WO2018196244A1 - 一种改性的多元共聚芳酰胺及其制备方法和用途 - Google Patents

一种改性的多元共聚芳酰胺及其制备方法和用途 Download PDF

Info

Publication number
WO2018196244A1
WO2018196244A1 PCT/CN2017/100015 CN2017100015W WO2018196244A1 WO 2018196244 A1 WO2018196244 A1 WO 2018196244A1 CN 2017100015 W CN2017100015 W CN 2017100015W WO 2018196244 A1 WO2018196244 A1 WO 2018196244A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
hours
formula
multicomponent
licl
Prior art date
Application number
PCT/CN2017/100015
Other languages
English (en)
French (fr)
Inventor
周胜
张小莉
沈志豪
赵宁
范星河
周其凤
徐坚
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710284701.6A external-priority patent/CN108794740B/zh
Priority claimed from CN201710503000.7A external-priority patent/CN109134847B/zh
Application filed by 中国科学院化学研究所 filed Critical 中国科学院化学研究所
Publication of WO2018196244A1 publication Critical patent/WO2018196244A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/90Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides

Definitions

  • the invention belongs to the technical field of polyaramids, and in particular relates to a modified multicomponent copolymer arylamide, a preparation method thereof and use thereof.
  • Polyamide is a generic term for polymers containing amide groups in macromolecular backbone repeating units.
  • the polyamide can be obtained by ring-opening polymerization of a caprolactam or by polycondensation of a diamine and a dibasic acid.
  • Polyamide has good comprehensive properties, including mechanical properties, heat resistance, abrasion resistance, chemical resistance and self-lubricating properties, low friction coefficient, certain flame retardancy, easy processing, suitable for fiberglass And other fillers are filled with reinforced modifications to improve performance and extend the range of applications.
  • Polyamides can be classified into polyaramids and aliphatic polyamides depending on the comonomer. The polyaramid is excellent in heat resistance, melting temperature, strength, chemical resistance, and the like as compared with the aliphatic polyamide.
  • Polyaramids are an important class of high performance engineering plastics which are polymeric materials having at least 85% of the amide groups attached directly to the two aromatic rings in the molecular backbone.
  • the polyaramid can be further divided into para-polyarylamide (PPTA), meta-polyaramid (PMIA), ortho-polyarylamide according to the position of attachment of the amide group to the benzene ring.
  • PPTA para-polyarylamide
  • PMIA meta-polyaramid
  • ortho-polyarylamide Due to the rigidity of its molecular chain, polyarylamide has excellent thermal stability, very high mechanical strength, melting temperature, chemical stability and the like, and is widely used in military and transportation fields.
  • the glass transition temperature is high and the solubility in an organic solvent is poor.
  • PPTA Para-polyaramid
  • PPTA is one of the most attractive polyaramids, which can be obtained by spinning in concentrated sulfuric acid solution to obtain the most strong and most versatile organic fibers.
  • PPTA has poor solubility and can only be dissolved by inorganic strong acid such as concentrated sulfuric acid; PPTA has a high melting point, close to its decomposition temperature, and cannot be used in traditional Melt processing or compression molding process. From the microscopic point of view, the advantages and disadvantages of PPTA are attributed to the rigidity, regularity of the molecular chain structure and hydrogen bonding caused by the amide bond.
  • Kevlar was industrialized by DuPont in 1972 under the trade name Kevlar, and the currently commercialized Kevlar grades are Kevlar-29, Kevlar-49 and Kevlar-149.
  • U.S. Patent No. 4,355,151 discloses the copolymerization of 3,4'-diaminodiphenyl ether (as shown in Formula 1) as a third monomer, and the resulting polymerization liquid is directly formed into a fiber through a certain spinning process, and the fiber is appropriately prepared. Post-treatment, can get strength, modulus, extension The rate is higher than the high performance fiber of Kevlar-29.
  • 3,4'-diaminodiphenyl ether is difficult to prepare and expensive, and it is difficult to promote it in practice.
  • No. 5,177,175 discloses a wholly aromatic copolymer consisting of a dicarbonyl moiety selected from the group consisting of dicarbonyl repeating units (A) and (B) and an aromatic group selected from the group consisting of diamine repeating units (C) and (D).
  • the composition of the amine structure is:
  • No. 5,312,851 discloses a light-resistant, fully aromatic polyamide resin composition
  • a wholly aromatic polyamide and a light stabilizer the light stabilizer being a compound comprising at least one naphthalene ring structure.
  • Various diamine and diacid halides are given in column 9, line 55 to column 10, line 64 of the specification.
  • Example 1 discloses the synthesis of a polyamide from p-phenylenediamine (PPDA), 3,4'-diaminodiphenyl ether (3,4'-DAPE) and terephthaloyl chloride (TPC).
  • PPDA p-phenylenediamine
  • 3,4'-DAPE 3,4'-diaminodiphenyl ether
  • TPC terephthaloyl chloride
  • 3,4'-diaminodiphenyl ether is difficult to prepare and expensive, and it is difficult to promote it in practice. Moreover, the monomer structure is distorted with respect to PPDA, and the regularity is poor, and the rigidity of the obtained polymer main chain is lowered. At the same time, the polymer crystallization performance is lowered
  • JP-A-62-253625, EP 307993 discloses the preparation of a polyaramid using a compound of the structure shown in Formula 2 as a third monomer.
  • Systematic studies have found that when X' is CO, S, or SO 2 , the fiber performance is better; but when X' is NH, CH 2 or C(CH 3 ) 2 , it can also be combined with some fourth monomer. Thereby improving some properties of PPTA.
  • such polymers have a reduced glass transition temperature, so they are at the expense of heat resistance.
  • EP 229714 discloses that DuPont has added a small amount of m-phenylenediamine to obtain a copolyamide, but the properties of the fiber have not been reported. Teijin also developed a copolyamide with a meta-content ratio of about 2 and wet-spinning. Although the fiber elongation increased by 1.5 times, the fiber strength and modulus decreased by 50%. The mechanical properties of the decline are more obvious.
  • European Patent EP 315253 reports AKZO NV copolyamides with 1,4-diamino-9,10-nonanedione and 4,4'-biphenyldiamine as the third monomer, respectively, and then separately with PPTA After mixing and spinning, the fiber strength and elongation were both increased by 10% compared with PPTA, but the introduction of the rigid structure could improve the mechanical properties of the copolymer fiber, but could not improve the solubility of PPTA.
  • CN 104736602A, CN 104718239A, CN105189609A disclose an aromatic polyamide solution for the manufacture of a display element, an optical element or a lighting element, wherein the aromatic polyamide can be selected from terephthaloyl chloride (TPC), An aromatic diacid dichloride of phthaloyl chloride (IPC), 2,6-naphthaloyl chloride (NDC), 4,4,-diphenyldichloride (BPDC) and selected from 4,4'-di Amino-2,2'-bistrifluoromethylbenzidine (PFMB), 9,9-bis(4-aminophenyl)fluorene (FDA), 9,9-bis(3-fluoro-4-aminophenyl) ) FFDA, 4,4'-diaminobenzic acid (DADP), 3,5-diaminobenzoic acid (DAB), 4,4'-diamino-2,2'-bistrifluoromethoxy Benzoani
  • the film thus obtained has excellent heat resistance and solvent resistance.
  • the polymer requires a certain amount of diamine monomer having a free carboxylic acid group substitution, and the preparation method is relatively difficult.
  • the obtained polymer film must be prepared by a method such as curing, which is relatively complicated.
  • the mechanical properties such as specific tensile strength, tensile modulus and elongation at break of the film have not been reported in detail.
  • CN 105802209A discloses an aromatic polyamide solution for producing a display element, an optical element or a lighting element, wherein the aromatic polyamide can be selected from the group consisting of terephthaloyl chloride (TPC) and isophthaloyl chloride ( IPC), 2,6-naphthalenediyl chloride (NDC), 4,4'-diphenyldichloride (BPDC) aromatic diacid dichloride and selected from 2,2'-bis(trifluoromethyl) )benzidine (PFMB), 9,9-bis(4-aminophenyl)fluorene (FDA), 9,9-bis(3-fluoro-4-aminophenyl)fluorene (FFDA), 4,4'- Diaminodiphenyl sulfone (DDS), 4,4'-diaminodibenzoic acid (DADP), 3,5-diaminobenzoic acid (DAB), 2,2'-bis(trifluoromethoxy) linkage Ani
  • JP 4-252226 A discloses an aromatic polyamide which is mainly composed of the following repeating units:
  • the polyamide has excellent mechanical properties such as strength, modulus, and chemical resistance and heat resistance.
  • the polyamide in this document must contain (1c). This document does not contain m-phenylenediamine and 4,4'-diaminodiphenyl ether.
  • the modified multi-component copolymer amide has good solubility, high temperature resistance and excellent mechanical properties; the modified multi-component copolymer amide has good light transmittance and fluorescence;
  • the monomer of the modified multicomponent copolymerized aramid can be directly purchased or synthesized by a simple method.
  • the preparation method is simple, the reaction condition is mild, the preparation cost is low, and the invention is suitable for large-scale industrial production.
  • the polyaramid of the present invention has excellent properties after extensive research; and the regularity of the polyaramid molecular chain is lowered, and the crystallinity is lowered, so that the solubility of the polymer is greatly improved while still remaining high. It has high temperature resistance and excellent mechanical properties, and has good light transmittance and fluorescence.
  • a first aspect of the invention provides a modified multicomponent copolyamide comprising a comonomer unit of formula (I):
  • the polyvalent copolyamides may be named Ar 1-m, a T b Ar 2-n, c Ar 3-l, d , based on the monomers used, wherein T represents terephthaloyl chloride, m, n, l Representing the first monomer in the monomer containing the Ar 1 , Ar 2 , and Ar 3 groups, respectively, a, b, c, and d represent the molar percentages of the various monomers, respectively. It should be noted that the above formula is merely a molar percentage of the monomer of the polyvalent copolyamide, and does not represent the actual structure of the polyvalent aramid. Those skilled in the art will recognize that in an actual polymer, the diacid monomer is always bonded to the diamine monomer to form a repeating unit containing an amide bond.
  • a is a number between 50-100%, b is a number between 0-50%, c is a number between 0-100%, and d is a number between 0-100%.
  • a is a number between 50-100%, b is a number between 0-50%, c is a number between 0-40%, and d is a number between 60-100%.
  • a is a number between 80-100%, b is a number between 0-20%, c is a number between 10-40%, and d is a number between 60-90%.
  • the selected four monomers are from the second one of Ar 1 (ie 1,4). -naphthalene dichloride or 1,4-naphthalene dicarboxylic acid), 40% of the total monomer content of the acid chloride (or acid); terephthaloyl chloride (or terephthalic acid), which is the acid chloride (or acid) 60% of the total monomer content; the first diamine monomer in Ar 2 (ie p-phenylenediamine), which accounts for 40% of the total content of the diamine monomer; the fourth diamine monomer in Ar 3 , It accounts for 60% of the total content of diamine monomers.
  • Ar 1 ie 1,4.
  • terephthaloyl chloride or terephthalic acid
  • the first diamine monomer in Ar 2 ie p-phenylenediamine
  • Ar 3 It accounts for 60% of the total content of diamine monomers.
  • the multicomponent copolymerized aramid of the present invention can be, for example:
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the modified multicomponent copolyamide can be prepared by a high temperature polycondensation method or a low temperature prepolymerization method:
  • a high temperature polycondensation method which obtains the modified multicomponent copolymer amide by reacting an aryl diacid monomer with an aryl diamine monomer at 90 to 130 °C.
  • the aryl diacid monomer and the aryl diamine monomer are dissolved in a salt solution of NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl, and reacted at 90-130 ° C for 0.5-48 hours (preferably 1- 24 hours).
  • the reaction solution was precipitated with methanol, and washed with water at 90-100 ° C to remove a salt to obtain a polymer.
  • the aryl dichloride chloride monomer can be prepared by acid chlorination of an aryl diacid or can be purchased directly.
  • the aryl dichloride and the aryl diamine monomer are dissolved in a salt solution of NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl to carry out solution polycondensation, and prepolymerization is carried out, and the reaction is 30-60. minute.
  • the ice bath is removed and reacted between 15 and 60 ° C for 0.5 to 48 hours (preferably 1 to 24 hours).
  • the reaction solution was precipitated in methanol, and the salt was removed by washing with water at 90-100 ° C to obtain a flocculent white aramid resin.
  • the diacid monomer may be naphthalenediic acid, a terephthalic acid monomer, or both.
  • the reaction temperature may be 90 ° C, 100 ° C, 110 ° C, 120 ° C or 130 ° C.
  • the reaction time can be 0.5 hours, 1 hour, 2 small When, until 48 hours.
  • the salt used may be lithium chloride or calcium chloride, and the salt has a mass concentration of between 1 and 8%.
  • the naphthalenediyl chloride is prepared by acid chlorination of naphthalenedicarboxylic acid in a solvent with thionyl chloride.
  • the polymerization temperature after the removal of the ice bath may be 15 ° C, 25 ° C, 40 ° C, 50 ° C or 60 ° C, and the reaction time may be 0.5 hours, 1 hour, 2 hours, up to 48 hours.
  • the salt solution used may be lithium chloride or calcium chloride, and the salt has a mass concentration of between 1 and 8%.
  • a second aspect of the invention provides a multicomponent copolymerized aramid comprising a comonomer unit of formula (II):
