Stress; among them,
  • l is the length of the test structure of the N-layer composite cantilever beam;
  • the width of the i-th film material is w i , the thickness is h i , the material density is ⁇ i , and the equivalent Young's modulus is z i is the position of the top surface of the i-th film material on the z-axis, and z c is the neutral plane height;
  • l is the length of the test structure of the N-layer composite double-ended fixed beam; the width of the i-th film material is w i , the thickness is h i , the material density is ⁇ i , and the equivalent Young's modulus is Equivalent residual stress z c is the neutral height.
  • the present invention has the following beneficial effects:
  • the invention utilizes a combined test structure of a multi-layer cantilever beam and a multi-layer double-end fixed beam, based on the relationship between the first-order resonance frequency of the multi-layer double-ended fixed beam and the multi-layer cantilever beam and the parameters of the material and the structure size.
  • the equivalent Young's modulus of each layer of the multilayer composite film structure and the equivalent residual stress of each layer can be obtained at one time, which effectively solves the problem of mechanical parameter measurement of the multilayer composite film structure;
  • the test method of the invention is simple, the requirement for the test equipment is low, the test process is stable, the calculation process is simple, and the test accuracy is high.
  • the processing process of the test structure of the invention is synchronized with the processing of the MEMS device, and there is no special processing requirement, so it fully meets the requirements of the online test.
  • 1a and 1b are respectively a top view and a front view of a test structure of a double-layer composite cantilever beam;
  • 2a and 2b are respectively a top view and a front view of a test structure of a double-layer composite double-ended fixed beam.
  • the idea of the present invention is to use a combined test structure of a multi-layer cantilever beam and a multi-layer double-ended fixed beam, based on a multi-layer double-ended fixed beam and a multi-layer cantilever beam.
  • the relationship between the first-order resonant frequency and the material properties, structural dimensions and other parameters can obtain the equivalent Young's modulus of each layer of the multilayer composite film structure and the equivalent residual stress of each layer at one time, and the calculation is simple and accurate. High sex.
  • the equivalent Young's modulus of the i-th film The relationship between film thickness and its width is:
  • the length of the beam before the release process (ie, when no deformation occurs) is l; the width of the i-th film material is w i , the thickness is h i , the material density is ⁇ i , and the Young's modulus is E i .
  • the neutral plane height z c is:
  • a i is the area of the i-th film material in cross section
  • ⁇ i is the density of the i-th film material
  • the subscript 1 of the frequency value represents the first-order resonance frequency
  • cf represents the boundary condition as the cantilever beam.
  • any cross section perpendicular to the length direction inside the beam is not only affected by the internal moment generated by the bending, but also the load per unit length.
  • the generated bending moment, and also the bending moment generated by the axial force P to the equilibrium position of the cross-section offset, the bending moment is Pz(x, t), and the above relationship can be described as:
  • the load on the beam per unit length is equal to the mass of the beam over the unit length (ie linear density)
  • the load of the inertial force generated by the acceleration ie:
  • Z 1 (x) b[1-cos(2 ⁇ x/l)].
  • the subscript 1 of the frequency value indicates the first-order resonance frequency, and s indicates that it remains flat after release.
  • the first-order resonant frequency of the multi-layer double-ended fixed beam is related to the material parameters and structural geometry of the beam.
  • the first-order resonant frequency of the multi-layer double-ended fixed beam can be regarded as the implicit function of Young's modulus and residual stress determined by the above formula:
  • l is the length of the N-layer composite double-ended fixed beam; the width of the i-th film material is w i , the thickness is h i , the material density is ⁇ i , and the equivalent Young's modulus is Equivalent residual stress z c is the neutral height.
  • each test structure has the same material parameters except the geometric size; for each set of test structures, the vector composed of the width and length of each layer of each test structure is used as the size vector of the test structure, then this group The size vector group of the test structure is linearly independent;
  • Step 2 Measure the first-order resonant frequency of each test structure
  • Step 3 Substituting the first-order resonant frequency of the N-layer composite cantilever beam test structure into the first-order resonant frequency expression of the N-layer composite cantilever beam, that is, the equation (9), thereby obtaining a system of equations composed of at least N linear equations; Solving the equations to obtain the equivalent Young's modulus of each layer of the multilayer composite film structure;
  • Step 4 Substituting the first-order resonance frequency of the N-layer composite double-ended fixed beam test structure and the equivalent Young's modulus of each layer of the multilayer composite film structure obtained in step 3 into the first-order resonance of the N-layer composite double-ended fixed beam
  • the frequency expression that is, the equation (19) results in a system of equations composed of at least N equations; the equations are solved to obtain equivalent residual stresses of the layers of the multilayer composite film structure.
  • each test structure has the same material parameters except the geometric size; for each set of test structures, the vector composed of the width and length of each layer of each test structure is used as the size vector of the test structure, then this group The size vector group of the test structure is linearly independent;
  • the test structure of the prepared double-layer composite cantilever beam is shown in Fig. 1a and Fig. 1b.
  • the test structure of the double-layer composite double-ended fixed beam prepared as shown in Fig. 2a and Fig. 2b includes the top layer 102 and the bottom layer 103. 101 is the anchor zone and 104 is the substrate.
