WO2018194348A1 - 적층 시스템 - Google Patents

적층 시스템 Download PDF

Info

Publication number
WO2018194348A1
WO2018194348A1 PCT/KR2018/004449 KR2018004449W WO2018194348A1 WO 2018194348 A1 WO2018194348 A1 WO 2018194348A1 KR 2018004449 W KR2018004449 W KR 2018004449W WO 2018194348 A1 WO2018194348 A1 WO 2018194348A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
index layer
high refractive
layer
lamination system
Prior art date
Application number
PCT/KR2018/004449
Other languages
English (en)
French (fr)
Inventor
이현주
강현민
김진용
오영훈
Original Assignee
주식회사 케이씨씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이씨씨 filed Critical 주식회사 케이씨씨
Priority to CN201880024779.7A priority Critical patent/CN110494588A/zh
Priority to US16/499,336 priority patent/US20200024185A1/en
Publication of WO2018194348A1 publication Critical patent/WO2018194348A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • C03C17/2456Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/216ZnO
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/218V2O5, Nb2O5, Ta2O5
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/219CrOx, MoOx, WOx
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/22ZrO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/281Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/284Halides
    • C03C2217/285Fluorides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/29Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/151Deposition methods from the vapour phase by vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering

Definitions

  • the present invention relates to a lamination system.
  • the hardware part is getting bigger and the design element is added to build a unique image for each manufacturer.
  • the mobile device has many characteristics such as frequent friction with the user's hand as well as contact with various external environments, and thus requires not only excellent corrosion resistance and abrasion resistance but also considerable surface hardness, strength and excellent adhesion. In addition to excellent surface texture, high quality color is very important.
  • the anodizing method may be used as the method for producing the most diverse colors.
  • the method is not only expensive, but lacks a high-quality color or transparency required in an emotional age.
  • the present invention may be utilized in an electronic device including a display panel, and there is a need for a technology capable of imparting luxury by implementing deep and subtle color in various fields such as furniture and home appliances.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2014-0138467
  • the technical problem to be solved in the present invention is to provide a highly reflective laminated system.
  • the present invention provides a lamination system comprising a substrate and a high refractive index layer having a refractive index of at least 2.0 and a thickness of 70 nm or less on the substrate.
  • the lamination system according to an embodiment of the present invention may exhibit a transparent and subtle color feeling and a reflection effect, when applying the lamination system according to the present invention, a deep and subtle color feeling of ceramic texture and / or an advanced texture may be applied to a substrate. Can be implemented.
  • FIG. 1 is a schematic diagram of a single layer lamination system 100 including a high refractive index layer 120 on a substrate 110, in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a two-layer lamination system 200 that in turn includes a high refractive index layer 220 and a low refractive index layer 230 on a substrate 210, in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a three-layer lamination system 300 including a high refractive index layer 320, a low refractive index layer 330, and a high refractive index layer 340 on a substrate 310 in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic diagram illustrating an example of a structure including a lamination system 400, a primer layer 410, and an anti-fingerprint layer 420, according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating an example of a structure including a paint coating layer 530, a lamination system 500, a primer layer 510, and an anti-fingerprint layer 520, according to an embodiment of the present invention.
  • a lamination system includes a substrate and a high refractive index layer having a refractive index of 2.0 or more and a thickness of 70 nm or less on the substrate.
  • the lamination system according to an embodiment of the present invention includes a high refractive index layer having a refractive index of 2.0 or more and a thickness of 70 nm or less on the substrate, thereby exhibiting a transparent and subtle color feeling and reflection effect, and thus, Deep, subtle color or fine texture can be achieved.
  • the lamination system comprises a substrate
  • the substrate may include both transparent and opaque substrates, specifically, glass, polyethylene terephthalate (PEET), high gloss (high) glossy), metal, or glass / PET.
  • the refractive index of the substrate is not limited thereto, but may be, for example, 1.50 to 1.52.
