WO2018196312A1 - 一种电机控制方法、电机控制装置及电动自行车 - Google Patents
一种电机控制方法、电机控制装置及电动自行车 Download PDFInfo
- Publication number
- WO2018196312A1 WO2018196312A1 PCT/CN2017/108228 CN2017108228W WO2018196312A1 WO 2018196312 A1 WO2018196312 A1 WO 2018196312A1 CN 2017108228 W CN2017108228 W CN 2017108228W WO 2018196312 A1 WO2018196312 A1 WO 2018196312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- motor
- microcontroller
- current
- set value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P23/00—Arrangements or methods for the control of AC motors characterised by a control method other than vector control
- H02P23/02—Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for optimising the efficiency at low load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the invention relates to the technical field of electric bicycles, and relates to a motor control method, a motor control device adapted to the control method, and an electric bicycle using the motor control device.
- the bicycle brake technology refers to the reverse stepping of the pedal by the brake hub, the reverse movement of the chain, and driving the brake hub to brake.
- technicians began to try to use the brake technology on the electric bicycle. In the process, the technician found that although the motor output can be cut off by detecting the brake signal.
- the controller of the electric bicycle ensures the continuous output of the motor, the drive of the motor has a certain hysteresis. When the clutch is disconnected, the motor still keeps running, and the motor speed rises rapidly due to the disappearance of the load. , emitting an empty whistling sound, affecting the user's riding experience.
- An object of the present invention is to provide a motor control method, a motor control device compatible with the control method, and an electric bicycle using the motor control device, in view of the above-described deficiencies of the prior art.
- the invention provides a motor control method, which collects one or more of a current signal, a stepping torque signal and a motor speed signal of a power driving circuit through a microcontroller, and outputs a control signal according to a change of the collected signal to perform a motor on the motor. Regulation.
- the control signal output by the microcontroller is: reducing the pulse width Modulating a signal or a braking signal to regulate the motor;
- the control signal output by the microcontroller is: canceling the braking signal, and slowly increasing the pulse width modulation Signal to regulate the motor.
- the control signal output by the microcontroller is: reducing the pulse width modulation signal or the braking signal to regulate the motor ;
- the control signal output by the microcontroller is: cancel the braking signal, and slowly increase the pulse width. Modulate the signal to regulate the motor.
- the current signal is converted into a voltage signal by a current feedback circuit, and then sent to the microcontroller; the stepping torque signal is sent to the microcontroller through the input control circuit; the motor speed signal is sent to the micro through the speed feedback circuit a controller; the control signal output by the microcontroller is sent to the power drive circuit, and the motor is regulated by the power drive circuit.
- first set value, the second set value, the third set value, and the fourth set value are written in advance in the microcontroller.
- the microcontroller collects one or more of a current signal, a stepping torque signal, and a motor speed signal of the power driving circuit at regular intervals.
- the invention also provides an electric bicycle motor control device, comprising:
- a microcontroller for collecting a current signal, a stepping torque signal, and a motor speed signal, and processing the signal to output a control signal
- a power driving circuit configured to receive a control signal output by the microcontroller, and control the motor according to the control signal
- a current feedback circuit for sampling a current signal of the power drive circuit and the signal Number is sent to the microcontroller
- An input control circuit for sampling a stepping torque signal and transmitting the stepping torque signal to the microcontroller
- the speed feedback circuit is configured to sample the motor speed signal and send the motor speed signal to the microcontroller.
- the microcontroller comprises:
- a collecting unit for collecting a current signal, a stepping torque signal and a motor speed signal
- a calculation unit configured to perform processing operations on signals collected by the acquisition unit
- an output execution unit configured to receive a control amount of the pulse width modulation signal obtained by the calculation unit, and output a pulse width modulation signal, a brake signal, or a brake signal to the power driving circuit.
- the current feedback circuit comprises a sampling resistor, a discrete amplifying circuit or an integrated operational amplifier connected to the sampling resistor, the discrete amplifying circuit or an integrated operational amplifier being connected to the microcontroller.
- the present invention also discloses an electric bicycle which employs the above-described motor control device and realizes control of the motor by the above-described motor control method.
- the present invention can accurately control the motor by monitoring the change of the current signal, the stepping torque signal and the motor speed signal of the power driving circuit, and avoid the moment when the clutch is disconnected, and the motor continues to be high speed caused by the driving belt lag.