  • the two test structures in each group have the same difference except for the bottom layer width, and the rest of the two test structures are identical.
  • Step 2 Measure the first-order resonant frequency of each test structure
  • the first-order resonant frequency can be measured by various existing techniques, such as electrostatic excitation, thermal excitation, sonic excitation, and the like.
  • the resonant frequency of the test structure is tested using the MSV-400-M2 laser Doppler vibrometer (LDV) from Polytech, Germany.
  • the specific method is: put the piezoelectric ceramic (PZT) flat in the field of view of the LDV test, paste the sample chip to be tested on the PZT, use the applied voltage signal to drive the PZT to vibrate, and the chip transmits the mechanical vibration signal under the excitation of the PZT.
  • the test structure is given, and the excitation signal is transmitted to the beam structure by testing the anchor region of the structure, and finally forms a base excitation form in vibration mechanics, or an inertial force excitation form.
  • the spectrum of the substrate excitation should be as smooth as possible.
  • the resonant beam is subjected to uniform excitation in the full-band range, forced vibration, resonance occurs in the vicinity of the eigenfrequency due to frequency selective amplification, and a resonance peak is formed on the vibration spectrum. .
  • first-order resonant frequencies of the two double-layer composite cantilever beam test structures are f 1 and f 2 , respectively, and the first-order resonant frequencies of the two double-layer composite double-ended fixed beam test structures are f 3 and f 4 , respectively.
  • Step 3 Substituting the first-order resonant frequency of the double-layer composite cantilever beam test structure into the first-order resonant frequency expression of the double-layer composite cantilever beam, that is, the equation (9), thereby obtaining a system of equations composed of at least two linear equations; Equation group seeking
  • the solution can be limited by solving the mechanical parameters of the material according to the known frequency and geometric size.
  • the calculated equivalent Young's modulus of the top layer and the bottom layer is the equivalent Young's modulus of the upper and lower layers in the two-layer composite film structure prepared by the same preparation process.
  • Step 4 Substituting the first-order resonance frequency of the test structure of the double-layer composite double-ended fixed beam and the equivalent Young's modulus of each layer of the double-layer composite film structure obtained in step 3 into the first-order resonance of the double-layer composite double-ended fixed beam a frequency expression, that is, equation (19), thereby obtaining a system of equations composed of at least two equations; solving the system of equations to obtain an equivalent residual stress of each layer of the two-layer composite film structure;