  • the thickness of the substrate is not limited thereto, but may be, for example, in a range of 0.3 mm to 6 mm.
  • the lamination system may include a high refractive index layer having a refractive index of 2.0 or more and a thickness of 70 nm or less on the substrate.
  • the refractive index of the high refractive index layer in the lamination system may be 2.0 or more, more specifically 2.0 to 3.0, when the refractive index of the high refractive index layer is within the above range, the soft and various color and reflection effects desired in the present invention Can be implemented excellently.
  • the refractive index is not limited thereto, but may be measured using, for example, an ellipsometer facility.
  • the thickness of the high refractive index layer may be 70 nm or less, more specifically 3 nm to 70 nm, even more specifically 3 nm to 60 nm.
  • the lamination system may have a change in reflectance of a surface or a coating surface according to the thickness of the high refractive index layer, which may change color and depth.
  • the thickness of the high refractive index layer is greater than 70 nm, since the desired reflectance or color may not be realized in the present invention, high quality color or transparency may be degraded.
  • the lamination system may implement a system having various structures including a substrate and a high refractive index layer.
  • the stacking system 100 may be a single layer system including a substrate 110 and a high refractive index layer 120 on the substrate 110 as shown in FIG. 1.
  • the lamination system, The high refractive index layer on the substrate, and the high refractive index layer may be a multilayer system further comprising a low refractive index layer having a lower refractive index than the high refractive index layer. That is, the lamination system may include the high refractive index layer and the low refractive index layer, or two or more multilayer coating layers in which they are repeatedly stacked.
  • the stacking system 200 may have a low refractive index layer 220 on the substrate 210, a high refractive index layer 220, and a high refractive index layer 220 as illustrated in FIG. 2.
  • the refractive index layer 230 may be included.
  • the stacking system 300 according to another embodiment of the present invention, the high refractive index layer 320, the high refractive index layer 320 on the substrate 310, and the substrate 310 as shown in FIG.
  • the low refractive index layer 330 and the high refractive index layer 340 may be sequentially stacked on the low refractive index layer 330.
  • the lamination system may include a high refractive index layer, a low refractive index layer, a high refractive index layer, a low refractive index layer, a high refractive index layer, and the like, which are sequentially stacked on a substrate.
  • the number of repetitive laminations of the high refractive index layer and the low refractive index layer can be variously changed according to the desired design or performance without impairing the effects of the present invention.
  • the outermost layer of the multilayer coating layer may be a low refractive index layer or a high refractive index layer, but is not limited thereto, the present invention is preferably to implement the desired reflectance and color May be a high refractive index layer.
  • the low refractive index layer may have a refractive index of 1.8 or less, and more specifically, a refractive index of 1.0 to 1.8.
  • the difference in the refractive index of the high refractive index layer and the low refractive index layer within the above range can implement the desired reflectivity in the present invention, it is possible to implement a deep, soft and various color feeling excellent have.
  • the thickness of the low refractive index layer may be 70 nm or less, more specifically 3 nm to 70 nm, even more specifically 3 nm to 60 nm.
  • the reflectance of the surface or the coating surface may vary according to the thickness of the low refractive index layer, which may change color and depth.
  • the thickness of the low refractive index layer is greater than 70 nm, since the desired reflectance or color may not be realized in the present invention, high-quality color or transparency may be degraded.
  • the mechanism of the present invention is not limited thereto, the high refractive index layer and the low refractive index layer having different refractive indices in the lamination system may have various colors due to differences in refractive index and / or surface reflectance between the layers. Perception can be implemented.
  • the refractive index difference between the high refractive index layer and the low refractive index layer may be 0.2 to 1.5, specifically 0.3 to 1.2.
  • a lamination system including a high refractive index layer and a low refractive index layer satisfying the above range has a reflectance and color desired in the present invention, specifically, a surface reflectance of 8% to 40%, and a color a * value of the coated surface (laminated surface). This range is -5 to +5, and the b * value can satisfy the range -10 to +10.