  • Ar 4 is selected from
  • Ar 5 is selected from
  • k, l, m, and n represent the molar percentages of the respective monomers, respectively.
  • the above formula is merely a molar percentage of the monomer of the polyvalent copolyamide, and does not represent the actual structure of the polyvalent aramid.
  • the diacid monomer is always bonded to the diamine monomer to form a repeating unit containing an amide bond.
  • the arrangement of k, m, l, and n may be kmln and lmkn, and the arrangement is an arrangement of repeating units defined by each symbol.
  • k is 1-100%, l is 0-99%, m is 0-100%, and n is 0-100%;
  • k is 50-100%, l is 0-50%, m is 0-100%, and n is 0-100%;
  • k is 50-100%, l is 0-50%, m is 0-40%, and n is 60-100%;
  • k 80-100%, l is 0-20%, m is 10-40%, and n is 60-90%.
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the multicomponent copolyamide comprises a comonomer unit of formula (III):
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the multicomponent copolyamide can be prepared by high temperature polycondensation or low temperature prepolymerization:
  • Ar 4 and Ar 5 are as described above.
  • HOOC-Ar 5 -COOH and the aryl diacid monomer represented by the formula (VIII) and H 2 N-Ar 4 -NH 2 and 4,4'-diaminodiphenyl ether are dissolved in NMP, DMSO,
  • the salt solution of DMAc, NMP-LiCl or DMF-LiCl is reacted at 90-130 ° C for 0.5-48 hours (preferably 1-24 hours).
  • the reaction solution is precipitated with methanol, and washed with water at 90-100 ° C to remove the salt to obtain a polyvalent aramid.
  • Ar 4 and Ar 5 are as described above.
  • ClOC-Ar 5 -COCl and the aryldiacyl chloride monomer represented by formula (VIII') are combined with H 2 N-Ar 4 -NH 2 and 4,4'-diaminodiphenyl.
  • the ether is dissolved in a salt solution of NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl to carry out solution polycondensation, and prepolymerization is carried out for 30 to 60 minutes.
  • the ice bath is removed and reacted between 15 and 60 ° C for 0.5 to 48 hours (preferably 1 to 24 hours).
  • the reaction solution is precipitated in methanol, and the salt is removed by washing with water at 90 to 100 ° C to obtain a polyvalent aramid.
  • the reaction temperature may be 90 ° C, 100 ° C, 110 ° C, 120 ° C or 130 ° C.
  • the reaction time can be 0.5 hours, 1 hour, 2 hours, up to 48 hours.
  • the salt used may be lithium chloride or calcium chloride, and the mass concentration of the salt is Between 1-8%.
  • the polymerization temperature after the removal of the ice bath may be 15 ° C, 25 ° C, 40 ° C, 50 ° C or 60 ° C, and the reaction time may be 0.5 hours, 1 hour, 2 hours, Until 48 hours.
  • the salt solution used may be lithium chloride or calcium chloride, and the salt has a mass concentration of between 1 and 8%.
  • a third aspect of the invention provides a multicomponent copolymerized aramid comprising a comonomer unit of formula (IV):
  • Ar 6 is selected from
  • Ar 7 is selected from
  • n is an integer between 1 and 6; R is selected from H, C 1-6 alkyl, C 1-6 alkoxy, -SO 2 -R'; and R' is selected from H, C 1-6 alkyl.
  • a, b, c, and d represent the mole percent of each monomer, respectively.
  • the above formula is merely a molar percentage of the monomer of the polyvalent copolyamide, and does not represent the actual structure of the polyvalent aramid.
  • the diacid monomer is always bonded to the diamine monomer to form a repeating unit containing an amide bond.
  • the arrangement of a, c, b, and d may be acbd or bcad, and the arrangement is a row of repeating units defined by each symbol. Column mode.
  • a is 1-100%, b is 0-99%, c is 0-100%, and d is 0-100%;
  • a is 50-100%, b is 0-50%, c is 0-100%, and d is 0-100%;
  • a is 50-100%, b is 0-50%, c is 0-40%, and d is 60-100%;
  • a 80-100%
  • b 0-20%
  • c 10-40%
  • d 60-90%.
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the multicomponent copolyamide comprises a comonomer unit of formula (V):
  • n, a, b, c, and d are as described above.
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the multicomponent copolyamide comprises a comonomer unit of formula (VI):
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the multicomponent copolyamide comprises a comonomer unit of formula (VII):
  • R, a, b, c, and d are as described above.
  • the polyvalent copolyamide may be a random copolymer or a block copolymer.
  • the multicomponent copolyamide can be prepared by high temperature polycondensation or low temperature prepolymerization:
  • n and R are as described above.
  • the xylylenediamine monomer is dissolved in a salt solution of NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl at 90-130 ° C for 0.5-48 hours (preferably 1-24 hours).
  • the reaction solution was precipitated with methanol and used
  • the salt is removed by washing with water at 90 to 100 ° C to obtain a polyvalent aramid.
  • n and R are as described above.
  • the terephthaloyl chloride monomer and the aryldiacyl chloride monomer represented by the formula (IX') and the p-xylylenediamine monomer are obtained under ice bath conditions; or, the terephthaloyl chloride monomer is added.
  • the aryldiamine monomer and the p-xylylenediamine monomer are dissolved in a salt solution of NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl to carry out solution polycondensation, and prepolymerization is carried out for 30 to 60 minutes.
  • the ice bath is removed and reacted between 15 and 60 ° C for 0.5 to 48 hours (preferably 1 to 24 hours).
  • the reaction solution is precipitated in methanol, and the salt is removed by washing with water at 90 to 100 ° C to obtain a polyvalent aramid.
  • the reaction temperature may be 90 ° C, 100 ° C, 110 ° C, 120 ° C or 130 ° C.
  • the reaction time can be 0.5 hours, 1 hour, 2 hours, up to 48 hours.
  • the salt used may be lithium chloride or calcium chloride, and the salt has a mass concentration of between 1 and 8%.
  • the polymerization temperature after the removal of the ice bath may be 15 ° C, 25 ° C, 40 ° C, 50 ° C or 60 ° C, and the reaction time may be 0.5 hours, 1 hour, 2 hours, Until 48 hours.
  • the salt solution used may be lithium chloride or calcium chloride, and the salt has a mass concentration of between 1 and 8%.
  • the polyvalent copolyamide can be dissolved in an organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the number average molecular weight of the multicomponent copolymerized aramid is from 60,000 to 150,000 (measured by GPC, with DMF-LiCl as mobile phase and PS as reference).
  • the multicomponent copolyaramid has an intrinsic viscosity of from 0.5 to 2.0 dL/g (in DMF-LiCl solvent).
  • the 5% thermal decomposition temperature of the multicomponent copolymerized aramid is 450 ° C or more under both nitrogen and air atmospheres.
  • the multicomponent copolyaramid has a glass transition temperature of from 270 to 320 °C.
  • the multicomponent copolymerized aramid (film) has a tensile strength of from 60 to 150 MPa, preferably from 80 to 120 MPa.
  • the multicomponent copolymerized aramid has a tensile modulus of from 1.0 to 4.0 GPa, preferably from 1.5 to 3.5 GPa.
  • the multicomponent copolyaramid has an elongation at break of from 5 to 11%, preferably from 6 to 10%.
  • the multicomponent copolymerized aramid film has a light transmittance of 80% or more at a wavelength of 500 nm. Due to the excellent light transmittance of the multicomponent copolymerized aramid, it can be used in the fields of display devices, packaging materials and the like.
  • the multicomponent copolyamide has fluorescence and has a maximum emission wavelength at 470 nm. Due to the fluorescence of the multicomponent copolymerized aramid, it can be used in the fields of anti-counterfeiting, photoresponsive materials and the like.
  • the multicomponent copolymerized aramid can be formed into a film, a fiber, a hollow tube or a strip, or the like.
  • the invention also provides the use of the polyarymeric aramids of the invention, which can be used in spinning, film forming, in the preparation of strips, hollow tubes and the like.
  • the present invention provides the use of the polyarymeric aramid of the present invention, which can be used in display devices, packaging materials, anti-counterfeiting, photoresponsive materials and the like.
  • the invention also provides a fiber comprising the multicomponent copolyamide of the invention.
  • the invention also provides a method for preparing the above fiber, which comprises the following steps:
  • the solvent used may be NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • a coagulation bath is required; the coagulant is typically water or ethanol.
  • the drafting in step 3) is carried out by a hot box or a hot roll, or a hot bath drawing method.
  • the heat bath medium used includes a polyhydric alcohol (preferably having a boiling point of 120 to 220 ° C), a polyoxyethylene oligomer (relative molecular weight of preferably 88 to 5000 g/mol), The polyoxypropylene oligomer (relative molecular weight is preferably from 116 to 1200 g/mol), one or more components of mineral oil and silicone oil.
  • the hot bath medium temperature T L is set between the glass transition temperature T g of the polymer matrix and the decomposition temperature T d of the polymer matrix.
  • the step 3) is specifically: the fiber is subjected to wire drawing, drying, first hot box dry heat drawing, second hot box dry heat drawing, heat setting and winding, etc.
  • the fiber of the present invention is obtained.
  • the drawing temperature in the wire drawing step is 10 to 70 ° C, preferably 25 to 50 ° C; and the draw ratio is 2 to 20 times, preferably 3 to 15 times.
  • the drying in the drying step is dried by hot air, and the hot air temperature is 30 to 90 ° C, preferably 40 to 80 ° C.
  • the temperature in the first hot box dry heat drawing process is 100-160 ° C, preferably 130-145 ° C; the draw ratio is 1-20 times, preferably 1.5-15 times.
  • the temperature in the dry heat drawing step of the second hot box is 110-160 ° C, preferably 130-145 ° C; the draw ratio is 1-5 times, preferably 1.1-3 times.
  • the temperature in the heat setting step is 100 to 150 ° C, preferably 120 to 135 ° C.
  • the present invention provides a film comprising the modified multicomponent copolyamide of the present invention.
  • the invention also provides a preparation method of the above film, which comprises the following steps:
  • the solvent used may be NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the pendant polyamine-containing aramids of the present invention have excellent properties:
  • the obtained polymer can be dissolved in an organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl, and can be processed by a solution;
  • the polymer has a 5% thermal decomposition temperature in air above 450 ° C and a glass transition temperature above 270 ° C, which can be used as a high temperature resistant material;
  • the film obtained from the polymer has excellent mechanical properties and is expected to be applied to the field of high-strength materials
  • the obtained polymer has good transparency and fluorescence, and is expected to be applied to the field of optical materials;
  • the modified multi-component copolymer aramid can be used in the field of textiles, military fields such as bulletproof helmets, and tires.
  • Figure 6 Picture of Ar 1-1, 100% Ar 2-2, 40% Ar 3-1-1, 60% processed article of Example 1-5.
  • the terephthalic acid and terephthaloyl chloride are commercially available.
  • the 2-(2,5-diformylchlorophenyl)-4,6-diphenyl-s-triazine and 2-(2,5-dicarboxylic acid phenyl)-4,6-diphenyl can be purchased directly.
  • the p-xylylenediamine can be directly purchased.
  • the aromatic diamine monomer represented by the formula (X) can be directly purchased.
  • R is selected from H, C 1-6 alkyl, C 1-6 alkoxy, -SO 2 -R'; and R' is selected from H, C 1-6 alkyl.
  • the aryl diacid monomer represented by the formula (VIII) can be produced by the following method: using 2-hydroxy-4-aminobenzoic acid and terephthaloyl chloride as raw materials, at a temperature of 25-50 ° C. reaction.
  • 2-hydroxy-4-aminobenzoic acid and terephthalic acid chloride are dissolved in a salt solution of NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl at a molar ratio of 1:2, respectively.
  • the solution polymerization is carried out at a temperature of 25 to 50 ° C for 0.5 to 48 hours.
  • the aryl diacid monomer represented by the formula (IX) can be produced by the following method:
  • the prepared arylene acid monomer has the following structure:
  • n can be prepared by referring to the above method, that is, replacing 1,6-dibromohexane with a dibromo-substituted alkane having another carbon number, such as 1,5-dibromopentane; 1,4-dibromobutane ; 1,3-dibromopropane; 1,2-dibromoethane or dibromomethane, etc., to obtain an aromatic acid monomer of other structure.
  • 1,6-dibromohexane with a dibromo-substituted alkane having another carbon number, such as 1,5-dibromopentane; 1,4-dibromobutane ; 1,3-dibromopropane; 1,2-dibromoethane or dibromomethane, etc.
  • the aryldiacyl chloride monomer may be prepared by an acid chlorination reaction of an aryl diacid or may be directly purchased; the acid chlorination reaction is a method known in the art.
  • 5-(3,5-diphenylbenzene)-1,3-phthalic acid is commercially available as 5-(3,5-diphenylbenzene)-1,3-phthaloyl chloride. It can be purchased directly or prepared by acid chloride reaction through 5-(3,5-diphenylbenzene)-1,3-phthalic acid.
  • the aryl dichloride chloride monomer represented by the formula (VIII') is produced by an acid chlorination reaction of the aryl diacid monomer represented by the formula (VIII); the conditions of the acid chlorination reaction are conventional techniques in the art. condition.
  • the aryldiacyl chloride monomer represented by the formula (IX) is produced by an acid chlorination reaction of the aryl dicarboxylic acid monomer represented by the formula (IX); the conditions of the acid chlorination reaction are conventional technical conditions in the art. .
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 62,000 and a dispersion of 1.87.
