WO2018195726A1 - 一种用于摆动电机的控制方法及摆动电机 - Google Patents

一种用于摆动电机的控制方法及摆动电机 Download PDF

Info

Publication number
WO2018195726A1
WO2018195726A1 PCT/CN2017/081717 CN2017081717W WO2018195726A1 WO 2018195726 A1 WO2018195726 A1 WO 2018195726A1 CN 2017081717 W CN2017081717 W CN 2017081717W WO 2018195726 A1 WO2018195726 A1 WO 2018195726A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing
pulse
alternating
frequency
mode
Prior art date
Application number
PCT/CN2017/081717
Other languages
English (en)
French (fr)
Inventor
胡建坤
胡淑楠
胡斐凡
胡斐然
Original Assignee
胡建坤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 胡建坤 filed Critical 胡建坤
Priority to US16/607,717 priority Critical patent/US10924049B2/en
Priority to JP2019557799A priority patent/JP6853542B2/ja
Priority to PCT/CN2017/081717 priority patent/WO2018195726A1/zh
Priority to EP17907358.0A priority patent/EP3618267B1/en
Publication of WO2018195726A1 publication Critical patent/WO2018195726A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/032Reciprocating, oscillating or vibrating motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H13/00Gum massage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H21/00Massage devices for cavities of the body, e.g. nose, ears and anus ; Vibration or percussion related aspects A61H23/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • A61H23/0218Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with alternating magnetic fields producing a translating or oscillating movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/007Stimulation by mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/06Devices for heating or cooling such points within cell-life limits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/08Devices for applying needles to such points, i.e. for acupuncture ; Acupuncture needles or accessories therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/04Heartbeat characteristics, e.g. E.G.C., blood pressure modulation
    • A61H2230/06Heartbeat rate
    • A61H2230/065Heartbeat rate used as a control parameter for the apparatus