- the operation in order to avoid the whistling sound of the motor from no-load, prolong the service life of the motor, and give the user a better riding experience.
- FIG. 1 is a schematic structural view of a motor control device provided by the present invention.
- An embodiment of the present invention provides a motor control method for collecting one or more signals of a current signal, a stepping torque signal, and a motor speed signal of a power driving circuit through a microcontroller, and changing according to the collected signal.
- the control signal is output to regulate the motor to avoid the motor telling the idling caused by the motor drive belt lag.
- control signal output by the microcontroller is: reducing the pulse width modulated signal Or brake signal to regulate the motor;
- the control signal output by the microcontroller is: canceling the braking signal, and slowly increasing the pulse width modulation signal, To regulate the motor.
- the control signal output by the microcontroller is: reducing the pulse width modulation signal or the braking signal to regulate the motor;
- the control signal output by the microcontroller is: cancel the brake signal, and slowly increase the pulse width modulation signal. To regulate the motor.
- the first set value, the second set value, the third set value, and the fourth set value are written in advance in the microcontroller.
- the current signal is converted into a voltage signal by the current feedback circuit, and then sent to the microcontroller; the stepping torque signal is sent to the microcontroller through the input control circuit; the motor speed signal is sent to the speed feedback circuit to a microcontroller; the control signal output by the microcontroller is sent to the power drive circuit, and the motor is regulated by the power drive circuit.
- the microcontroller collects one or more of a current signal, a stepping torque signal, and a motor speed signal of the power driving circuit at regular intervals.
- an electric bicycle motor control device including a microcontroller, a power driving circuit, a current feedback circuit, an input control circuit, and Speed feedback circuit.
- the microcontroller is configured to collect a current signal, a stepping torque signal, and a motor speed signal, and output a control signal after processing the signal;
- the power driving circuit is configured to receive a control signal output by the microcontroller, and according to the control signal pair
- the motor performs control;
- the current feedback circuit is configured to sample the current signal of the power drive circuit and send the signal to the microcontroller;
- the input control circuit is configured to sample the stepping torque signal, and the stepping torque signal is Sended to the microcontroller;
- a speed feedback circuit is used to sample the motor speed signal and send the motor speed signal to the microcontroller.
- the microcontroller includes: an acquisition unit, a calculation unit, and an output execution unit, wherein the acquisition unit is configured to collect a current signal, a stepping torque signal, and a motor speed signal; and the calculation unit is configured to collect the collection unit.
- the received signal is subjected to a processing operation; the output execution unit is configured to receive a control amount of the pulse width modulation signal obtained by the calculation unit, and output a pulse width modulation signal, a brake signal, or a brake signal to the power driving circuit.
- the structure of the current feedback circuit includes a sampling resistor, a discrete amplifying circuit or an integrated operational amplifier coupled to the sampling resistor, the discrete amplifying circuit or an integrated operational amplifier being coupled to the microcontroller.
- Another embodiment of the present invention discloses an electric bicycle, which adopts the circuit control method and the circuit control device in the above embodiment, wherein the motor adopts a three-phase brushless motor, and the clutch is engaged when the bicycle pedal is depressed in the forward direction. Because the load of the chain deforms the central axis, the torque sensor outputs a torque signal to the input control circuit, and the input control circuit amplifies the torque signal and transmits it to the microcontroller. The microcontroller reads the pedaling torque signal at a certain interval and passes through. After the calculation process, the torque magnitude and the torque change rate are obtained.
- the current feedback circuit and the speed feedback circuit also process the current current value and the rotational speed value to the microcontroller, and the microcontroller calculates the current and the rotational speed. Calculate the rate of change of current and speed.
- the controller outputs the PWM signal to the power drive circuit in a slow start mode.
- the power drive circuit outputs power, drives the motor to run, and increases the motor speed and speed feedback.
- Circuit acquisition can be determined by feedback from Hall or non-inductive circuits. Position and to achieve commutation, also at the same time the feedback is used to calculate the motor speed. At this point, the controller controls the motor to enter the assisted driving state.
- the motor control device of the present invention When the motor control device of the present invention is used, high-speed sampling is performed due to the load current and the rotational speed of the motor, for example, 1 ms is a sampling period, at which time the microcontroller detects the motor speed swell or current through the speed feedback circuit and the current feedback circuit. When the voltage drops suddenly and exceeds a certain value, the microcontroller will trigger the motor stop program, interrupt the PWM control output of the power drive circuit or output a brake signal to the power drive circuit, so that the motor stops quickly.
