WO2018195845A1 - 控制终端、无人机的控制方法、控制终端、无人机及系统 - Google Patents

控制终端、无人机的控制方法、控制终端、无人机及系统 Download PDF

Info

Publication number
WO2018195845A1
WO2018195845A1 PCT/CN2017/082150 CN2017082150W WO2018195845A1 WO 2018195845 A1 WO2018195845 A1 WO 2018195845A1 CN 2017082150 W CN2017082150 W CN 2017082150W WO 2018195845 A1 WO2018195845 A1 WO 2018195845A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtk data
drone
control terminal
rtk
data
Prior art date
Application number
PCT/CN2017/082150
Other languages
English (en)
French (fr)
Inventor
张伟
崔留争
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780005143.3A priority Critical patent/CN108513624A/zh
Priority to PCT/CN2017/082150 priority patent/WO2018195845A1/zh
Publication of WO2018195845A1 publication Critical patent/WO2018195845A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/428Determining position using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the invention relates to the field of drones, in particular to a control terminal, a control method of the drone, a control terminal, a drone and a drone system.
  • Real-time kinematic is a global navigation satellite system (GNSS) high-precision positioning technology with a positioning accuracy of up to centimeter.
  • GNSS global navigation satellite system
  • Two stations are required in the RTK-based positioning scheme: the base station and the rover, which are user receivers that can be installed on different carriers, such as drones. Among them, the rover needs to receive the data transmitted by the base station in order to complete the RTK positioning, thereby obtaining the precise position.
  • the base station there are two types of data transmission by the base station: one is transmitted through the radio station, and the rover receives the RTK data transmitted by the radio station through the communication interface of the radio station; the other is transmitted through the network RTK, that is, through the wireless network (2G) , 3G or 4G, etc.) transmission, at this time, there is no need to set up the base station, only the rover needs to install the wireless network data communication interface, and receive the network RTK data transmitted by the wireless network base station.
  • 2G wireless network
  • the signal transmitting board of the wireless base station is usually installed horizontally or at a certain angle horizontally downward, so that the signal transmitting direction of the signal transmitting board is configured to be horizontal or oblique downward, when the height of the rover exceeds the wireless network base station,
  • the rover may not be within the signal radiated range of the radio base station, and the rover cannot receive the RTK data sent by the radio base station, so that accurate positioning cannot be achieved.
  • Embodiments of the present invention provide a control terminal, a control method for a drone, a control terminal, a drone, and a drone system for optimizing an RTK data transmission link so that the drone can receive in a high altitude.
  • RTK data is
  • An aspect of the present invention provides a control method for a control terminal, including:
  • the RTK data is sent to the drone.
  • Another aspect of the embodiments of the present invention provides a method for controlling a drone, including:
  • the location information of the drone is determined based on the RTK data.
  • control terminal including:
  • One or more processors operating separately or in concert, for transmitting the RTK data to the drone.
  • Another aspect of the embodiments of the present invention provides a drone, including:
  • a communication interface configured to receive RTK data sent by the control terminal
  • One or more processors operating separately or in concert, for determining location information of the drone based on the RTK data.
  • a control terminal configured to receive RTK data, and send the RTK data to the drone;
  • the drone is configured to receive RTK data sent by the control terminal, and determine location information of the drone according to the RTK data.
  • a control terminal, a control method for a drone, a control terminal, a drone, and a drone system receive RTK data by using a control terminal in a signal radiation range of a radio station and a radio network base station, The RTK data is forwarded to the drone, and the drone determines the location information using the RTK data received from the control terminal.
  • the problem that the UTC can not receive the RTK data sent by the wireless network base station or the radio station when the UAV is at a high altitude can be effectively overcome, and the transmission link of the RTK data is optimized, which can effectively ensure that the UAV can acquire the RTK when it is at a high altitude.
  • the data improves the accuracy of the high altitude positioning of the drone.
  • FIG. 1 is a flowchart of a method for controlling a control terminal according to an embodiment of the present invention
  • FIG. 4 is another flowchart of a method for controlling a control terminal according to an embodiment of the present invention.
  • FIG. 5 is another flowchart of a method for controlling a control terminal according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing another application example of an embodiment of the present invention.
  • FIG. 7 is another flowchart of a method for controlling a control terminal according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for controlling a drone according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing still another application example of an embodiment of the present invention.
  • FIG. 12 is a flowchart of a control method according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a control terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of an unmanned aerial vehicle system according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of implementing a control method for a control terminal according to an embodiment of the present invention. As shown in FIG. 1 , the method may include the following steps:
  • Step 101 Receive RTK data.
  • the RTK data is satellite observation data collected by the base station, where the RTK data includes at least one of carrier phase, pseudorange information, and coordinate information.
  • the control terminal can receive the RTK in the following feasible ways. data:
  • a feasible way Receive RTK data sent by the RTK base station via the radio station communication interface.
  • the base station is connected to the radio station, and the base station station can broadcast the acquired RTK data through the radio station, and the control terminal can be provided with a radio station communication interface, and the control terminal can use the radio station.
  • the communication interface receives RTK data broadcast by the radio station.
  • the RTK data of the wireless network base station can be transmitted through the network, and the wireless network can be a 2G, 3G or 4G network or other standard communication network.
  • the wireless network base station broadcasts the RTK data
  • the control terminal can be configured with a wireless network communication interface, so that the control terminal can establish a wireless network data connection between the wireless network communication interface and the wireless network base station, so that the control terminal can Receiving RTK data transmitted by the wireless network base station based on the wireless network data connection.
  • the control terminal in this embodiment may include one or more of a dedicated remote controller of a drone, a smart phone, a tablet computer, a laptop computer, a ground control station, a wearable device such as a wristwatch or a wristband.
  • radio station communication interface the wireless network communication interface and the control terminal are separately drawn, and are only for the purpose of illustration.
  • the radio station communication interface and the wireless network interface are functions of the control terminal and are not independent of each other.
  • Step 102 Send the RTK data to the drone.
  • the control terminal transmits data to the drone through the uplink data link.
  • the control terminal can send the RTK data to the drone through the uplink data link, so that the drone can complete the RTK positioning according to the received RTK data.
  • the uplink data link may be based on an IEEE 802.11b standard, a Wireless Fidelity (WI-FI), a Radio Defined Radio (SDR), or other custom protocol.
  • WI-FI Wireless Fidelity
  • SDR Radio Defined Radio
  • a control terminal for controlling a drone is usually located on the ground, and is within the signal coverage of the radio station and the radio network base station.
  • the control terminal can be used to receive the radio station or RTK data transmitted by the wireless network base station. That is to say, in the embodiment, the control terminal is used as the relay device to implement the forwarding of the RTK data, so that the drone can be obtained from the control terminal regardless of whether the drone is in the signal coverage range of the radio station and the wireless network base station. Receive RTK data.
  • the control method of the control terminal uses the control terminal in the signal radiation range of the radio station and the wireless network base station to receive the RTK data, and forwards the RTK data to the drone, and the drone machine