  • the optical thicknesses of the high refractive index layer and the low refractive index layer may be important for implementing the above range.
  • the optical thickness is a value obtained by multiplying the physical thicknesses of the high refractive index layers and the low refractive index layers which are isotropic optical elements by the refractive index. That is, nd is the product of the refractive index n of the medium and the thickness d.
  • the optical thickness of the low refractive index layer may be 3 to 100 nm, specifically 3 to 70 nm, when the optical thickness of the low refractive index layer is more than 100 nm or less than 3 nm, the object in the present invention Since it is impossible to implement reflectance or color, high quality color or transparency may be deteriorated.
  • the optical thickness of the high refractive index layer may be 6 nm to 180 nm, specifically 6 nm to 100 nm, when the optical thickness of the high refractive index layer is more than 180 nm or less than 6 nm in the present invention Since the desired reflectivity or color cannot be realized, a problem of deterioration of high quality color or transparency may appear.
  • the thicknesses of each of the high refractive index layers and each of the low refractive index layers may be the same or different from each other.
  • a high refractive index layer, a low refractive index layer, and a high refractive index layer, all having a thickness of 20 nm may be sequentially stacked on the substrate, or a high refractive index layer having a thickness of 15 nm and a low thickness of 13 nm may be stacked on the substrate.
  • the refractive index layer and the high refractive index layer having a thickness of 25 nm may be stacked in this order.
  • the material of the high refractive index layer in the lamination system satisfies the refractive index of 2.0 or more, can be used in various ranges that do not impair the effects of the present invention
  • the material of the high refractive index layer is
  • it may include one or more materials selected from the group consisting of aluminum nitride, silicon nitride, silicon zirconium nitride, titanium oxide, zinc oxide, tin oxide, zirconium oxide, zinc-tin oxide, chromium oxide, and niobium oxide.
  • the material of the high refractive index layer may include titanium oxide or silicon nitride, and may preferably include silicon nitride.
  • the material of the low refractive index layer in the lamination system satisfies the refractive index of 1.8 or less, can be used in various ranges that do not impair the effects of the present invention
  • the material may include, for example, one or more materials selected from the group consisting of magnesium fluoride, aluminum oxide, silicon oxide, silicon oxynitride, silicon oxycarbide and silicon-aluminum mixed oxides. More specifically, the material of the low refractive index layer may include silicon oxide or aluminum oxide.
  • the types of materials included in the material of each of the high refractive index layer and each of the low refractive index layer may be the same or different from each other in a range satisfying each refractive index.
  • the surface reflectivity of the lamination system may be 8% to 40%, specifically 8% to 30%.
  • the surface reflectance may be measured, for example, by using a spectrophotometer (Model Lambda 950, Perkin Elmer Co., Ltd.) for reflectance of light at the surface or coating surface in the wavelength range of 380 to 780 nm.
  • the color and depth of implementation may vary depending on the surface reflectance of the lamination system. If the surface reflectance of the lamination system is less than 8%, there may be a problem in the implementation of the ceramic feeling in terms of aesthetics, and if it exceeds 40% there may be a problem in implementing a subtle color feeling due to the high reflectance.
  • the lamination system has a coating surface color a * value presented in CIELAB color space coordinates for an observer angle of 10 °, in the range of -5 to +5, and b * value of -10 to It may be in the range of +10, and in the above range, a deep and subtle color of the ceramic texture may be excellently implemented.
  • a method of laminating a high refractive index layer and a low refractive index layer on a substrate is, for example, sputtering, evaporation, ion plating, and chemical vapor deposition.
  • Deposition, CVD may be one or more selected.
  • various structures may be implemented using the stacking system.
  • various structures may be implemented by means of coating or laminating various coating layers on the back and / or front side of the lamination system.