- the microcontroller detects the torque signal again.
- the microcontroller re-outputs the PWM signal to the power drive circuit and enters the slow start again. The process until the motor speed or torque reaches the set value.
- multiple sets of set values can be set by writing the motor speed change amplitude and the current change range, and various modes of control can be realized according to the different change ranges of the motor and the current, for example, the motor speed is slightly increased, and the current is small.
- the motor speed is slightly increased, and the current is small.
- the motor speed is moderately increased, the current is moderately decreased, the output of the PWM control signal of the power drive circuit is stopped, and the motor speed is increased greatly, the current
- the short-circuit brake signal is output to the power drive circuit, and the short-circuit brake is performed.
- the motor speed is greatly increased and the current is suddenly dropped, the reverse input brake is used to brake the motor. Therefore, the motor can be braked for the first time to avoid the operation of the motor under no-load condition, and the scream caused by the motor can be avoided, the user's riding experience can be improved, and the service life of the motor can be prolonged.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
一种电机控制方法、电机控制装置及电动自行车,该方法通过微控制器采集功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号和功率驱动电路的电流信号中的一种或多种信号,并根据采集到的信号变化,输出控制信号,对电机进行调控。通过监测功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号的变化情况,可以对电机进行精确控制,避免离合器断开瞬间,电机的驱动带滞后引起的电机继续高速运转,进而避免电机发出空载的尖啸声,延长电机使用寿命的同时,给用户较好的骑行体验。
Description
本发明涉及电动自行车技术领域,涉及一种电机控制方法,与该控制方法相适应的电机控制装置,以及使用该电机控制装置的电动自行车。
自行车的倒刹技术是指通过倒刹轮毂,将脚踏板反向踩下,链条反向运动,驱动倒刹轮毂进行刹车制动。随着自行车的倒刹技术应用越来越广泛,技术人员开始尝试在电动自行车上也使用倒刹技术,在此过程中,技术人员发现,虽然可以通过检测倒刹信号来切断电动车的电机输出,然而由于电动自行车的控制器为保证电机输出的连续,使得电机的驱动带有一定的滞后性,在离合器断开的瞬间,电机依旧保持运转状态,由于负载的消失,导致电机转速迅速升高,发出空载的尖啸声,影响用户的骑行体验。
发明内容
本发明的目的在于针对上述现有技术的不足,提供了一种电机控制方法,与该控制方法相适应的电机控制装置,以及使用该电机控制装置的电动自行车。
为实现上述目的,本发明采用了如下技术方案:
本发明提供了电机控制方法,通过微控制器采集功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号中的一种或多种,并根据采集到的信号的变化输出控制信号,对电机进行调控。
进一步地,
a、当所述电流信号所转化的电压信号变化的负斜率大于第一设定值,或转速信号变化的正斜率大于第二设定值时,微控制器输出的控制信号为:降低脉冲宽度调制信号或制动信号,以调控电机;