  • the location information is determined using RTK data received from the control terminal.
  • FIG. 4 is a flowchart of implementing a control method for a control terminal according to an embodiment of the present invention, as shown in FIG. 4, based on the embodiment in FIG.
  • the method can include the following steps:
  • Step 401 Receive RTK data.
  • step 401 and step 101 are the same, and are not described here.
  • Step 402 Send the RTK data to the drone.
  • step 402 and step 102 are the same, and are not described here.
  • Step 403 Determine location information of the control terminal according to the RTK data.
  • a positioning device such as a GNSS receiver, may be disposed on the control terminal, that is, the control terminal may also serve as a rover relative to the reference station, so that the control terminal may receive the RTK data according to the GNSS.
  • the data output by the receiver is located with the received RTK data to determine the position information of the control terminal.
  • steps 402 and 403 may be performed sequentially, and the sequence of the sequential execution may be arbitrarily set, and may also be performed at the same time, and is not specifically limited herein.
  • FIG. 5 is a flowchart of implementing a control method for a control terminal according to an embodiment of the present invention. As shown in FIG. 5, on the basis of the foregoing embodiment, The method can include the following steps:
  • Step 501 Receive RTK data.
  • step 501 and step 101 are the same, and are not described here.
  • Step 502 Send the RTK data to the drone.
  • step 502 and step 102 are the same, and are not described here.
  • Step 503 Send the RTK data to other control terminals.
  • the other control terminals herein may be different from the control terminal that receives the RTK data, as shown in FIG. 6.
  • a data connection can be established between the control terminals, and the control terminal A that receives the RTK data transmits the received RTK data to the other control terminal B through the data connection, and then the control terminals that receive the RTK data can also
  • the RTK data is sent to the drone, the location information is determined based on the RTK data, or the RTK data is forwarded to other control terminals.
  • step 502 and step 503 may be performed sequentially, and the order of execution may be arbitrarily set, and may also be performed at the same time, and is not specifically limited herein.
  • FIG. 7 is a flowchart of implementing a control method for a control terminal according to an embodiment of the present invention. As shown in FIG. 7, on the basis of the foregoing embodiment, The method can include the following steps:
  • Step 701 Receive RTK data.
  • step 701 and step 101 are the same, and are not described here.
  • Step 702 Perform encryption processing on the RTK data.
  • Step 703 Send the encrypted RTK data to the drone.
  • the control terminal may perform encryption processing on the RTK data before transmitting the RTK data to the drone, wherein the control terminal may perform RTK data on the RTK data by using a preset encryption algorithm.
  • Encryption processing the encryption algorithm here may be: Advanced Encryption Standard (AES) algorithm or Message Digest Algorithm (MD5) algorithm, etc.
  • AES Advanced Encryption Standard
  • MD5 Message Digest Algorithm
  • the control terminal will encrypt the RTK data. After being sent to the drone, and the drone receives the encrypted RTK data, it can decrypt using the decryption algorithm corresponding to the encryption algorithm to obtain the RTK data.
  • FIG. 8 is a flowchart of an implementation method of a UAV control method according to an embodiment of the present invention, where the method is applicable to a UAV as a rover. As shown in FIG. 8, the method may include the following steps:
  • Step 801 Receive RTK data sent by the control terminal.
  • the control terminal transmits RTK data to the drone through the uplink data link, and the drone can receive the RTK data sent by the control terminal through the uplink data link, and the RTK data can be controlled by the terminal from the radio station or Satellite observation data obtained by a wireless network base station.
  • Step 802 Determine location information of the drone based on the RTK data.
  • the drone can be used as a rover to set a positioning device, such as a GNSS receiver, so that the drone can receive the RTK data and receive the RTK according to the output of the GNSS receiver.
  • the data is subjected to a difference decomposition calculation to determine the position information of the drone.
  • FIG. 9 is a flowchart of implementing a control method for a control terminal according to an embodiment of the present invention. As shown in FIG. 9, on the basis of the foregoing embodiment, The method can include the following steps:
  • Step 901 Receive RTK data sent by the control terminal.
  • step 901 and step 801 are the same, and are not described here.
  • Step 902 Perform decryption processing on the received RTK data.
  • Step 903 Determine location information of the drone based on the decrypted RTK data.
  • the control terminal may perform encryption processing on the RTK data before transmitting the RTK data to the drone.
  • the algorithm for the encryption processing may be known to the drone, and after receiving the RTK data, the drone may decrypt the RTK data according to the decryption algorithm corresponding to the encryption algorithm, and decrypt the RTK data.
  • the drone can perform RTK positioning based on the RTK data to obtain the precise position of the drone.
  • the control method of the unmanned aerial vehicle uses the control terminal in the signal radiation range of the radio station and the wireless network base station to receive the RTK data, and forwards the RTK data to the drone, and the drone utilizes the slave control terminal.
  • the received RTK data determines the location information.
  • FIG. 10 is a flowchart of implementing a method for controlling a drone according to an embodiment of the present invention, as shown in FIG. 10, based on the foregoing embodiment.
  • the method can include the following steps:
  • Step 1001 Receive RTK data sent by the control terminal.
  • Step 1002 Determine location information of the drone according to the RTK data.
  • step 1002 and step 802 are the same, and are not described here.
  • Step 1003 Send the RTK data to other drones.
  • a data connection can be established between the drones.
  • the drone A that first receives the RTK data transmits the received RTK data to the other drones B through the data connection. C. Thereafter, the drones B and C that receive the RTK data can also transmit the RTK data to other unoccupied or determine their own location information based on the RTK data.
  • FIG. 12 is a flowchart of implementing a control method according to an embodiment of the present invention. As shown in FIG. 12, the method may include the following steps:
  • Step 1201 The control terminal receives the RTK data and sends the RTK data to the drone.
  • Step 1202 The drone receives the RTK data sent by the control terminal, and determines the location information of the drone according to the RTK data.
  • the control terminal is used as the relay device to implement the forwarding of the RTK data, so that the drone can be controlled by the terminal regardless of whether the drone is in the signal coverage range of the radio station and the wireless network base station.
  • the RTK data is received, so that the drone can realize positioning according to the RTK data and the data output by the GNSS receiver, and obtain the position information of the drone.
  • the control method of the UAV system uses the control terminal in the signal radiation range of the radio station and the radio network base station to receive the RTK data, and forwards the RTK data to the UAV, and the UAV utilizes the slave control.
  • the RTK data received in the terminal determines location information. In this way, the problem that the UTC can not receive the RTK sent by the wireless network base station or the radio station when the UAV is at a high altitude can be effectively overcome, and the transmission link of the RTK data is optimized, which can effectively ensure that the UAV can acquire the RTK data when it is at a high altitude. Improve the accuracy of the high altitude positioning of the drone.
  • control terminal may include a radio station communication interface, so that the control terminal may specifically receive the RTK data transmitted by the RTK base station when receiving the RTK data.
  • control terminal may include a wireless network communication interface, so that when the control terminal receives the RTK data, the control terminal may specifically receive the RTK data sent by the wireless network base station by using the wireless network communication interface.
  • control terminal is specifically configured to send the RTK data to the drone before Encrypting the RTK data, and transmitting the encrypted RTK data to the drone;
  • the UAV is specifically configured to: after receiving the encrypted processing RTK data sent by the control terminal, perform decryption processing on the RTK data, and determine location information of the UAV according to the decrypted RTK data.