Definitions

  • the present invention relates to the field of electric machines, and in particular to a control method for a swing motor and a swing motor.
  • the traditional swing motor such as the publication number 1070359 (permanent magnet type electric clipper), the publication number is 203357478U (electric clipper swing rod) and other patents, to ensure sufficient torque, it is necessary to make the coil pass 220V AC, its power reaches 8-12 watts, while using the fixed frequency of 220V AC to swing the swing arm, relying on the resonant spring resonance guarantee. Without the resonant spring, it can not reciprocate.
  • vibration driver such as JP2001275332A
  • JP2001275332A whose drive also depends on the resonant spring, whose amplitude is maximum at resonance, and when it deviates from this frequency, the amplitude is reduced and the torque is also unstable. There is no stable position when the pulse width pulse is driven to swing to one end.
  • Both types of oscillating motors rely on a resonant spring to support the oscillating assembly in an intermediate position.
  • the alternating frequency of the fixed frequency drives it to resonate with the spring, that is, the traverse frequency cannot be greatly changed.
  • the present invention mainly provides a control method for a swing motor and a swing motor.
  • an embodiment provides a control method for a swing motor including a U-shaped yoke, a control unit, a swing arm, a second yoke, and four permanent magnets;
  • the yoke has a first leg and a second leg, and the first leg and the second leg are respectively wound with a coil;
  • the control unit is electrically connected with the coil and generates an alternating pulse, so that two of the U-shaped yoke The end surface of the leg generates an alternating magnetic pole;
  • a swing arm swingable around the fulcrum, the swing arm extending outward from the end surface of the U-shaped yoke and bounded by a fulcrum, the swing arm being close to the end of the U-shaped yoke
  • An arm wherein one end of the swing arm away from the U-shaped yoke is an outer arm; the second yoke is mounted at an end of the inner arm adjacent to the U-shaped yoke; the permanent magnet is fixedly mounted on the second
  • the control method includes:
  • the control unit outputs an alternating pulse having a corresponding pulse width and frequency according to the set pulse parameter, so that the swing arm swings in a swing mode corresponding to the pulse parameter; wherein the swing mode includes a full swing mode, At least one of a second swing mode, an in-situ dither mode, and a composite wobble mode, wherein the composite wobble mode is generated by superimposition of a full swing mode and an in situ dither mode, or superposed by a sub wobble mode and an in situ dither mode generate.
  • control unit outputs a first alternating pulse to swing the swing arm in a full swing mode; wherein the pulse width of the first alternating pulse is greater than or equal to a full swing minimum pulse Width Tb; the frequency of the first alternating pulse is greater than zero and less than or equal to the full swing maximum resonant pulse frequency Fa.
  • control unit increases the frequency of the output first alternating pulse to speed up the swinging of the swing arm.
  • control unit increases the frequency of the output second alternating pulse to reduce the amplitude of the swing arm swing.
  • the pulse width of the alternating pulse outputted by the control unit is increased.
  • the control unit outputs a third alternating pulse to swing the swing arm in the in-situ dither mode; wherein the pulse width of the third alternating pulse is less than the full swing minimum pulse width Tb, And greater than or equal to the swing minimum pulse width Td; the frequency of the third alternating pulse is greater than 0, and less than or equal to the minimum pulse of the swing when the alternating pulse duty ratio is 100%
  • the frequency Td corresponding to the width Td, Fd 1 / (2 * Td).
  • control unit increases the pulse width of the output third alternating pulse to increase the amplitude of the swing arm swing.
  • control unit outputs a composite alternating pulse composed of a fourth alternating pulse and a fifth alternating pulse to swing the swing arm in a compound swing mode
  • the pulse width of the fourth alternating pulse is greater than or equal to the full swing maximum pulse width Tb;
  • the fourth alternating pulse and the fifth alternating pulse form the composite alternating pulse in a form in which the positive and negative levels do not overlap each other in time series.
  • an embodiment provides an oscillating motor including a U-shaped yoke, a control unit, a swing arm, a second yoke, and four permanent magnets;
  • the U-shaped yoke has a a leg and a second leg, wherein the first leg and the second leg are respectively wound with a coil;
  • the control unit is electrically connected to the coil, and generates an alternating pulse, so that the end faces of the two legs of the U-shaped yoke are intersected a magnetic pole;
  • a swing arm swingable about a fulcrum, the swing arm extending outward from an end surface of the U-shaped yoke and bounded by a fulcrum, the end of the swing arm being close to the U-shaped yoke being an inner arm, the pendulum
  • One end of the arm away from the U-shaped yoke is an outer arm;
  • the second yoke is mounted on an end of the inner arm near the U-shaped yoke;
  • the control unit is further configured to store the set pulse parameter, and output an alternating pulse having a corresponding pulse width and frequency according to the set pulse parameter, so that the swing arm swings in a swing mode corresponding to the pulse parameter;
  • the swing mode includes a full swing mode, a second amplitude At least one of a wobble mode, an in-situ dither mode, and a composite wobble mode, wherein the composite wobble mode is generated by superimposition of a full-width wobble mode and an in-situ dither mode, or is generated by superposition of a sub-swing mode and an in-situ dither mode.
  • control unit is configured to output a first alternating pulse to swing the swing arm in a full swing mode; wherein a pulse width of the first alternating pulse is greater than or equal to a full swing a minimum pulse width Tb; the frequency of the first alternating pulse is greater than zero and less than or equal to the full swing maximum resonant pulse frequency Fa.
  • the control unit since the control unit outputs an alternating pulse having a corresponding pulse width and frequency according to the set pulse parameter, so that the swing arm corresponds to the pulse parameter
  • the swing mode performs swinging; wherein the swing mode includes at least one of a full swing mode, a second swing mode, an in-situ dither mode, and a composite swing mode, so that the swing motor can be provided differently depending on the application.
  • the swing mode makes the swing motor achieve a multi-purpose function.
  • FIG. 1 is a schematic structural view of an embodiment of a swing motor of the present invention
  • FIG. 2 is a schematic view showing the cooperation of the permanent magnet and the U-shaped yoke leg in the embodiment shown in FIG. 1;
  • Figure 3 is a schematic view of the embodiment of Figure 1 in an energized state
  • Figure 4 is a schematic view of the embodiment of Figure 1 in an energized state opposite to Figure 3;
  • Figure 5 is a first perspective view showing the radial end faces of four permanent magnets in the embodiment shown in Figure 1;
  • Figure 6 is a second perspective view showing the radial end faces of four permanent magnets in the embodiment shown in Figure 1;
  • Figure 7 is a third perspective view showing the radial end faces of four permanent magnets in the embodiment shown in Figure 1;
  • Figure 8 is a schematic structural view showing another embodiment of the output portion of the swing arm in the embodiment shown in Figure 1;
  • FIG. 9 is a flow chart of a control method for a swing motor according to an embodiment of the present invention.
  • FIG. 10 is a schematic flow chart of setting pulse parameters according to an embodiment of the present invention.
  • Figure 11 is a block diagram showing the structure of a swing motor according to still another embodiment of the present invention.
  • 12(a) is an example of an electrocardiogram of an embodiment
  • 12(b), (c), and (d) are respectively exemplified by the electrocardiogram shown in FIG. 12(a) for swinging motors.
  • the present invention provides a control method for a swing motor and a swing motor.
  • the basic structure of the swing motor of the present invention will be described below by way of an example.
  • the oscillating motor disclosed in this embodiment can output a reciprocating oscillating motion.
  • the basic structure thereof is as shown in FIG. 1 and FIG. 2.
  • the oscillating motor of the embodiment includes a U-shaped yoke 100, a control unit 300, a swing arm 400, and a
  • the second yoke 500 and the four permanent magnets are specifically described below.
  • the U-shaped yoke 100 has a first leg 110 and a second leg 120, and the coil 200 is wound around the first leg 110 and the second leg 120, respectively.
  • the control unit 300 is electrically connected to the coil 200 and generates an alternating pulse such that the end faces 111, 121 of the two legs of the U-shaped yoke 100 generate alternating magnetic poles.
  • the swing arm 400 swinging around the fulcrum, the swing arm 400 extends outward from the end faces 111, 121 of the U-shaped yoke 100, and is bounded by a fulcrum, and the end of the swing arm 400 near the U-shaped yoke 100 is an inner arm 420, pendulum One end of the arm 400 away from the U-shaped yoke 100 is an outer arm 430.
  • the second yoke 500 (which is referred to as the second yoke 500 in order to distinguish it from the U-shaped yoke 100) is attached to the end of the inner arm 420 near the U-shaped yoke 100.
  • the four permanent magnets are fixedly mounted on the second yoke 500 (e.g., glued).
  • the four permanent magnets are sequentially distributed on the same circumference centered on the fulcrum, and are, in order of arrangement, the first permanent magnet 610, the second permanent magnet 620, the third permanent magnet 630, and the fourth permanent magnet 640.
  • the polarities of the radial end faces 611, 641 of the first permanent magnet 610 and the fourth permanent magnet 640 are the same, the polarities of the radial end faces 621, 631 of the second permanent magnet 620 and the third permanent magnet 630 are the same, and the first permanent
  • the radial end surface 611 of the magnet 610 and the radial end surface 621 of the second permanent magnet 620 are opposite in polarity and are disposed corresponding to the end surface 111 of the first leg 110, and the radial end surface 631 of the third permanent magnet 630 and the radial direction of the fourth permanent magnet 640
  • the end faces 641 have opposite polarities and correspond to the end faces 121 of the second legs 120. It is provided that the end faces of the four permanent magnets and the end faces of their corresponding legs have an air gap.
  • the four permanent magnets are sequentially distributed on the same circumference centered on the fulcrum, that is, the radii of the four permanent magnets to the fulcrum are substantially equal, that is, radially distributed along the center line of the swing.
  • the U-shaped yoke 100, the swing arm 400, the second yoke 500 and the permanent magnet are mounted in the housing 700.
  • the pivot point of the swing arm 400 is a swinging shaft 410b, and the swinging shaft 410b is fixedly mounted on the housing 700.
  • the swing arm 400 is fitted over the swing shaft 410b.
  • the housing 700 referred to herein may be a housing dedicated to the motor or a housing of an electric appliance using the motor.
  • the four permanent magnets When the coil 200 is energized, the four permanent magnets will produce torque in the same direction of rotation. If the first and third permanent magnets 610, 630 generate the same magnitude of magnetic attraction to the U-shaped yoke 100 after energization, the second and fourth permanent magnets 620, 640 produce the same magnitude of magnetic repulsive force for the U-shaped yoke 100. In the reverse energization, the first and third permanent magnets 610, 630 generate the same magnitude of magnetic repulsive force for the U-shaped yoke 100, and the second and fourth permanent magnets 620, 640 generate the same magnitude of magnetic force for the U-shaped yoke 100. suction. Each leg of the U-shaped yoke corresponds to two permanent magnets.
  • the design of the permanent magnet redundancy is a magnetic circuit design different from the prior art, so that the swing motor has a larger torque than the existing motor of the same power. When the magnetic flux is large, the driving power is reduced accordingly.
  • the four permanent magnets are simultaneously subjected to the force of the U-shaped yoke 100 in the same swinging direction, which can ensure that the swing arm 400 realizes the entire reciprocating swing process without external force.
  • the end faces of the first permanent magnet 610 and the fourth permanent magnet 640 are N poles
  • the end faces of the second permanent magnet 620 and the third permanent magnet 630 are S poles.
  • the coil 200 When the coil 200 is energized, when the end surface of the first leg 110 is N pole and the end surface of the second leg 120 is S pole, the N pole of the first leg 110 will generate suction force to the S pole of the second permanent magnet 620, and The N pole of the first permanent magnet 610 generates a repulsive force.
  • the S pole of the second leg 120 will generate suction to the N pole of the fourth permanent magnet 640, and generate a repulsive force to the S pole of the third permanent magnet 630, thereby swinging the swing arm 400 from the position shown in FIG.
  • the position shown in Figure 3 forms the first swing.
  • the S pole of the first leg 110 When the current direction in the coil 200 changes, as shown in FIG. 4, when the end surface of the first leg 110 is an S pole and the end surface of the second leg 120 is an N pole, the S pole of the first leg 110 will be opposite to the second permanent magnet.
  • the S pole of 620 generates a repulsive force and generates a suction force to the N pole of the first permanent magnet 610.
  • the N pole of the second leg 120 will generate a repulsive force to the N pole of the fourth permanent magnet 640, and generate a suction force to the S pole of the third permanent magnet 630, thereby swinging the swing arm 400 from the position shown in FIG.
  • the position shown in Figure 4 forms a second swing.
  • the width of the corresponding U-shaped magnetic pole 100 corresponds to the permanent magnet, and it is not necessary to widen the width of the leg to increase the swing distance, and it is also advantageous to increase the U-shaped magnetic pole 100.
  • the magnetic induction strength; and the two permanent magnets in the middle have little effect on the non-acting U-shaped magnetic crucible legs.
  • the coil 200 is connected to the control unit 300, and the control unit 300 generates an alternating pulse with adjustable pulse width, so that the end face of the U-shaped yoke 100 generates alternating magnetic poles, so that the permanent magnet generates suction torque and repulsive torque, or The repulsive torque and the suction torque drive the swing arm 400 to swing, thereby driving the corresponding mechanical unit to be swung by the swing arm 400. That is to say, the oscillating motor is oscillated following the alternating pulse of the control unit 300.
  • the gap between the first permanent magnet 610 and the second permanent magnet 620 may be smaller than the width of the end surface 111 of the first leg 110, between the third permanent magnet 630 and the fourth permanent magnet 640.
  • the gap is smaller than the width of the end surface 121 of the second leg 120 to ensure that the legs of the U-shaped yoke 100 have sufficient force for each permanent magnet.
  • each of the permanent magnets may be the same as or different from the width of the end faces of the legs of the U-shaped yoke 100.
  • the width referred to herein means the width in the direction indicated by the arrow in Fig. 2.
  • the end faces 111, 121 of the first leg 110 and the second leg 120 may have a circular arc surface matching the circumference corresponding to the permanent magnet swing, that is, the first leg 110 and the second leg
  • the arcuate faces of the end faces 111, 121 of the legs 120 and the partial arc faces of the circumference formed by the permanent magnets swinging have only an air gap.
  • the radial end faces of the four permanent magnets are arranged as shown in FIG. 5, and are substantially rectangular.
  • the radial end faces of the permanent magnets may be disposed in other shapes.
  • the radial end faces of the first permanent magnet 610a and the second permanent magnet 620a are disposed such that the adjacent sides are inclined and parallel to each other
  • the third The radial end faces of the permanent magnet 630a and the fourth permanent magnet 640a are disposed such that the adjacent sides are inclined and parallel to each other, that is, the second permanent magnet 620a and the fourth permanent magnet 640a are substantially equilateral trapezoids disposed in the same direction, and the first permanent magnet 610a
  • the third permanent magnet 630a is also a right-angled trapezoid of the same shape, but the direction is opposite to the second permanent magnet 620a and the fourth permanent magnet 640a; or, as shown in FIG. 7, the radial end faces of the four permanent magnets are all set to They are inclined and
  • the permanent magnets are staggered to improve the output torque curve and make the output torque smooth.
  • the outer arm 430 has a force output portion 431 for mounting a corresponding load.
  • the force output portion 431 may have a curved outer wall, the curved outer portion. The wall acts on the adapted load to drive the load swing.
  • the outer arm 430 of the swing arm 400 is an output arm, and the outer force arm is smaller than the inner force arm.
  • the inner force arm distance is the distance from the radial end surface of the permanent magnet to the center of the swing shaft 410b
  • the external force arm distance is the force output from the center of the swing shaft 410b to the outer arm 430.
  • the ratio of the length of the inner arm to the outer arm can also be designed according to the demand for the amplitude of the swing.
  • a swing rod 432, 421 for force output may also be disposed on the outer arm 430 and/or the inner arm 420, and the swing rods 432, 421 are vertical (the vertical includes a substantially vertical angle).
  • the swing rods 432, 421 and the load 440 mounted on the swing rods 432, 421 are swung.
  • the first and second permanent magnets 610, 620 and the first leg 110 form a closed magnetic path through the air gap
  • the third and fourth permanent magnets 630, 640 and the second The leg 120 forms a closed magnetic circuit through the air gap to avoid magnetic leakage.
  • the permanent magnet and the second yoke 500 are mounted on the swing arm 400, so that other portions of the swing arm 400 do not affect the magnetic field.
  • a rechargeable battery 310 and a charging module 320 for charging power may be further included.
  • the charging module 320 is connected to the control unit for charging the rechargeable battery 310 .
  • the control unit may further include a status indication module 330 for indicating an operating state of the motor, and a switch for triggering a signal to the control unit to control the opening and closing motor.
  • control unit 300 can determine the number of mechanical oscillations by counting the energization pulses of the coil, and the output signal gives a corresponding indication to the operating condition of the mechanical unit.