  • a single layer or multilayer stacking system 400 including a substrate and a high refractive index layer, and SiO 2 on the stacking system 400.
  • a single layer or multilayer stacking system 500 including a substrate and a high refractive index layer, and SiO 2 on the stacking system 500.
  • Primer layer 510; And a fingerprint prevention layer 520 may include a structure including various paint coating layers 530 on the back surface of the substrate.
  • the coating layer 530 may include, for example, at least one coating layer selected from a glass primer layer, a shielding layer, a shielding color layer, a UV layer, and a scattering prevention layer.
  • the lamination system includes a refractive index layer that satisfies a specific range of refractive index and thickness on a substrate, thereby exhibiting a transparent and subtle color and reflection effect. Color or high quality texture can be achieved.
  • the color coating composition on the back of the substrate since the color of the organic paint can be expressed in a ceramic feel, it can be usefully used in various applications including a mobile device.
  • a lamination system including a single coating layer was obtained by laminating TiO 2 having a refractive index of 2.4 (ellipsometer measuring instrument) on a glass substrate having a thickness of 0.5 mm by a sputtering method at a thickness of 50 nm.
  • TiO 2 high refractive index layer
  • SiO 2 low refractive index layer
  • TiO 2 high refractive index layer
  • Example 2 Except for changing the thickness of TiO 2 and SiO 2 as shown in Table 1, the same method as in Example 2 was carried out to obtain a lamination system including a multilayer coating layer.
  • Example 2 Except for changing the thickness of TiO 2 and SiO 2 as shown in Table 3, the same method as in Example 2 was carried out to obtain a lamination system including a multilayer coating layer.
  • a AZO (high refractive index layer) having a refractive index of 1.97, SnO (low refractive index layer) having a refractive index of 1.8 and AZO (high refractive index layer) were sequentially laminated on a 0.5 mm thick glass substrate by the thickness of Table 4 below. This obtained the lamination system containing a multilayer coating layer.
  • the laminated system containing a multilayer coating layer was obtained by laminating
  • Example 1 Example 2
  • Example 3 Example 4
  • Reflectance and coating surface color were measured as follows using single or multilayer coating films (lamination systems) obtained according to the above Examples and Comparative Examples, and the results are shown in Tables 7 to 12 below.
  • the light reflectance at the coating surface (surface) in the wavelength range of 380 to 780 nm was measured by a spectrophotometer (Model Lambda 950, Perkin Elmer).
  • the average value (Y) obtained by multiplying the measured light reflectance by the weighting function corresponding to AM1.5 according to the ISO9050 standard was obtained.
  • CIELAB color space coordinates (CIE L *, CIE a *, CIE b *) for an observer angle of 10 ° are described in F. W. Billmeyer, Jr., “Current American Practice in Color Measurement,” Applied Optics, Vol. 8, No. 4, pp. 737-750 (April 1969).
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Y (reflectivity,%) 32.1 25.7 15.8 17.3 10.9 11.4 L * 63.5 57.8 46.7 48.6 39.4 40.3 a * -2.2 -2.1 -1.8 -2.2 -0.9 -0.9 b * -5.1 -6.0 -1.8 0.6 -1.8 -4.3
  • Example 7 Example 8 Example 9 Y (reflectivity,%) 21.8 18.1 18.2 L * 53.8 49.7 49.7 a * -2.1 -1.6 -1.9 b * 3.7 0.3 3.7
  • Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Y (reflectivity,%) 18.6 8.3 13.4 48.9 L * 50.3 34.6 43.3 75.4 a * 2.2 23.3 13.1 -1.5 b * -24.8 -34.9 -25.9 60.5
  • Comparative Example 5 Comparative Example 6 Comparative Example 7 Y (reflectivity,%) 10.8 10.7 9.6 L * 39.3 39.1 37.2 a * 10.8 10.7 13.6 b * 0.3 2.3 -14.2
  • Comparative Example 8 Comparative Example 9 Comparative Example 10 Y (reflectivity,%) 10.9 12.9 9.3 L * 39.4 42.6 36.5 a * 17.4 14.4 21.5 b * -38.8 -33.2 -39.4
  • Comparative Example 11 Comparative Example 12 Comparative Example 13 Y (reflectivity,%) 7.1 6.9 6.6 L * 32.1 31.6 30.8 a * -0.5 0 0.3 b * 0.4 4.4 4.1
  • the lamination systems of Examples 1 to 9 obtained according to the embodiment of the present invention all satisfy the range of the reflectance within 8% to 40%, the coating surface color a * value is in the range of -5 to +5, b * value This range of -10 to +10 was satisfied. In contrast, the lamination system of Comparative Examples 1 to 13 did not satisfy the reflectance and coating surface color range.