  • the polymer has very good solubility and can be dissolved in NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl Wait for organic dissolution.
  • the polymer has good thermal properties with a 5% thermal decomposition temperature of 450 ° C in air.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 79,000 and a dispersion of 1.65.
  • the polymer has very good solubility and can be dissolved in organic solvents such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer has good thermal properties with a 5% thermal decomposition temperature of 460 ° C in air.
  • Figure 1 is a GPC spectrum of Ar 1-2, 10% T 90% Ar 2-1, 30% Ar 3-4, 70% of Examples 1-3.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, the number average molecular weight was 81,000, and the dispersion was 1.77.
  • the polymer has a very high thermal weight loss temperature of 5% in nitrogen and air, and has very good thermal stability.
  • Figure 3 is an ultraviolet-visible transmission spectrum of Ar 1-2, 10% T 90% Ar 2-1, 30% Ar 3-4, 70% of Examples 1-3. As can be seen from the figure, the light transmittance at a polymer of 500 nm is about 80%, and it has excellent transparency.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 475 ° C and 473 ° C in nitrogen and air, respectively.
  • the polymer can be prepared as a transparent film by solvent evaporation, and the light transmittance at 500 nm is 81%.
  • the polymer film had a tensile strength of 80 MPa, a tensile modulus of 2.1 GPa, and an elongation at break of 8%.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 98,000 and a dispersion of 1.65.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a glass transition temperature of 296 °C.
  • the polymer can be prepared as a film by solvent evaporation, and the film has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 95 MPa, a tensile modulus of 1.9 GPa, and an elongation at break of 9%.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 108,000 and a dispersion of 1.72.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a glass transition temperature of 296 °C.
  • the polymer can be prepared as a film by solvent evaporation, and the film has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 125 MPa, a tensile modulus of 2.9 GPa, and an elongation at break of 10%.
  • Figure 6 is a photograph of the Ar 1-1, 100% Ar 2-2, 40% Ar 3-1-1, 60% processed article of Example 1-5.
  • the polymer prepared by the present example can be prepared into filamentary fibers, strip fibers, films, and hollow tubes.
  • Figure 5 is a DSC curve for Ar 1-1, 90% T 10% Ar 2-2, 30% Ar 3-4, 70% of Examples 1-6. As can be seen from the figure, the glass transition temperature of the polymer is around 280 ° C, and has good thermal stability.
  • the polymer had a number average molecular weight of 61,000 and a degree of dispersion of 2.08 by GPC.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 450 ° C and a glass transition temperature of 293 ° C.
  • the polymer can be prepared into a film which has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 91 MPa, a tensile modulus of 2.5 GPa, and an elongation at break of 9%.
  • the polymer had a number average molecular weight of 81,000 and a degree of dispersion of 2.15 by GPC.
  • the polymer has good solubility and can be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 455 ° C and a glass transition temperature of 287 ° C.
  • the polymer had a number average molecular weight of 97,000 and a degree of dispersion of 2.25 by GPC.
  • the polymer has good solubility and can be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 475 ° C and a glass transition temperature of 287 ° C.
  • the tensile strength of the polymer after film formation was 120 MPa, the tensile modulus was 2.8 GPa, and the elongation at break was 11%.
  • Example 1-9 Preparation of Ar 1-1, 100% Ar 2-2, 40% Ar 3-1-1, 60% fiber.
  • Example 1-10 Preparation of Ar 1-1, 100% Ar 2-2, 40% Ar 3-1-1, 60% film.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 98,000 and a dispersion of 1.65.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a glass transition temperature of 296 °C.
  • the polymer can be prepared as a film by solvent evaporation, and the film has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 95 MPa, a tensile modulus of 1.9 GPa, and an elongation at break of 9%.
  • the polymer solution was diluted slightly by adding 5 ml of NMP, poured into 100 ml of 100 ° C hot water, and stirred for 1 h.
  • the solid obtained by filtration was dissolved in NMP, and then dropped into a methanol solution for precipitation. Stirring was continued for 1 hour, filtration was carried out, and the solid was washed, and finally the product was placed in a vacuum drying oven at 80 ° C to dry.
  • the polymer had a number average molecular weight of 61,000 and a degree of dispersion of 2.08 by GPC.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 450 ° C and a glass transition temperature of 293 ° C.
  • the polymer can be prepared into a film which has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 91 MPa, a tensile modulus of 2.5 GPa, and an elongation at break of 9%.
  • the polymer solution was diluted slightly by adding 5 ml of NMP, poured into 100 ml of 100 ° C hot water, and stirred for 1 h.
  • the solid obtained by filtration was dissolved in NMP, and then dropped into a methanol solution for precipitation. Stirring was continued for 1 hour, filtration was carried out, and the solid was washed, and finally the product was placed in a vacuum drying oven at 80 ° C to dry.
  • the polymer had a number average molecular weight of 97,000 and a degree of dispersion of 2.25 by GPC.
  • the polymer has good solubility and can be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 475 ° C and a glass transition temperature of 287 ° C.
  • the tensile strength of the polymer after film formation was 120 MPa, the tensile modulus was 2.8 GPa, and the elongation at break was 11%.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 108,000 and a dispersion of 1.72.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a glass transition temperature of 296 °C.
  • the polymer can be prepared as a film by solvent evaporation, and the film has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 125 MPa, a tensile modulus of 2.9 GPa, and an elongation at break of 10%.
  • the aryl dicarboxylic acid monomer (0.1 mmol) represented by the formula (VII) prepared in Preparation Example 2-1, 2,6-naphthalenedicarboxylic acid (0.9 mmol), 4,4'-diphenylamine dimethyl ether (0.2) Methyl)m-phenylenediamine (0.8 mmol) was reacted with 0.50 mL of pyridine, 1.0 mL of triphenyl phosphite in 6 mL of NMP-LiCl.
  • the mixed solution was placed in a 120 ° C oil bath for 4 h. The solid gradually dissolves the solution to become clear, and the viscosity of the polymerization solution increases as the reaction progresses.
  • the polymer solution was diluted slightly by adding 5 ml of NMP, poured into 100 ml of 100 ° C hot water, and stirred for 1 h.
  • the solid obtained by filtration was dissolved in NMP, and then dropped into a methanol solution for precipitation. Stirring was continued for 1 hour, filtration was carried out, and the solid was washed, and finally the product was placed in a vacuum drying oven at 80 ° C to dry.
  • the GPC characterized polymer had a number average molecular weight of 95,000 g/mol and a degree of dispersion of 1.84.
  • the polymer solution was diluted slightly by adding 5 ml of NMP, poured into 100 ml of 100 ° C hot water, and stirred for 1 h.
  • the solid obtained by filtration was dissolved in NMP, and then dropped into a methanol solution for precipitation. Stirring was continued for 1 hour, filtration was carried out, and the solid was washed, and finally the product was placed in a vacuum drying oven at 80 ° C to dry.
  • the GPC characterized polymer had a number average molecular weight of 84,000 g/mol and a degree of dispersion of 2.19.
  • the mixed solution was placed in a 120 ° C oil bath for 4 h. The solid gradually dissolves the solution to become clear, and the viscosity of the polymerization solution increases as the reaction progresses.
  • the polymer solution was diluted slightly by adding 5 ml of NMP, poured into 100 ml of 100 ° C hot water, and stirred for 1 h.
  • the solid obtained by filtration was dissolved in NMP, and then dropped into a methanol solution for precipitation. Stirring was continued for 1 hour, filtration was carried out, and the solid was washed, and finally the product was placed in a vacuum drying oven at 80 ° C to dry.
  • the GPC characterized polymer had a number average molecular weight of 65,000 g/mol and a degree of dispersion of 2.43.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 62,000 and a dispersion of 1.87.
  • the polymer has very good solubility and can be dissolved in organic solvents such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer has good thermal properties with a 5% thermal decomposition temperature of 450 ° C in air.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 79,000 and a dispersion of 1.65.
  • the polymer has very good solubility and can be dissolved in organic solvents such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer has good thermal properties with a 5% thermal decomposition temperature of 460 ° C in air.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 81,000 and a dispersion of 1.77.
  • the polymer has a very high thermal weight loss temperature of 5% in both nitrogen and air and has very good thermal stability.
  • the light transmittance at 500 nm of the polymer is about 80%, and it has excellent transparency.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 475 ° C and 473 ° C in nitrogen and air, respectively.
  • the polymer can be prepared as a transparent film by solvent evaporation, and the light transmittance at 500 nm is 81%.
  • the polymer film had a tensile strength of 80 MPa, a tensile modulus of 2.1 GPa, and an elongation at break of 8%.
  • the polymer had a number average molecular weight of 81,000 and a degree of dispersion of 2.15 by GPC.
  • the polymer has good solubility and can be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 455 ° C and a glass transition temperature of 287 ° C.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 62,000 and a dispersion of 1.87.
  • the polymer has very good solubility and can be dissolved in organic solvents such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer has good thermal properties with a 5% thermal decomposition temperature of 450 ° C in air.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 79,000 and a dispersion of 1.65.
  • the polymer has very good solubility and can be dissolved in organic solvents such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer has good thermal properties with a 5% thermal decomposition temperature of 460 ° C in air.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 81,000 and a dispersion of 1.77.
  • the polymer has a very high thermal weight loss temperature of 5% in both nitrogen and air and has very good thermal stability.
  • the light transmittance at 500 nm of the polymer is about 80%, and it has excellent transparency.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 475 ° C and 473 ° C in nitrogen and air, respectively.
  • the polymer can be prepared as a transparent film by solvent evaporation, and the light transmittance at 500 nm is 81%.
  • the polymer film had a tensile strength of 80 MPa, a tensile modulus of 2.1 GPa, and an elongation at break of 8%.
  • the polymer had a number average molecular weight of 81,000 and a degree of dispersion of 2.15 by GPC.
  • the polymer has good solubility and can be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer is 5% hot
  • the decomposition temperature was 455 ° C and the glass transition temperature was 287 ° C.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 98,000 and a dispersion of 1.65.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a glass transition temperature of 296 °C.
  • the polymer can be prepared as a film by solvent evaporation, and the film has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 95 MPa, a tensile modulus of 1.9 GPa, and an elongation at break of 9%.
  • the polymer had a number average molecular weight of 61,000 and a degree of dispersion of 2.08 by GPC.
  • the polymer may be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 450 ° C and a glass transition temperature of 293 ° C.
  • the polymer can be prepared into a film which has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 91 MPa, a tensile modulus of 2.5 GPa, and an elongation at break of 9%.
  • the polymer had a number average molecular weight of 97,000 and a degree of dispersion of 2.25 by GPC.
  • the polymer has good solubility and can be dissolved in a strong polar organic solvent such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl.
  • the polymer had a 5% thermal decomposition temperature of 475 ° C and a glass transition temperature of 287 ° C.
  • the tensile strength of the polymer after film formation was 120 MPa, the tensile modulus was 2.8 GPa, and the elongation at break was 11%.
  • the polymer was characterized by GPC to obtain a single peak type, indicating that the polymerization was carried out very efficiently, with a number average molecular weight of 108,000 and a dispersion of 1.72.
  • the polymer can be dissolved in strong polar organic such as NMP, DMSO, DMAc, NMP-LiCl or DMF-LiCl. In the solvent.
  • the polymer had a glass transition temperature of 296 °C.
  • the polymer can be prepared as a film by solvent evaporation, and the film has fluorescence under ultraviolet light irradiation and has a maximum emission wavelength around 470 nm.
  • the polymer film had a tensile strength of 125 MPa, a tensile modulus of 2.9 GPa, and an elongation at break of 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明涉及本发明公开了一种改性多元共聚芳酰胺及其制备方法与用途。聚合物由含萘环的芳二酰氯(或芳二甲酸)与芳香二胺单体进行溶液共聚所得到。所制备的聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶剂中,在空气中5%热分解温度可达到450℃以上,玻璃化转变温度在270-320℃之间。所述聚合物可以制备为薄膜,纤维,中空管,条状物等形状。由所述聚合物制得的薄膜的拉伸强度可达60MPa以上,拉伸模量最高可达4GPa,断裂伸长率最高可达11%。所得薄膜具备透明性和荧光性。该材料有望应用于军事、交通、光学等领域中。