  • the swing arm of the swing motor swings around the fulcrum, and the life of the fulcrum and the swing arm is the life of the motor.
  • the swing arm is mounted on the swing shaft through the bearing, and the life of the bearing is the life of the motor, so the life of the motor It is unusually long and cannot be compared with existing brushed DC motors.
  • the swing arm can also be directly sleeved on the swing shaft, and the life of the socket structure is the life of the motor.
  • the swing motor shown in this embodiment can also drive various mechanical units that require reciprocating motion and have a small moving distance.
  • the swing motor does not require a cam mechanism or an eccentric
  • the rod structure has low noise and stable current. When the plug is blocked, the current does not change much, and the swing frequency does not change with the resistance.
  • the second embodiment provides a control method (hereinafter referred to as a control method) for a swing motor, which may be the swing motor disclosed in Embodiment 1.
  • a control method for a swing motor, which may be the swing motor disclosed in Embodiment 1.
  • the swing arm has several different swing forms, which can be divided into: full swing, secondary swing and in-situ shake, etc., which are specifically described below.
  • Full swing refers to the swing motor or the swing arm 400 reciprocatingly swings with the maximum swing; for example, the swing motor in Embodiment 1, in FIG. 3, the swing arm 400 is swung in one direction to the maximum swing position. In Fig. 4, the swing arm 400 is in a position to swing in the opposite direction to the maximum swing.
  • Secondary swing Refers to the swing motor or swing arm 400 swinging back and forth with an amplitude less than the maximum swing. Applicant's research found that this is because when the frequency is too high, the swing arm does not reach the maximum swing, and it receives the reverse pulse and swings back; the frequency is reduced to become full swing.
  • In-situ Jitter Refers to the swing motor or swing arm 400 reciprocating with a small swing at a stable position.
  • the swing center is less than the full swing, and pushes to the maximum swing to swing back to the center symmetrically, defining it as the second swing; Pushing to the maximum swing position does not return to the center by itself, swinging slightly in situ, defining it as in-situ jitter. This is because the driving energy is small, and it is impossible to swing at full speed regardless of the frequency.
  • the Applicant further studied after discovering the above-mentioned swing forms of the swing arm of the swing motor, and found that this was caused by the difference in the alternating pulses generated by the control unit 300.
  • the Applicant further considers that for an oscillating motor, when it is applied to a specific occasion or is made into a specific electric appliance, its operating voltage, permanent magnet (for example, the first permanent magnet 610, the second permanent magnet 620, the first The three permanent magnets 630 and the fourth permanent magnet 640), the swing arm 400 and the load are also generally determined.
  • the alternating pulse is composed of a forward pulse and a corresponding reverse pulse
  • the pulse width of the alternating pulse refers to the width of its forward pulse or reverse pulse.
  • an alternating pulse first a positive level of 2ms, followed by a zero level of 3ms, followed by a negative level of 2ms, followed by a zero level of 3ms, thus forming a complete alternating pulse
  • the pulse width of the alternating pulse is the width of its forward or reverse pulse, ie 2 ms.
  • the control unit 300 gives the coil 200 a forward pulse or a reverse pulse so that the swing arm 400 can swing to the maximum swing position, there is a minimum pulse width, and only the forward pulse/reverse pulse pulse in the alternating pulse
  • the width is greater than or equal to the minimum pulse width
  • the swing arm 400 can be driven to the maximum swing position. Otherwise, the swing arm 400 cannot be driven to the maximum swing position, and the minimum pulse width is defined as The full swing swings the minimum pulse width Tb.
  • the frequency Fb corresponding to the minimum swing pulse width Tb of the full swing swing refers to the full swing swing when the alternating pulse duty ratio is 100% and the pulse width of the forward pulse/reverse pulse is equal to the frequency of the full swing swing minimum pulse width Tb.
  • the control unit 300 gives the coil 200 an alternating pulse having a pulse width greater than or equal to the full swing maximum pulse width Tb, except that the swing arm 400 swings to the maximum swing position each time the reciprocating swing occurs.
  • the alternating pulse frequency is increased, another situation may occur in which the swing arm 400 has not reached the maximum swing position during the swing from the forward pulse to the maximum swing position, and the reverse pulse is generated at this time. It has arrived, so that the swing arm 400 starts to swing back again without reaching the maximum swing position. At this time, there is a maximum frequency of such an alternating pulse.
  • the swing arm 400 can smoothly reciprocate to the maximum swing position, when the frequency of the alternating pulse is greater than the At the maximum frequency, the swing arm 400 cannot swing back and forth to the maximum swing position, that is, the swing arm has not yet swung to the maximum swing position, and it is reversely swung, that is, the motion of reciprocating swing is performed with an amplitude smaller than the maximum swing.
  • a maximum frequency is defined as the above-mentioned full-width swing maximum alternating pulse frequency Fa.
  • the pulse width of the alternating pulse is ⁇ full swing amplitude minimum pulse width Tb
  • the swing arm 400 is in the form of full swing The reciprocating swing; if the full swing swing maximum alternating pulse frequency Fa ⁇ the frequency of the alternating pulse ⁇ the frequency Fb, the swing arm 400 reciprocates in the form of a second swing. In both cases, if the pulse width of the alternating pulse does not change, the output torque is stable regardless of the frequency.
  • the electromagnetic force generated by the alternating pulse driving coil 200 is insufficient to drive the swing arm 400 to swing to the maximum swing position, and there is also a swing arm 400 capable of swinging.
  • the minimum pulse width only the pulse width of the alternating pulse is greater than the minimum pulse width that can be oscillated, the swing arm 400 can be driven to swing, otherwise the swing arm 400 stops in place because the alternating pulse drive coil 200 generates
  • the electromagnetic force is not enough to drive the swing arm 400 to start swinging, and the minimum pulse width that can be swung is defined as the above-mentioned swing minimum pulse width Td; correspondingly, it can be calculated that the alternating pulse duty ratio is 100%
  • the frequency Fd corresponding to the minimum pulse width Td, Fd 1 / (2 * Td).
  • the swing arm 400 When the pendulum minimum pulse width Td ⁇ the pulse width of the alternating pulse ⁇ the full swing maximum pulse width Tb, and 0 ⁇ the frequency of the alternating pulse ⁇ the frequency Fd, the swing arm 400 is stopped at a very small swing.
  • the position is reciprocally oscillated, which is referred to as a swing arm that reciprocates in the form of in-situ shaking.
  • the applicant proposed a control method for a swing motor, which may be the swing motor disclosed in Embodiments 1 and 2.
  • the control method of this embodiment may include steps S10 to S30, which are specifically described below.
  • Step S10 setting a pulse parameter, for example, setting a pulse parameter according to a specific application.
  • the step of setting the pulse parameter can be preset at the swing motor (when the application is determined) (factory), or can be set manually by the user or received a detection signal (wired or remotely set, or set according to the sensor signal) ), it can also be set automatically by the swing motor according to the load.
  • step S10 includes step S12 and step S13.
  • step S11 may also be included.
  • Step S11 detecting a heartbeat frequency signal of the user.
  • the heartbeat frequency signal of the user is detected by a sports bracelet or the like.
  • Step S12 Receive a heartbeat frequency signal of the user.
  • Step S13 setting a pulse parameter according to the heartbeat frequency signal, so that the frequency of the alternating pulse is in a corresponding relationship with the heartbeat frequency.
  • the correspondence may be an integer multiple relationship, that is, the frequency of the alternating pulse is an integer multiple of the heartbeat frequency.
  • the invention can make the swing frequency of the swing motor correspond to the heartbeat frequency according to the heartbeat sensing signal, and follow the change of the heartbeat, so that the swing can be better applied to the human body or the living The object, or the person or creature, feels better about the swing.
  • Step S30 The control unit 300 outputs an alternating pulse having a pulse parameter corresponding to the pulse width and frequency according to the set pulse parameter, so that the swing arm 400 swings in the swing mode corresponding to the pulse parameter; wherein the swing mode includes full swing At least one of a mode, a second swing mode, an in-situ dither mode, and a composite wobble mode, wherein the composite wobble mode is generated by superimposition of a full swing mode and an in situ dither mode, or by a sub wobble mode and in situ dithering Pattern overlay generation.
  • control unit 300 outputs a first alternating pulse in step S30 to cause the swing arm 400 to reciprocate in a full swing mode; wherein the pulse width of the first alternating pulse is greater than or equal to the minimum swing.
  • the pulse width Tb; the frequency of the first alternating pulse is greater than zero and less than or equal to the full swing maximum resonant pulse frequency Fa.
  • control unit 300 increases the frequency of the output first alternating pulse to speed up the swinging of the swing arm 400 and the torque is stable.
  • control unit 300 outputs a second alternating pulse in step S30 to cause the swing arm 400 to reciprocate in a sub-swing mode; wherein the pulse width of the second alternating pulse is greater than or equal to the minimum swing amplitude.
  • control unit 300 increases the frequency of the output second alternating pulse to reduce the amplitude of swing of swing arm 400, but with little change in torque, i.e., remains substantially constant.
  • control unit 300 when the control unit 300 outputs the first alternating pulse or the second alternating pulse in step S30, if the power supply voltage of the swing motor becomes smaller or the load of the swing motor becomes larger, the output of the control unit 300 is increased.
  • the pulse width of the alternating pulse which helps to maintain the stability of the torque or swing of the oscillating motor.
  • the control unit 300 increases the pulse width of the output third alternating pulse to increase the amplitude of the swing of the swing arm 400.
  • the embodiment also proposes a swing motor for Embodiment 2.
  • the basic structure of the swing motor can be the swing motor disclosed in Embodiment 1, and the control unit 300 of the swing motor disclosed in Embodiment 1 is improved. Specific instructions.
  • the control unit 300 in Embodiment 3 is further configured to store the set pulse parameter, and output an alternating pulse having a pulse parameter corresponding to a pulse width and a frequency according to the set pulse parameter, so that the swing arm is oscillated corresponding to the pulse parameter.
  • the mode performs swinging; wherein the swing mode comprises at least one of a full swing mode, a second swing mode, an in situ dither mode, and a composite wobble mode, wherein the composite wobble mode is generated by superfluous mode and in situ dither mode superposition Or, generated by superposition of the amplitude swing mode and the in-situ jitter mode.
  • the pulse parameter set therein may be a pulse parameter set according to a specific application.
  • the step of setting the pulse parameter can be preset at the swing motor (when the application is determined) (factory), or can be set by the user manually or by detecting the signal (wire or remote setting, or according to the sensor signal setting) It can also be set automatically by the swing motor according to the load.
  • the swing motor may further include a receiving unit 300a and a setting unit 300b.
  • the receiving unit 300a is configured to receive a heartbeat frequency signal of the user.
  • the oscillating motor may further comprise a unit for detecting a heartbeat frequency signal of the user, such as by a sports bracelet or the like.
  • the setting unit 300b is configured to set the pulse parameter according to the heartbeat frequency signal such that the frequency of the alternating pulse is in a corresponding relationship with the heartbeat frequency.
  • the correspondence may be an integer multiple relationship, that is, the frequency of the alternating pulse is an integer multiple of the heartbeat frequency.
  • a composite frequency signal combining a low heart rate of the heartbeat and a high frequency of the heartbeat can be used, that is, both a heartbeat low-multiplier frequency swing and a heartbeat high-multiplier frequency in-situ jitter.
  • the invention can make the swing frequency of the swing motor correspond to the heartbeat frequency according to the heartbeat sensing signal, and follow the change of the heartbeat, so that the swing can be better applied to the human body or the living body, or the human or the living body can feel better.
  • the effect of the swing can be made to the human body or the living body, or the human or the living body can feel better.
  • control unit 300 is configured to output a first alternating pulse to swing the swing arm 400 in a full swing mode; wherein the pulse width of the first alternating pulse is greater than or equal to the full swing minimum pulse Width Tb; the frequency of the first alternating pulse is greater than zero and less than or equal to the full swing maximum resonant pulse frequency Fa. In an embodiment, the control unit 300 is configured to increase the frequency of the output first alternating pulse to speed up the swinging of the swing arm 400 and stabilize the torque.
  • control unit 300 is operative to increase the frequency of the output second alternating pulse to reduce the amplitude of swing of swing arm 400, but with little change in torque, i.e., substantially constant.
  • control unit 300 is configured to increase the output of the control unit 300 when the power supply voltage of the swing motor becomes smaller or the load of the swing motor becomes larger when the first alternating pulse or the second alternating pulse is output.
  • the pulse width of the variable pulse is beneficial to keep the torque and swing of the swing motor stable.
  • control unit 300 is configured to increase the pulse width of the output third alternating pulse to increase the amplitude of the swing of the swing arm 400.
  • the negative level forms a composite alternating pulse in a form that does not overlap each other in time series, and means that a fifth alternating pulse is added to the middle of the forward and reverse pulses of the fourth alternating pulse, and the fifth alternating pulse is not the same.
  • the forward and reverse pulses of the four alternating pulses have
  • the control method of the swing motor disclosed in the present invention and the swing motor have a wide range of uses.
  • the present invention is applicable to the simulation of biological aspects.
  • the present invention can be applied to the wing swing of a simulated creature, such as a wing for simulating birds, mosquitoes, cockroaches, and the like.
  • the swing motor operates in the full swing mode or the secondary swing mode, the swing frequency can be changed rapidly, but the torque is stable, and the position is quickly changed. Therefore, in a specific implementation, a detecting sensor can be further introduced on the swing motor for detecting signals such as infrared rays, ultrasonic waves or microwaves, and the control unit 300 is configured to change the pulse parameters according to the detecting sensor, and output the pulse width and frequency corresponding to the pulse parameters.
  • the alternating pulse is used to realize the sharp change of the swing frequency to realize the position change.
  • the swing motor operates in the secondary swing mode, the swing frequency becomes higher, and the swing amplitude naturally becomes smaller, but the torque is stable.
  • Applying the invention to drive biological wings, which is the most realistic simulation of biological wings The method is because the swing motor is directly driven, unlike the rotary motor, the eccentric link needs to be converted into a swing, and because the rotary motor has a rated rotational speed, it means that the swing variation range is small, which is not in accordance with the biological wing motion state.
  • the invention can also be applied to a simulated organism, which adopts a composite frequency signal combining a low heart rate of heartbeat and a high frequency of heartbeat, and has a heartbeat low-multiplier frequency swing, a heartbeat high-multiplier frequency in-situ jitter, and a fixed swing direction. It brings the feeling of heartbeat, unlike the existing simulation organism, the eccentric rotating motor has no direction to vibrate, no swing, only related to the rated speed of the motor, and the range of the speed change is small.
  • the invention can also be used in the field of healthcare equipment.
  • Applicants have found that the state of the human body or other organisms has a certain relationship with their heart rate. This is also in line with the fact that Chinese medicine varies from person to person. That is, each individual has a difference, and the same individual also has differences at different times.
  • the heartbeat varies from person to person, and the heartbeat of the same person is different in different states. The same is true of other creatures.
  • the invention can make the swing frequency of the swing motor correspond to the heartbeat frequency according to the heartbeat sensing signal, and follow the change of the heartbeat, so that the swing can be better applied to the human body or the living body, or the human or the living body can feel better.
  • the effect of the swing for example, as shown in FIG.
  • the swing frequency of the swing motor can be set to an alternating pulse of a single heart rate swing frequency as shown in FIG. 12(b) or 12(d).
  • the alternating pulse of the double heart rate swing frequency is shown, or the swing frequency of the swing motor can be set to a composite alternating pulse as shown in FIG. 12(c), wherein the composite alternating pulse of FIG. 12(c) is A double heart rate swing frequency with a pulse width that allows the motor to make alternating pulses of full or secondary amplitude swings, as well as several alternating pulses that cause the motor to excite in situ.
  • the present invention can be applied to a pulse irrigator.
  • the oscillating motor adopts a frequency corresponding to the heartbeat, and acts on the diaphragm pump to wash the gums, wounds, cavities, and the like.
  • the invention is applied to a massage device, and the swing motor acts on the massage head, and adopts a frequency corresponding to the heartbeat to exert an effect on the skin or acupuncture points, and brings a feeling of heartbeat.
  • the invention is applied to acupuncture controller, and the control of the shaking and jumping of the needle during acupuncture uses a frequency corresponding to the heartbeat to exert an effect on the acupoint.