b、当所述踩踏扭矩信号对应转速大于电压信号对应转速,或踩踏扭矩信号的斜率大于第三设定值时,微控制器输出的控制信号为:撤销制动信号,并缓慢增加脉冲宽度调制信号,以调控电机。
进一步地,
a、当所述踩踏扭矩信号的负斜率大于第四设定值或所述踩踏扭矩信号降为0时,微控制器输出的控制信号为:降低脉冲宽度调制信号或制动信号,以调控电机;
b、当所述踩踏扭矩信号由0变为其他值,或所述踩踏扭矩信号的斜率大于第三设定值时,微控制器输出的控制信号为:撤销制动信号,并缓慢增加脉冲宽度调制信号,以调控电机。
进一步地,所述电流信号通过电流反馈电路转换为电压信号后,发送至微控制器;所述踩踏扭矩信号通过输入控制电路发送至微控制器;所述电机转速信号通过转速反馈电路发送至微控制器;所述微控制器输出的控制信号发送至功率驱动电路,并通过功率驱动电路对电机进行调控。
进一步地,所述第一设定值、第二设定值、第三设定值和第四设定值预先写入所述微控制器内。
进一步地,所述微控制器每隔一定时间对功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号中的一种或多种进行采集。
本发明还提供了一种电动自行车电机控制装置,其包括:
微控制器,用于采集电流信号、踩踏扭矩信号和电机转速信号,并将信号进行处理运算后,输出控制信号;
功率驱动电路,用于接收微控制器输出的控制信号,并根据所述控制信号对电机进行控制;
电流反馈电路,用于对功率驱动电路的电流信号进行采样,并将该信
号发送给所述微控制器;
输入控制电路,用于对踩踏扭矩信号进行采样,并将所述踩踏扭矩信号发送给所述微控制器;
转速反馈电路,用于对电机转速信号进行采样,并将所述电机转速信号发送给所述微控制器。
优选地,所述微控制器包括:
采集单元,用于采集电流信号、踩踏扭矩信号和电机转速信号;
计算单元,用于对采集单元采集到的信号进行处理运算;
输出执行单元,用于接收计算单元得出的脉冲宽度调制信号的控制量,并向功率驱动电路输出脉冲宽度调制信号、制动信号或撤销制动信号。
优选地,所述电流反馈电路包括采样电阻,与所述采样电阻连接的分立放大电路或集成运放,所述分立放大电路或集成运放连接至所述微控制器。
此外,本发明还公开了一种电动自行车,其采用了上述的电机控制装置,并通过上述的电机控制方法实现电机的控制。
采用上述技术方案,本发明通过监测功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号的变化情况,可以对电机进行精确控制,避免离合器断开瞬间,电机的驱动带滞后引起的电机继续高速运转,进而避免电机发出空载的尖啸声,延长电机使用寿命的同时,给用户较好的骑行体验。
图1为本发明提供的电机控制装置的结构示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明一实施例提供了一种电机控制方法,其通过微控制器采集功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号中的一种或多种信号,并根据采集到的信号变化,输出控制信号,对电机进行调控,避免电机驱动带滞后引起的电机告诉空转。
具体地,
当所述电流信号所转化的电压信号变化的负斜率大于第一设定值,或转速信号变化的正斜率大于第二设定值时,微控制器输出的控制信号为:降低脉冲宽度调制信号或制动信号,以调控电机;
当所述踩踏扭矩信号对应转速大于电压信号对应转速,或踩踏扭矩信号的斜率大于第三设定值时,微控制器输出的控制信号为:撤销制动信号,并缓慢增加脉冲宽度调制信号,以调控电机。
当所述踩踏扭矩信号的负斜率大于第四设定值或所述踩踏扭矩信号降为0时,微控制器输出的控制信号为:降低脉冲宽度调制信号或制动信号,以调控电机;
当所述踩踏扭矩信号由0变为其他值,或所述踩踏扭矩信号的斜率大于第三设定值时,微控制器输出的控制信号为:撤销制动信号,并缓慢增加脉冲宽度调制信号,以调控电机。
其中,第一设定值、第二设定值、第三设定值和第四设定值预先写入所述微控制器内。
在上述实施例中,电流信号通过电流反馈电路转换为电压信号后,发送至微控制器;所述踩踏扭矩信号通过输入控制电路发送至微控制器;所述电机转速信号通过转速反馈电路发送至微控制器;所述微控制器输出的控制信号发送至功率驱动电路,并通过功率驱动电路对电机进行调控。
优选地,上述实施例中,所述微控制器每隔一定时间对功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号中的一种或多种进行采集。
如图1所示,本发明的另一实施例还公开了一种电动自行车电机控制装置,其包括微控制器、功率驱动电路、电流反馈电路、输入控制电路和
转速反馈电路。其中微控制器用于采集电流信号、踩踏扭矩信号和电机转速信号,并将信号进行处理运算后,输出控制信号;功率驱动电路用于接收微控制器输出的控制信号,并根据所述控制信号对电机进行控制;电流反馈电路用于对功率驱动电路的电流信号进行采样,并将该信号发送给所述微控制器;输入控制电路用于对踩踏扭矩信号进行采样,并将所述踩踏扭矩信号发送给所述微控制器;转速反馈电路用于对电机转速信号进行采样,并将所述电机转速信号发送给所述微控制器。上述各部件互相紧密配合,实现对电机的快速调节或制动,避免电机无负载情况下的高速空转,保护电机,延长电机的使用寿命。