  • the control terminal may send the RTK data to the drone, and may perform RTK positioning according to the RTK data to determine the location information of the control terminal, or may also The RTK data is sent to other control terminals, and is forwarded by other control terminals that receive the RTK data or performs RTK positioning to obtain the location information of the control terminal.
  • the drone After receiving the RTK data, the drone can obtain the RTK data according to the RTK data to obtain the location information of the drone, and can also send the RTK data to other drones, and the other RTK data is received.
  • the human machine performs forwarding or performs RTK positioning to obtain the location information of the drone.
  • FIG. 13 is a schematic structural diagram of a control terminal according to an embodiment of the present invention. As shown in FIG. 13, the control terminal:
  • the communication interface 1301 is configured to receive RTK data.
  • the number of the processors 1302 in the control terminal may be set or installed according to actual requirements, such as a calculation amount or a task amount, and the processor may be a single core processor or a multi-core processor.
  • the communication interface 1301 may be a radio station communication interface, and the radio station communication interface is specifically configured to receive the RTK data sent by the RTK base station.
  • the control terminal establishes a data connection with the RTK base station via the radio station communication interface, the radio station communication interface being capable of receiving RTK data transmitted by the RTK base station.
  • the communication interface 1301 may be a wireless network communication interface, and the wireless network communication interface is specifically configured to receive the RTK data sent by the wireless network base station.
  • the control terminal establishes RTK data transmitted by the network base station such as 2G, 3G or 4G of the wireless network base station through the wireless network communication interface.
  • control terminal may control the communication interface that sends uplink data to the drone through the processor 1302 to send the RTK data to the drone.
  • the communication interface for transmitting the uplink data and the communication interface 1301 for receiving the RTK data may be the same interface or different interfaces.
  • the processor 1302 may, in addition to transmitting the RTK data to the drone, determine the location information of the control terminal according to the RTK data, or send the RTK data to other control terminals.
  • the processor 1302 may be configured to acquire the location information of the control terminal according to the data output by the GNSS receiver and the RTK data set on the control terminal.
  • the processor 1302 may first encrypt the RTK data by using a preset encryption algorithm, and then send the encrypted RTK data to the drone.
  • the encryption algorithm here can be set according to requirements.
  • FIG. 14 is a schematic structural diagram of a drone according to an embodiment of the present invention. As shown in FIG. 14, the drone:
  • the communication interface 1401 is configured to receive RTK data sent by the control terminal.
  • One or more processors 1402, operating separately or in concert, are used to determine location information for the drone based on the RTK data.
  • the number of the processors 1402 in the drone can be set or installed according to actual needs, wherein the processor can be a single core processor or a multi-core processor.
  • the processor 1402 is specifically configured to perform decryption processing on the received RTK data, and determine location information of the drone according to the decrypted RTK data.
  • the RTK data received by the drone through the communication interface 1401 may be encrypted by the control terminal, and therefore, the drone receives the encrypted interface through the communication interface 1401.
  • the processor 1402 can decrypt the RTK data by using a decryption algorithm, and determine the location information of the drone based on the decrypted RTK data.
  • the processor 1402 in addition to determining the location information of the drone according to the RTK data, can also be used to send the RTK data to other drones, so that other drones can also forward the RTK data. Or determine your location based on RTK data.
  • FIG. 15 is a schematic structural diagram of an unmanned aerial vehicle system according to an embodiment of the present invention. As shown in FIG. 15, the UAV system includes:
  • the control terminal 1501 is configured to receive RTK data and transmit the RTK data to the drone 1502.
  • the drone 1502 is configured to receive the RTK data sent by the control terminal 1501, and determine the location information of the drone 1502 based on the RTK data.
  • the control terminal 1501 is used as a relay device to implement RTK data forwarding, thereby, regardless of whether the drone 1502 is within the signal coverage of the radio station and the wireless network base station, the drone 1502
  • the RTK data can be received by the control terminal 1501, so that the drone 1502 can perform positioning based on the RTK data and the data output by the GNSS receiver, and obtain the position information of the drone 1502.
  • a radio station communication interface can be provided in the control terminal 1501 such that the control terminal 1501 can utilize the radio station communication interface to receive RTK data transmitted by the RTK base station.
  • the wireless terminal communication interface may be set in the control terminal 1501, so that the control terminal 1501 can receive the RTK data sent by the wireless network base station by using the wireless network communication interface.
  • the control terminal 1501 may further perform encryption processing on the RTK data by using a preset encryption algorithm, and then send the encrypted RTK data to none.
  • the control terminal 1502 may further perform encryption processing on the RTK data by using a preset encryption algorithm, and then send the encrypted RTK data to none.
  • Man machine 1502 to ensure the security of RTK data during transmission.
  • the drone 1502 may first decrypt the RTK data by using a decryption algorithm corresponding to the encryption algorithm, and then determine the drone 1502 according to the decrypted RTK data. Location information.
  • the control terminal 1501 may perform RTK positioning according to the RTK data to determine the location information of the control terminal 1501, in addition to transmitting the RTK data to the drone 1502, or The control terminal 1501 can also send the RTK data to other control terminals, and the other control terminals that receive the RTK data perform data forwarding or enter RTK positioning to obtain location information of the control terminal.
  • the drone 1502 can obtain the RTK data according to the RTK data to obtain the location information of the drone 1502, and can also send the RTK data to other drones, and receive the RTK data. Other drones perform data forwarding or RTK positioning to obtain the location information of the drone.
  • the control terminal 1501 as a relay device for data forwarding, encrypts the RTK data after receiving the RTK data transmitted by the radio network base station or the base station, and transmits the uplink data between the relay device and the UAV.
  • the link sends the RTK data to the drone, and after receiving the RTK data, the drone decrypts the RTK data and combines the data output by the GNSS receiver configured on the drone to complete the RTK vacancy. Location information to the drone.
  • the remote controller receives the RTK data sent by the base station by setting the radio station communication interface, and selects to encrypt the RTK data, and then transmits the wireless link between the remote controller and the drone.
  • RTK data to the drone;
  • the remote controller receives the RTK data transmitted by the wireless network base station, such as the 4G network base station, by setting the wireless network communication interface, encrypts the RTK data, and transmits the RTK data to the drone through the wireless link.
  • the wireless network base station such as the 4G network base station
  • the drone After receiving the RTK data sent by the remote controller, the drone can forward the RTK data to other drones through the wireless link, and any drone that receives the RTK data can decrypt the RTK data according to the decryption.
  • the RTK data and the data output by the GNSS receiver are used for positioning, thereby obtaining the position information of the drone, thereby realizing further functions, such as implementing RTK networking formation flying.
  • control terminal after the control terminal receives the RTK data through the radio station communication interface or the wireless network communication interface, the control terminal itself can also complete the positioning by combining the data output by the GNSS receiver set by itself, and obtain the position information of the control terminal. .
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute Part of the steps of the method described in various embodiments of the invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种控制终端、无人机的控制方法、控制终端、无人机及无人机系统,利用处于无线电台和无线网络基站的信号辐射范围内的控制终端来接收RTK数据,并将RTK数据转发给无人机,由此无人机能够利用从控制终端中接收到的RTK数据来确定位置信息,可以有效克服无人机处于高空时接收不到无线网络基站或无线电台发送的RTK的问题,优化了RTK数据的传输链路,可以有效保证无人机在高空时能够获取到RTK数据,提高了无人机高空定位的准确性。