Landscapes

  • Health & Medical Sciences (AREA)
  • Rehabilitation Therapy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Otolaryngology (AREA)
  • Reproductive Health (AREA)
  • Mechanical Engineering (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Control Of Linear Motors (AREA)

Abstract

一种用于摆动电机的控制方法及摆动电机。所述摆动电机的控制单元还用于存储设置的脉冲参数,并根据设置的脉冲参数,输出具有对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,所述摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。

Description

一种用于摆动电机的控制方法及摆动电机 技术领域
本发明涉及电机领域,具体涉及一种用于摆动电机的控制方法及摆动电机。
背景技术
传统的摆动电机,如公开号为1070359(永磁式电推剪)、公开号为203357478U(电推剪摆动杆)等专利,要保证足够的力矩,就要使线圈通220V交流电,其功率达到8-12瓦,同时利用220V交流电的固定频率使摆臂摆动,靠共振弹簧共振保障.没有共振弹簧就不能往复摆动。
还有振动驱动器,如JP2001275332A,其驱动也依赖共振弹簧,其振幅在共振时最大,偏离该频率,则振幅就会减小,力矩也不稳定。在不同脉宽脉冲驱动其摆动到一端时没有一个稳定的位置。
这两类摆动电机都是依赖共振弹簧将摆动组件支撑在中间位置,固定频率的交变信号驱动其和弹簧共振,也就是摆频不能有大的变化。
发明内容
为解决上述问题,本发明主要提供一种用于摆动电机的控制方法及摆动电机。
根据第一方面,一种实施例中提供一种用于摆动电机的控制方法,所述摆动电机包括U型磁轭、控制单元、摆臂、第二磁轭以及四个永磁体;所述U型磁轭具有第一支脚和第二支脚,所述第一支脚和第二支脚上分别缠绕有线圈;所述控制单元与线圈电连接,并产生交变脉冲,使U型磁轭的两个支脚的端面产生交变磁极;可绕支点摆动的摆臂,所述摆臂自U型磁轭的端面向外延伸,且以支点为界,所述摆臂靠近U型磁轭的一端为内臂,所述摆臂远离U型磁轭的一端为外臂;所述第二磁轭安装在内臂靠近U型磁轭的一端;所述永磁体固定安装在第二磁轭上;所述四个永磁体依次并排设置,且按照排列顺序依次为第一永磁体、第二永磁体、第三永磁体和第四永磁体;所述第一永磁体和第四永磁体的 外端面的极性相同,所述第二永磁体和第三永磁体的外端面的极性相同;并且所述第一永磁体的外端面和第二永磁体外端面的极性相反且对应第一支脚的端面设置;所述第三永磁体的外端面和第四永磁体外端面的极性相反且对应第二支脚的端面设置;所述永磁体的端面和其对应支脚的端面具有气隙,所述U型磁轭的两个支脚产生的交变磁极使永磁体、第二磁轭和摆臂往复摆动;
所述控制方法包括:
设置脉冲参数;
所述控制单元根据设置的脉冲参数,输出具有对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,所述摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。
一种实施例中,所述控制单元输出第一交变脉冲,以使摆臂以满幅摆动模式进行往复摆动;其中,所述第一交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第一交变脉冲的频率大于零且小于或等于满幅摆动最大交变脉冲频率Fa。
一种实施例中,所述控制单元增加输出的第一交变脉冲的频率,以使摆臂往复摆动的频率加快。
一种实施例中,所述控制单元输出第二交变脉冲,以使摆臂以次幅摆动模式进行往复摆动;其中,所述第二交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第二交变脉冲的频率大于满幅摆动最大交变脉冲频率Fa,且小于或等于交变脉冲占空比为100%时满幅摆动最小脉冲宽度Tb对应的频率Fb,Fb=1/(2*Tb)。
一种实施例中,所述控制单元增加输出的第二交变脉冲的频率,以使摆臂摆动的幅度减小。
一种实施例中,当摆动电机的供电电压变小或摆动电机的负载变大时,增加控制单元输出的交变脉冲的脉冲宽度。
一种实施例中,所述控制单元输出第三交变脉冲,以使摆臂以原位抖动模式进行摆动;其中,所述第三交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第三交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲 宽度Td对应的频率Fd,Fd=1/(2*Td)。
一种实施例中,所述控制单元增加输出的第三交变脉冲的脉冲宽度,以使摆臂摆动的幅度增大。
一种实施例中,所述控制单元输出由第四交变脉冲和第五交变脉冲构成的复合交变脉冲,以使摆臂以复合摆动模式进行往复摆动;
其中,所述第四交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;
所述第五交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第五交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td);
所述第四交变脉冲和第五交变脉冲以正负电平在时序上互不交叠的形式构成所述复合交变脉冲。
根据第二方面,一种实施例中提供一种摆动电机,所述摆动电机包括U型磁轭、控制单元、摆臂、第二磁轭以及四个永磁体;所述U型磁轭具有第一支脚和第二支脚,所述第一支脚和第二支脚上分别缠绕有线圈;所述控制单元与线圈电连接,并产生交变脉冲,使U型磁轭的两个支脚的端面产生交变磁极;可绕支点摆动的摆臂,所述摆臂自U型磁轭的端面向外延伸,且以支点为界,所述摆臂靠近U型磁轭的一端为内臂,所述摆臂远离U型磁轭的一端为外臂;所述第二磁轭安装在内臂靠近U型磁轭的一端;所述永磁体固定安装在第二磁轭上;所述四个永磁体依次并排设置,且按照排列顺序依次为第一永磁体、第二永磁体、第三永磁体和第四永磁体;所述第一永磁体和第四永磁体的外端面的极性相同,所述第二永磁体和第三永磁体的外端面的极性相同;并且所述第一永磁体的外端面和第二永磁体外端面的极性相反且对应第一支脚的端面设置;所述第三永磁体的外端面和第四永磁体外端面的极性相反且对应第二支脚的端面设置;所述永磁体的端面和其对应支脚的端面具有气隙,所述U型磁轭的两个支脚产生的交变磁极使永磁体、第二磁轭和摆臂往复摆动;
所述控制单元还用于存储设置的脉冲参数,根据设置的脉冲参数,输出具有对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,所述摆动模式包括满幅摆动模式、次幅 摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。
一种实施例中,所述控制单元用于输出第一交变脉冲,以使摆臂以满幅摆动模式进行往复摆动;其中,所述第一交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第一交变脉冲的频率大于零且小于或等于满幅摆动最大交变脉冲频率Fa。
一种实施例中,所述控制单元用于输出第二交变脉冲,以使摆臂以次幅摆动模式进行往复摆动;其中,所述第二交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第二交变脉冲的频率大于满幅摆动最大交变脉冲频率Fa,且小于或等于交变脉冲占空比为100%时满幅摆动最小脉冲宽度Tb对应的频率Fb,Fb=1/(2*Tb)。
一种实施例中,所述控制单元用于输出第三交变脉冲,以使摆臂以原位抖动模式进行摆动;其中,所述第三交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第三交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td)。
一种实施例中,
所述控制单元用于输出由第四交变脉冲和第五交变脉冲构成的复合交变脉冲,以使摆臂以复合摆动模式进行往复摆动;其中,所述第四交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第五交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第五交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td);所述第四交变脉冲和第五交变脉冲以正负电平在时序上互不交叠的形式构成所述复合交变脉冲。
依据上述实施例的用于摆动电机的控制方法及摆动电机,由于所述控制单元根据设置的脉冲参数,输出具有对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,所述摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,从而可以根据应用场合的不同使得摆动电机提供不同的 摆动模式,使得摆动电机可以达到一机多用途的作用。
在满幅摆动时,在0-Fa频率驱动其摆动到两端端时都有一个稳定的位置。
附图说明
图1为本发明摆动电机一种实施例的结构示意图;
图2为图1所示实施例中永磁体与U型磁轭支脚的配合示意图;
图3为图1所示实施例在通电状态下的示意图;
图4为图1所示实施例在与图3反向的通电状态下的示意图;
图5为图1所示实施例中四个永磁体径向端面第一种展开示意图;
图6为图1所示实施例中四个永磁体径向端面第二种展开示意图;
图7为图1所示实施例中四个永磁体径向端面第三种展开示意图;
图8为图1所示实施例中摆臂输出部分另一种实施例的结构示意图;
图9为本发明一种实施例的用于摆动电机的控制方法的流程图;
图10为本发明一种实施例的设置脉冲参数的流程示意图;
图11为本发明又一种实施例的摆动电机的结构框图;
图12(a)为一种实施例的心电图的示例,12(b)、(c)、(d)则分别为根据图12(a)所示的心电图可设置的几种用于摆动电机的交变脉冲的例子。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以 按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本发明提供一种用于摆动电机的控制方法及摆动电机,为了更清楚地说明本发明,下面不妨以实施例一为例,先对本发明的摆动电机的基本结构作一个说明。
实施例1
本实施例公开的摆动电机,其可输出一种往复摆动运动,其基本结构请参照图1和图2,本实施例的摆动电机包括U型磁轭100、控制单元300、摆臂400、第二磁轭500以及四个永磁体(第一永磁体610、第二永磁体620、第三永磁体630和第四永磁体640),下面具体说明。
U型磁轭100具有第一支脚110和第二支脚120,第一支脚110和第二支脚120上分别缠绕有线圈200。
控制单元300与线圈200电连接,并产生交变脉冲,使U型磁轭100的两个支脚的端面111、121产生交变磁极。
可绕支点摆动的摆臂400,摆臂400自U型磁轭100的端面111、121向外延伸,且以支点为界,摆臂400靠近U型磁轭100的一端为内臂420,摆臂400远离U型磁轭100的一端为外臂430。
第二磁轭500(为将之与U型磁轭100区别开,故称其为第二磁轭500),第二磁轭500安装在内臂420靠近U型磁轭100的一端。