  • the two double-layer composite double-ended fixed beam test structures have a length of l 2 and a top layer width of w 4 .
  • the bottom widths of the two test structures are w 5 and w 6 and w 5 ⁇ w 6 , respectively.
  • the equivalent Young's modulus obtained by the solution is brought into the equations and solved, and the equivalent residual stress of each layer of the test structure can be obtained.
  • the equations are as follows:
  • the calculated equivalent residual stress of the top layer and the bottom layer is the equivalent residual stress of the upper layer and the lower layer in the double-layer composite film structure prepared by the same preparation process.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种多层复合薄膜结构的力学参数测量方法和一种多层复合薄膜结构的力学参数测量装置,属于微机电系统(Micro-Electro-Mechanical System,简称MEMS)材料参数在线测试技术领域。方法基于多层复合双端固支梁和多层复合悬臂梁的一阶谐振频率与材料特性、结构尺寸等参数之间的关系,利用求解方程组的形式一次性得到多层复合薄膜结构各层的等效杨氏模量和各层的等效残余应力,可满足多层薄膜材料的在线测试,且测试结构、计算方法简单,准确性更高。

Description

多层复合薄膜结构的力学参数测量方法及装置 技术领域
本发明涉及一种多层复合薄膜结构的力学参数测量方法及装置,属于微机电系统(Micro-Electro-Mechanical System,简称MEMS)材料参数在线测试技术领域。
背景技术
MEMS全称为微机电系统,也叫做微电子机械系统、微系统、微机械等,是指尺寸在几毫米乃至更小的高科技装置,其内部结构一般在微米甚至纳米量级,是一个独立的智能系统。MEMS主要由传感器、动作器(执行器)和微能源三大部分组成。微机电系统涉及物理学、半导体、光学、电子工程、化学、材料工程、机械工程、医学、信息工程及生物工程等多种学科和工程技术,为智能系统、消费电子、可穿戴设备、智能家居、系统生物技术的合成生物学与微流控技术等领域开拓了广阔的用途。常见的产品包括MEMS加速度计、MEMS麦克风、微马达、微泵、微振子、MEMS压力传感器、MEMS陀螺仪、MEMS湿度传感器等以及它们的集成产品。
随着MEMS工艺的发展和完善,用表面微机械加工技术和体硅加工工艺,已经做出了多种微型机械构件,如微悬臂梁、微桥等。这些微型机械构件,由于尺寸较小,在宏观上往往被看作薄膜结构,其力学行为与宏观的大块机械材料之间有相当大的差异,不能用我们所熟知的宏观机械材料的机械参数来衡量薄膜材料的力学性能。薄膜材料的力学性能与具有相同化学成分的大体积材料的力学性能有较大的差异,各种传统的力学性能测试技术与设备也不能直接用于薄膜材料的测试,所以在表面微机械结构的加工过程中薄膜材料力学参数(例如,残余应力、杨氏模量、疲劳强度、断裂强度、泊松比)的控制就变得尤其重要,在MEMS领域,薄膜力学性能的研究和测试正在成为一个新的研究热点,引起了微电子学、力学、物理、材料等领域研究者的兴趣。
对于很多种材料,尤其是在晶体材料在形成薄膜、细梁等结构,在不同的加工工艺条件下,即使相同的材料也往往会表现出明显不同的材料特性。同样,即使同样的工艺在不同生产环境下所表现出的热学参数也存在明显不同,因而会表现出明显不同的力学参数,如密度、杨式模量、残余应力等。但是如果以上力学参数已知的话,则对于传感器、执行 器部分的一些静态或动响应,就可以方便地由已测得的其它参数估计出来。所以,在线监测薄膜结构的力学参数对于MEMS器件具有非常重要的意义。
一方面由于尺寸相对较小,薄膜材料的材料参数难以利用经典的宏观表征技术进行实验测量;另一方面,CMOS MEMS器件往往使用多层薄膜结构,将已有的测试单层薄膜材料力学参数方法应用到多层薄膜材料参数测量上却并不容易。因此,建立工艺兼容的对多层薄膜材料力学参数的在线测试结构和测试方法,对于监测MEMS薄膜材料力学特性,预测和优化产品性能,保证产品性能可靠、均匀一致并且长期稳定,具有非常重要的意义。
现有测量薄膜材料的杨氏模量的方法包括纳米压痕法、静电吸合法、鼓泡法等。但纳米压痕法会损伤薄膜;静电吸合法多次测量后由于静电积累,会造成测量误差,而且只适合测量导电材料;鼓泡法测量对工作台面的平面度、粗糙度要求高,同时薄膜构件与工作台的粘结质量直接影响试验的成功与否。
中国发明专利CN101493389公开了《一种基于谐振频率法在线测量MEMS薄膜杨氏模量的方法》。该方法制作了一个中心固定的圆形MEMS薄膜,薄膜的锚区固定在平面衬底上,通过测出圆形MEMS薄膜的谐振频率从而计算得到薄膜材料的杨氏模量。该发明主要适用于单层薄膜,但是目前对于多层薄膜材料参数的市场需求越来越大,且单层薄膜材料力学参数的提取并不能直接套用到多层薄膜上。
发明内容
本发明所要解决的技术问题在于克服现有技术不足,提供一种多层复合薄膜结构的力学参数测量方法,基于多层复合双端固支梁和多层复合悬臂梁的一阶谐振频率与材料特性、结构尺寸等参数之间的关系,利用求解方程组的形式一次性得到多层复合薄膜结构各层的等效杨氏模量和各层的等效残余应力,可满足多层薄膜材料的在线测试,且测试结构、计算方法简单,准确性更高。
本发明具体采用以下技术方案解决上述技术问题:
多层复合薄膜结构的力学参数测量方法,所述多层复合薄膜结构为初始平直的N层复合薄膜结构,N为大于等于2的整数;包括以下步骤:步骤1、采用所述多层复合薄膜结构的制备工艺制备一组至少N个初始平直的N层复合悬臂梁测试结构以及一组至少N个初始平直的N层复合双端固支梁测试结构,各测试结 构除几何尺寸外的其他材料参数均相同;对于每一组测试结构,以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
步骤2、测量出每个测试结构的一阶谐振频率;
步骤3、将N层复合悬臂梁测试结构的一阶谐振频率分别代入N层复合悬臂梁一阶谐振频率表达式,从而得到由至少N个线性方程构成的方程组;对所述方程组求解,得到所述多层复合薄膜结构各层的等效杨氏模量;所述N层复合悬臂梁一阶谐振频率f 1cf的表达式具体如下:
Figure PCTCN2018076248-appb-000001
式中,l为所述N层复合悬臂梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为