Description

控制终端、无人机的控制方法、控制终端、无人机及系统 技术领域
本发明涉及无人机领域,尤其涉及一种控制终端、无人机的控制方法、控制终端、无人机及无人机系统。
背景技术
实时动态载波差分定位(Real-time kinematic,RTK)是一种全球卫星导航系统(Global Navigation Satellite System,GNSS)高精度定位技术,其定位精度可以达到厘米级。基于RTK的定位作业方案中需要两个站点:基准站和流动站,流动站为用户接收机,可以安装在不同载体,如无人机。其中,流动站需要接收基准站所传输的数据,才能完成RTK定位,从而获取到精确位置。
目前,基准站进行数据传输有两种:一种是通过无线电台传输,流动站通过无线电台的通讯接口接收无线电台传输的RTK数据;另一种是通过网络RTK传输,即通过无线网络(2G、3G或4G等)传输,此时,无需架设基准站,只需要流动站安装无线网络数据通讯接口,接收无线网络基站所传输的网络RTK数据。然而,无线基站的信号发射板通常是水平安装或者水平朝下一定角度安装,这样信号发射板的信号发射方向则被配置成水平方向或者斜下方向,当流动站的高度超过无线网络基站时,流动站可能不在无线基站的信号辐射范围内,导致流动站不能接收到无线网络基站发送的RTK数据,从而无法实现精准定位。
发明内容
本发明实施例提供了一种控制终端、无人机的控制方法、控制终端、无人机及无人机系统,用以优化RTK数据传输链路,以使无人机在高空中能接收到RTK数据。
本发明实施例的一方面是提供一种控制终端的控制方法,包括:
接收RTK数据;
将所述RTK数据发送给无人机。
本发明实施例的另一个方面是提供一种无人机的控制方法,包括:
接收控制终端发送的RTK数据;
根据所述RTK数据确定无人机的位置信息。
本发明实施例的另一方面是提供一种控制终端,包括:
通讯接口,用于接收RTK数据;
一个或多个处理器,单独地或协同地工作,用于将所述RTK数据发送到无人机。
本发明实施例的另一方面是提供一种无人机,包括:
通讯接口,用于接收控制终端发送的RTK数据;
一个或多个处理器,单独或协同地工作,用于根据所述RTK数据确定无人机的位置信息。
本发明实施例的另一方面是提供一种无人机系统,包括:
控制终端,用于接收RTK数据,并将所述RTK数据发送到无人机;
无人机,用于接收所述控制终端发送的RTK数据,并根据所述RTK数据确定无人机的位置信息。
本发明实施例提供的一种控制终端、无人机的控制方法、控制终端、无人机及无人机系统,利用处于无线电台和无线网络基站的信号辐射范围内的控制终端接收RTK数据,并将RTK数据转发给无人机,无人机利用从控制终端中接收的RTK数据确定位置信息。这样,可以有效克服无人机处于高空时接收不到无线网络基站或者无线电台发送的RTK数据的问题,优化了RTK数据的传输链路,可以有效地保证无人机在高空时能够获取到RTK数据,提高了无人机高空定位的准确性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种控制终端的控制方法的流程图;
图2及图3分别为本发明实施例的应用示例图;
图4为本发明实施例提供的一种控制终端的控制方法的另一流程图;
图5为本发明实施例提供的一种控制终端的控制方法的另一流程图;
图6为本发明实施例的另一应用示例图;
图7为本发明实施例提供的一种控制终端的控制方法的另一流程图;
图8为本发明实施例提供的一种无人机的控制方法的流程图;
图9为本发明实施例提供的一种无人机的控制方法的流程图;
图10为本发明实施例提供的一种无人机的控制方法的流程图;
图11为本发明实施例的又一应用示例图;
图12为本发明实施例提供的一种控制方法的流程图;
图13为本发明实施例提供的一种控制终端的结构示意图;
图14为本发明实施例提供的一种无人机的结构示意图;
图15为本发明实施例提供的一种无人机系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种控制终端的控制方法,图1为本发明实施例提供的一种控制终端的控制方法的实现流程图,如图1所示,该方法可以包括以下步骤:
步骤101:接收RTK数据。
具体地,RTK数据为基站采集的卫星观测数据,其中RTK数据至少包括载波相位、伪距信息、坐标信息中的至少一种。控制终端可以通过如下几种可行的方式接收RTK 数据:
一种可行的方式:通过无线电台通讯接口来接收RTK基准站所发送的RTK数据。具体地,如图2中所示,基准站与无线电台连接,基站站可以将获取的RTK数据通过无线电台广播出去,控制终端上可以设置有无线电台通讯接口,控制终端可以利用所述无线电台通讯接口接收无线电台广播的RTK数据。
另一种可行的方式:通过无线网络通讯接口来接收无线网络基站所发送的RTK数据。如图3中所示,无线网络基站的RTK数据可以通过网络传输,无线网络可以为2G、3G或4G等网络或者其他标准的通信网络。具体地,无线网络基站将RTK数据进行广播,控制终端上可以设置有无线网络通讯接口,由此控制终端可以利用该无线网络通讯接口与无线网络基站之间建立无线网络数据连接,使得控制终端能够基于该无线网络数据连接接收无线网络基站发送的RTK数据。
本实施例中的控制终端可以包括无人机的专用遥控器、智能手机、平板电脑、膝上型电脑、地面控制站、穿戴式设备如手表或手环中的一种或多种。
需要说明的是,图2和图3中,为了方便理解,无线电台通讯接口、无线网络通讯接口与控制终端分开绘制,这里只是为了进行示意性说明。其中无线电台通讯接口、无线网络接口是控制终端的一个功能,并不是相互独立的。
步骤102:将RTK数据发送到无人机。
具体地,在无人机系统中,控制终端通过上行数据链路向无人机传输数据。控制终端在接收到RTK数据后,可以通过上行数据链路将RTK数据发送给无人机,以使得无人机可以根据接收到的RTK数据完成RTK定位。其中,所述上行数据链路可以基于IEEE 802.11b标准的无线局域网(Wireless Fidelity,WI-FI)、无线电(Software Defined Radio,SDR)或者其他自定义协议。
通常,在无人机系统中,用于控制无人机的控制终端通常位于地面,处于无线电台和无线网络基站的信号覆盖范围内,由此,本实施例中可以利用控制终端接收无线电台或无线网络基站所传输的RTK数据。也就是说,本实施例中利用控制终端作为中继设备实现RTK数据的转发,由此无论无人机是否处于无线电台和无线网络基站的信号覆盖范围内,无人机都能够从控制终端来接收RTK数据。
本发明实施例提供的控制终端的控制方法,利用处于无线电台和无线网络基站的信号辐射范围内的控制终端接收RTK数据,并将RTK数据转发给无人机,无人机利 用从控制终端中接收的RTK数据确定位置信息。这样,可以有效克服无人机处于高空时接收不到无线网络基站或者无线电台发送的RTK的问题,优化了RTK数据的传输链路,可以有效地保证无人机在高空时能够获取到RTK数据,提高了无人机高空定位的准确性。
本发明实施例提供另一种控制终端的控制方法,图4为本发明实施例提供的一种控制终端的控制方法的实现流程图,如图4所示,在图1中实施例的基础上,该方法可以包括以下步骤:
步骤401:接收RTK数据。
步骤401和步骤101的具体方法和原理一致,此处不再赘述。
步骤402:将RTK数据发送到无人机。