四个永磁体固定安装在第二磁轭500上(如胶粘固定)。四个永磁体依次分布在以支点为圆心的同一圆周上,且按照排列顺序依次为第一永磁体610、第二永磁体620、第三永磁体630和第四永磁体640。第一永磁体610和第四永磁体640的径向端面611、641的极性相同,第二永磁体620和第三永磁体630的径向端面621、631的极性相同,并且第一永磁体610的径向端面611和第二永磁体620径向端面621的极性相反且对应第一支脚110的端面111设置,第三永磁体630的径向端面631和第四永磁体640径向端面641的极性相反且对应第二支脚120的端面121 设置,四个永磁体的端面和其对应支脚的端面具有气隙。
其中,四个永磁体依次分布在以支点为圆心的同一圆周上是指该四个永磁体到支点的半径大致相等,即沿摆动中心线径向分布。
该U型磁轭100、摆臂400、第二磁轭500和永磁体装在壳体700内,其中摆臂400的支点为一摆动轴410b,该摆动轴410b固定安装在壳体700上,摆臂400套装在该摆动轴410b上。这里所说的壳体700可以是该电机专用的壳体,也可以是使用该电机的电器的壳体。
当线圈200通电,四个永磁体都会产生相同旋转方向的转矩。如果通电后,第一和第三永磁体610、630对U型磁轭100产生大小相同的磁吸力,则第二和第四永磁体620、640对U型磁轭100产生大小相同的磁斥力;反向通电,第一和第三永磁体610、630对U型磁轭100产生大小相同的磁斥力,则第二和第四永磁体620、640对U型磁轭100产生大小相同的磁吸力。U型磁轭的每个支脚对应两个永磁体,这种永磁体冗余的设计是跟现有技术不同的磁路设计,使得本摆动电机比同功率的现有电机转矩更大,作用磁通大,驱动功率相应的就会减小。
该四个永磁体同时受到U型磁轭100沿同一个摆动方向的作用力,其能够保证摆臂400不借助外力就实现整个往复摆动过程。
具体说来,请参考图1、2、3,假定第一永磁体610和第四永磁体640的端面为N极,而第二永磁体620和第三永磁体630的端面为S极。当线圈200通电,如此时第一支脚110的端面为N极,第二支脚120的端面为S极,则第一支脚110的N极将对第二永磁体620的S极产生吸力,而对第一永磁体610的N极产生斥力。同样地,第二支脚120的S极将会对第四永磁体640的N极产生吸力,而对第三永磁体630的S极产生斥力,从而使摆臂400从图1所示位置摆动到图3所示位置,形成第一次摆动。
当线圈200内电流方向改变,如图4所示,此时第一支脚110的端面为S极,第二支脚120的端面为N极,则第一支脚110的S极将对第二永磁体620的S极产生斥力,而对第一永磁体610的N极产生吸力。同样地,第二支脚120的N极将会对第四永磁体640的N极产生斥力,而对第三永磁体630的S极产生吸力,从而使摆臂400从图3所示位置摆动到图4所示位置,形成第二次摆动。这可以定义为满幅摆动位置,四个永磁体分开,可以加大摆动距离,且四个永磁体一致,只是安装方 向不同,容易根据厚度和宽度来设置磁感应强度,对应的U型磁扼100的支脚的宽度与永磁体对应,不需加宽支脚宽度来增加摆动距离,也有利于增加U型磁扼100的磁感应强度;且中间的两个永磁体对非作用U型磁扼支脚的影响很小。
综上,线圈200连接控制单元300,控制单元300产生脉宽可调的交变脉冲,使U型磁轭100的端面产生交变的磁极,使永磁体产生吸力转矩和斥力转矩,或斥力转矩和吸力转矩,驱动摆臂400摆动,从而通过摆臂400驱动相应的要摆动的机械单元。也就是说该摆动电机是跟随控制单元300的交变脉冲而摆动。
进一步,如图2所示,可使第一永磁体610与第二永磁体620之间的间隙小于第一支脚110的端面111的宽度,第三永磁体630与第四永磁体640之间的间隙小于第二支脚120的端面121的宽度,以保证U型磁轭100的支脚对各永磁体具有足够的作用力。
每个永磁体的宽度与U型磁轭100支脚的端面宽度可以相同或者不同。这里所说的宽度是指图2中箭头所指方向上的宽度。
为了减小气隙,如图2所示,可使第一支脚110和第二支脚120的端面111、121具有匹配永磁体摆动时所对应圆周的圆弧面,即第一支脚110和第二支脚120的端面111、121所成圆弧面与永磁体摆动时所形成的圆周的部分弧面仅有气隙间距。
其中,请参考图5,四个永磁体的径向端面排列如图5所示,大致呈矩形。此外,永磁体的径向端面还可设置为其他形状,如图6所示,将第一永磁体610a与第二永磁体620a的径向端面设置为相邻一边倾斜且彼此平行,将第三永磁体630a与第四永磁体640a的径向端面设置为相邻一边倾斜且彼此平行,即第二永磁体620a和第四永磁体640a大致为同方向设置的直角梯形,而第一永磁体610a和第三永磁体630a也为相同形状的直角梯形,但方向与第二永磁体620a和第四永磁体640a相反;或者,如图7所示,将四个永磁体的径向端面均设置为倾斜且相互平行,均大致为平行四边形。
以上所示永磁体排布图中,永磁体交错分布,可改善输出力矩曲线,使输出力矩变得平稳。
进一步地,请参考图1,外臂430具有力输出部431,力输出部431用于安装相应的负载,例如力输出部431可以具有弧形外壁,该弧形外 壁可作用于相适配的负载,驱动负载摆动。
摆臂400的外臂430为输出臂,外力臂小于内力臂,内力臂距离为永磁体的径向端面到摆动轴410b中心的距离,外力臂距离为摆动轴410b中心到外臂430的力输出部431中心的距离。这里还可根据对摆动幅度的需求设计内臂与外臂长度之比。
此外,请参考图8,还可在外臂430和/或内臂420上设置有用于力输出的摆杆432、421,该摆杆432、421垂直(该垂直包括大致成垂直角度这一类情况)于摆臂400的摆动平面,当摆臂400摆动时,带动摆杆432、421及安装在摆杆432、421上的负载440摆动。
每次摆动过程中,四个永磁体实际上都受到朝相同方向摆动的作用力,输出力矩=输出力×外力臂=(F1+F2+F3+F4)×内力臂,F1、F2、F3、F4为U型磁轭100分别对四个永磁体的作用力。
请参考图1,本摆动电机在断电状态下,第一和第二永磁体610、620与第一支脚110通过气隙形成闭合磁路,第三和第四永磁体630、640与第二支脚120通过气隙形成闭合磁路,可避免漏磁。而且永磁体和第二磁轭500安装在摆臂400上,也使得摆臂400的其它部分不会对磁场产生影响。
此外,请参考图1,还可以包括充电电池310和充电模块320,所述充电电池310用于供电,充电模块320与控制单元连接,用于向充电电池310充电。
控制单元还可包括状态指示模块330和开关,状态指示模块330用于指示电机的工作状态,开关用于给控制单元触发信号,来控制开闭电机。
进一步地,控制单元300通过对线圈通电脉冲的计数可以确定机械摆动次数,输出信号对机械单元的运行状况给与相应的指示。
该摆动电机的摆臂绕支点摆动,支点与摆臂配合结构的寿命即是该电机的寿命,例如摆臂通过轴承安装在摆动轴上,该轴承的寿命就是电机的寿命,因此该电机的寿命异常长,是现有的有刷直流电机无法相比的。或者摆臂也可直接套接在摆动轴,此时该套接结构的寿命就是电机的寿命。
本实施例所示摆动电机除可带动电推剪外,还可带动各种需要往复运动且运动距离不大的机械单元。该摆动电机不需要凸轮机构或偏心连 杆结构,噪音小,电流稳定,堵摆时电流变化不大,摆动频率不随阻力变化。
实施例2
本实施例2提供了一种用于摆动电机的控制方法(以下简称控制方法),该摆动电机可以是实施例1中公开的摆动电机。下面先对本发明的控制方法的发明构思作一个说明。
对于一个摆动电机,当其应用在一个具体的场合或者被做成一个具体的电器时,其工作电压、永磁体(例如,第一永磁体610、第二永磁体620、第三永磁体630和第四永磁体640)、摆臂400和负载一般也是确定的。
申请人在观察摆动电机的摆臂最终带动负载进行摆动的运动时,发现摆臂有几种不同的摆动形式,具体可以分成:满幅摆动、次幅摆动和原位抖动等,下面具体说明。
满幅摆动:指的是摆动电机或者说摆臂400以最大摆幅进行往复摆动;例如,实施例1中的摆动电机,图3中如摆臂400为向一个方向摆动到了最大摆幅的位置,图4中如摆臂400为向反方向摆动到了最大摆幅的位置。
次幅摆动:指的是摆动电机或者说摆臂400以小于最大摆幅的幅度进行往复摆动。申请人研究发现,这是因为频率太高时,使得摆动臂来不及到最大摆幅,就接到反向的脉冲而回摆;降低频率就变成了满幅摆动。
以上两种摆动在负载,电压和控制脉冲频率等条件不变时,其摆幅是以中心对称的。
原位抖动:指的是摆动电机或者说摆臂400在一个稳定的位置处以小的摆幅进行往复摆动。在实际过程中,为了区别原位抖动和次幅摆动,对摆幅中心对称的小于满幅的摆动,且推到最大摆幅处能自己回归中心对称地摆动,定义其为次幅摆动;对推到最大摆幅处不能自己回归中心,在原位小幅地摆动,定义其为原位抖动。这是因为驱动能量小,不论以多少频率驱动都不可能满幅摆动。
申请人在发现摆动电机的摆臂上述的几种摆动形式后,进一步研究,发现这是由于控制单元300产生的交变脉冲不同所造成的。申请人进一步思考,对于一个摆动电机,当其应用在一个具体的场合或者被做成一个具体的电器时,其工作电压、永磁体(例如,第一永磁体610、第二永磁体620、第三永磁体630和第四永磁体640)、摆臂400和负载一般也是确定的,申请人发现这时对于交变脉冲具有几个有意义的参数:满幅摆动最小脉冲宽度Tb及其对应的频率Fb,满幅摆动最大交变脉冲频 率Fa,起摆最小脉冲宽度Td及其对应的频率Fd,下面对这几个参数进行说明。
交变脉冲是由正向脉冲和一个对应的反向脉冲构成,交变脉冲的脉冲宽度指的是其正向脉冲或反向脉冲的宽度。例如,一个交变脉冲,先是一个2ms的正电平,然后接着3ms的零电平,再接着一个2ms的负电平,再接着3ms的零电平,由此构成了一个完整的交变脉冲,交变脉冲的脉冲宽度为其正向脉冲或反向脉冲的宽度,即2ms。
当控制单元300给线圈200一个正向脉冲或反向脉冲使摆臂400可以摆动到最大摆幅位置时,存在一个最小的脉冲宽度,只有交变脉冲中的正向脉冲/反向脉冲的脉冲宽度大于或等于该最小的脉冲宽度时,摆臂400才能够被驱动到最大摆幅位置,否则的话,摆臂400就不能被驱动到最大摆幅位置,该最小的脉冲宽度就定义其为上述的满幅摆动最小脉冲宽度Tb。满幅摆动最小脉冲宽度Tb对应的频率Fb,指的是交变脉冲占空比为100%时满幅摆动且正向脉冲/反向脉冲的脉冲宽度等于满幅摆动最小脉冲宽度Tb的频率,其中交变脉冲占空比为100%指的是正向脉冲/反向脉冲的空占比为100%,所以可以计算得到此时交变脉冲的周期为2*Tb,因此此时交变脉冲的频率Fb=1/(2*Tb)。
当控制单元300给线圈200一个脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb的交变脉冲时,除了出现摆臂400在做往复摆动时每次都摆动到最大摆幅位置的这种情况,在交变脉冲频率增加时,还有可能出现另一种情况,即在摆臂400在被正向脉冲往最大摆幅位置摆动的过程中,还没有到达最大摆幅位置,此时反向脉冲就已经到来,使得摆臂400在没有到达最大摆幅位置就又要开始反向摆动。这时,存在这样一个交变脉冲的最大频率,当此时交变脉冲的频率小于或等于该最大频率时,摆臂400可以顺利往复摆动到最大摆幅位置,当交变脉冲的频率大于该最大频率时,则摆臂400不能够往复摆动到最大摆幅位置,即摆臂还未摆动到最大摆幅位置其就要反向摆动,即以一个小于最大幅摆的幅度进行往复摆动的运动,这样的一个最大频率,就定义其为上述的满幅摆动最大交变脉冲频率Fa。
总结起来,当交变脉冲的脉冲宽度≥满幅摆动最小脉冲宽度Tb时,若0<交变脉冲的频率≤满幅摆动最大交变脉冲频率Fa,则摆臂400以满幅摆动的形式进行往复摆动;若满幅摆动最大交变脉冲频率Fa<交变脉冲的频率≤频率Fb,则摆臂400以次幅摆动的形式进行往复摆动。在这两种情况下,如果交变脉冲的脉冲宽度不变,那么不论频率怎么变,其输出的力矩是保持稳定的。
以上讨论的是交变脉冲的脉冲宽度≥满幅摆动最小脉冲宽度Tb的情况,下面再讨论当交变脉冲的脉冲宽度<满幅摆动最小脉冲宽度Tb 的情况。