h i,材料密度为ρ i,等效杨氏模量为
Figure PCTCN2018076248-appb-000002
z i为第i层薄膜材料的顶面在z轴上的位置,z c是中性面高度;
步骤4、将N层复合双端固支梁测试结构的一阶谐振频率以及步骤3所得到的多层复合薄膜结构各层的等效杨氏模量分别代入N层复合双端固支梁一阶谐振频率表达式,从而得到由至少N个方程构成的方程组;对所述方程组求解,得到所述多层复合薄膜结构各层的等效残余应力;所述N层复合双端固支梁一阶谐振频率f 1s的表达式具体如下:
Figure PCTCN2018076248-appb-000003
式中,l为所述N层复合双端固支梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
Figure PCTCN2018076248-appb-000004
,等效残余应力为
Figure PCTCN2018076248-appb-000005
z c是中性面高度。
根据相同的发明思路还可以得到以下技术方案:
多层复合薄膜结构的力学参数测量装置,所述多层复合薄膜结构为初始平直的N层复合薄膜结构,N为大于等于2的整数;该装置包括:一组至少N个初始平直的N层复合悬臂梁测试结构,采用所述多层复合薄膜结构的制备工艺制备,各测试结构除几何尺寸外的其他材料参数均相同;以每个测试结构的各层宽 度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
一组至少N个初始平直的N层复合双端固支梁测试结构,采用所述多层复合薄膜结构的制备工艺制备,各测试结构除几何尺寸外的其他材料参数均相同;以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
谐振频率测量单元,用于测量每个测试结构的一阶谐振频率;
计算单元,用于将N层复合悬臂梁测试结构的一阶谐振频率分别代入N层复合悬臂梁一阶谐振频率表达式,从而得到由至少N个线性方程构成的方程组,并对所述方程组求解,得到所述多层复合薄膜结构各层的等效杨氏模量;然后将N层复合双端固支梁测试结构的一阶谐振频率以及多层复合薄膜结构各层的等效杨氏模量分别代入N层复合双端固支梁一阶谐振频率表达式,从而得到由至少N个方程构成的方程组,并对所述方程组求解,得到所述多层复合薄膜结构各层的等效残余应力;其中,
所述N层复合悬臂梁一阶谐振频率f 1cf的表达式具体如下:
Figure PCTCN2018076248-appb-000006
式中,l为所述N层复合悬臂梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
Figure PCTCN2018076248-appb-000007
z i为第i层薄膜材料的顶面在z轴上的位置,z c是中性面高度;
所述N层复合双端固支梁一阶谐振频率f 1s的表达式具体如下:
Figure PCTCN2018076248-appb-000008
式中,l为所述N层复合双端固支梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
Figure PCTCN2018076248-appb-000009
等效残余应力为
Figure PCTCN2018076248-appb-000010
z c是中性面高度。
相比现有技术,本发明具有以下有益效果:
本发明利用多层悬臂梁和多层双端固支梁的组合测试结构,基于多层双端固支梁和多 层悬臂梁的一阶谐振频率与材料特性、结构尺寸等参数之间的关系,可一次性得到多层复合薄膜结构各层的等效杨氏模量和各层的等效残余应力,有效解决了多层复合薄膜结构的力学参数测量难题;
本发明测试方法简单,对测试设备要求低,且测试过程稳定,计算过程简便,测试准确性高。
本发明测试结构的加工过程与微机电器件加工同步,没有特殊加工要求,因此完全符合在线测试的要求。
附图说明
图1a、图1b分别为双层复合悬臂梁测试结构的俯视图、主视图;
图2a、图2b分别为双层复合双端固支梁测试结构的俯视图、主视图。
图中标号含义如下:
101、锚区,102、顶层,103、底层,104、衬底。
具体实施方式
针对多层复合薄膜结构的力学参数在线测量问题,本发明的思路是利用多层悬臂梁和多层双端固支梁的组合测试结构,基于多层双端固支梁和多层悬臂梁的一阶谐振频率与材料特性、结构尺寸等参数之间的关系,可一次性得到多层复合薄膜结构各层的等效杨氏模量和各层的等效残余应力,且计算简便,测试准确性高。
为了便于公众理解本发明技术方案,首先对本发明技术方案的理论原理进行详细说明。
对于由至少两层薄膜结构复合而成的复合薄膜结构而言,当薄膜宽度与其厚度满足w i<5h i,即薄膜结构为窄梁时,等效杨氏模量
Figure PCTCN2018076248-appb-000011
就是杨氏模量E i其本身;当薄膜宽度与其厚度满足w i≥5h i,即薄膜为宽梁时,等效杨氏模量
Figure PCTCN2018076248-appb-000012
是一个关于杨氏模量和泊松比的关系式,即
Figure PCTCN2018076248-appb-000013
则第i层薄膜的等效杨氏模量
Figure PCTCN2018076248-appb-000014
关于薄膜厚度及其宽度之间的关系为:
Figure PCTCN2018076248-appb-000015
假设释放工艺之前(即未发生形变时)梁的长度为l;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,杨氏模量为E i。多层薄膜的底面在z轴上位置为z 0,z 0=0,从下至上第i层的顶面在z轴上的位置为z i,则:
Figure PCTCN2018076248-appb-000016
中性面高度z c为:
Figure PCTCN2018076248-appb-000017
第i层薄膜材料在横截面上的面积关于中性轴的转动惯量I i为:
Figure PCTCN2018076248-appb-000018
定义微机械薄膜梁的弯曲刚度为
Figure PCTCN2018076248-appb-000019
线性密度为
Figure PCTCN2018076248-appb-000020
轴向载荷
Figure PCTCN2018076248-appb-000021
即:
Figure PCTCN2018076248-appb-000022
Figure PCTCN2018076248-appb-000023
Figure PCTCN2018076248-appb-000024
其中,A i为第i层薄膜材料在横截面上的面积,ρ i为第i层薄膜材料的密度,
Figure PCTCN2018076248-appb-000025
为第i层薄膜材料的等效残余应力。
对于初始平直的多层悬臂梁而言,微机械多层薄膜悬臂梁横向振动的微分方程为:
Figure PCTCN2018076248-appb-000026
其中z(x,t)是当梁横向振动时在高度上的位移。利用分离变量法对该式进行求解,令z(x,t)=Z(x)T(t)带入式(8)中进行求解,得释放后保持平直的多层悬臂梁一阶谐振频率公式:
Figure PCTCN2018076248-appb-000027
其中频率值的下标1表示第一阶谐振频率,cf表示边界条件为悬臂梁。
基于上述线性方程组,可考虑利用一组除几何尺寸外其他材料参数均相同的多层复合悬臂梁测试结构来分别实测其一阶谐振频率,根据测得的一阶谐振频率及测试结构的尺寸参数可构建线性方程组,对方程组求解即可得到相应的多层薄膜结构各层的等效杨氏模量。
初始平直的多层薄膜双端固支梁在平衡点附近振动时,为线性、小形变振动。当梁横向振动时在高度上的位移为z(x,t)时,其内部任意垂直于长度方向的某一横截面不仅仅受到由弯曲形成的内应力产生的弯矩和单位长度上的荷载所产生的弯矩,而且也受到轴向力P对横截面偏移平衡位置而产生的弯矩,该弯矩为Pz(x,t),上述关系可以描述为:
Figure PCTCN2018076248-appb-000028
在小形变振动条件下,微机械薄膜梁小角度弯曲的微分方程为:
Figure PCTCN2018076248-appb-000029
一段长度为dx,带有作用于其上的内作用力和惯性作用力的梁单元,其中剪力V,弯矩M,单位长度上梁的载荷p(x)之间的关系为:
Figure PCTCN2018076248-appb-000030
且对于横向振动的梁,单位长度上梁的载荷等于克服单位长度上梁的质量(即线性密度
Figure PCTCN2018076248-appb-000031
与加速度产生的惯性力的载荷,即:
Figure PCTCN2018076248-appb-000032
将式(10),(11)和(13)带入到式(12)中,最终得到:
Figure PCTCN2018076248-appb-000033
该方程即为微机械薄膜双端固支梁横向振动的微分方程。运用分离变量法对该式进行求解。设z(x,t)=Z(x)T(t),代入式(14),可以得到幅度Z(x)的通解为:
Z(x)=C 1sin(λ 1x)+C 1cos(λ 1x)+C 3sinh(λ 2x)+C 4cosh(λ 2x)    (15)
其中
Figure PCTCN2018076248-appb-000034
可以考虑将薄膜双端固支梁的一阶谐振模态假设为余弦函数的形状,即Z 1(x)=b[1- cos(2πx/l)]。对于此形式存在以下关系:
Figure PCTCN2018076248-appb-000035
将该关系式代入到幅度Z(x)的方程中,可以得到:
Figure PCTCN2018076248-appb-000036
求解可以得到存在残余应力的初始平直的多层薄膜双端固支梁的第一阶谐振频率的近似解析公式为:
Figure PCTCN2018076248-appb-000037
其中频率值的下标1表示第一阶谐振频率,s表示释放后保持平直。
由上式可以看出,多层双端固支梁的一阶谐振频率与梁的材料参数和结构几何尺寸有关。在此基础上,可以将多层双端固支梁的一阶谐振频率视为由上式确定的关于杨氏模量和残余应力的隐函数:
Figure PCTCN2018076248-appb-000038
式中,l为所述N层复合双端固支梁的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
Figure PCTCN2018076248-appb-000039
等效残余应力为
Figure PCTCN2018076248-appb-000040
z c是中性面高度。
基于上述隐函数,可考虑利用一组除几何尺寸外其他材料参数均相同的多层复合双端固支梁测试结构来分别实测其一阶谐振频率,根据测得的一阶谐振频率及测试结构的尺寸参数可构建非线性方程组,对方程组求解即可得到多层复合双端固支梁各层的等效杨氏模量和各层的等效残余应力。
然而考虑到非线性方程组的求解较困难,为了降低计算复杂度,可考虑先利用多层复合悬臂梁测试结构获得多层薄膜结构各层的等效杨氏模量,然后利用多层复合双端固支梁测试结构以及已获得的多层薄膜结构各层的等效杨氏模量,来计算出多层膜结构各层的等效残余应力。综上即可得到本发明技术方案:
步骤1、采用所述多层复合薄膜结构的制备工艺制备一组至少N个初始平直的N层复合悬臂梁测试结构以及一组至少N个初始平直的N层复合双端固支梁测试结构,各测试结 构除几何尺寸外的其他材料参数均相同;对于每一组测试结构,以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
步骤2、测量出每个测试结构的一阶谐振频率;
步骤3、将N层复合悬臂梁测试结构的一阶谐振频率分别代入N层复合悬臂梁一阶谐振频率表达式,即式(9),从而得到由至少N个线性方程构成的方程组;对所述方程组求解,得到所述多层复合薄膜结构各层的等效杨氏模量;
步骤4、将N层复合双端固支梁测试结构的一阶谐振频率以及步骤3所得到的多层复合薄膜结构各层的等效杨氏模量分别代入N层复合双端固支梁一阶谐振频率表达式,即式(19),从而得到由至少N个方程构成的方程组;对所述方程组求解,得到所述多层复合薄膜结构各层的等效残余应力。
为了进一步帮助公众理解,下面以最简单的双层膜结构为例来对本发明技术方案进行进一步说明。
步骤1、采用所述双层复合薄膜结构的制备工艺制备一组至少2个初始平直的双层复合悬臂梁测试结构以及一组至少2个初始平直的双层复合双端固支梁测试结构,各测试结构除几何尺寸外的其他材料参数均相同;对于每一组测试结构,以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
所制备的双层复合悬臂梁测试结构如图1a、图1b所示,所制备的双层复合双端固支梁测试结构如图2a、图2b所示,均包括顶层102和底层103,图中的101为锚区,104为衬底。
对于由双层薄膜材料构成的双层复合悬臂梁,有2个需要求解的材料力学特性参数,这时需要至少2个不同尺寸的双层复合悬臂梁测试结构。假使以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,要使得构建的方程组有解,则所有测试结构的尺寸向量组必须满足线性无关。
类似地,对于由双层薄膜材料构成的双层复合双端固支梁,由于各层等效杨氏模量已知,因此仅剩各层的等效残余应力为未知参数,这时需要至少2个不同尺寸的双层复合双端固支梁测试结构。同样的,假使以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,要使得构建的方程组有解,则所有测试结构的尺寸向量组必须满足线性无关。
为了简化测试结构的制备以及计算过程,本实施例中,每一组中的两个测试结构除底层宽度不同外,两个测试结构的其余部分完全相同。
步骤2、测量出每个测试结构的一阶谐振频率;