步骤402和步骤102的具体方法和原理一致,此处不再赘述。
步骤403:根据RTK数据,确定控制终端的位置信息。
具体地,控制终端上可以设置定位装置,例如GNSS接收机,也就是说,相对于基准站来说,控制终端也可以作为一个流动站,从而使得控制终端在接收到RTK数据之后,可以根据GNSS接收机输出的数据与接收到RTK数据进行定位,以确定控制终端的位置信息。
需要说明的是,步骤402和步骤403可以先后执行,其先后执行的顺序可以任意设置,另外也可以同时执行,在这里不做具体的限定。
本发明实施例提供另一种控制终端的控制方法,图5为本发明实施例提供的一种控制终端的控制方法的实现流程图,如图5所示,在前述实施例的基础上,该方法可以包括以下步骤:
步骤501:接收RTK数据。
步骤501和步骤101的具体方法和原理一致,此处不再赘述。
步骤502:将RTK数据发送到无人机。
步骤502和步骤102的具体方法和原理一致,此处不再赘述。
步骤503:将RTK数据发送给其他控制终端。
具体地,这里的其他控制终端可以是区别于接收到RTK数据的控制终端,如图6 中所示,控制终端之间可以建立数据连接,接收到RTK数据的控制终端A将接收到的RTK数据通过数据连接发送到其他控制终端B,之后,这些接收到RTK数据的控制终端同样可以将RTK数据发送给无人机、根据这些RTK数据确定自己的位置信息或者将RTK数据转发给其他的控制终端。
需要说明的是,步骤502和步骤503可以先后执行,其先后执行的顺序可以任意设置,另外也可以同时执行,在这里不做具体的限定。
本发明实施例提供另一种控制终端的控制方法,图7为本发明实施例提供的一种控制终端的控制方法的实现流程图,如图7所示,在前述实施例的基础上,该方法可以包括以下步骤:
步骤701:接收RTK数据。
步骤701和步骤101的具体方法和原理一致,此处不再赘述。
步骤702:对RTK数据进行加密处理。
步骤703:将加密处理后的RTK数据发送到无人机。
具体地,为了保证RTK数据的传输安全,控制终端在将RTK数据发送到无人机之前,可以对RTK数据进行加密处理,其中,控制终端对RTK数据可以采用预先设置的加密算法对RTK数据进行加密处理,这里的加密算法可以为:高级加密标准(Advanced Encryption Standard,AES)算法或者消息摘要算法第五版(Message Digest Algorithm,MD5)算法等,加密处理后,控制终端将加密后的RTK数据发送给无人机,而无人机接收到加密的RTK数据之后,可以利用与加密算法对应的解密算法进行解密,获取RTK数据。
本发明实施例提供另一种无人机的控制方法,图8为本发明实施例提供的一种无人机的控制方法的实现流程图,所述方法适用于作为流动站的无人机,如图8所示,该方法可以包括以下步骤:
步骤801:接收控制终端发送的RTK数据。
其中,如前所述控制终端通过上行数据链路向无人机发送RTK数据,无人机可以通过上行数据链路接收控制终端发送的RTK数据,而RTK数据可以是由控制终端从无线电台或者无线网络基站所获得的卫星观测数据。
步骤802:根据RTK数据确定无人机的位置信息。
具体的,本实施例中,无人机可以作为流动站可以设置定位装置,如GNSS接收机等,从而使得无人机在接收到RTK数据之后,可以根据GNSS接收机输出的数据与接收到RTK数据进行差分解算,以确定无人机的位置信息。
本发明实施例提供另一种无人机的控制方法,图9为本发明实施例提供的一种控制终端的控制方法的实现流程图,如图9所示,在前述实施例的基础上,该方法可以包括以下步骤:
步骤901:接收控制终端发送的RTK数据。
步骤901和步骤801的具体方法和原理一致,此处不再赘述。
步骤902:对接收到的RTK数据进行解密处理;
步骤903:根据解密后的RTK数据确定无人机的位置信息。
具体地,如前所述,为了保证RTK数据的传输安全,控制终端在将RTK数据发送到无人机之前,可以对RTK数据进行加密处理。其中,所述加密处理的算法可以是无人机已知的,而无人机在接收到RTK数据之后,则可以根据加密算法所对应的解密算法对RTK数据进行解密处理,解密出RTK数据后,无人机即可以根据RTK数据进行RTK定位,获取无人机的精准位置。
本发明实施例提供的无人机的控制方法,利用处于无线电台和无线网络基站的信号辐射范围内的控制终端接收RTK数据,并将RTK数据转发给无人机,无人机利用从控制终端中接收的RTK数据确定位置信息。这样,可以有效克服无人机处于高空时接收不到无线网络基站或者无线电台发送的RTK的问题,优化了RTK数据的传输链路,可以有效地保证无人机在高空时能够获取到RTK数据,提高了无人机高空定位的准确性。
本发明实施例提供另一种无人机的控制方法,图10为本发明实施例提供的一种无人机的控制方法的实现流程图,如图10所示,在前述实施例的基础上,该方法可以包括以下步骤:
步骤1001:接收控制终端发送的RTK数据;
步骤1001和步骤801的具体方法和原理一致,此处不再赘述。
步骤1002:根据RTK数据确定无人机的位置信息;
步骤1002和步骤802的具体方法和原理一致,此处不再赘述。
步骤1003:将RTK数据发送给其他无人机。
具体地,如图11所示,无人机之间可以建立数据连接,本实施例中,首先接收到RTK数据的无人机A将接收到RTK数据通过数据连接发送到其他无人机B和C,之后,接收到RTK数据的无人机B和C,同样可以将RTK数据发送到其他无人或者根据这些RTK数据确定自己的位置信息。
本发明实施例提供一种无人机系统的控制方法,图12为本发明实施例提供的一种控制方法的实现流程图,如图12所示,该方法可以包括以下步骤:
步骤1201:控制终端接收RTK数据,并将RTK数据发送到无人机。
步骤1202:无人机接收控制终端发送的RTK数据,并根据RTK数据确定无人机的位置信息。
也就是说,本实施例中利用控制终端作为中继设备实现RTK数据的转发,由此无论无人机是否处于无线电台和无线网络基站的信号覆盖范围内,无人机都能够通过控制终端来接收RTK数据,从而无人机能够根据RTK数据及GNSS接收机输出的数据来实现定位,获得无人机的位置信息。
本发明实施例提供的无人机系统的控制方法,利用处于无线电台和无线网络基站的信号辐射范围内的控制终端接收RTK数据,并将RTK数据转发给无人机,无人机利用从控制终端中接收的RTK数据确定位置信息。这样,可以有效克服无人机处于高空时接收不到无线网络基站或者无线电台发送的RTK的问题,优化了RTK数据的传输链路,可以有效地保证无人机在高空时能够获取到RTK数据,提高了无人机高空定位的准确性。
在某些实施例中,控制终端中可以包括有无线电台通讯接口,从而控制终端在接收RTK数据时,具体可以利用无线电台通讯接口来接收RTK基准站发送的RTK数据。
在某些实施例中,控制终端中可以包括有无线网络通讯接口,从而控制终端在接收RTK数据时,具体可以利用无线网络通讯接口来接收无线网络基站发送的RTK数据。
在某些实施例中,所述控制终端,具体用于在将所述RTK数据发送到无人机之前, 对所述RTK数据进行加密处理,将加密处理后的RTK数据发送给无人机;
所述无人机,具体用于在接收到控制终端发送的加密处理的RTK数据之后,对所述RTK数据进行解密处理,根据解密后的RTK数据确定无人机的位置信息。