当交变脉冲的脉冲宽度<满幅摆动最小脉冲宽度Tb时,交变脉冲驱动线圈200产生的电磁力不足以带动摆臂400摆动到最大摆幅位置,同时还存在一个使摆臂400能够摆动的最小脉冲宽度,只有交变脉冲的脉冲宽度大于该能够摆动的最小脉冲宽度,摆臂400才能够被驱动摆动起来,否则摆臂400就停在原位,因为交变脉冲驱动线圈200产生的电磁力不足以带动摆臂400开始摆动,该该能够摆动的最小脉冲宽度就被定义为上述的起摆最小脉冲宽度Td;相应地,可以计算得到,交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td)。
当起摆最小脉冲宽度Td<交变脉冲的脉冲宽度<满幅摆动最小脉冲宽度Tb,且0<交变脉冲的频率≤频率Fd时,摆臂400以一个极小的摆幅在原来停止的位置进行往复摆动,称其为摆臂以原位抖动的形式进行往复摆动。
因此,用于摆动电机的交变脉冲的规律如下表(1)所示:
Figure PCTCN2017081717-appb-000001
(1)
申请人在研究并掌握上述规律后,提出一种用于摆动电机的控制方法,该摆动电机可以是实施例1和2中公开的摆动电机。请参照图9,本实施例的控制方法可以包括步骤S10~S30,下面具体说明。
步骤S10:设置脉冲参数,例如,根据具体应用来设置脉冲参数。设置脉冲参数这一步骤,可以在摆动电机(应用确定时)(出厂时)就预设好,也可以由用户进行手动设置或接收检测信号进行设置(连线或遥控设置,或根据传感器信号设置),还可以由摆动电机根据负载自动设置等。在一实施例中,请参照图10,步骤S10包括步骤S12和步骤S13,在一实施例中,还可以包括步骤S11。
步骤S11:检测用户的心跳频率信号。例如,通过运动手环等来检测用户的心跳频率信号。
步骤S12:接收用户的心跳频率信号。
步骤S13:根据所述心跳频率信号来设置脉冲参数,使得交变脉冲的频率与心跳频率成对应关系。例如,对应关系可以是成整数倍关系,即交变脉冲的频率是心跳频率的整数倍。
本发明可以根据心跳感应信号,让摆动电机的摆动频率与心跳频率成对应关系,并跟随心跳的变化,这样能将摆动更好地作用与人体或生 物体,或者让人或生物更好地感觉摆动的作用。
步骤S30:控制单元300根据设置的脉冲参数,输出具有脉冲参数对应脉冲宽度和频率的交变脉冲,以使摆臂400以上述脉冲参数对应的摆动模式进行摆动;其中,摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。
在一实施例中,步骤S30中控制单元300输出第一交变脉冲,以使摆臂400以满幅摆动模式进行往复摆动;其中,第一交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;第一交变脉冲的频率大于零且小于或等于满幅摆动最大交变脉冲频率Fa。在一实施例中,控制单元300增加输出的第一交变脉冲的频率,以使摆臂400往复摆动的频率加快,且力矩稳定。
在一实施例中,步骤S30中控制单元300输出第二交变脉冲,以使摆臂400以次幅摆动模式进行往复摆动;其中,第二交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;第二交变脉冲的频率大于满幅摆动最大交变脉冲频率Fa,且小于或等于交变脉冲占空比为100%时满幅摆动最小脉冲宽度Tb对应的频率Fb,Fb=1/(2*Tb)。在一实施例中,控制单元300增加输出的第二交变脉冲的频率,以使摆臂400摆动的幅度减小,但力矩变化很小,即基本保持稳定。
在一实施例中,步骤S30中当控制单元300在输出第一交变脉冲或第二交变脉冲时,若摆动电机的供电电压变小或摆动电机的负载变大时,增加控制单元300输出的交变脉冲的脉冲宽度,这有利于保持摆动电机的力矩或摆幅的稳定。
在一实施例中,步骤S30中控制单元300输出第三交变脉冲,以使摆臂400以原位抖动模式进行摆动;其中,第三交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;第三交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td)。在一实施例中,控制单元300增加输出的第三交变脉冲的脉冲宽度,以使摆臂400摆动的幅度增大。
在一实施例中,步骤S30中控制单元300输出由第四交变脉冲和第五交变脉冲构成的复合交变脉冲,以使摆臂以复合摆动模式进行往复摆动;其中,第四交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;第五交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;第五交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/ (2*Td);第四交变脉冲和第五交变脉冲以正负电平在时序上互不交叠的形式构成上述复合交变脉冲,指的是,第四交变脉冲的正反向脉冲的中间加入第五交变脉冲,第五交变脉冲不与第四交变脉冲的正反向脉冲在时序上有重叠的区域。如图12(c)所示的复合波形。
实施例3
本实施例还针对实施例2提出一种摆动电机,该摆动电机的基本结构可以为实施例1所公开的摆动电机,并对实施例1所公开的摆动电机的控制单元300进行了改进,下面具体说明。
实施例3中的控制单元300还用于存储设置的脉冲参数,并根据设置的脉冲参数,输出具有脉冲参数对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。
其中设置的脉冲参数,可以是根据具体应用来设置脉冲参数。设置脉冲参数这一步骤,可以在摆动电机(应用确定时)(出厂时)就预设好,也可以由用户进行手动设置或检测信号进行设置(连线或遥控设置,或根据传感器信号设置),还可以由摆动电机根据负载自动设置等。在一实施例中,请参照图11,摆动电机还可以包括接收单元300a和设置单元300b。接收单元300a用于接收用户的心跳频率信号。在一实施例中,摆动电机还可以包括一单元,用于检测用户的心跳频率信号,例如通过运动手环等。设置单元300b用于根据所述心跳频率信号来设置脉冲参数,使得交变脉冲的频率与心跳频率成对应关系。例如,对应关系可以是成整数倍关系,即交变脉冲的频率是心跳频率的整数倍。还可采用心跳低倍数频率和心跳高倍数频率相结合的复合频率信号,即既有心跳低倍数频率摆动,也有心跳高倍数频率原位抖动。本发明可以根据心跳感应信号,让摆动电机的摆动频率与心跳频率成对应关系,并跟随心跳的变化,这样能将摆动更好地作用与人体或生物体,或者让人或生物更好地感觉摆动的作用。
在一实施例中,控制单元300用于输出第一交变脉冲,以使摆臂400以满幅摆动模式进行往复摆动;其中,第一交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;第一交变脉冲的频率大于零且小于或等于满幅摆动最大交变脉冲频率Fa。在一实施例中,控制单元300用于增加输出的第一交变脉冲的频率,以使摆臂400往复摆动的频率加快,且力矩稳定。
在一实施例中,控制单元300用于输出第二交变脉冲,以使摆臂400 以次幅摆动模式进行往复摆动;其中,第二交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;第二交变脉冲的频率大于满幅摆动最大交变脉冲频率Fa,且小于或等于交变脉冲占空比为100%时满幅摆动最小脉冲宽度Tb对应的频率Fb,Fb=1/(2*Tb)。在一实施例中,控制单元300用于增加输出的第二交变脉冲的频率,以使摆臂400摆动的幅度减小,但力矩变化很小,即基本保持稳定。
在一实施例中,控制单元300用于在输出第一交变脉冲或第二交变脉冲时,若摆动电机的供电电压变小或摆动电机的负载变大时,增加控制单元300输出的交变脉冲的脉冲宽度,这有利于保持摆动电机的力矩和摆幅的稳定。
在一实施例中,控制单元300用于输出第三交变脉冲,以使摆臂400以原位抖动模式进行摆动;其中,第三交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;第三交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td)。在一实施例中,控制单元300用于增加输出的第三交变脉冲的脉冲宽度,以使摆臂400摆动的幅度增大。
在一实施例中,控制单元300用于输出由第四交变脉冲和第五交变脉冲构成的复合交变脉冲,以使摆臂以复合摆动模式进行往复摆动;其中,第四交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;第五交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;第五交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td);第四交变脉冲和第五交变脉冲以正负电平在时序上互不交叠的形式构成上述复合交变脉冲,指的是,第四交变脉冲的正反向脉冲的中间加入第五交变脉冲,第五交变脉冲不与第四交变脉冲的正反向脉冲在时序上有重叠的区域。如图12(c)所示的复合波形。
本发明公开的摆动电机的控制方法及摆动电机,具有广泛的用途。
例如,本发明可应用于仿真生物方面。例如,本发明可应用于仿真生物的翅膀摆动,如应用于仿真小鸟、蚊蝇、蜻蜓等生物的翅膀。因为摆动电机工作于满幅摆动模式或次幅摆动模式,可急速地改变摆频,但力矩稳定,实现位置的快速改变。所以具体实现时,可以再在摆动电机上引入一探测传感器,用于探测红外线、超声波或微波等信号,控制单元300根据探测传感器来设置改变其脉冲参数,输出具有脉冲参数对应脉冲宽度和频率的交变脉冲,来实现急剧改变摆频,实现位置的改变,当摆动电机工作于次幅摆动模式时,摆频变高,其摆幅也就会自然变小,但力矩稳定。应用本发明来驱动生物翅膀,这是最逼真仿真生物翅膀的 方法,因为是摆动电机直接驱动,不像旋转电机那样需偏心连杆转换为摆动,并且因为旋转电机有额定转速,意味着其摆动变化范围很小,这也不符合生物的翅膀运动状态。本发明还可以应用于仿真生物体,采用心跳低倍数频率和心跳高倍数频率相结合的复合频率信号,既有心跳低倍数频率摆动,也有心跳高倍数频率原位抖动,并有固定的摆动方向,带来心跳的感觉,而不像现有的仿真生物体,采用偏心轮旋转电机无方向地振动,没有摆动,只与电机的额定转速有关,且转速变化范围很小。
例如,本发明还可以用于医疗保健器材方面。申请人发现,人体或其它生物体的状态与其心跳频率存在一定的关系。这也符合中医因人而异,对症下药。即每个个体都有差异,且相同个体在不同时期也有差异。而心跳就是因人而异,同一个人的心跳在不同状态也是不同的。其它生物也是如此。本发明可以根据心跳感应信号,让摆动电机的摆动频率与心跳频率成对应关系,并跟随心跳的变化,这样能将摆动更好地作用与人体或生物体,或者让人或生物更好地感觉摆动的作用。例如,如图12(a)所示,为检测到的心电图,可以将摆动电机的摆动频率设置成如图12(b)所示的一倍心率摆动频率的交变脉冲或12(d)所示的两倍心率摆动频率的交变脉冲,或者,还可以将摆动电机的摆动频率设置成如图12(c)所示的复合交变脉冲,其中图12(c)的复合交变脉冲由一个一倍心率摆动频率且脉冲宽度可以使电机做满幅或次幅摆动的交变脉冲,以及若干个使电机做原位抖动的交变脉冲所构成。在考虑具体应用场景时,本发明可以应用于脉冲式冲洗器,摆动电机采用和心跳成对应关系的频率,作用于隔膜泵,可以冲洗牙齿牙龈、伤口、腔体等。本发明应用于按摩器,摆动电机作用于按摩头,采用和心跳成对应关系的频率,对皮肤或穴位产生作用,带来心跳的感觉。本发明应用于针灸控制器,针灸时对针的抖动和跳动的控制,采用和心跳成对应关系的频率,对穴位产生作用。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (16)