作为上述实施例的优选,所述微控制器包括:采集单元、计算单元和输出执行单元,其中,采集单元用于采集电流信号、踩踏扭矩信号和电机转速信号;计算单元用于对采集单元采集到的信号进行处理运算;输出执行单元用于接收计算单元得出的脉冲宽度调制信号的控制量,并向功率驱动电路输出脉冲宽度调制信号、制动信号或撤销制动信号。
在上述任一的实施例中,电流反馈电路的结构包括采样电阻,与所述采样电阻连接的分立放大电路或集成运放,所述分立放大电路或集成运放连接至所述微控制器。
本发明的又一实施例公开了一种电动自行车,采用了上述实施例中的电路控制方法及电路控制装置,其电机采用了三相无刷电机,在自行车踏板正向踩下时,离合器接合,由于链条的负载使得中轴变形,扭矩传感器输出扭矩信号给输入控制电路,输入控制电路对扭矩信号放大处理后传输给微控制器,微控制器间隔一定时间读取一次踩踏扭矩信号,并经过计算处理后,得出扭矩大小和扭矩变化率,同时,电流反馈电路、转速反馈电路也将当前的电流值和转速值初步处理后传输给为微控制器,微控制器计算电流和转速大小并计算电流和转速的变化率,当扭矩大小超过第三设定值时,控制器以缓启动的方式输出PWM信号给功率驱动电路,功率驱动电路输出电能,驱动电机运行,提高电机转速,转速反馈电路采集通过可以霍尔或无感电路反馈,来确定电机转子位置并实现换相,同时该反馈也用于计算电机的转速。此时控制器控制电机进入助力行驶状态。
当停止踩踏或进入倒刹时,离合器分离,电机的输出空载,力矩信号消失,此时如有采用现有技术的电机控制装置,由于普通控制器输出的滞后性,控制器依旧保持一定功率的输出,由于电机负载的消失,会使得电机转速骤然提升,而负载电流迅速下降,出现啸叫。
而采用本发明的电机控制装置时,由于会电机的负载电流和转速进行高速采样,比如1ms为一个采样周期,此时微控制器通过转速反馈电路和电流反馈电路检测到电机转速骤升或电流骤降,并且超过一定值,微控制器会触发电机停止程序,中断功率驱动电路的PWM控制输出或向功率驱动电路输出刹车信号,使得电机快速停止。
此时若重新踩踏踏板,微控制器重新检测到力矩信号,当扭矩信号对应转速大于当前转速或力矩信号超过设定扭力时,微控制器重新向功率驱动电路输出PWM信号,并再次进入缓启动过程直到电机转速或扭矩达到设定值。
在上述过程中,可通过对电机转速变化幅度和电流变化幅度写入设定多组设定值,以对应电机和电流的不同变化幅度实现多种方式控制,比如在电机转速小幅提升,电流小幅下降时,只降低PWM占空比,降低电机转速,不完全停止电机工作;在电机转速中等提升,电流中等下降时,停止功率驱动电路的PWM控制信号的输出,在电机转速提升较大,电流下降较多时,对功率驱动电路输出短路刹车信号,进行短路刹车,而在电机转速大幅跃升较大,电流骤降时,采用反向输入刹车,对电机进行动力制动。从而保证电机第一时间制动,避免发生电机空载情况下的告诉运转,并能避免由此引起的尖啸,提高用户的骑行体验,延长电机的使用寿命。
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种电机控制方法,其特征在于,微控制器采集踩踏扭矩信号、电机转速信号和功率驱动电路的电流信号中的一种或多种,并根据采集到的信号的变化输出控制信号,对电机进行调控。
- 根据权利要求1所述的电机控制方法,其特征在于,a、当所述电流信号所转化成的电压信号变化的负斜率大于第一设定值,或转速信号变化的正斜率大于第二设定值时,微控制器输出的控制信号为:降低脉冲宽度调制信号或制动信号;b、当所述踩踏扭矩信号对应转速大于所述电流信号所转化成的电压信号对应的转速时,或踩踏扭矩信号的斜率大于第三设定值时,微控制器输出的控制信号为:撤销制动信号,并缓慢增加脉冲宽度调制信号。
- 根据权利要求1所述的电机控制方法,其特征在于,a、当所述踩踏扭矩信号的负斜率大于第四设定值或所述踩踏扭矩信号降为0时,微控制器输出的控制信号为:降低脉冲宽度调制信号或制动信号;b、当所述踩踏扭矩信号由0变为其他值,或所述踩踏扭矩信号的斜率大于第三设定值时,微控制器输出的控制信号为:撤销制动信号,并缓慢增加脉冲宽度调制信号。
- 根据权利要求1所述的电机控制方法,其特征在于,所述电流信号通过电流反馈电路转换为电压信号后,发送至微控制器;所述踩踏扭矩信号通过输入控制电路发送至微控制器;所述电机转速信号通过转速反馈电路发送至微控制器;所述微控制器输出的控制信号发送至功率驱动电路,并通过功率驱动电路对电机进行调控。
- 根据权利要求2或3所述的电机控制方法,其特征在于,所述第一设定值、第二设定值、第三设定值和第四设定值预先写入所述微控制器内。
- 根据权利要求1所述的电机控制方法,其特征在于,所述微控制器每隔一定时间对功率驱动电路的电流信号、踩踏扭矩信号、电机转速信号中的一种或多种进行采集。
- 一种电动自行车电机控制装置,其特征在于,包括:微控制器,用于采集电流信号、踩踏扭矩信号和电机转速信号,并将采集到的信号进行处理运算后,输出控制信号;功率驱动电路,用于接收微控制器输出的控制信号,并根据所述控制信号对电机进行控制;电流反馈电路,用于对功率驱动电路的电流信号进行采样,并将该信号发送给所述微控制器;输入控制电路,用于对踩踏扭矩信号进行采样,并将所述踩踏扭矩信号发送给所述微控制器;转速反馈电路,用于对电机转速信号进行采样,并将所述电机转速信号发送给所述微控制器。