在某些实施例中,控制终端在接收到RTK数据之后,除了可以将RTK数据发送给无人机之外,还可以根据RTK数据进行RTK定位来确定控制终端的位置信息,或者,还可以将RTK数据发送给其他控制终端,由接收到RTK数据的其他控制终端进行转发或者进行RTK定位来获取控制终端的位置信息。
而无人机在接收到RTK数据之后,除了可以根据RTK数据进行RTK定位来获取无人机的位置信息之外,还可以将RTK数据发送给其他无人机,由接收到RTK数据的其他无人机进行转发或者进行RTK定位来获取无人机的位置信息。
本发明实施例提供一种控制终端,该控制终端包括无人机的专用遥控器、智能手机、平板电脑、膝上型电脑、地面控制站、穿戴式设备(手表或手环)中的一种或多种。图13为本发明实施例提供的一种控制终端的结构示意图,如图13所示,该控制终端:
通讯接口1301,用于接收RTK数据。
一个或多个处理器1302,单独地或协同地工作,用于将RTK数据发送到无人机。
其中,控制终端中的处理器1302的个数可以根据实际需求如计算量或者任务量等设置或安装,其中,所述处理器可以为单核处理器也可以为多核处理器。
需要说明的是,通讯接口1301可以为无线电台通讯接口,无线电台通讯接口,具体用于接收RTK基准站发送的所述RTK数据。控制终端通过无线电台通讯接口建立与RTK基准站之间的数据连接,该无线电台通讯接口能够接收RTK基准站发送的RTK数据。
或者,通讯接口1301还可以为无线网络通讯接口,无线网络通讯接口,具体用于接收无线网络基站发送的所述RTK数据。控制终端通过无线网络通讯接口建立与无线网络基站如2G、3G或4G等网络基站所发送的RTK数据。
需要说明的是,控制终端中可以通过处理器1302控制向无人机发送上行数据的通讯接口来向无人机发送RTK数据。而该发送上行数据的通讯接口与接收RTK数据的通讯接口1301可以为同一接口,也可以为不同接口。
在具体实现中,处理器1302除了可以将RTK数据发送给无人机之外,还可以根据RTK数据确定控制终端的位置信息,或者将RTK数据发送给其他控制终端。
其中,处理器1302在根据RTK数据确定控制终端的位置信息时,处理器1302可以被配置用于根据控制终端上设置的GNSS接收机所输出的数据及该RTK数据来获取控制终端的位置信息。
而为了保证RTK数据的传输安全,处理器1302可以首先对RTK数据采用预设的加密算法进行加密,再将加密后的RTK数据发送给无人机。这里的加密算法可以根据需求进行设置。
本发明实施例提供一种无人机,该无人机可以旋翼无人机或者非旋翼无人机。图14为本发明实施例提供的一种无人机的结构示意图,如图14所示,该无人机:
通讯接口1401,用于接收控制终端发送的RTK数据。
一个或多个处理器1402,单独或协同地工作,用于根据RTK数据确定无人机的位置信息。
其中,无人机中的处理器1402的个数可以根据实际需求设置或安装,其中,所述处理器可以为单核处理器也可以为多核处理器。
所述处理器1402,具体用于对接收到的所述RTK数据进行解密处理,根据解密后的RTK数据确定无人机的位置信息。具体地,为了保证RTK数据的传输安全,无人机通过通讯接口1401所接收到的RTK数据可能是被控制终端进行加密处理过的,因此,无人机在通过通讯接口1401接收到经过加密的RTK数据之后,处理器1402可以利用解密算法对RTK数据进行解密处理,并根据解密后的RTK数据来确定无人机的位置信息。
在具体实现中,处理器1402除了可以根据RTK数据确定无人机的位置信息之外,还可以用于将RTK数据发送到其他无人机,从而使得其他无人机也能够将RTK数据进行转发或者根据RTK数据来确定自己的位置信息。
本发明实施例提供一种无人机系统,图15为本发明实施例提供的一种无人机系统的结构示意图,如图15所示,该无人机系统包括:
控制终端1501,用于接收RTK数据,并将RTK数据发送到无人机1502。
无人机1502,用于接收控制终端1501发送的RTK数据,并根据RTK数据确定无人机1502的位置信息。
也就是说,无人机系统中利用控制终端1501作为中继设备实现RTK数据的转发,由此,无论无人机1502是否处于无线电台和无线网络基站的信号覆盖范围内,无人机1502都能够通过控制终端1501来接收RTK数据,从而无人机1502能够根据RTK数据及GNSS接收机输出的数据来实现定位,获得无人机1502的位置信息。
在某些实施例中,控制终端1501中可以设置无线电台通讯接口,从而控制终端1501能够利用该无线电台通讯接口来接收RTK基准站所发送的RTK数据。
或者,控制终端1501中可以设置无线网络通讯接口,从而控制终端1501能够利用无线网络通讯接口接收无线网络基站所发送的RTK数据。
另外,本某些实施例中,控制终端1501在将RTK数据发送到无人机1502之前,还可以对RTK数据采用预设的加密算法进行加密处理,再将加密处理后的RTK数据发送给无人机1502,以保证RTK数据在传输过程中的安全性。而无人机1502在接收到控制终端1501发送的加密处理的RTK数据之后,可以先采用与加密算法相对应的解密算法对RTK数据进行解密处理,再根据解密后的RTK数据确定无人机1502的位置信息。
在某些实施例中,控制终端1501在接收到RTK数据之后,除了可以将RTK数据发送给无人机1502之外,还可以根据RTK数据进行RTK定位来确定控制终端1501的位置信息,或者,控制终端1501还可以将RTK数据发送给其他控制终端,由接收到RTK数据的其他控制终端来进行数据转发或者进入RTK定位来获取控制终端的位置信息。
而无人机1502在接收到RTK数据之后,除了可以根据RTK数据进行RTK定位来获取无人机1502的位置信息之外,还可以将RTK数据发送给其他无人机,由接收到RTK数据的其他无人机来进行数据转发或者进行RTK定位来获取无人机的位置信息。
也就是说,控制终端1501作为数据转发的中继设备在接收到无线网络基站或基准站所发送的RTK数据之后,将RTK数据进行加密,并通过中继设备与无人机之间的上行数据链路发送RTK数据至无人机,而无人机在接收到RTK数据之后,对RTK数据进行解密,并结合无人机上配置的GNSS接收机所输出的数据来完成RTK空位,得 到无人机的位置信息。
以控制终端1501为遥控器为例,遥控器通过设置无线电台通讯接口来接收基准站发送的RTK数据,并选择对RTK数据进行加密,再通过遥控器与无人机之间的无线链路发送RTK数据至无人机;
或者,遥控器通过设置无线网络通讯接口来接收无线网络基站如4G网络基站所发送的RTK数据,并对RTK数据进行加密,再通过无线链路发送RTK数据至无人机。
而无人机在接收到遥控器发送的RTK数据之后,可以通过无线链路转发RTK数据至其他无人机,任意接收到RTK数据的无人机均可以在对RTK数据进行解密之后,根据解密的RTK数据及GNSS接收机所输出的数据来进行定位,进而获得无人机的位置信息,从而实现进一步的功能,如实现RTK组网编队飞行等。
另外,在控制终端通过无线电台通讯接口或无线网络通讯接口接收到RTK数据之后,控制终端自己也可以通过自己设置的GNSS接收机所输出的数据来结合RTK数据完成定位,获得控制终端的位置信息。
在本发明所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行 本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (25)