  1. 一种用于摆动电机的控制方法,所述摆动电机包括U型磁轭、控制单元、可绕支点摆动的摆臂、第二磁轭以及四个永磁体;所述U型磁轭具有第一支脚和第二支脚,所述第一支脚和第二支脚上分别缠绕有线圈;所述控制单元与线圈电连接,并产生交变脉冲,使U型磁轭的两个支脚的端面产生交变磁极;所述摆臂自U型磁轭的端面向外延伸,且以支点为界,所述摆臂靠近U型磁轭的一端为内臂,所述摆臂远离U型磁轭的一端为外臂;所述第二磁轭安装在内臂靠近U型磁轭的一端;所述永磁体固定安装在第二磁轭上;所述四个永磁体依次并排设置,且按照排列顺序依次为第一永磁体、第二永磁体、第三永磁体和第四永磁体;所述第一永磁体和第四永磁体的外端面的极性相同,所述第二永磁体和第三永磁体的外端面的极性相同;并且所述第一永磁体的外端面和第二永磁体外端面的极性相反且对应第一支脚的端面设置;所述第三永磁体的外端面和第四永磁体外端面的极性相反且对应第二支脚的端面设置;所述永磁体的端面和其对应支脚的端面具有气隙,所述U型磁轭的两个支脚产生的交变磁极使永磁体、第二磁轭和摆臂往复摆动;
    其特征在于,所述控制方法包括:
    设置脉冲参数;
    所述控制单元根据设置的脉冲参数,输出具有对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,所述摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。
  2. 如权利要求1所述的控制方法,其特征在于,所述控制单元输出第一交变脉冲,以使摆臂以满幅摆动模式进行往复摆动;其中,所述第一交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第一交变脉冲的频率大于零且小于或等于满幅摆动最大交变脉冲频率Fa。
  3. 如权利要求2所述的控制方法,其特征在于,所述控制单元增加输出的第一交变脉冲的频率,以使摆臂往复摆动的频率加快。
  4. 如权利要求1所述的控制方法,其特征在于,所述控制单元输出第二交变脉冲,以使摆臂以次幅摆动模式进行往复摆动;其中,所述第二交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第 二交变脉冲的频率大于满幅摆动最大交变脉冲频率Fa,且小于或等于交变脉冲占空比为100%时满幅摆动最小脉冲宽度Tb对应的频率Fb,Fb=1/(2*Tb)。
  5. 如权利要求4所述的控制方法,其特征在于,所述控制单元增加输出的第二交变脉冲的频率,以使摆臂摆动的幅度减小。
  6. 如权利要求2至5中任一项所述的控制方法,其特征在于,当摆动电机的供电电压变小或摆动电机的负载变大时,增加控制单元输出的交变脉冲的脉冲宽度。
  7. 如权利要求1所述的控制方法,其特征在于,所述控制单元输出第三交变脉冲,以使摆臂以原位抖动模式进行摆动;其中,所述第三交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第三交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td)。
  8. 如权利要求7所述的控制方法,其特征在于,所述控制单元增加输出的第三交变脉冲的脉冲宽度,以使摆臂摆动的幅度增大。
  9. 如权利要求1所述的控制方法,其特征在于,所述控制单元输出由第四交变脉冲和第五交变脉冲构成的复合交变脉冲,以使摆臂以复合摆动模式进行往复摆动;
    其中,所述第四交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;
    所述第五交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第五交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td);
    所述第四交变脉冲和第五交变脉冲以正负电平在时序上互不交叠的形式构成所述复合交变脉冲。
  10. 如权利要求1所述的控制方法,其特征在于,所述设置脉冲参数包括:
    检测和/或接收用户的心跳频率信号;
    根据所述心跳频率信号来设置脉冲参数,使得交变脉冲的频率与心跳频率成对应关系。
  11. 一种摆动电机,所述摆动电机包括U型磁轭、控制单元、可绕支点摆动的摆臂、第二磁轭以及四个永磁体;所述U型磁轭具有第一支脚和第二支脚,所述第一支脚和第二支脚上分别缠绕有线圈;所述控制单元与线圈电连接,并产生交变脉冲,使U型磁轭的两个支脚的端面产生交变磁极;所述摆臂自U型磁轭的端面向外延伸,且以支点为界,所述摆臂靠近U型磁轭的一端为内臂,所述摆臂远离U型磁轭的一端为外臂;所述第二磁轭安装在内臂靠近U型磁轭的一端;所述永磁体固定安装在第二磁轭上;所述四个永磁体依次并排设置,且按照排列顺序依次为第一永磁体、第二永磁体、第三永磁体和第四永磁体;所述第一永磁体和第四永磁体的外端面的极性相同,所述第二永磁体和第三永磁体的外端面的极性相同;并且所述第一永磁体的外端面和第二永磁体外端面的极性相反且对应第一支脚的端面设置;所述第三永磁体的外端面和第四永磁体外端面的极性相反且对应第二支脚的端面设置;所述永磁体的端面和其对应支脚的端面具有气隙,所述U型磁轭的两个支脚产生的交变磁极使永磁体、第二磁轭和摆臂往复摆动;
    其特征在于,所述控制单元还用于存储设置的脉冲参数,并根据设置的脉冲参数,输出具有对应脉冲宽度和频率的交变脉冲,以使摆臂以所述脉冲参数对应的摆动模式进行摆动;其中,所述摆动模式包括满幅摆动模式、次幅摆动模式、原位抖动模式和复合摆动模式的至少一种,其中所述复合摆动模式由满幅摆动模式和原位抖动模式叠加生成,或者,由次幅摆动模式和原位抖动模式叠加生成。
  12. 如权利要求11所述的摆动电机,其特征在于,所述控制单元用于输出第一交变脉冲,以使摆臂以满幅摆动模式进行往复摆动;其中,所述第一交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第一交变脉冲的频率大于零且小于或等于满幅摆动最大交变脉冲频率Fa。
  13. 如权利要求11所述的摆动电机,其特征在于,所述控制单元用于输出第二交变脉冲,以使摆臂以次幅摆动模式进行往复摆动;其中,所述第二交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第二交变脉冲的频率大于满幅摆动最大交变脉冲频率Fa,且小于或等于交变脉冲占空比为100%时满幅摆动最小脉冲宽度Tb对应的频率Fb,Fb=1/(2*Tb)。
  14. 如权利要求11所述的摆动电机,其特征在于,所述控制单元用于输出第三交变脉冲,以使摆臂以原位抖动模式进行摆动;其中,所述第三交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第三交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td)。
  15. 如权利要求11所述的摆动电机,其特征在于,
    所述控制单元用于输出由第四交变脉冲和第五交变脉冲构成的复合交变脉冲,以使摆臂以复合摆动模式进行往复摆动;其中,所述第四交变脉冲的脉冲宽度大于或等于满幅摆动最小脉冲宽度Tb;所述第五交变脉冲的脉冲宽度小于满幅摆动最小脉冲宽度Tb,且大于或等于起摆最小脉冲宽度Td;所述第五交变脉冲的频率大于0,且小于或等于交变脉冲占空比为100%时起摆最小脉冲宽度Td对应的频率Fd,Fd=1/(2*Td);所述第四交变脉冲和第五交变脉冲以正负电平在时序上互不交叠的形式构成所述复合交变脉冲。
  16. 如权利要求11所述的摆动电机,其特征在于,还包括接收单元和设置单元,所述接收单元用于接收用户的心跳频率信号,所述设置单元用于根据所述心跳频率信号来设置脉冲参数,使得交变脉冲的频率与心跳频率成对应关系。
PCT/CN2017/081717 2017-04-24 2017-04-24 一种用于摆动电机的控制方法及摆动电机 WO2018195726A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/607,717 US10924049B2 (en) 2017-04-24 2017-04-24 Control method for oscillating motors and an oscillating motor
JP2019557799A JP6853542B2 (ja) 2017-04-24 2017-04-24 揺動モータに使用される制御方法および揺動モータ
PCT/CN2017/081717 WO2018195726A1 (zh) 2017-04-24 2017-04-24 一种用于摆动电机的控制方法及摆动电机
EP17907358.0A EP3618267B1 (en) 2017-04-24 2017-04-24 Control method for oscillating motor and oscillating motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/081717 WO2018195726A1 (zh) 2017-04-24 2017-04-24 一种用于摆动电机的控制方法及摆动电机