- 根据权利要求7所述的电动自行车电机控制装置,其特征在于,所述微控制器包括:采集单元,用于采集电流信号、踩踏扭矩信号和电机转速信号;计算单元,用于对采集单元采集到的信号进行处理运算;输出执行单元,用于接收计算单元得出的脉冲宽度调制信号的控制量,并向功率驱动电路输出脉冲宽度调制信号、制动信号或撤销制动信号。
- 根据权利要求7或8所述的电动自行车电机控制装置,其特征在于,所述电流反馈电路包括采样电阻,与所述采样电阻连接的分立放大电路或集成运放,所述分立放大电路或集成运放连接至所述微控制器。
- 一种电动自行车,其特征在于,包括权利要求7-9任一项中所述的电机控制装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710272449.7 | 2017-04-24 | ||
CN201710272449.7A CN107070349B (zh) | 2017-04-24 | 2017-04-24 | 一种电机控制方法、电机控制装置及电动自行车 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196312A1 true WO2018196312A1 (zh) | 2018-11-01 |
Family
ID=59603996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/108228 WO2018196312A1 (zh) | 2017-04-24 | 2017-10-30 | 一种电机控制方法、电机控制装置及电动自行车 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107070349B (zh) |
WO (1) | WO2018196312A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110504819A (zh) * | 2019-08-13 | 2019-11-26 | 合肥源泓蓁信息技术有限公司 | 一种功率单元模组 |
CN110488646B (zh) * | 2019-08-13 | 2021-06-08 | 合肥源泓蓁信息技术有限公司 | 一种功率单元模组 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101157343A (zh) * | 2007-09-21 | 2008-04-09 | 南京大陆鸽高科技股份有限公司 | 电动助力自行车智能控制器和控制方法 |
CN201338543Y (zh) * | 2008-12-05 | 2009-11-04 | 无锡机电高等职业技术学校 | 新型电动自行车控制器 |
CN102717710A (zh) * | 2012-05-29 | 2012-10-10 | 山东润峰电子科技有限公司 | 电动车限速装置 |
CN203601363U (zh) * | 2013-12-20 | 2014-05-21 | 唐山市科学技术情报研究所 | 汽车电动助力转向控制系统 |
CN105857115A (zh) * | 2016-06-12 | 2016-08-17 | 南京壹佰克智能科技有限公司 | 一种用于电动助力自行车的电机智能控制系统 |
CN106515462A (zh) * | 2017-01-03 | 2017-03-22 | 北京长安汽车工程技术研究有限责任公司 | 一种电动汽车的制动控制方法、制动控制装置和制动系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4400840B2 (ja) * | 2000-03-01 | 2010-01-20 | 本田技研工業株式会社 | 電動自転車 |
CN1569553A (zh) * | 2003-04-15 | 2005-01-26 | 株式会社萌力克 | 辅助动力车辆的辅助控制 |
CN201410893Y (zh) * | 2009-01-12 | 2010-02-24 | 刘军 | 健身电动自行车控制器 |
CN202765214U (zh) * | 2012-08-31 | 2013-03-06 | 新安乃达驱动技术(上海)有限公司 | 一种电动自行车用的中轴力矩传感电机驱动系统 |
CN203788203U (zh) * | 2014-04-29 | 2014-08-20 | 西北师范大学 | 一种pwm双闭环电动自行车调速控制系统 |
JP6219326B2 (ja) * | 2015-03-02 | 2017-10-25 | 本田技研工業株式会社 | 二輪車 |
-
2017
- 2017-04-24 CN CN201710272449.7A patent/CN107070349B/zh active Active