  1. 一种控制终端的控制方法,其特征在于,包括:
    接收RTK数据;
    将所述RTK数据发送给无人机。
  2. 根据权利要求1所述的方法,其特征在于,所述接收RTK数据,包括:
    通过无线电台通讯接口接收RTK基准站发送的所述RTK数据。
  3. 根据权利要求1所述的方法,其特征在于,所述将所述RTK数据发送到无人机,包括:
    通过无线网络通讯接口接收无线网络基站发送的所述RTK数据。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述RTK数据确定控制终端的位置信息。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    将所述RTK数据发送给其他控制终端。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,在将所述RTK数据发送到无人机之前,所述方法还包括:
    对所述RTK数据进行加密处理;
    所述将所述RTK数据发送给无人机,包括:
    将加密后的RTK数据发送给无人机。
  7. 一种无人机的控制方法,其特征在于,包括:
    接收控制终端发送的RTK数据;
    根据所述RTK数据确定无人机的位置信息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    对接收到的所述RTK数据进行解密处理;
    所述根据所述RTK数据确定无人机的位置信息,包括:
    根据解密后的RTK数据确定无人机的位置信息。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    将所述RTK数据发送到其他无人机。
  10. 一种控制终端,其特征在于,包括:
    通讯接口,用于接收RTK数据;
    一个或多个处理器,单独地或协同地工作,用于将所述RTK数据发送到无人机。
  11. 根据权利要求10所述的控制终端,其特征在于,所述通讯接口为无线电台通讯接口;
    所述无线电台通讯接口,具体用于接收RTK基准站发送的所述RTK数据。
  12. 根据权利要求10所述的控制终端,其特征在于,所述通讯接口为无线网络通讯接口:
    所述无线网络通讯接口,具体用于接收无线网络基站发送的所述RTK数据。
  13. 根据权利要求10所述的控制终端,其特征在于:
    所述处理器,具体用于根据所述RTK数据确定所述控制终端的位置信息。
  14. 根据权利要求10所述的控制终端,其特征在于:
    所述处理器,具体用于将所述RTK数据发送给其他控制终端。
  15. 根据权利要求10~14任一项所述的控制终端,其特征在于:
    所述处理器,具体用于对所述RTK数据进行加密处理,将加密后的RTK数据发送给无人机。
  16. 一种无人机,其特征在于,包括:
    通讯接口,用于接收控制终端发送的RTK数据;
    一个或多个处理器,单独或协同地工作,用于根据所述RTK数据确定无人机的位置信息。
  17. 根据权利要求16所述的无人机,其特征在于:
    所述处理器,具体用于对所述RTK数据进行解密处理,根据解密后的RTK数据确定所述无人机的位置信息。
  18. 根据权利要求16所述的无人机,其特征在于:
    所述处理器,具体用于将所述RTK数据发送到其他无人机。
  19. 一种无人机系统,其特征在于,包括:
    控制终端,用于接收RTK数据,并将所述RTK数据发送到无人机;
    无人机,用于接收所述控制终端发送的RTK数据,并根据所述RTK数据确定无人机的位置信息。
  20. 根据权利要求19所述的系统,其特征在于,所述控制终端包括无线电台通讯接口;
    所述控制终端,具体用于利用所述无线电台通讯接口接收RTK基准站发送的所述RTK数据。
  21. 根据权利要求19所述的系统,其特征在于,所述控制终端包括无线网络通讯接口;
    所述控制终端,具体用于利用无线网络通讯接口接收无线网络基站发送的所述RTK数据。
  22. 根据权利要求19所述的系统,其特征在于,还包括:
    所述控制终端,具体用于在将所述RTK数据发送到无人机之前,对所述RTK数据进行加密处理,将加密处理后的RTK数据发送给无人机;
    所述无人机,具体用于在接收到控制终端发送的加密处理的RTK数据之后,对所述RTK数据进行解密处理,根据解密后的RTK数据确定无人机的位置信息。
  23. 根据权利要求19所述的系统,其特征在于,还包括:
    所述无人机,还用于将所述RTK数据发送到其他无人机。
  24. 根据权利要求19所述的系统,其特征在于,还包括:
    所述控制终端,还用于将接收到的RTK数据发送到其他控制终端。
  25. 根据权利要求19所述的系统,其特征在于,还包括:
    所述控制终端,还用于根据所述RTK数据确定控制终端的位置信息。
PCT/CN2017/082150 2017-04-27 2017-04-27 控制终端、无人机的控制方法、控制终端、无人机及系统 WO2018195845A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780005143.3A CN108513624A (zh) 2017-04-27 2017-04-27 控制终端、无人机的控制方法、控制终端、无人机及系统
PCT/CN2017/082150 WO2018195845A1 (zh) 2017-04-27 2017-04-27 控制终端、无人机的控制方法、控制终端、无人机及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/082150 WO2018195845A1 (zh) 2017-04-27 2017-04-27 控制终端、无人机的控制方法、控制终端、无人机及系统