Description

一种改性的多元共聚芳酰胺及其制备方法和用途 技术领域
本发明属于聚芳酰胺技术领域,具体涉及一种改性的多元共聚芳酰胺及其制备方法和用途。
背景技术
聚酰胺是大分子主链重复单元中含有酰胺基团的高聚物的总称。聚酰胺可由内酸胺开环聚合制得,也可由二元胺与二元酸缩聚得到。聚酰胺具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,具有一定的阻燃性,易于加工,适于用玻璃纤维和其它填料填充增强改性以提高性能和扩大应用范围。按照共聚单体的不同,聚酰胺可分为聚芳酰胺和脂族聚酰胺。相比于脂族聚酰胺,聚芳酰胺的耐热性、熔融温度、强度和耐化学性等非常优异。
聚芳酰胺是一类重要的高性能工程塑料,其是分子主链中至少含85%的直接与两个芳环相连的酰胺基团的聚合物材料。按酰胺基团与苯环连接位置的不同,又可将聚芳酰胺分为对位聚芳酰胺(PPTA)、间位聚芳酰胺(PMIA)、邻位聚芳酰胺。由于其分子链的刚性,聚芳酰胺具有很好的热稳定性,非常高的机械强度和熔融温度,化学稳定性等特点,被广泛应用于军事以及交通等领域中。然而,由于聚合物链间非常强的氢键相互作用,其玻璃化转变温度很高,并且在有机溶剂中的溶解性很差。一般只有在溶解于浓硫酸之后才可以进行加工,而浓硫酸具有非常强的腐蚀性,易腐蚀加工设备,并且聚合物容易在硫酸中降解,这些缺点大大限制了聚芳酰胺的应用。目前,人们正在进行许多研究以改善其溶解性,从而使其便于加工,同时降低生产成本、简化合成工艺,达到各项性能优异的平衡点。
对位聚芳酰胺(PPTA)是最受人瞩目的一种聚芳酰胺,其经过浓硫酸溶液纺丝可制得目前强度最高、模量最大的有机纤维。但在韧性、耐疲劳性、耐冲击性等方面存在一些不足;此外,PPTA的溶解性差,只能被浓硫酸等无机强酸溶解;PPTA具有很高的熔点,接近其分解温度,无法采用传统的熔融加工或模压成型工艺。从微观结构上看,PPTA的优缺点都归结于其分子链结构的刚性、规整性和酰胺键引起的氢键作用。
PPTA是由杜邦公司于1972年实现工业化的,商品名为Kevlar,目前已经商业化的Kevlar牌号有Kevlar-29、Kevlar-49和Kevlar-149。
美国专利US 3673143报道了采用缩聚方法合成PPTA:
Figure PCTCN2017100015-appb-000001
美国专利US 4355151报道了将3,4’-二氨基二苯醚(如式1所示)作为第三单体进行共聚合,得到的聚合原液经过一定的纺丝工艺直接成纤,纤维经过适当的后处理,可以得到强度、模量、延伸 率均超过Kevlar-29的高性能纤维。然而,3,4’-二氨基二苯醚制备困难且价格昂贵,难以在实际中推广使用。
Figure PCTCN2017100015-appb-000002
US 5,177,175公开了一种全芳族共聚物,其由选自二羰基重复单元(A)和(B)的二羰基结构部分和选自二胺重复单元(C)和(D)的芳族二胺结构部分组成:
Figure PCTCN2017100015-appb-000003
美国专利US 5,312,851公开了一种耐光全芳香族聚酰胺树脂组合物,其包含全芳香族聚酰胺和耐光剂,所述耐光剂为包含至少一个萘环结构的化合物。其在说明书第9栏第55行至第10栏第64行给出了各种二胺和二酸卤化物。特别地,其实施例1公开了由对苯二胺(PPDA)、3,4'-二氨基二苯醚(3,4'-DAPE)和对苯二甲酰氯(TPC)合成聚酰胺。
如上文所述,3,4’-二氨基二苯醚制备困难且价格昂贵,难以在实际中推广使用。且该单体结构相对PPDA扭曲,规整性较差,所得聚合物主链刚性降低。同时聚合物结晶性能降低。
JP特开昭62-253625,EP 307993公开了用式2所示结构的化合物作为第三单体制备聚芳酰胺,
Figure PCTCN2017100015-appb-000004
其中,X’=CH2、CO、S、SO2、NH或C(CH3)2等为第三单体进行。系统研究发现,当X’为CO,S,或SO2时,纤维的性能较好;但是当X’为NH、CH2或C(CH3)2时也可以与一些第四单体配合,从而改善PPTA某些性能。然而该类聚合物的玻璃化转变温度有所降低,因此其是以牺牲耐热性能为代价的。
EP 229714公布了杜邦公司曾经加入少量间苯二胺得到共聚酰胺,但纤维的性能未见报道。 日本帝人公司也开发了对位:间位含量之比约为2的共聚酰胺,并进行湿法纺丝,虽然纤维伸长率增加了1.5倍,但是纤维的强度、模量各分别下降50%,其力学性能下降比较明显。
欧洲专利EP 315253报道了AKZO N.V.公司分别以1,4-二氨基-9,10-蒽二酮和4,4’-联苯二胺作为第三单体的共聚酰胺,然后再分别与PPTA共混后进行纺丝,纤维强度、伸长率均比PPTA提高了10%,但是刚性结构的引入虽然能够改进共聚纤维的力学性能,却不能改善PPTA的溶解性。
CN 104736602A、CN 104718239A、CN105189609A公开了一种用于制造显示元件、光学元件或照明元件的芳香族聚酰胺溶液,其中所述芳香族聚酰胺可使用选自对苯二甲酰氯(TPC)、间苯二甲酰氯(IPC)、2,6-萘二甲酰氯(NDC)、4,4,-联苯二甲酰氯(BPDC)的芳香族二酸二氯化物和选自4,4'-二氨基-2,2'-双三氟甲基联苯胺(PFMB)、9,9-双(4-氨基苯基)芴(FDA)、9,9-双(3-氟-4-氨基苯基)芴(FFDA)、4,4'-二氨基联苯甲酸(DADP)、3,5-二氨基苯甲酸(DAB)、4,4'-二氨基-2,2'-双三氟甲氧基联苯胺(PFMOB)、4,4'-二氨基-2,2'-双三氟甲基二苯醚(6FODA)、双-(4-氨基-2-三氟甲基苯氧基)苯(6FOQDA)、双-(4-氨基-2-三氟甲基苯氧基)联苯(6FOBDA)的芳香族二胺,同时必须具有取代位置含自由羧基的单体进行共聚制备。由此制得的膜具有优异的耐热性和耐溶剂性。但是该聚合物要求必须含有一定量的具有自由羧酸基取代的二胺单体,制备方法相对困难。同时,所得聚合物薄膜必须通过固化等方法制备,相对复杂。薄膜的具体拉伸强度、拉伸模量、断裂伸长率等力学性能未见详细报道。
CN 105802209A公开了一种用于制造显示元件、光学元件或照明元件的芳香族聚酰胺溶液,其中所述芳香族聚酰胺可使用选自对苯二甲酰氯(TPC)、间苯二甲酰氯(IPC)、2,6-萘二甲酰氯(NDC)、4,4'-联苯二甲酰氯(BPDC)的芳香族二酸二氯化物和选自2,2'-二(三氟甲基)联苯胺(PFMB)、9,9-二(4-氨基苯基)芴(FDA)、9,9-二(3-氟-4-氨基苯基)芴(FFDA)、4,4'-二氨基二苯基砜(DDS)、4,4'-二氨基二苯甲酸(DADP)、3,5-二氨基苯甲酸(DAB)、2,2'-二(三氟甲氧基)联苯胺(PFMOB)、4,4'-二氨基-2,2'-二(三氟甲基)二苯醚(6FODA)、二(4-氨基-2-三氟甲基苯氧基)苯(6FOQDA)的芳香族二胺制备。由此制得的膜具有优异力学性能。该聚合物的制备同样必须含有一定量游离的羧基取代的二胺单体,制备相对复杂。
JP 4-252226A公开了一种芳香族聚酰胺,其主要由如下重复单元组成:
Figure PCTCN2017100015-appb-000005
Figure PCTCN2017100015-appb-000006
所述聚酰胺具有优异的强度、模量等机械性质以及耐药品性和耐热性。该文献中的聚酰胺必须含(1c)。该文献不含间苯二胺,以及4,4’二胺基二苯醚。
发明内容
为了克服现有技术的不足,本发明的目的是提供一种改性多元共聚芳酰胺及其制备方法和用途。所述改性多元共聚芳酰胺具有较好的溶解性、较高的耐高温性和优异的力学性能;所述改性多元共聚芳酰胺具有良好的透光性和荧光性;此外,用于制备所述改性多元共聚芳酰胺的单体可直接购买或通过简单的方法合成得到。所述制备方法简单,反应条件温和,制备成本低,适合于大规模工业化生产。
发明人经过大量研究,出人意料地发现本发明的聚芳酰胺具有优异的性能;且聚芳酰胺分子链的规整性降低,结晶性下降,从而使得聚合物的溶解性大大提高,同时仍保持较高的耐高温性和优异的力学性能,且具有良好的透光性和荧光性。
本发明提出的技术方案如下:
本发明的第一方面是提供一种改性多元共聚芳酰胺,所述多元共聚芳酰胺包含式(I)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000007
基于所用的单体,所述多元共聚芳酰胺可命名为Ar1-m,aTbAr2-n,cAr3-l,d,其中T代表对苯二甲酰氯,m、n、l分别代表含Ar1、Ar2、Ar3基团的单体中的第几种单体,a、b、c、d分别代表各种单体的摩尔百分含量。需要指出的是,上式仅仅是表示所述多元共聚芳酰胺的单体摩尔百分含量,并非表示所述多元共聚芳酰胺的实际结构。本领域技术人员知晓在实际的聚合物中,二酸单体总是与二胺单体键接,从而形成含酰胺键的重复单元。
定义a+b=100%,c+d=100%,其中,a为1-100%之间的数、b为0-99%之间的数、c为0-100%之间的数、d为0-100%之间的数。或者,a为50-100%之间的数,b为0-50%之间的数,c为0-100%之间的数,d为0-100%之间的数。或者,a为50-100%之间的数,b为0-50%之间的数,c为0-40%之间的数,d为60-100%之间的数。或者,a为80-100%之间的数,b为0-20%之间的数,c为10-40%之间的数,d为60-90%之间的数。
-Ar1-选自:
Figure PCTCN2017100015-appb-000008
-Ar2-选自:
Figure PCTCN2017100015-appb-000009
-Ar3-选自:
Figure PCTCN2017100015-appb-000010
X选自O(为I-1-1)、S(为I-1-2)、CH2(为I-1-3)、O=S=O(为I-1-4)或不存在(为I-1-5)。
以Ar1-2,40%T60%Ar2-1,40%Ar3-4,60%为例进行解释,所选四种单体分别来自Ar1中的第2种(即1,4-萘二甲酰氯或1,4-萘二甲酸),占酰氯(或酸)的单体总含量的40%;对苯二甲酰氯(或对苯二甲酸),占酰氯(或酸)的单体总含量的60%;Ar2中的第1种二胺单体(即对苯二胺),占二胺单体总含量的40%;Ar3中的第4种二胺单体,占二胺单体总含量的60%。
具体地,本发明的多元共聚芳酰胺可例如为:
Ar1-3,10%T90%Ar2-1,30%Ar3-4,70%,Ar1-1,50%T50%Ar3-4,100%,Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%,Ar1-1,80%T20%Ar2-2,10%Ar3-1-3,90%,Ar1-1,100%Ar2-2,40%Ar3-1-1,60%,Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%,Ar1-2,50%T50%Ar2-3,40%Ar3-2,60%,Ar1-1,100%Ar2-1,40%Ar3-4,60%
根据本发明,优选由式(I)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
根据本发明,所述改性多元共聚芳酰胺可通过高温缩聚法或低温预聚法制备:
1)高温缩聚法,通过使芳二酸单体与芳二胺单体在90-130℃下反应而获得所述改性多元共聚芳酰胺。
具体地,将芳二酸单体与芳二胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中,在90-130℃下反应0.5-48小时(优选1-24小时)。将反应液用甲醇沉淀,用90-100℃的水洗涤除去盐,即可得到聚合物。
2)低温预聚法,在冰浴条件下,使芳二酰氯与芳二胺单体预缩聚,随后撤去冰浴,在15-60℃下反应而获得所述改性多元共聚芳酰胺。
所述芳二酰氯单体可通过芳二酸的酰氯化反应制备或者可直接购买得到。
具体地,在冰浴条件下,将芳二酰氯以及芳二胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中进行溶液缩聚,进行预聚合,反应30-60分钟。撤去冰浴,在15-60℃之间反应0.5-48小时(优选1-24小时)。反应溶液沉淀于甲醇中,用90-100℃的水洗涤除去盐,即可得到絮状白色聚芳酰胺树脂。
根据本发明,在方法1)中,所述二酸单体可以是萘二酸,也可以是对苯二甲酸单体,或者二者。反应温度可为90℃、100℃、110℃、120℃或130℃。反应时间可为0.5小时、1小时、2小 时,直至48小时。所用的盐可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
根据本发明,在方法2)中,萘二甲酰氯需要通过将萘二甲酸在溶剂中与氯化亚砜进行酰氯化反应制备得到。撤去冰浴后的聚合反应温度可为15℃、25℃、40℃、50℃或者60℃,反应时间可为0.5小时,1小时,2小时,直至48小时。所用盐溶液可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
本发明的第二个方面是提供一种多元共聚芳酰胺,所述多元共聚芳酰胺包含式(II)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000011
式(II)中,
Ar4选自
Figure PCTCN2017100015-appb-000012
Ar5选自
Figure PCTCN2017100015-appb-000013
k、l、m、n分别代表各单体的摩尔百分含量。
需要指出的是,上式仅仅是表示所述多元共聚芳酰胺的单体摩尔百分含量,并非表示所述多元共聚芳酰胺的实际结构。本领域技术人员知晓在实际的聚合物中,二酸单体总是与二胺单体键接,从而形成含酰胺键的重复单元。
其中,k、m、l、n的排列方式可以是kmln、lmkn,该排列方式为各符号所限定的重复单元的排列方式。
其中,k+l=100%,m+n=100%,
具体地,包括如下技术方案:
(1)k为1-100%、l为0-99%、m为0-100%、n为0-100%;
(2)k为50-100%,l为0-50%,m为0-100%,n为0-100%;
(3)k为50-100%,l为0-50%,m为0-40%,n为60-100%;
(4)k为80-100%,l为0-20%,m为10-40%,n为60-90%。
根据本发明,优选由式(II)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
优选地,所述多元共聚芳酰胺包含式(III)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000014
根据本发明,优选由式(III)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
根据本发明,所述多元共聚芳酰胺可通过高温缩聚法或低温预聚法制备:
1)高温缩聚法,将HOOC-Ar5-COOH和式(VIII)所示的芳二酸单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚在90-130℃的温度下反应而获得所述多元共聚芳酰胺;
Figure PCTCN2017100015-appb-000015
其中,Ar4和Ar5的定义如上所述。
具体地,将HOOC-Ar5-COOH和式(VIII)所示的芳二酸单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中在90-130℃下反应0.5-48小时(优选1-24小时)。将反应液用甲醇沉淀,用90-100℃的水洗涤除去盐,可得到多元共聚芳酰胺。
2)低温预聚法,在冰浴条件下,使ClOC-Ar5-COCl和式(VIII’)所示的芳二酰氯单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚预缩聚;随后撤去冰浴,在15-60℃下反应而获得所述多元共聚芳酰胺;
Figure PCTCN2017100015-appb-000016
其中,Ar4和Ar5的定义如上所述。
具体地,在冰浴条件下,使ClOC-Ar5-COCl和式(VIII’)所示的芳二酰氯单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中进行溶液缩聚,进行预聚合,反应30-60分钟。撤去冰浴,在15-60℃之间反应0.5-48小时(优选1-24小时)。反应溶液沉淀于甲醇中,用90-100℃的水洗涤除去盐,即可得到多元共聚芳酰胺。
根据本发明,在方法1)中,所述反应温度可为90℃、100℃、110℃、120℃或130℃。反应时间可为0.5小时、1小时、2小时,直至48小时。所用的盐可为氯化锂或氯化钙,盐的质量浓度在 1-8%之间。
根据本发明,在方法2)中,所述撤去冰浴后的聚合反应温度可为15℃、25℃、40℃、50℃或者60℃,反应时间可为0.5小时,1小时,2小时,直至48小时。所用盐溶液可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
本发明的第三方面是提供一种多元共聚芳酰胺,所述多元共聚芳酰胺包含式(IV)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000017
式(IV)中,
Ar6选自
Figure PCTCN2017100015-appb-000018
Figure PCTCN2017100015-appb-000019
Ar7选自
Figure PCTCN2017100015-appb-000020
且Ar6和Ar7不同时选自
Figure PCTCN2017100015-appb-000021
n为1~6之间的整数;R选自H、C1-6烷基、C1-6烷氧基、-SO2-R’;R’选自H、C1-6烷基。
a、b、c、d分别代表各单体的摩尔百分含量。
需要指出的是,上式仅仅是表示所述多元共聚芳酰胺的单体摩尔百分含量,并非表示所述多元共聚芳酰胺的实际结构。本领域技术人员知晓在实际的聚合物中,二酸单体总是与二胺单体键接,从而形成含酰胺键的重复单元。
其中a、c、b、d的排列方式可以是acbd、bcad,该排列方式为各符号所限定的重复单元的排 列方式。
其中,a+b=100%,c+d=100%,具体地,包括如下方案:
(1)a为1-100%,b为0-99%,c为0-100%,d为0-100%;
(2)a为50-100%,b为0-50%,c为0-100%,d为0-100%;
(3)a为50-100%,b为0-50%,c为0-40%,d为60-100%;
(4)a为80-100%,b为0-20%,c为10-40%,d为60-90%。
根据本发明,优选由式(IV)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
优选地,所述多元共聚芳酰胺包含式(V)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000022
n、a、b、c、d的定义如上所述。
根据本发明,优选由式(V)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
优选地,所述多元共聚芳酰胺包含式(VI)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000023
a、b、c、d的定义如上所述。
根据本发明,优选由式(VI)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
优选地,所述多元共聚芳酰胺包含式(VII)所示的共聚单体单元:
Figure PCTCN2017100015-appb-000024
R、a、b、c、d的定义如上所述。
根据本发明,优选由式(VII)所示的共聚单体单元组成。
根据本发明,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
根据本发明,所述多元共聚芳酰胺可通过高温缩聚法或低温预聚法制备:
1)高温缩聚法,将对苯二甲酸单体和式(IX)所示的芳二酸单体与对苯二甲胺单体;或者,将对苯二甲酸单体和2-(2,5-二甲酸苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体;或者,将对苯二甲酸单体与式(X)所示的芳二胺单体和对苯二甲胺单体在90-130℃的温度下反应而获得所述多元共聚芳酰胺;
Figure PCTCN2017100015-appb-000025
其中,n、R的定义如上所述。
具体地,将对苯二甲酸单体和式(IX)所示的芳二酸单体与对苯二甲胺单体;或者,将对苯二甲酸单体和2-(2,5-二甲酸苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体;或者,将对苯二甲酸单体与式(X)所示的芳二胺单体和对苯二甲胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中在90-130℃下反应0.5-48小时(优选1-24小时)。将反应液用甲醇沉淀,用 90-100℃的水洗涤除去盐,可得到多元共聚芳酰胺。
2)低温预聚法,在冰浴条件下,使对苯二甲酰氯单体和式(IX’)所示的芳二酰氯单体与对苯二甲胺单体预缩聚;或者,使对苯二甲酰氯单体和2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体预缩聚;或者,使对苯二甲酰氯单体与式(X)所示的芳二胺单体和对苯二甲胺单体预缩聚;随后撤去冰浴,在15-60℃下反应而获得所述多元共聚芳酰胺;