Publications (1)

Publication Number Publication Date
WO2018195726A1 true WO2018195726A1 (zh) 2018-11-01

Family

ID=63918050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081717 WO2018195726A1 (zh) 2017-04-24 2017-04-24 一种用于摆动电机的控制方法及摆动电机

Country Status (4)

Country Link
US (1) US10924049B2 (zh)
EP (1) EP3618267B1 (zh)
JP (1) JP6853542B2 (zh)
WO (1) WO2018195726A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010573B1 (ja) * 2020-10-19 2022-01-26 勝美 清水 増力装置
US20240058524A1 (en) * 2022-08-18 2024-02-22 Insulet Corporation Rotary solenoid micro actuator with drive coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181090B1 (en) * 1998-07-28 2001-01-30 Matsushita Electric Works, Ltd. Drive control method for linear oscillating motors and a linear oscillating motor
JP2001275332A (ja) 2000-03-28 2001-10-05 Matsushita Electric Works Ltd 振動型リニアアクチュエータ
CN105588314A (zh) * 2015-05-28 2016-05-18 青岛海信日立空调系统有限公司 一种导风板的控制方法和控制装置
CN105610296A (zh) * 2016-02-19 2016-05-25 胡建坤 隔膜泵及电动喷雾器
CN105598797A (zh) * 2016-02-19 2016-05-25 胡建坤 电动磨削器
CN105686335A (zh) * 2016-02-19 2016-06-22 胡建坤 用于生物体体表清洁的电动清洁毛刷
CN105743319A (zh) * 2016-02-19 2016-07-06 胡建坤 摆动电机和电推剪

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493793A (en) * 1968-07-05 1970-02-03 Oster Mfg Co John Hair clipper having oscillating armature motor
US3636391A (en) * 1970-10-07 1972-01-18 Jack E Horner Reciprocating motor with magnetic drive means
US3812389A (en) * 1972-11-10 1974-05-21 Oster Corp Hair clipper with improved blade driving means
CN1025014C (zh) 1992-08-04 1994-06-15 宁波发源美容器具有限公司 永磁式电推剪
JP3382061B2 (ja) * 1995-05-31 2003-03-04 松下電工株式会社 リニア振動モータ
JP3749350B2 (ja) * 1997-05-19 2006-02-22 アルプス電気株式会社 ゲーム機用操作装置
JP2001045791A (ja) * 1999-08-03 2001-02-16 Global Cooling Bv リニアモータの往復振幅制御回路
JP2006008401A (ja) * 2004-06-29 2006-01-12 Nitto Seiko Co Ltd 部品供給装置
JP2008299297A (ja) * 2007-06-04 2008-12-11 Canon Inc 揺動体装置、及び揺動体装置の振動系の駆動制御方法
WO2012023121A2 (en) * 2010-08-19 2012-02-23 Braun Gmbh Method for operating an electric appliance and electric appliance
CN203357478U (zh) 2013-05-10 2013-12-25 宁波真和电器股份有限公司 电推剪的摆动杆
EP3257149A4 (en) * 2015-02-13 2018-03-07 Resonant Systems, Inc. Oscillating-resonant-module controller
WO2017031964A1 (zh) * 2016-02-19 2017-03-02 胡建坤 摆动电机及电推剪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181090B1 (en) * 1998-07-28 2001-01-30 Matsushita Electric Works, Ltd. Drive control method for linear oscillating motors and a linear oscillating motor
JP2001275332A (ja) 2000-03-28 2001-10-05 Matsushita Electric Works Ltd 振動型リニアアクチュエータ
CN105588314A (zh) * 2015-05-28 2016-05-18 青岛海信日立空调系统有限公司 一种导风板的控制方法和控制装置
CN105610296A (zh) * 2016-02-19 2016-05-25 胡建坤 隔膜泵及电动喷雾器
CN105598797A (zh) * 2016-02-19 2016-05-25 胡建坤 电动磨削器
CN105686335A (zh) * 2016-02-19 2016-06-22 胡建坤 用于生物体体表清洁的电动清洁毛刷
CN105743319A (zh) * 2016-02-19 2016-07-06 胡建坤 摆动电机和电推剪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618267A4

Also Published As

Publication number Publication date
EP3618267A4 (en) 2020-07-29
EP3618267A1 (en) 2020-03-04
JP2020518223A (ja) 2020-06-18
EP3618267B1 (en) 2022-05-04
JP6853542B2 (ja) 2021-03-31
US10924049B2 (en) 2021-02-16
US20200136545A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US9941830B2 (en) Linear vibration modules and linear-resonant vibration modules
US10511214B2 (en) Oscillating motor and electric clippers
JP5224209B2 (ja) 二次元共鳴振動モーター
US20140018713A1 (en) Personal vibration appliance
US20090243405A1 (en) Electric reciprocating motion device with spring motor
JP2010125263A (ja) 電動歯ブラシ
US8093767B2 (en) Linear-resonant vibration module
US10615677B2 (en) Actuator, air pump, beauty treatment device, and laser scanning device
AU2010254267A1 (en) Motor for a personal skin care appliance
WO2018195726A1 (zh) 一种用于摆动电机的控制方法及摆动电机
CN105686335B (zh) 用于生物体体表清洁的电动清洁毛刷
CN107086840B (zh) 一种用于摆动电机的控制方法及摆动电机
WO2009084937A1 (fr) Dispositif thérapeutique à champ magnétique pulsé
CN205456951U (zh) 用于生物体体表清洁的电动清洁毛刷
WO2018195725A1 (zh) 一种仿真器官及其控制方法
JP2007289911A (ja) 共鳴振動モーター
CN221263608U (zh) 电动牙刷及其振动电机
CN202143657U (zh) 一种音波电动牙刷
CN116849860A (zh) 具有双工作模式的电动牙刷及控制方法
KR100625879B1 (ko) 동력 발생장치 및 그 구동방법
CN118436450A (zh) 一种电动牙刷控制装置、电动牙刷及控制方法
LV13975B (lv) Terapeitiska ierīce ar pulsējošu magnētisko lauku
UA74668C2 (en) Massaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017907358

Country of ref document: EP

Effective date: 20191125