一阶谐振频率的测量可采用现有的各种技术实现,例如静电激励法,热激励法,声波激励法等。本实施例中利用德国Polytech公司的MSV-400-M2型激光多普勒测振仪(LDV)对测试结构进行谐振频率测试。具体做法是:将压电陶瓷(PZT)平放于LDV测试视场区域,把待测试样品芯片粘贴在PZT上,使用外加电压信号驱使PZT发生振动,芯片在PZT的激励下将机械振动信号传递给测试结构,并通过测试结构的锚区将激励信号传给梁结构,最终形成振动力学中的基底激振形式,或称为惯性力激振形式。理想情况下,衬底激励的频谱应该尽可能的平缓,谐振梁在全波段范围内受到均匀的激励发生受迫振动,在本征频率附近因为选频放大作用而产生谐振,在振动频谱上形成谐振峰。假设其中两个双层复合悬臂梁测试结构的一阶谐振频率分别为f 1、f 2,两个双层复合双端固支梁测试结构的一阶谐振频率分别为f 3、f 4
步骤3、将双层复合悬臂梁测试结构的一阶谐振频率分别代入双层复合悬臂梁一阶谐振频率表达式,即式(9),从而得到由至少2个线性方程构成的方程组;对所述方程组求
解,得到所述双层复合薄膜结构各层的等效杨氏模量;
假设2个测试结构的长度为l 1,每层厚度是h,顶层宽度均为w 1,底层宽度分别是w 2和w 3且w 2≠w 3。则根据式(8)可得到如下所示的方程组:
Figure PCTCN2018076248-appb-000041
其中,
Figure PCTCN2018076248-appb-000042
分别为顶层、底层的等效杨氏模量。
因为上式是关于双层悬臂梁一阶谐振频率的线性解析公式,只对应一个频率值(即一阶谐振频率),所以由该式根据已知频率和几何尺寸对材料的力学参数进行求解可以得到有限组关于杨氏模量的实数解和复数解,其中复数解不符合实际情况,而在一般情况下在工程应用中剩下仅有的几组实数解中符合材料参数通常值取值范围的唯一一组解可以很明显被识别出来。计算出的顶层、底层的等效杨氏模量即为采用相同制备工艺制备的双层复合膜结构中的上层、下层的等效杨氏模量。
步骤4、将双层复合双端固支梁测试结构的一阶谐振频率以及步骤3所得到的双层复合薄膜结构各层的等效杨氏模量分别代入双层复合双端固支梁一阶谐振频率表达式,即式(19), 从而得到由至少2个方程构成的方程组;对所述方程组求解,得到所述双层复合薄膜结构各层的等效残余应力;
假设两个双层复合双端固支梁测试结构的长度都为l 2,顶层宽度均为w 4,两个测试结构的底层宽度分别为w 5和w 6且w 5≠w 6,将已经求解得到的等效杨氏模量带入到方程组中并求解,就可以得到测试结构的各层等效残余应力,方程组如下所示:
Figure PCTCN2018076248-appb-000043
计算出的顶层、底层的等效残余应力即为采用相同制备工艺制备的双层复合薄膜结构中的上层、下层的等效残余应力。

Claims (2)

  1. 多层复合薄膜结构的力学参数测量方法,所述多层复合薄膜结构为初始平直的N层复合薄膜结构,N为大于等于2的整数;其特征在于,包括以下步骤:
    步骤1、采用所述多层复合薄膜结构的制备工艺制备一组至少N个初始平直的N层复合悬臂梁测试结构以及一组至少N个初始平直的N层复合双端固支梁测试结构,各测试结构除几何尺寸外的其他材料参数均相同;对于每一组测试结构,以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
    步骤2、测量出每个测试结构的一阶谐振频率;
    步骤3、将N层复合悬臂梁测试结构的一阶谐振频率分别代入N层复合悬臂梁一阶谐振频率表达式,从而得到由至少N个线性方程构成的方程组;对所述方程组求解,得到所述多层复合薄膜结构各层的等效杨氏模量;所述N层复合悬臂梁一阶谐振频率f 1cf的表达式具体如下:
    Figure PCTCN2018076248-appb-100001
    式中,l为所述N层复合悬臂梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
    Figure PCTCN2018076248-appb-100002
    z i为第i层薄膜材料的顶面在z轴上的位置,z c是中性面高度;
    步骤4、将N层复合双端固支梁测试结构的一阶谐振频率以及步骤3所得到的多层复合薄膜结构各层的等效杨氏模量分别代入N层复合双端固支梁一阶谐振频率表达式,从而得到由至少N个方程构成的方程组;对所述方程组求解,得到所述多层复合薄膜结构各层的等效残余应力;所述N层复合双端固支梁一阶谐振频率f 1s的表达式具体如下:
    Figure PCTCN2018076248-appb-100003
    式中,l为所述N层复合双端固支梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度 为h i,材料密度为ρ i,等效杨氏模量为
    Figure PCTCN2018076248-appb-100004
    等效残余应力为
    Figure PCTCN2018076248-appb-100005
    z c是中性面高度。
  2. 多层复合薄膜结构的力学参数测量装置,所述多层复合膜结构为初始平直的N层复合膜结构,N为大于等于2的整数;其特征在于,该装置包括:
    一组至少N个初始平直的N层复合悬臂梁测试结构,采用所述多层复合薄膜结构的制备工艺制备,各测试结构除几何尺寸外的其他材料参数均相同;以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
    一组至少N个初始平直的N层复合双端固支梁测试结构,采用所述多层复合薄膜结构的制备工艺制备,各测试结构除几何尺寸外的其他材料参数均相同;以每个测试结构的各层宽度及长度所组成的向量作为该测试结构的尺寸向量,则这一组测试结构的尺寸向量组线性无关;
    谐振频率测量单元,用于测量每个测试结构的一阶谐振频率;
    计算单元,用于将N层复合悬臂梁测试结构的一阶谐振频率分别代入N层复合悬臂梁一阶谐振频率表达式,从而得到由至少N个线性方程构成的方程组,并对所述方程组求解,得到所述多层复合薄膜结构各层的等效杨氏模量;然后将N层复合双端固支梁测试结构的一阶谐振频率以及多层复合薄膜结构各层的等效杨氏模量分别代入N层复合双端固支梁一阶谐振频率表达式,从而得到由至少N个方程构成的方程组,并对所述方程组求解,得到所述多层复合薄膜结构各层的等效残余应力;其中,
    所述N层复合悬臂梁一阶谐振频率f 1cf的表达式具体如下:
    Figure PCTCN2018076248-appb-100006
    式中,l为所述N层复合悬臂梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
    Figure PCTCN2018076248-appb-100007
    z i为第i层薄膜材料的顶面在z轴上的位置,z c是中性面高度;
    所述N层复合双端固支梁一阶谐振频率f 1s的表达式具体如下:
    Figure PCTCN2018076248-appb-100008
    式中,l为所述N层复合双端固支梁测试结构的长度;第i层薄膜材料的宽度为w i,厚度为h i,材料密度为ρ i,等效杨氏模量为
    Figure PCTCN2018076248-appb-100009
    等效残余应力为
    Figure PCTCN2018076248-appb-100010
    z c是中性面高度。