Figure PCTCN2017100015-appb-000026
其中,n、R的定义如上所述。
具体地,在冰浴条件下,将对苯二甲酰氯单体和式(IX’)所示的芳二酰氯单体与对苯二甲胺单体;或者,将对苯二甲酰氯单体和2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体;或者,将对苯二甲酰氯单体与式(X)所示的芳二胺单体和对苯二甲胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中进行溶液缩聚,进行预聚合,反应30-60分钟。撤去冰浴,在15-60℃之间反应0.5-48小时(优选1-24小时)。反应溶液沉淀于甲醇中,用90-100℃的水洗涤除去盐,即可得到多元共聚芳酰胺。
根据本发明,在方法1)中,所述反应温度可为90℃、100℃、110℃、120℃或130℃。反应时间可为0.5小时、1小时、2小时,直至48小时。所用的盐可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
根据本发明,在方法2)中,所述撤去冰浴后的聚合反应温度可为15℃、25℃、40℃、50℃或者60℃,反应时间可为0.5小时,1小时,2小时,直至48小时。所用盐溶液可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
根据本发明,所述多元共聚芳酰胺可溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶剂中。
根据本发明,所述多元共聚芳酰胺的数均分子量为6万-15万(使用GPC测量,以DMF-LiCl为流动相、PS为参照物)。
根据本发明,所述多元共聚芳酰胺的特性粘数为0.5-2.0dL/g(DMF-LiCl溶剂中)。
根据本发明,所述多元共聚芳酰胺的5%热分解温度在氮气和空气气氛下均为450℃以上。
根据本发明,所述多元共聚芳酰胺的玻璃化转变温度为270-320℃。
根据本发明,所述多元共聚芳酰胺(薄膜)的拉伸强度为60-150MPa,优选80-120MPa。
根据本发明,所述多元共聚芳酰胺的拉伸模量为1.0-4.0GPa,优选1.5-3.5GPa。
根据本发明,所述多元共聚芳酰胺的断裂伸长率为5-11%,优选6-10%。
根据本发明,所述多元共聚芳酰胺薄膜在500nm波长处透光率在80%以上。由于所述多元共聚芳酰胺优异的透光性,其可以用于显示器件、包装材料等领域中。
根据本发明,所述多元共聚芳酰胺具备荧光性,在470nm处有最大发射波长。由于所述多元共聚芳酰胺的荧光性,其可以用于防伪、光响应材料等领域中。
根据本发明,所述多元共聚芳酰胺可以成型加工为薄膜、纤维、中空管或条状物等。
本发明还提供了本发明的多元聚芳酰胺的用途,其可以用于纺丝,成膜,制备条状物、中空管状物等中。
此外,本发明还提供了本发明的多元聚芳酰胺的用途,其可以用于显示器件、包装材料、防伪、光响应材料等中。
本发明还提供了一种纤维,其包含本发明的多元共聚芳酰胺。
本发明还提供了上述纤维的制备方法,其包括以下步骤:
1)将上述的多元共聚芳酰胺溶解在溶剂中得到纺丝溶液或凝胶;
2)通过溶液纺丝方法纺丝,得到纺丝纤维;
3)牵伸;制得所述纤维。
根据本发明,步骤1)中,所用的溶剂可为NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl。
在一个实施方案中,在步骤2)的溶液纺丝步骤中,需要选择凝固浴;凝固剂一般为水或乙醇。
步骤3)中的牵伸采用热箱或热辊牵伸,也可以采用热浴牵伸方式。
对于其中的热浴牵伸方式,优选地,采用的热浴介质包括选自多元醇(优选沸点为120-220℃)、聚氧乙烯齐聚物(相对分子量优选为88-5000g/mol)、聚氧丙烯齐聚物(相对分子量优选为116-1200g/mol)、矿物油和硅油中的一种或多种组分。优选地,所述热浴介质温度TL设定为介于聚合物基体的玻璃化温度Tg与聚合物基体的分解温度Td之间。
在另一实施方案中,所述步骤3)具体为:所述纤维经过丝牵伸、干燥、第一热箱干热牵伸、第二热箱干热牵伸、热定型和卷绕等工序,得到本发明的纤维。
其中,丝牵伸工序中的牵伸温度为10-70℃,优选25-50℃;牵伸倍数为2-20倍,优选3-15倍。
其中,干燥工序中的干燥通过热风干燥,热风温度为30-90℃,优选40-80℃。
其中,第一热箱干热牵伸工序中的温度为100-160℃,优选130-145℃;牵伸倍数为1-20倍,优选1.5-15倍。
其中,第二热箱干热牵伸工序中的温度为110-160℃,优选130-145℃;牵伸倍数为1-5倍,优选1.1-3倍。
其中,热定型工序中的温度为100-150℃,优选120-135℃。
本发明提供了一种膜,其包含本发明的改性多元共聚芳酰胺。
本发明还提供了上述膜的制备方法,其包括以下步骤:
1)将包含本发明的多元共聚芳酰胺的原料和成膜用溶剂进行熔融混炼,得到溶液;
2)挤出溶液,形成成型体,冷却,得到聚合物片材;
3)双向拉伸,制得薄膜。
根据本发明,在步骤1)中,所用的溶剂可为NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl。
本发明的有益效果:
本发明所述含侧基的多元共聚芳酰胺具有优异的性能:
(1)分子链的规整性得以有效地降低,所得聚芳酰胺的结晶性下降,从而使得所述聚合物的溶解性大大提升;
(2)所得聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶剂中,可以进行溶液加工;
(3)聚合物在空气中5%热分解温度在450℃以上,玻璃化转变温度在270℃以上,可以作为耐高温材料使用;
(4)聚合物所得薄膜力学性能优良,有望应用于高强材料领域;
(5)所得聚合物透明性良好,具备荧光性,有望应用于光学材料领域;
(6)所述制备方法简单,条件温和,易于提纯,单体可通过直接购买,价格便宜,易于工业化;
(7)所述改性多元共聚芳酰胺可以应用于纺织领域,防弹头盔等军事领域、轮胎等交通领域中。
附图说明
图1.实施例1-3的Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%的GPC谱图。
图2.实施例1-3的Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%的TGA曲线。
图3.实施例1-3的Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%的紫外-可见透射光谱。
图4.实施例1-6的Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%的荧光发射光谱。
图5.实施例1-6的Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%的DSC曲线。
图6.实施例1-5的Ar1-1,100%Ar2-2,40%Ar3-1-1,60%加工所得制品图片。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
本发明中,所述对苯二甲酸和对苯二甲酰氯可以直接购买得到。
本发明中,所述2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪和2-(2,5-二甲酸苯基)-4,6-二苯 基均三嗪可以直接购买得到。
本发明中,所述对苯二甲胺可以直接购买得到。
本发明中,所述式(X)所示芳二胺单体可以直接购买得到,
Figure PCTCN2017100015-appb-000027
其中,R选自H、C1-6烷基、C1-6烷氧基、-SO2-R’;R’选自H、C1-6烷基。
本发明中,式(VIII)所示的芳二酸单体可以通过如下方法制备得到:以2-羟基-4-氨基苯甲酸和对苯二甲酰氯为原料,在25-50℃温度下进行反应。
Figure PCTCN2017100015-appb-000028
具体地,将2-羟基-4-氨基苯甲酸和对苯二甲酰氯以摩尔比为1:2的投料比分别溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中,,在25-50℃温度下进行溶液聚合反应,反应为0.5-48小时。
本发明中,当n为6时,式(IX)所示的芳二酸单体可以通过如下方法制备得到:
Figure PCTCN2017100015-appb-000029
a)以4-羟基-4’-氰基联苯和1,6-二溴己烷为原料,制备得到式(IX)所示的中间体;
Figure PCTCN2017100015-appb-000030
b)向步骤a)的式(XI)所示的中间体中加入5-羟基间苯二甲酸,制备得到的芳二酸单体具有如下结构:
Figure PCTCN2017100015-appb-000031
其他不同n的化合物可以参照上述方法制备,即将1,6-二溴己烷替换为其他碳原子数的二溴取代烷烃,如1,5-二溴戊烷;1,4-二溴丁烷;1,3-二溴丙烷;1,2-二溴乙烷或二溴甲烷等,得到其他结构的芳二酸单体。
本发明中,所述芳二酰氯单体可通过芳二酸的酰氯化反应制备或者可直接购买得到;所述酰氯化反应为现有技术已知的方法。
本发明中,5-(3,5-二苯基苯)-1,3-苯二甲酸可以直接购买得到,5-(3,5-二苯基苯)-1,3-苯二甲酰氯可以直接购买得到,或者通过5-(3,5-二苯基苯)-1,3-苯二甲酸通过酰氯化反应制备得到。
本发明中,式(VIII’)所示的芳二酰氯单体通过式(VIII)所示的芳二酸单体的酰氯化反应制备得到;所述酰氯化反应的条件是本领域的常规技术条件。
Figure PCTCN2017100015-appb-000032
本发明中,式(IX)所示的芳二酰氯单体通过式(IX)所示的芳二酸单体通过酰氯化反应制备得到;所述酰氯化反应的条件是本领域的常规技术条件。
Figure PCTCN2017100015-appb-000033
实施例1-1 合成Ar1-3,10%T90%Ar2-1,30%Ar3-4,70%
采用低温预聚法制备。
将0.0252g(0.1mmol)2,3-萘二甲酰氯、0.183g(0.9mmol)对苯二甲酰氯与0.0320g(0.3mmol)对苯二胺、0.244g(0.7mmol)9,9-双(4-氨基苯基)芴混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在15℃继续反应0.5小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为6.2万,分散度为1.87。聚合物具备非常好的溶解性能,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl 等有机溶解中。聚合物热性能良好,在空气中5%热分解温度为450℃。
实施例1-2 合成Ar1-1,50%T50%Ar3-4,100%
采用低温预聚法制备。
将0.126g(0.5mmol)2,6-萘二甲酰氯、0.102g(0.5mmol)对苯二甲酰氯与0.349g(1mmol)9,9-双(4-氨基苯基)芴混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在40℃下继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为7.9万,分散度为1.65。聚合物具备非常好的溶解性能,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶解中。聚合物热性能良好,在空气中5%热分解温度为460℃。
实施例1-3 合成Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%
采用低温预聚法制备。
将0.0252g(0.1mmol)1,4-萘二甲酰氯、0.183g(0.9mmol)对苯二甲酰氯与0.0320g(0.3mmol)对苯二胺、0.244g(0.7mmol)9,9-双(4-氨基苯基)芴混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在60℃油浴中继续反应48小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
图1为实施例1-3的Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%的GPC谱图。由图可知,通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为8.1万,分散度为1.77。
图2为实施例1-3的Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%的TGA曲线。由图可知,聚合物在氮气与空气中5%的热失重温度都非常高,具备非常好的热稳定性。
图3为实施例1-3的Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%的紫外-可见透射光谱。由图可知,聚合物500nm处的透光率在80%左右,具备非常好的透明性。
所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物在氮气与空气中5%热分解温度分别为475℃和473℃。通过溶剂挥发,所述聚合物可以制备成为透明薄膜,500nm下的透光率为81%。聚合物薄膜的拉伸强度为80MPa,拉伸模量为2.1GPa,断裂伸长率为8%。
实施例1-4 合成Ar1-1,80%T20%Ar2-2,10%Ar3-1-3,90%
采用低温预聚法制备。其中Ar3中X为CH2
将0.202g(0.8mmol)2,6-萘二甲酰氯、0.0406g(0.2mmol)对苯二甲酰氯与0.0108g(0.1mmol)间苯二胺、0.179g(0.9mmol)4,4-亚甲基-双苯胺混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,冰浴条件下搅拌0.5小时,随后撤去冰浴,在50℃中继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为9.8万,分散度为1.65。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物玻璃化转变温度为296℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下薄膜具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为95MPa,拉伸模量为1.9GPa,断裂伸长率为9%。
实施例1-5 合成Ar1-1,100%Ar2-2,40%Ar3-1-1,60%
采用低温预聚法制备。其中Ar3中X为O。
将0.252g(1mmol)2,6-萘二甲酰氯与0.0432g(0.4mmol)间苯二胺、0.120g(0.6mmol)4,4-二胺基苯醚混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,冰浴条件下搅拌0.5小时,随后撤去冰浴,在60℃油浴中继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为10.8万,分散度为1.72。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物玻璃化转变温度为296℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下薄膜具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为125MPa,拉伸模量为2.9GPa,断裂伸长率为10%。
图6为实施例1-5的Ar1-1,100%Ar2-2,40%Ar3-1-1,60%加工所得制品图片。由图可知,采用本实施例制备得到的聚合物可以制备成丝状纤维,条状纤维,薄膜,中空管。
实施例1-6 合成Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%
采用高温缩聚法制备。
将0.194g(0.9mmol)2,6-萘二甲酸、0.0166g(0.1mmol)对苯二甲酸与0.0324g(0.3mmol)间苯二胺、0.244g(0.7mmol)9,9-双(4-氨基苯基)芴混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在90℃油浴条件下搅拌4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
图4为实施例1-6的Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%的荧光发射光谱。由图可知,聚合物的最大发射波长在470nm附近。
图5为实施例1-6的Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%的DSC曲线。由图可知,聚合物的玻璃化转变温度在280℃附近,具备很好的热稳定性能。
通过GPC表征聚合物数均分子量为6.1万,分散度为2.08。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为450℃,玻璃化转变温度为293℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下,具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为91MPa,拉伸模量为2.5GPa,断裂伸长率为9%。
实施例1-7 合成Ar1-2,50%T50%Ar2-3,40%Ar3-2,60%
采用高温缩聚法制备。
将0.108g(0.5mmol)1,4-萘二甲酸、0.083g(0.5mmol)对苯二甲酸与0.0736g(0.4mmol)4,4-联苯二胺、0.175g(0.6mmol)1,3-双(3-氨基苯氧基)苯混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在110℃油浴条件下搅拌4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物数均分子量为8.1万,分散度为2.15。所述聚合物具备良好的溶解性,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为455℃,玻璃化转变温度为287℃。
实施例1-8 合成Ar1-1,100%Ar2-1,40%Ar3-4,60%
采用高温缩聚法制备。
将0.216g(1mmol)2,6-萘二甲酸与0.0432g(0.4mmol)对苯二胺、0.209g(0.6mmol)9,9-双(4-氨基苯基)芴混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在130℃油浴条件下搅拌1小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物数均分子量为9.7万,分散度为2.25。所述聚合物具备良好的溶解性,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为475℃,玻璃化转变温度为287℃。聚合物制备成膜后的拉伸强度为120MPa,拉伸模量为2.8GPa,断裂伸长率为11%。
实施例1-9 Ar1-1,100%Ar2-2,40%Ar3-1-1,60%纤维的制备。
将1g根据实施例1-5制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例1-10 Ar1-1,100%Ar2-2,40%Ar3-1-1,60%薄膜的制备。
将1g根据实施例1-5制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
制备例2-1 合成式(VIII)所示的芳二酸单体
将0.2mol 2-羟基-4-氨基苯甲酸和0.1mol对苯二甲酰氯分别溶解在NMP的盐溶液中,在35℃下反应8小时;制备得到式(VIII)所示的芳二酸单体。
所述的式(VIII)所示的芳二酸单体的制备可以采用下述方程式表示:
Figure PCTCN2017100015-appb-000034
制备例2-2 合成式(VIII’)所示的芳二酰氯单体
取1mol制备例2-1的式(VIII)所示的芳二酸单体,溶于过量氯化亚砜中,加入适量DMF作催化剂,在30℃温度下进行酰基化反应4h,制备得到式(VIII’)所示的芳二酰氯单体。
实施例2-1 合成式(II)的多元共聚芳酰胺,其中k=0.1,l=0.9,m=0.5,n=0.5。
采用低温预聚法制备。
将0.5mmol 5-(3,5-二苯基-苯)-1,3-苯二甲酰氯、0.5mmol制备例2-2制备得到的式(VII’)所示的芳二酰氯单体、0.1mmol对苯二胺与0.9mmol 4-4'-二苯胺二甲醚混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,冰浴条件下搅拌0.5小时,随后撤去冰浴,在50℃中继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为9.8万,分散度为1.65。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物玻璃化转变温度为296℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下薄膜具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为95MPa,拉伸模量为1.9GPa,断裂伸长率为9%。