- 2017-10-30 WO PCT/CN2017/108228 patent/WO2018196312A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101157343A (zh) * | 2007-09-21 | 2008-04-09 | 南京大陆鸽高科技股份有限公司 | 电动助力自行车智能控制器和控制方法 |
CN201338543Y (zh) * | 2008-12-05 | 2009-11-04 | 无锡机电高等职业技术学校 | 新型电动自行车控制器 |
CN102717710A (zh) * | 2012-05-29 | 2012-10-10 | 山东润峰电子科技有限公司 | 电动车限速装置 |
CN203601363U (zh) * | 2013-12-20 | 2014-05-21 | 唐山市科学技术情报研究所 | 汽车电动助力转向控制系统 |
CN105857115A (zh) * | 2016-06-12 | 2016-08-17 | 南京壹佰克智能科技有限公司 | 一种用于电动助力自行车的电机智能控制系统 |
CN106515462A (zh) * | 2017-01-03 | 2017-03-22 | 北京长安汽车工程技术研究有限责任公司 | 一种电动汽车的制动控制方法、制动控制装置和制动系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107070349B (zh) | 2020-07-03 |
CN107070349A (zh) | 2017-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI519432B (zh) | Energy recovery brake device and its electric auxiliary vehicle | |
WO2018196312A1 (zh) | 一种电机控制方法、电机控制装置及电动自行车 | |
CN202429187U (zh) | 一种驻车制动智能控制装置 | |
NL2006711C2 (nl) | Werkwijze en besturingsinrichting voor het bedienen van een elektrische rem en het mogelijk maken van een terugtraprem van een elektrofiets. | |
EP1808956A3 (en) | Driving apparatus and driving system for electric motor | |
EP3459782B1 (en) | Motor driving control apparatus and method and motor-assisted vehicle | |
JP5455604B2 (ja) | 電動自転車およびそのブレーキ調整方法 | |
WO2013099851A1 (ja) | 車両の制動制御装置 | |
JP2005051834A (ja) | 車両および車両の制御方法 | |
EP2404778A3 (en) | Electric train car controlling device | |
EP2444275A3 (en) | Motor torque control device | |
CN101783635A (zh) | 电动助力自行车及其控制器和控制方法 | |
CN200974476Y (zh) | 直流有刷电机控制器 | |
KR101350845B1 (ko) | 전자 브레이크의 간극 조정 장치 및 그 방법 | |
KR100381818B1 (ko) | 간단한 구조의 에너지공급부를 구비한 자기유변유체브레이크 및 그러한 자기유변유체브레이크를 구비한 회전기계 | |
KR20140142117A (ko) | 전기자전거용 토크 제어 장치 | |
JP2011201385A (ja) | 電動補助動力装置付自転車 | |
CN214984856U (zh) | 松转把自动回馈的电车装置 | |
EP1858153A3 (de) | Elektrischer Antrieb sowie Verfahren zum Steuern eines solchen Antriebs | |
JP3872740B2 (ja) | 電動車両のモータ制御方法 | |
CN211577737U (zh) | 一种电子功能装置 | |
TW201431721A (zh) | 電動滑板車之刹車裝置 | |
RU2274567C1 (ru) | Способ автоматического управления торможением транспортного средства | |
JPH0231612Y2 (zh) | ||
JP3788278B2 (ja) | ブレーキテスタの制御方式 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907829 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17907829 Country of ref document: EP Kind code of ref document: A1 |