PCT/CN2018/076248 2017-04-28 2018-02-11 多层复合薄膜结构的力学参数测量方法及装置 WO2018196466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/329,244 US11002710B2 (en) 2017-04-28 2018-02-11 Method and device for measuring mechanical parameters of multilayer composite thin film structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710299770.4A CN107063839A (zh) 2017-04-28 2017-04-28 多层复合薄膜结构的力学参数测量方法及装置
CN201710299770.4 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018196466A1 true WO2018196466A1 (zh) 2018-11-01

Family

ID=59605265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076248 WO2018196466A1 (zh) 2017-04-28 2018-02-11 多层复合薄膜结构的力学参数测量方法及装置

Country Status (3)

Country Link
US (1) US11002710B2 (zh)
CN (1) CN107063839A (zh)
WO (1) WO2018196466A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111272554A (zh) * 2020-03-27 2020-06-12 九江德福科技股份有限公司 一种铜箔泡泡纱的定量分析方法
CN111442984A (zh) * 2020-03-25 2020-07-24 重庆大学 一种确定横向均布载荷下圆形薄膜最大应力的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063839A (zh) * 2017-04-28 2017-08-18 东南大学 多层复合薄膜结构的力学参数测量方法及装置
CN109283403B (zh) * 2018-11-13 2020-12-01 东南大学 基于多层悬臂梁的薄膜材料横向压电系数测试方法
CN111442976B (zh) * 2020-03-12 2022-03-08 重庆大学 横向均布载荷作用下圆形薄膜最大挠度的确定方法
CN111442977B (zh) * 2020-03-12 2022-03-08 重庆大学 横向均布载荷作用下圆形薄膜最大应力的确定方法
CN112129347B (zh) * 2020-09-18 2023-05-16 东南大学 一种用于微制造的多层薄膜残余应力和杨氏模量在线测试结构及在线提取方法
CN112326720B (zh) * 2020-10-30 2022-05-20 河海大学 一种mems多层薄膜材料热膨胀系数的提取方法
CN112698208A (zh) * 2020-12-11 2021-04-23 上海理工大学 原位测量锂电池材料杨氏模量和偏摩尔体积的系统和方法
CN112697851A (zh) * 2020-12-11 2021-04-23 上海理工大学 一种用于电化学反应测试的模型电池和测试方法
CN114137028B (zh) * 2021-11-16 2024-06-11 河海大学 一种mems多层薄膜材料杨氏模量在线提取装置及方法
CN114778698B (zh) * 2022-06-17 2022-10-14 电子科技大学 基于复合压电薄膜体声波谐振的材料弹性模量测量方法
CN115178313B (zh) * 2022-08-05 2024-08-27 天津工业大学 一种用于生化分子检测的中空微纳复合梁的设计方法
CN117174211B (zh) * 2023-08-28 2024-05-03 无锡车联天下信息技术有限公司 一种复合材料的力学性能分析方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101769898A (zh) * 2010-02-08 2010-07-07 南京师范大学 基于谐振频率法的mems薄膜泊松比在线测量方法
CN102374948A (zh) * 2011-09-21 2012-03-14 华东师范大学 用于微电子机械系统的非硅薄膜力学特性复合测量方法
US20130330232A1 (en) * 2009-03-23 2013-12-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Cavity opto-mechanical sensor array
CN106353404A (zh) * 2016-08-10 2017-01-25 上海交通大学 适用于超声共振谱法测薄膜材料常数的试样及测试方法
CN107063839A (zh) * 2017-04-28 2017-08-18 东南大学 多层复合薄膜结构的力学参数测量方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106383404A (zh) * 2016-08-31 2017-02-08 北京奇艺世纪科技有限公司 一种自动调焦方法及头戴式可视设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330232A1 (en) * 2009-03-23 2013-12-12 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Cavity opto-mechanical sensor array
CN101769898A (zh) * 2010-02-08 2010-07-07 南京师范大学 基于谐振频率法的mems薄膜泊松比在线测量方法
CN102374948A (zh) * 2011-09-21 2012-03-14 华东师范大学 用于微电子机械系统的非硅薄膜力学特性复合测量方法
CN106353404A (zh) * 2016-08-10 2017-01-25 上海交通大学 适用于超声共振谱法测薄膜材料常数的试样及测试方法
CN107063839A (zh) * 2017-04-28 2017-08-18 东南大学 多层复合薄膜结构的力学参数测量方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"(2008 - 03 - 17)", MEMS, 17 March 2008 (2008-03-17) *