实施例2-2 合成式(II)的多元共聚芳酰胺,其中k=0.1,l=0.9,m=0.5,n=0.5。
采用高温缩聚法制备。
将0.5mmol 5-(3,5-二苯基-苯)-1,3-苯二甲酸、0.5mmol制备例2-1制备得到的式(VII)所示的芳二酸单体、0.1mmol对苯二胺与0.9mmol 4-4'-二苯胺二甲醚混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在90℃油浴条件下搅拌4小时。固体逐渐溶解溶液变澄清,随着反应的进行聚合溶液粘度增大。反应结束后,将聚合物溶液稍微加入5毫升NMP稀释后倒入100毫升100摄氏度热水中,搅拌1h。将过滤得到的固体溶解在NMP后滴入甲醇溶液中进行沉淀,继续搅拌1h,过滤,洗涤固体,最终将产品放入真空干燥箱80℃干燥。
通过GPC表征聚合物数均分子量为6.1万,分散度为2.08。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为450℃,玻璃化转变温度为293℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下,具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为91MPa,拉伸模量为2.5GPa,断裂伸长率为9%。
实施例2-3 合成式(II)的多元共聚芳酰胺,其中k=0.2,l=0.8,m=0.9,n=0.1。
采用高温缩聚法制备。
将0.9mmol 5-(3,5-二苯基-苯)-1,3-苯二甲酸、0.1mmol制备例2-1制备得到的式(VII)所示的芳二酸单体、0.2mmol对苯二胺与0.8mmol 4-4'-二苯胺二甲醚混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在130℃油浴条件下搅拌1小时。固体逐渐溶解溶液变澄清,随着反应的进行聚合溶液粘度增大。反应结束后,将聚合物溶液稍微加入5毫升NMP稀释后倒入100毫升100摄氏度热水中,搅拌1h。将过滤得到的固体溶解在NMP后滴入甲醇溶液中进行沉淀,继续搅拌1h,过滤,洗涤固体,最终将产品放入真空干燥箱80℃干燥。
通过GPC表征聚合物数均分子量为9.7万,分散度为2.25。所述聚合物具备良好的溶解性,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为475℃,玻璃化转变温度为287℃。聚合物制备成膜后的拉伸强度为120MPa,拉伸模量为2.8GPa,断裂伸长率为11%。
实施例2-4 合成式(II)的多元共聚芳酰胺,其中k=0.4,l=0.6,m=0.6,n=0.4。
采用低温预聚法制备。
将0.6mmol 5-(3,5-二苯基-苯)-1,3-苯二甲酰氯、0.4mmol制备例2-2制备得到的式(VII’)所示的芳二酰氯单体、0.4mmol对苯二胺与0.6mmol 4-4'-二苯胺二甲醚混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,冰浴条件下搅拌0.5小时,随后撤去冰浴,在60℃油浴中继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为10.8万,分散度为1.72。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物玻璃化转变温度为296℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下薄膜具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为125MPa,拉伸模量为2.9GPa,断裂伸长率为10%。
实施例2-5 合成式(III)的多元共聚芳酰胺,其中k=0.8,l=0.2,m=0.9,n=0.1。
采用高温缩聚法制备。
将制备例2-1制备得到的式(VII)所示的芳二酸单体(0.1mmol),2,6-萘二甲酸(0.9mmol),4,4'-二苯胺二甲醚(0.2mmol),间苯二胺(0.8mmol),与0.50mL吡啶,1.0mL亚磷酸三苯酯,在6mLNMP-LiCl中反应。将混合溶液放入120℃油浴条件中反应4h。固体逐渐溶解溶液变澄清,随着反应的进行聚合溶液粘度增大。反应结束后,将聚合物溶液稍微加入5毫升NMP稀释后倒入100毫升100摄氏度热水中,搅拌1h。将过滤得到的固体溶解在NMP后滴入甲醇溶液中进行沉淀,继续搅拌1h,过滤,洗涤固体,最终将产品放入真空干燥箱80℃干燥。GPC表征聚合物数均分子量为9.5万g/mol,分散度为1.84。
实施例2-6 合成式(III)的多元共聚芳酰胺,其中k=0.8,l=0.2,m=0.6,n=0.4。
采用高温缩聚法制备。
将制备例2-1制备得到的式(VII)所示的芳二酸单体(0.4mmol),2,6-萘二甲酸(0.6mmol),4,4'-二苯胺二甲醚(0.2mmol),间苯二胺(0.8mmol),与0.50mL吡啶,1.0mL亚磷酸三苯酯在6mLNMP-LiCl中反应。将混合溶液放入120℃油浴条件中反应4h。固体逐渐溶解溶液变澄清,随着反应的进行聚合溶液粘度增大。反应结束后,将聚合物溶液稍微加入5毫升NMP稀释后倒入100毫升100℃热水中,搅拌1h。将过滤得到的固体溶解在NMP后滴入甲醇溶液中进行沉淀,继续搅拌1h,过滤,洗涤固体,最终将产品放入真空干燥箱80℃干燥。GPC表征聚合物数均分子量为8.4万g/mol,分散度为2.19。
实施例2-7 合成式(III)的多元共聚芳酰胺,其中k=0.4,l=0.6,n=1.0。
采用高温缩聚法制备。
将制备例2-1制备得到的式(VII)所示的芳二酸单体(1mmol),4,4'-二苯胺二甲醚(0.6mmol),间苯二胺(0.4mmol),与0.25mL吡啶,0.50mL亚磷酸三苯酯,及3.0mLNMP-LiC反应。将混合溶液放入120℃油浴条件中反应4h。固体逐渐溶解溶液变澄清,随着反应的进行聚合溶液粘度增大。反应结束后,将聚合物溶液稍微加入5毫升NMP稀释后倒入100毫升100℃热水中,搅拌1h。将过滤得到的固体溶解在NMP后滴入甲醇溶液中进行沉淀,继续搅拌1h,过滤,洗涤固体,最终将产品放入真空干燥箱80℃干燥。GPC表征聚合物数均分子量为6.5万g/mol,分散度为2.43。
实施例2-8 纤维的制备
将1g根据实施例2-1制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例2-9 薄膜的制备
将1g根据实施例2-1制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
实施例2-10 纤维的制备
将1g根据实施例2-3制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例2-11 薄膜的制备
将1g根据实施例2-3制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃ 条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
制备例3-1 合成式(IX)所示的芳二酸单体,n为6
取0.1mol4-羟基-4’-氰基联苯和0.1mol 1,6-二溴己烷为原料,制备得到式(XI)所示的中间体;向式(XI)所示的中间体中加入5-羟基间苯二甲酸,制备得到式(IX)所示的芳二酸单体。
所述的式(IX)所示的芳二酸单体的制备可以采用下述方程式表示:
Figure PCTCN2017100015-appb-000035
制备例3-2 合成式(IX’)所示的芳二酰氯单体
取1mol制备例3-1的式(IX)所示的芳二酸单体,溶于过量氯化亚砜中,加入适量DMF作催化剂,在30℃温度下进行酰基化反应4h,制备得到式(IX’)所示的芳二酰氯单体。
实施例3-1 合成式(V)的多元共聚芳酰胺,a=0.3,b=0.7,c+d=1.0。
采用低温预聚法制备,n=6。
将0.3mmol对苯二甲酰氯、1.0mmol对苯二胺、与0.7mmol制备例3-2制备得到的式(VIII’)所示的芳二酰氯单体混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在15℃继续反应0.5小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为6.2万,分散度为1.87。聚合物具备非常好的溶解性能,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶解中。聚合物热性能良好,在空气中5%热分解温度为450℃。
实施例3-2 合成式(V)的多元共聚芳酰胺,a=0.5,b=0.5,c+d=1.0。
采用低温预聚法制备,n=6。
将0.5mmol对苯二甲酰氯、1.0mmol对苯二胺、与0.5mmol制备例3-2制备得到的式(VIII’)所示的芳二酰氯单体混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在40℃下继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为7.9万,分散度为1.65。聚合物具备非常好的溶解性能,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶解中。聚合物热性能良好,在空气中5%热分解温度为460℃。
实施例3-3 合成式(V)的多元共聚芳酰胺,a=0.8,b=0.2,c+d=1.0。
采用低温预聚法制备,n=6。
将0.8mmol对苯二甲酰氯、1.0mmol对苯二胺、与0.2mmol制备例3-2制备得到的式(VIII’)所示的芳二酰氯单体混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在60℃油浴中继续反应48小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为8.1万,分散度为1.77。聚合物在氮气与空气中5%的热失重温度都非常高,具备非常好的热稳定性。聚合物500nm处的透光率在80%左右,具备非常好的透明性。
所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物在氮气与空气中5%热分解温度分别为475℃和473℃。通过溶剂挥发,所述聚合物可以制备成为透明薄膜,500nm下的透光率为81%。聚合物薄膜的拉伸强度为80MPa,拉伸模量为2.1GPa,断裂伸长率为8%。
实施例3-4 合成式(V)的多元共聚芳酰胺,a=0.8,b=0.2,c+d=1.0。
采用高温缩聚法制备,n=6。
将0.8mmol对苯二甲酸、1.0mmol对苯二胺、与0.2mmol制备例3-1制备得到的式(VIII)所示的芳二酸单体混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在110℃油浴条件下搅拌4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物数均分子量为8.1万,分散度为2.15。所述聚合物具备良好的溶解性,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为455℃,玻璃化转变温度为287℃。
实施例3-5 纤维的制备
将1g根据实施例3-1制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例3-6 薄膜的制备
将1g根据实施例3-1制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
实施例3-7 合成式(VI)的含三嗪类侧基的多元共聚芳酰胺,a=0.3,b=0.7,c+d=1.0。
采用低温预聚法制备。
将0.3mmol对苯二甲酰氯、1.0mmol对苯二胺与0.7mmol 2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在15℃继续反应0.5小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为6.2万,分散度为1.87。聚合物具备非常好的溶解性能,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶解中。聚合物热性能良好,在空气中5%热分解温度为450℃。
实施例3-8 合成式(VI)含三嗪类侧基的多元共聚芳酰胺,a=0.5,b=0.5,c+d=1.0。
采用低温预聚法制备。
将0.5mmol对苯二甲酰氯、1.0mmol对苯二胺与0.5mmol 2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在40℃下继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为7.9万,分散度为1.65。聚合物具备非常好的溶解性能,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等有机溶解中。聚合物热性能良好,在空气中5%热分解温度为460℃。
实施例3-9 合成式(VI)含三嗪类侧基的多元共聚芳酰胺,a=0.8,b=0.2,c+d=1.0。
采用低温预聚法制备。
将0.8mmol对苯二甲酰氯、1.0mmol对苯二胺与0.2mmol 2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,在冰浴条件下搅拌0.5小时,随后撤去冰浴,在60℃油浴中继续反应48小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为8.1万,分散度为1.77。聚合物在氮气与空气中5%的热失重温度都非常高,具备非常好的热稳定性。聚合物500nm处的透光率在80%左右,具备非常好的透明性。
所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物在氮气与空气中5%热分解温度分别为475℃和473℃。通过溶剂挥发,所述聚合物可以制备成为透明薄膜,500nm下的透光率为81%。聚合物薄膜的拉伸强度为80MPa,拉伸模量为2.1GPa,断裂伸长率为8%。
实施例3-10 合成式(VI)含三嗪类侧基的多元共聚芳酰胺,a=0.8,b=0.2,c+d=1.0。
采用高温缩聚法制备。
将0.8mmol对苯二甲酸、1.0mmol对苯二胺与0.2mmol 2-(2,5-二甲酸苯基)-4,6-二苯基均三嗪混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在110℃油浴条件下搅拌4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物数均分子量为8.1万,分散度为2.15。所述聚合物具备良好的溶解性,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热 分解温度为455℃,玻璃化转变温度为287℃。
实施例3-11 合成式(VII)含三苯胺侧基的多元共聚芳酰胺,a+b=1.0,c=0.1,d=0.9。
采用低温预聚法制备,其中R为-OCH3
将1.0mmol对苯二甲酰氯、0.1mmol对苯二胺与0.9mmol 4-甲氧基-4',4”-二氨基三苯胺混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,冰浴条件下搅拌0.5小时,随后撤去冰浴,在50℃中继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为9.8万,分散度为1.65。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物玻璃化转变温度为296℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下薄膜具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为95MPa,拉伸模量为1.9GPa,断裂伸长率为9%。
实施例3-12 合成式(VII)含三苯胺侧基的多元共聚芳酰胺,a+b=1.0,c=0.2,d=0.8。
采用高温缩聚法制备,其中R为-OCH3
将1.0mmol对苯二甲酸、0.2mmol对苯二胺与0.8mmol 4-甲氧基-4',4”-二氨基三苯胺混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在90℃油浴条件下搅拌4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物数均分子量为6.1万,分散度为2.08。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为450℃,玻璃化转变温度为293℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下,具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为91MPa,拉伸模量为2.5GPa,断裂伸长率为9%。
实施例3-13 合成式(VII)含三苯胺侧基的多元共聚芳酰胺,a+b=1.0,c=0.5,d=0.5。
采用高温缩聚法制备,其中R为-SO2H。
将1.0mmol对苯二甲酸、0.5mmol对苯二胺与0.5mmol式(X)所示芳二胺混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,加入0.5mL吡啶,1mL亚磷酸三苯酯,在130℃油浴条件下搅拌1小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物数均分子量为9.7万,分散度为2.25。所述聚合物具备良好的溶解性,可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机溶剂中。所述聚合物5%热分解温度为475℃,玻璃化转变温度为287℃。聚合物制备成膜后的拉伸强度为120MPa,拉伸模量为2.8GPa,断裂伸长率为11%。
实施例3-14 合成式(VII)含三苯胺侧基的多元共聚芳酰胺,a+b=1.0,c=0.2,d=0.8。
采用高温缩聚法制备,其中R为-SO2CH3
将1.0mmol对苯二甲酸、0.2mmol对苯二胺与0.8mmol式(X)所示芳二胺混合在5mL NMP-LiCl(LiCl的质量浓度为4%)中,冰浴条件下搅拌0.5小时,随后撤去冰浴,在60℃油浴中继续反应4小时。将反应液倒入200mL甲醇中,并用200mL的100℃热水洗涤,得到絮状白色沉淀。
通过GPC表征聚合物,得到单一峰型,说明聚合进行得非常高效,数均分子量为10.8万,分散度为1.72。所述聚合物可以溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl等强极性有机 溶剂中。所述聚合物玻璃化转变温度为296℃。通过溶剂挥发,所述聚合物可以制备成为薄膜,在紫外光照射下薄膜具备荧光,在470nm附近有最大发射波长。所述聚合物薄膜的拉伸强度为125MPa,拉伸模量为2.9GPa,断裂伸长率为10%。
实施例3-15 纤维的制备。
将1g根据实施例3-7制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例3-16 薄膜的制备。
将1g根据实施例3-7制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
实施例3-17 纤维的制备。
将1g根据实施例3-11制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例3-18 薄膜的制备。
将1g根据实施例3-11制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
实施例3-19 纤维的制备。
将1g根据实施例3-13制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将纺丝溶液注入水的凝固浴中。50℃,15倍条件下进行牵伸;80℃干燥;再在第一热箱130℃,15倍条件下干热牵伸;之后在第二热箱中130℃,2倍牵伸;最后在120℃条件下热定型。制备得到纤维。
实施例3-20 薄膜的制备。
将1g根据实施例3-13制备的聚合物溶解于10g NMP中,常温静置12小时,待充分溶解。将溶液挤出,平铺于玻璃板上。将其置于25℃条件下放置一天。100℃条件下干燥8小时,170℃条件下干燥12小时。待其冷却后双向拉伸,制备得到薄膜。
以上内容是对本发明的进一步详细说明,不能认定本发明的具体实施局限于这些说明。本发明在所述技术领域的普通技术工人来说,在不脱离本发明的前提下,还可以做出多种修改和变化,比如将封闭部件外部层设计为多边形,将封闭部件负压管设计为硬质塑料等,当然,本发明的范围由所附的权利要求及其相等的范围来决定。