  • TiO 2 high refractive index layer
  • SiO 2 low refractive index layer
  • TiO 2 high refractive index layer
  • Example 2 even laminating a TiO 2, SiO 2 and TiO 2 on a glass substrate, as to 6, and a stack of refractive index layer or Comparative Examples 1 to 4 that the more even the thickness of the low refractive index layer exceeds 70 nm In the case of the system, it was confirmed that the range of the reflectance desired in the present invention and the coating surface color value deviated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

본 발명은 기재, 및 상기 기재 상에 굴절률이 2.0 이상이고, 두께가 70 nm 이하인 고굴절률층을 포함하는 것인 적층 시스템을 제공한다.

Description

적층 시스템
본 발명은 적층 시스템에 관한 것이다.
최근, 스마트폰 및 태블릿 PC 등의 모바일 기기 보급이 급속도로 확대되고 있으며, 그에 따라 소비자들의 요구사항도 점점 고급화되어 가고 있다. 특히, 소프트웨어부터 하드웨어에 이르기까지 그러한 요구사항에 부응하고자 나날이 발전을 거듭하고 있다.
고급화의 하나의 전략으로, 하드웨어 부분의 경우, 화면의 대형화가 되어 가고, 디자인 요소의 가미를 통해 제조사 마다 독특한 이미지를 구축하는 고급화 전략을 취하고 있다.
통상 상기 모바일 기기는 사용자 손과의 잦은 마찰은 물론 다양한 외부환경과의 접촉이 많은 특성을 가짐에 따라, 기능상으로는 뛰어난 내식성과 내마모성뿐만 아니라 상당한 표면 경도, 강도 및 우수한 접착성이 요구되고, 외관상으로는 우수한 표면 질감과 더불어 고품격의 색상구현이 매우 중요하다.
이러한 고품격의 색상 구현을 위해 기재에 적용된 화학적 및 물리적 코팅 방법이 다양하게 알려져 있다. 예를 들면 폴리에스테르 수지에 분산된 무기안료를 이용한 착색코팅법, ITO를 진공증착법을 이용하여 기재 표면의 칼라 구현방법 및 기재의 표면에 PVD법으로 박막으로 코팅하고 이온주입법을 이용하여 이온화된 금속이온 또는 가스이온을 주입하여 색상을 변화키는 코팅방법이 연구되어 왔다.
그러나 가장 다양한 색상을 낼 수 있는 방법으로는 아노다이징법(Anodizing)이용될 수 있으나, 상기 공법은 소재단가가 고가일 뿐만 아니라 감성시대에 요구되는 고품위 색감이나 투명감이 없는 것이 단점이다.
따라서, 투명 기재를 그대로 활용하면서 새로운 트렌드인 세라믹 느낌의 깊고 은은한 칼라감을 구현함으로써 고급스러움을 부여할 수 있는 기술이 요구되며, 이러한 기술은, 모바일 기기뿐만 아니라 다양한 분야에도 적용될 수 있다. 예를 들면, 디스플레이 패널을 포함하는 전자 디바이스에 활용될 수도 있으며, 가구나 가전 제품과 같은 다양한 분야에서도 깊고 은은한 칼라감을 구현함으로써 고급스러움을 부여할 수 있는 기술이 필요한 실정이다.