Publications (1)

Publication Number Publication Date
WO2018195845A1 true WO2018195845A1 (zh) 2018-11-01

Family

ID=63374706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082150 WO2018195845A1 (zh) 2017-04-27 2017-04-27 控制终端、无人机的控制方法、控制终端、无人机及系统

Country Status (2)

Country Link
CN (1) CN108513624A (zh)
WO (1) WO2018195845A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782226A (zh) * 2019-01-24 2019-05-21 成都优艾维智能科技有限责任公司 一种基于网络rtk的无人机自主循迹定位系统及方法
CN112291726A (zh) * 2020-09-22 2021-01-29 中国电子科技集团公司第二十九研究所 一种基于公用无线通信网络的无人机集群通信传输系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020113399A1 (zh) * 2018-12-04 2020-06-11 深圳市大疆创新科技有限公司 固定rtk基站的状态提示方法、系统、装置、移动rtk站及终端设备
CN111356112A (zh) * 2018-12-21 2020-06-30 深圳市中兴微电子技术有限公司 一种无人机的通信方法及无人机
WO2020132989A1 (zh) * 2018-12-26 2020-07-02 深圳市大疆创新科技有限公司 一种数据处理方法、控制设备、系统及存储介质
CN111465873A (zh) * 2019-01-16 2020-07-28 深圳市大疆创新科技有限公司 一种数据发送方法和电子设备
CN109991993A (zh) * 2019-04-19 2019-07-09 江苏荣耀天翃航空科技有限公司 基于rtk差分定位的天地双飞控系统及飞控
CN110118984A (zh) * 2019-04-23 2019-08-13 广州南方卫星导航仪器有限公司 调整带宽频偏参数及提高rtk主机定位精度的方法与系统
CN110769364B (zh) * 2019-10-16 2020-12-18 广东美嘉欣创新科技股份有限公司 一种无人机飞行数据及图像传输系统
CN112334791B (zh) * 2019-11-05 2024-03-08 深圳市大疆创新科技有限公司 定位方法、系统、遥控设备及rtk模块
CN111050320A (zh) * 2020-01-17 2020-04-21 中天泽智能装备有限公司 一种无人机中间层加密技术
CN111025360A (zh) * 2020-03-10 2020-04-17 南京嘉谷初成通信科技有限公司 一种无人机控制方法、装置、系统、设备及介质
WO2021195971A1 (zh) * 2020-03-31 2021-10-07 深圳市大疆创新科技有限公司 定位方法、控制方法、控制终端及可移动平台
CN112821933A (zh) * 2020-12-18 2021-05-18 易瓦特科技股份公司 一种无人机通信方法、系统及存储介质
CN117742225B (zh) * 2024-02-21 2024-05-28 天津大学四川创新研究院 一种地空电台双向通信控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204046584U (zh) * 2014-07-21 2014-12-24 深圳市华信天线技术有限公司 大功率一体化数传电台及rtk测量系统
CN104931978A (zh) * 2014-03-18 2015-09-23 广东冠能电力科技发展有限公司 一种基于gps rtk技术的电力巡线无人机导航系统
WO2016096014A1 (en) * 2014-12-18 2016-06-23 Siemens Aktiengesellschaft Distributed drone system and drone
CN106226803A (zh) * 2016-07-18 2016-12-14 深圳市华信天线技术有限公司 定位方法、装置及无人机
CN106341784A (zh) * 2016-10-26 2017-01-18 广州极飞科技有限公司 一种数据通信的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9541648B2 (en) * 2013-12-18 2017-01-10 Agco Corporation System and method of communicating GNSS information between mobile machines
CN205563280U (zh) * 2016-04-21 2016-09-07 嘉兴中创航空技术有限公司 无人机的飞行控制系统
CN106502264B (zh) * 2016-10-26 2018-05-01 广州极飞科技有限公司 植保无人机的作业系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104931978A (zh) * 2014-03-18 2015-09-23 广东冠能电力科技发展有限公司 一种基于gps rtk技术的电力巡线无人机导航系统
CN204046584U (zh) * 2014-07-21 2014-12-24 深圳市华信天线技术有限公司 大功率一体化数传电台及rtk测量系统
WO2016096014A1 (en) * 2014-12-18 2016-06-23 Siemens Aktiengesellschaft Distributed drone system and drone
CN106226803A (zh) * 2016-07-18 2016-12-14 深圳市华信天线技术有限公司 定位方法、装置及无人机
CN106341784A (zh) * 2016-10-26 2017-01-18 广州极飞科技有限公司 一种数据通信的方法、装置和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109782226A (zh) * 2019-01-24 2019-05-21 成都优艾维智能科技有限责任公司 一种基于网络rtk的无人机自主循迹定位系统及方法
CN109782226B (zh) * 2019-01-24 2021-04-09 成都优艾维智能科技有限责任公司 一种基于网络rtk的无人机自主循迹定位系统及方法
CN112291726A (zh) * 2020-09-22 2021-01-29 中国电子科技集团公司第二十九研究所 一种基于公用无线通信网络的无人机集群通信传输系统
CN112291726B (zh) * 2020-09-22 2022-06-14 中国电子科技集团公司第二十九研究所 一种基于公用无线通信网络的无人机集群通信传输系统

Also Published As

Publication number Publication date
CN108513624A (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
WO2018195845A1 (zh) 控制终端、无人机的控制方法、控制终端、无人机及系统
EP3616424B1 (en) Electronic device and proximity discovery method thereof
CN111190488A (zh) 设备控制方法、通信装置及存储介质
WO2019095738A1 (zh) 一种无人机的通信方法、通信装置及无人机
US20200088886A1 (en) Control terminal and control method thereof, movable platform and control method thereof
CN108701419B (zh) 无人机控制方法及控制设备、无人机监管方法及监管设备
US20230014225A1 (en) Airborne beidou system and method for application thereof
WO2018170736A1 (zh) 无人机控制方法及控制设备、无人机监管方法及监管设备
CN105450286A (zh) 基于导航卫星的安全无线通信方法和系统
WO2020063170A1 (zh) 数据处理方法、终端、服务器和存储介质
CN110290519A (zh) 配电网pmu的数据传输方法
EP4221292A1 (en) Acquiring current time in a network
CN113965873B (zh) 信息传输方法、装置、终端及网络侧设备
AU2012302442B2 (en) Apparatus and method for broadcast in system performing inter-device direct communication
WO2023169131A1 (zh) 一种定位方法、装置及计算机可读存储介质
KR20150023183A (ko) 디바이스의 위치를 결정하는 장치 및 방법
CN111295848A (zh) 通信设备、通信方法和程序
WO2022095046A1 (zh) 确定上行传输时域资源的方法、终端设备及网络设备
CN111163462B (zh) 配网方法及相关产品
US9872166B2 (en) Apparatus and method for providing positioning data based on authentication result
CN110933607B (zh) 一种定位信息的传输方法、装置及设备
JP2023500145A (ja) 接続再開方法及び装置
US20200113005A1 (en) Systems and methods for joint wireless transmission and joint wireless reception
CN106936786B (zh) 一种数据加密传输方法、基站及pdt终端
WO2023241671A1 (zh) 定位广播的配置方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17907001

Country of ref document: EP

Kind code of ref document: A1