Claims (11)

  1. 一种改性多元共聚芳酰胺,所述多元共聚芳酰胺包含式(I)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100001
    其中,a+b=100%,c+d=100%;
    -Ar1-选自:
    Figure PCTCN2017100015-appb-100002
    -Ar2-选自:
    Figure PCTCN2017100015-appb-100003
    -Ar3-选自:
    Figure PCTCN2017100015-appb-100004
    优选地,a为1-100%之间的数、b为0-99%之间的数、c为0-100%之间的数、d为0-100%之间的数。
    优选地,a为50-100%之间的数,b为0-50%之间的数,c为0-100%之间的数,d为0-100%之间的数。
    优选地,a为50-100%之间的数,b为0-50%之间的数,c为0-40%之间的数,d为60-100%之间的数。
    优选地,a为80-100%之间的数,b为0-20%之间的数,c为10-40%之间的数,d为60-90%之间的数。
    优选地,所述多元共聚芳酰胺可为:
    Ar1-3,10%T90%Ar2-1,30%Ar3-4,70%,Ar1-1,50%T50%Ar3-4,100%,Ar1-2,10%T90%Ar2-1,30%Ar3-4,70%,Ar1-1,80%T20%Ar2-2,10%Ar3-1-3,90%,Ar1-1,100%Ar2-2,40%Ar3-1-1,60%,Ar1-1,90%T10%Ar2-2,30%Ar3-4,70%,Ar1-2,50%T50%Ar2-3,40%Ar3-2,60%,Ar1-1,100%Ar2-1,40%Ar3-4,60%
    优选地,多元共聚芳酰胺由式(I)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
  2. 如权利要求1所述的改性多元共聚芳酰胺的制备方法,其特征在于,所述改性多元共聚芳酰胺可通过高温缩聚法或低温预聚法制备:
    1)高温缩聚法,通过使芳二酸单体与芳二胺单体在90-130℃下反应而获得所述改性多元共聚芳酰胺。
    优选地,将芳二酸单体与芳二胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中, 在90-130℃下反应0.5-48小时(优选1-24小时)。将反应液用甲醇沉淀,用90-100℃的水洗涤除去盐,即可得到聚合物。
    优选地,在方法1)中,所述二酸单体可以是萘二酸,也可以是对苯二甲酸单体,或者二者。反应温度可为90℃、100℃、110℃、120℃或130℃。反应时间可为0.5小时、1小时、2小时,直至48小时。所用的盐可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
    2)低温预聚法,在冰浴条件下,使芳二酰氯与芳二胺单体预缩聚,随后撤去冰浴,在15-60℃下反应而获得所述改性多元共聚芳酰胺。
    优选地,在冰浴条件下,将芳二酰氯以及芳二胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中进行溶液缩聚,进行预聚合,反应30-60分钟。撤去冰浴,在15-60℃之间反应0.5-48小时(优选1-24小时)。反应溶液沉淀于甲醇中,用90-100℃的水洗涤除去盐,即可得到絮状白色聚芳酰胺树脂。
    优选地,在方法2)中,萘二甲酰氯需要通过将萘二甲酸在溶剂中与氯化亚砜进行酰氯化反应制备得到。撤去冰浴后的聚合反应温度可为15℃、25℃、40℃、50℃或者60℃,反应时间可为0.5小时,1小时,2小时,直至48小时。所用盐溶液可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
  3. 一种多元共聚芳酰胺,所述多元共聚芳酰胺包含式(II)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100005
    式(II)中,Ar4选自
    Figure PCTCN2017100015-appb-100006
    Ar5选自
    Figure PCTCN2017100015-appb-100007
    其中,k+l=100%,m+n=100%。
    优选地,包括如下技术方案:
    (1)k为1-100%、l为0-99%、m为0-100%、n为0-100%;(2)k为50-100%,l为0-50%,m为0-100%,n为0-100%;(3)k为50-100%,l为0-50%,m为0-40%,n为60-100%;(4)k为80-100%,l为0-20%,m为10-40%,n为60-90%。
    优选地,多元共聚芳酰胺由式(II)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
    优选地,所述多元共聚芳酰胺包含式(III)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100008
    优选地,多元共聚芳酰胺由式(III)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
  4. 如权利要求3所述的多元共聚芳酰胺的制备方法,其特征在于,所述多元共聚芳酰胺可通过高温缩聚法或低温预聚法制备:
    1)高温缩聚法,将HOOC-Ar5-COOH和式(VIII)所示的芳二酸单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚在90-130℃的温度下反应而获得所述多元共聚芳酰胺;
    Figure PCTCN2017100015-appb-100009
    其中,Ar4和Ar5的定义如权利要求3所述。
    优选地,将HOOC-Ar5-COOH和式(VIII)所示的芳二酸单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中在90-130℃下反应0.5-48小时(优选1-24小时)。将反应液用甲醇沉淀,用90-100℃的水洗涤除去盐,可得到多元共聚芳酰胺。
    优选地,在方法1)中,所述反应温度可为90℃、100℃、110℃、120℃或130℃。反应时间可为0.5小时、1小时、2小时,直至48小时。所用的盐可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
    2)低温预聚法,在冰浴条件下,使ClOC-Ar5-COCl和式(VIII’)所示的芳二酰氯单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚预缩聚;随后撤去冰浴,在15-60℃下反应而获得所述多元共聚芳酰胺;
    Figure PCTCN2017100015-appb-100010
    其中,Ar4和Ar5的定义如上所述。
    优选地,在冰浴条件下,使ClOC-Ar5-COCl和式(VIII’)所示的芳二酰氯单体与H2N-Ar4-NH2和4,4'-二氨基二苯醚溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中进行溶液缩聚,进行预聚合,反应30-60分钟。撤去冰浴,在15-60℃之间反应0.5-48小时(优选1-24小时)。反应溶液沉淀于甲醇中,用90-100℃的水洗涤除去盐,即可得到多元共聚芳酰胺。优选地,在方法2)中,所述撤去冰浴后的聚合反应温度可为15℃、25℃、40℃、50℃或者60℃,反应时间可为0.5小时,1小时,2小时,直至48小时。所用盐溶液可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
  5. 一种多元共聚芳酰胺,所述多元共聚芳酰胺包含式(IV)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100011
    式(IV)中,
    Ar6选自
    Figure PCTCN2017100015-appb-100012
    Ar7选自
    Figure PCTCN2017100015-appb-100013
    且Ar6和Ar7不同时选自
    Figure PCTCN2017100015-appb-100014
    n为1~6之间的整数;R选自H、C1-6烷基、C1-6烷氧基、-SO2-R’;R’选自H、C1-6烷基;
    其中,a+b=100%,c+d=100%。
    优选地,包括如下方案:
    (1)a为1-100%,b为0-99%,c为0-100%,d为0-100%;(2)a为50-100%,b为0-50%,c为0-100%,d为0-100%;(3)a为50-100%,b为0-50%,c为0-40%,d为60-100%;(4)a为80-100%,b为0-20%,c为10-40%,d为60-90%。
    优选地,多元共聚芳酰胺由式(IV)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
    优选地,所述多元共聚芳酰胺包含式(V)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100015
    n、a、b、c、d的定义如上所述。
    优选地,多元共聚芳酰胺由式(V)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
    优选地,所述多元共聚芳酰胺包含式(VI)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100016
    a、b、c、d的定义如上所述。
    优选地,多元共聚芳酰胺由式(VI)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
    优选地,所述多元共聚芳酰胺包含式(VII)所示的共聚单体单元:
    Figure PCTCN2017100015-appb-100017
    R、a、b、c、d的定义如上所述。
    优选地,多元共聚芳酰胺由式(VII)所示的共聚单体单元组成。
    优选地,所述多元共聚芳酰胺可以是无规共聚物,也可以是嵌段共聚物。
  6. 如权利要求5所述的多元共聚芳酰胺的制备方法,其特征在于,所述多元共聚芳酰胺可通过高温缩聚法或低温预聚法制备:
    1)高温缩聚法,将对苯二甲酸单体和式(IX)所示的芳二酸单体与对苯二甲胺单体;或者,将对苯二甲酸单体和2-(2,5-二甲酸苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体;或者,将对苯二甲酸单体与式(X)所示的芳二胺单体和对苯二甲胺单体在90-130℃的温度下反应而获得所述多元共聚芳酰胺;
    Figure PCTCN2017100015-appb-100018
    其中,n、R的定义如权利要求5所述。
    优选地,将对苯二甲酸单体和式(IX)所示的芳二酸单体与对苯二甲胺单体;或者,将对苯二甲酸单体和2-(2,5-二甲酸苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体;或者,将对苯二甲酸单体与式(X)所示的芳二胺单体和对苯二甲胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中在90-130℃下反应0.5-48小时(优选1-24小时)。将反应液用甲醇沉淀,用90-100℃的水洗涤除去盐,可得到多元共聚芳酰胺。
    优选地,在方法1)中,所述反应温度可为90℃、100℃、110℃、120℃或130℃。反应时间可为0.5小时、1小时、2小时,直至48小时。所用的盐可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
    2)低温预聚法,在冰浴条件下,使对苯二甲酰氯单体和式(IX’)所示的芳二酰氯单体与对苯二甲胺单体预缩聚;或者,使对苯二甲酰氯单体和2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体预缩聚;或者,使对苯二甲酰氯单体与式(X)所示的芳二胺单体和对苯二甲胺单体预缩聚;随后撤去冰浴,在15-60℃下反应而获得所述多元共聚芳酰胺;
    Figure PCTCN2017100015-appb-100019
    其中,n、R的定义如上所述。
    优选地,在冰浴条件下,将对苯二甲酰氯单体和式(IX’)所示的芳二酰氯单体与对苯二甲胺单体;或者,将对苯二甲酰氯单体和2-(2,5-二甲酰氯苯基)-4,6-二苯基均三嗪单体与对苯二甲胺单体;或者,将对苯二甲酰氯单体与式(X)所示的芳二胺单体和对苯二甲胺单体溶解在NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl的盐溶液中进行溶液缩聚,进行预聚合,反应30-60分钟。撤去冰浴,在15-60℃之间反应0.5-48小时(优选1-24小时)。反应溶液沉淀于甲醇中,用90-100℃的水洗涤除去盐,即可得到多元共聚芳酰胺。
    优选地,在方法2)中,所述撤去冰浴后的聚合反应温度可为15℃、25℃、40℃、50℃或者60℃,反应时间可为0.5小时,1小时,2小时,直至48小时。所用盐溶液可为氯化锂或氯化钙,盐的质量浓度在1-8%之间。
  7. 如权利要求1、3或5所述的多元聚芳酰胺的用途,其可以用于纺丝,成膜,制备条状物、中空管状物等中,或者,其可以用于显示器件、包装材料、防伪、光响应材料等中。
  8. 一种纤维,其包含权利要求1、3或5所述的多元共聚芳酰胺。
  9. 权利要求8所述的纤维的制备方法,其包括以下步骤:
    1)将上述的多元共聚芳酰胺溶解在溶剂中得到纺丝溶液或凝胶;
    2)通过溶液纺丝方法纺丝,得到纺丝纤维;
    3)牵伸;制得所述纤维。
    优选地,步骤1)中,所用的溶剂可为NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl。
    优选地,在步骤2)的溶液纺丝步骤中,需要选择凝固浴;凝固剂一般为水或乙醇。
    优选地,步骤3)中的牵伸采用热箱或热辊牵伸,也可以采用热浴牵伸方式。
    优选地,对于其中的热浴牵伸方式,采用的热浴介质包括选自多元醇(优选沸点为120-220℃)、聚氧乙烯齐聚物(相对分子量优选为88-5000g/mol)、聚氧丙烯齐聚物(相对分子量优选为116-1200g/mol)、矿物油和硅油中的一种或多种组分。
    优选地,所述热浴介质温度TL设定为介于聚合物基体的玻璃化温度Tg与聚合物基体的分解温度Td之间。
    优选地,所述步骤3)具体为:所述纤维经过丝牵伸、干燥、第一热箱干热牵伸、第二热箱干热牵伸、热定型和卷绕等工序,得到本发明的纤维。
    优选地,丝牵伸工序中的牵伸温度为10-70℃,优选25-50℃;牵伸倍数为2-20倍,优选3-15倍。
    优选地,干燥工序中的干燥通过热风干燥,热风温度为30-90℃,优选40-80℃。
    优选地,第一热箱干热牵伸工序中的温度为100-160℃,优选130-145℃;牵伸倍数为1-20倍,优选1.5-15倍。
    优选地,第二热箱干热牵伸工序中的温度为110-160℃,优选130-145℃;牵伸倍数为1-5倍,优选1.1-3倍。
    优选地,热定型工序中的温度为100-150℃,优选120-135℃。
  10. 一种膜,其包含权利要求1、3或5所述的多元共聚芳酰胺。
  11. 权利要求10所述的膜的制备方法,其包括以下步骤:
    1)将包含本发明的多元共聚芳酰胺的原料和成膜用溶剂进行熔融混炼,得到溶液;
    2)挤出溶液,形成成型体,冷却,得到聚合物片材;
    3)双向拉伸,制得薄膜。
    优选地,在步骤1)中,所用的溶剂可为NMP、DMSO、DMAc、NMP-LiCl或DMF-LiCl。
PCT/CN2017/100015 2017-04-26 2017-08-31 一种改性的多元共聚芳酰胺及其制备方法和用途 WO2018196244A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710284701.6A CN108794740B (zh) 2017-04-26 2017-04-26 一种改性的多元共聚芳酰胺及其制备方法和用途
CN201710284701.6 2017-04-26
CN201710503004 2017-06-27
CN201710503004.5 2017-06-27
CN201710503000.7 2017-06-27
CN201710503000.7A CN109134847B (zh) 2017-06-27 2017-06-27 一种含侧基的多元共聚芳酰胺及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2018196244A1 true WO2018196244A1 (zh) 2018-11-01