(특허문헌 1) 대한민국 공개특허공보 제2014-0138467호
본 발명에서 해결하고자 하는 기술적 과제는 고반사 적층 시스템을 제공하는 것이다.
본 발명은 일 실시예에 따라, 기재, 및 상기 기재 상에 굴절률이 2.0 이상이고, 두께가 70 nm 이하인 고굴절률층을 포함하는 적층 시스템을 제공한다.
본 발명의 일 실시예에 따른 적층 시스템은 투명하면서도 은은한 칼라감 및 반사 효과를 나타낼 수 있으므로, 본 발명에 따른 적층 시스템을 적용하는 경우, 기재에 세라믹 질감의 깊고 은은한 칼라감 및/또는 고급 질감을 구현할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따라, 기재(110) 상에 고굴절률층(120)을 포함하는 단층의 적층 시스템(100)의 개략도이다.
도 2는 본 발명의 일 실시예에 따라, 기재(210) 상에 고굴절률층(220) 및 저굴절률층(230)을 차례로 포함하는 2층의 적층 시스템(200)의 개략도이다.
도 3은 본 발명의 일 실시예에 따라, 기재(310) 상에 고굴절률층(320), 저굴절률층(330) 및 고굴절률층(340)을 차례로 포함하는 3층의 적층 시스템(300)의 개략도이다.
도 4는 본 발명의 일 실시예에 따라, 적층 시스템(400), 프라이머층(410), 및 지문방지층(420)을 포함하는 구조의 예를 나타낸 개략도이다.
도 5는 본 발명의 일 실시예에 따라, 도료 코팅층(530), 적층 시스템(500), 프라이머층(510), 및 지문방지층(520)을 포함하는 구조의 예를 나타낸 개략도이다.
본 명세서에 첨부되는 도면에 사용되는 부호는 다음을 나타내기 위함이다.
100, 200, 300, 400, 500 : 적층 시스템
110, 210, 310 : 유리 기재
120, 220, 320, 340 : 고굴절률층
230, 330 : 저굴절률층
410, 510 : 프라이머층(SiO2)
420, 520 : 지문방지층
530 : 도료 코팅층
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 실시예에 따른 적층 시스템은 기재, 및 상기 기재 상에 굴절률이 2.0 이상이고, 두께가 70 nm 이하인 고굴절률층을 포함한다.
본 발명의 일 실시예에 따른 적층 시스템은 기재 상에 굴절률이 2.0 이상이고, 두께가 70 nm 이하인 고굴절률층을 포함함으로써, 투명하면서도 은은한 칼라감 및 반사 효과를 나타낼 수 있으므로, 기재에 세라믹 질감의 깊고 은은한 칼라감 또는 고급 질감을 구현 할 수 있다.
이하, 본 발명에 대하여 보다 상세히 설명하기로 한다.
본 발명의 일 실시예에 따르면, 상기 적층 시스템은 기재를 포함하며, 상기 기재는 투명, 불투명의 기재를 모두 포함할 수 있으며, 구체적으로는, 유리, 폴리에틸렌테레프탈레이트(PET), 하이그로시(high glossy), 금속, 또는 유리/PET를 포함할 수 있다. 상기 기재의 굴절률은 이에 제한되는 것은 아니나, 예를 들어 1.50 내지 1.52일 수 있다. 상기 기재의 두께는 이에 제한되는 것은 아니나, 예를 들어 0.3 mm 내지 6 mm의 범위일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 적층 시스템은 상기 기재 상에 굴절률이 2.0 이상이고, 두께가 70 nm 이하인 고굴절률층을 포함할 수 있다.