SOMA, AURELIO: "Residual stress measurement method in MEMS microbeams using frequency shift data", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 19, no. 9, 1 September 2009 (2009-09-01), XP020165001 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442984A (zh) * 2020-03-25 2020-07-24 重庆大学 一种确定横向均布载荷下圆形薄膜最大应力的方法
CN111272554A (zh) * 2020-03-27 2020-06-12 九江德福科技股份有限公司 一种铜箔泡泡纱的定量分析方法

Also Published As

Publication number Publication date
US11002710B2 (en) 2021-05-11
CN107063839A (zh) 2017-08-18
US20190227036A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018196466A1 (zh) 多层复合薄膜结构的力学参数测量方法及装置
Yi et al. Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength
Verma et al. Si-based MEMS resonant sensor: A review from microfabrication perspective
Sharpe et al. Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon
CN106932263A (zh) 基于谐振频率的双端固支梁力学参数测量方法及装置
Fujii et al. Focused ion beam induced surface damage effect on the mechanical properties of silicon nanowires
Komati et al. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications
Xu et al. Design and fabrication of a D 33-mode piezoelectric micro-accelerometer
Zhang et al. S-shape spring sensor: Sensing specific low-frequency vibration by energy harvesting
Bhaswara et al. Fabrication of nanoplate resonating structures via micro-masonry
Shaby et al. Enhancing the performance of mems piezoresistive pressure sensor using germanium nanowire
Shi et al. Nonlinear dynamics study based on uncertainty analysis in electro-thermal excited MEMS resonant sensor
Saayujya et al. Design, fabrication and characterization of a zinc oxide thin-film piezoelectric accelerometer
Sharma et al. Fabrication and analysis of MEMS test structures for residual stress measurement
Ozaki et al. Biaxial flexure testing of free-standing thin film membrane with nanoindentation system
Leseman et al. Experimental measurements of the strain energy release rate for stiction-failed microcantilevers using a single-cantilever beam peel test
Pustan et al. Nanomechanical and nanotribological characterization of microelectromechanical system
Qaradaghi et al. MEMS resonant sensors for real-time thin film shear stress monitoring
Yenuganti et al. Piezoelectric microresonant pressure sensor using aluminum nitride
Zhu et al. Fabrication of ultrasonic arrays with 7 μm PZT thick films as ultrasonic emitter for object detection in air
Shikida et al. Mechanical strengthening of Si cantilever by chemical KOH etching and its surface analysis by TEM and AFM
Narducci et al. A high sensitivity silicon microcantilever based mass sensor
Xue et al. Measurement and modeling of adhesion energy between two rough microelectromechanical system (MEMS) surfaces
CN107246991A (zh) 基于谐振频率的复合悬臂梁力学参数测量方法及装置
Houri et al. Dynamic analysis of multi-beam MEMS structures for the extraction of the stress-strain response of thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791289

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18791289

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18791289

Country of ref document: EP

Kind code of ref document: A1