Family

ID=63919420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100015 WO2018196244A1 (zh) 2017-04-26 2017-08-31 一种改性的多元共聚芳酰胺及其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2018196244A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255723A (ja) * 1989-03-30 1990-10-16 Tokyo Inst Of Technol 新規ポリアミド樹脂
CN101680121A (zh) * 2007-04-05 2010-03-24 帝人芳纶有限公司 包含对芳族聚酰胺和添加剂材料的复合材料的颗粒
CN102070781A (zh) * 2010-12-01 2011-05-25 长春工业大学 一种用dmac直接纺丝的ppta共聚物的制造方法
CN102498153A (zh) * 2009-07-09 2012-06-13 罗地亚经营管理公司 复合聚酰胺制品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255723A (ja) * 1989-03-30 1990-10-16 Tokyo Inst Of Technol 新規ポリアミド樹脂
CN101680121A (zh) * 2007-04-05 2010-03-24 帝人芳纶有限公司 包含对芳族聚酰胺和添加剂材料的复合材料的颗粒
CN102498153A (zh) * 2009-07-09 2012-06-13 罗地亚经营管理公司 复合聚酰胺制品
CN102070781A (zh) * 2010-12-01 2011-05-25 长春工业大学 一种用dmac直接纺丝的ppta共聚物的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OISHI, Y.: "Preparation and Properties of New Aromatic Polyamides from 4, 4'-Diaminotriphenylamine and Aromatic Dicarboxylic Acids", JOURNAL OF POLYMER SCIENCE : PART A: POLYMER CHEMISTRY, vol. 28, no. 7, 30 June 1990 (1990-06-30), XP055528917 *

Similar Documents

Publication Publication Date Title
JP6513722B2 (ja) 透明フレキシブル基板のための芳香族ポリアミドフィルム
JP6174580B2 (ja) 耐熱性低複屈折ポリイミド共重合体膜
CN103890057B (zh) 用于抗溶剂柔性基材的芳香族聚酰胺薄膜
EP3004210B1 (en) Polyamides comprising me-bht, compositions comprising such a polyamide, shaped articles comprising such a polyamide or such a composition
CN108794740B (zh) 一种改性的多元共聚芳酰胺及其制备方法和用途
Dodda et al. Progress in designing poly (amide imide) s (PAI) in terms of chemical structure, preparation methods and processability
JPS6139976B2 (zh)
JP6060424B2 (ja) 種々のブロックを有する分枝ポリアミド
US5093464A (en) Wholly aromatic polyamide from N,N'-bis (4-amino phenyl)-isophthalamide
KR0151718B1 (ko) 전방향족 코폴리아미드, 이의 제조방법 및 이로부터 형성된 성형구조물
WO2015060718A1 (en) Process for preparing a furan-based polyamide, a furan-based oligomer and compositions and articles comprising the furan-based polyamide
WO2019121824A1 (en) Piperidine-containing semi-aromatic copolyamide
JPH02155925A (ja) 全芳香族ポリアミド類、その製造方法およびそれから形成される構造物
KR20100105182A (ko) 이미드기와 아라미드기를 함께 가지는 새로운 폴리머의 제조방법 및 이를 이용한 응용
KR0151720B1 (ko) 전방향족 폴리아미드, 이의 제조방법 및 이로부터 제조된 성형구조물
WO2018196244A1 (zh) 一种改性的多元共聚芳酰胺及其制备方法和用途
CN109134848B (zh) 一种多元共聚芳酰胺及其制备方法和用途
CN109134847B (zh) 一种含侧基的多元共聚芳酰胺及其制备方法和用途
EP0552499B1 (en) Wholly aromatic polyamide resin composition having enhanced light resistance
JPH04220428A (ja) 芳香族コポリアミドおよびその製造方法
JPH04214725A (ja) 完全に芳香族のポリアミド、その製造方法及びそれから製造される成形構造体
US4914180A (en) Polyamides prepared from 2-(3-aminophenyl)-2-(4-aminophenyl) hexafluoro propane
KR920011027B1 (ko) 신규 전방향족 코폴리아미드
JPH0120168B2 (zh)
TW201300445A (zh) 用於透明可撓性基材之芳香族聚醯胺薄膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907456

Country of ref document: EP

Kind code of ref document: A1