구체적으로, 상기 적층 시스템에서 고굴절률층의 굴절률은 2.0 이상, 더욱 구체적으로 2.0 내지 3.0일 수 있으며, 상기 고굴절률층의 굴절률이 상기 범위 내인 경우, 본 발명에서 목적하는 은은하고 다양한 칼라감 및 반사 효과를 우수하게 구현할 수 있다. 본 발명에 있어서, 굴절률은 이에 제한되는 것은 아니나, 예를 들어 ellipsometer 설비를 이용하여 측정할 수 있다.
또한, 상기 고굴절률층의 두께는 70 nm 이하, 더욱 구체적으로 3 nm 내지 70 nm, 더욱 더 구체적으로 3 nm 내지 60 nm일 수 있다. 상기 적층 시스템은 고굴절률층의 두께에 따라 표면 또는 코팅면의 반사율이 달라질 수 있으며, 이로 인해 색상 및 깊이감이 달라질 수 있다. 상기 고굴절률층의 두께가 70 nm를 초과하는 경우, 본 발명에서 목적하는 반사율 또는 색상을 구현할 수 없으므로, 고품위 색감이나 투명감이 떨어질 수 있다.
상기 적층 시스템은 기재 및 고굴절률층을 포함하는 다양한 구조의 시스템을 구현할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 적층 시스템(100)은, 도 1과 같이 기재(110), 및 상기 기재(110) 상에 고굴절률층(120)을 포함하는 단층 시스템일 수 있다.
본 발명의 또 다른 실시예에 따르면, 상기 적층 시스템은, 기재 상에 상기 고굴절률층, 및 상기 고굴절률층 상에 상기 고굴절률층 보다 굴절률이 낮은 저굴절률층을 더 포함하는 다층 시스템일 수 있다. 즉, 상기 적층 시스템은 상기 고굴절률층 및 상기 저굴절률층, 또는 이들이 반복되어 적층된 2층 이상의 다층 코팅층을 포함할 수 있다.
본 발명의 일 실시예에 따른 적층 시스템(200)은, 도 2와 같이 기재(210), 및 상기 기재(210) 상에 고굴절률층(220), 및 상기 고굴절률층(220) 상에 저굴절률층(230)을 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 적층 시스템(300)은, 도 3과 같이 기재(310), 및 상기 기재(310) 상에 고굴절률층(320), 상기 고굴절률층(320) 상에 저굴절률층(330), 및 상기 저굴절률층(330) 상에 고굴절률층(340)을 차례로 적층하여 포함할 수 있다.
또한, 본 발명의 또 다른 실시예에 따른 적층 시스템은, 기재 상에 차례로 적층되는 고굴절률층, 저굴절률층, 고굴절률층, 저굴절률층 및 고굴절률층 등을 포함할 수 있다.
상기 적층 시스템에 있어서, 상기 고굴절률층 및 저굴절률층의 반복 적층 회수는 본 발명의 효과를 저해하지 않고, 목적하는 디자인 또는 성능에 따라 다양하게 변경할 수 있다.
또한, 상기 적층 시스템이 다층 코팅층을 포함하는 경우, 상기 다층 코팅층의 최외층은 저굴절률층 또는 고굴절률층일 수 있으며, 이에 제한되는 것은 아니나, 본 발명이 목적하는 반사율 및 색상을 구현하기 위해 바람직하게는 고굴절률층일 수 있다.
상기 저굴절률층은 예를 들어, 굴절률이 1.8 이하, 더욱 구체적으로 굴절률이 1.0 내지 1.8일 수 있다. 본 발명에 일 실시예에 따르면, 상기 범위 내에서 고굴절률층의 굴절률과 저굴절률층의 굴절률 차이로 인해 본 발명에서 목적하는 반사율을 구현할 수 있으며, 이로 인해 깊고, 은은하고 다양한 칼라감을 우수하게 구현할 수 있다.
또한, 상기 저굴절률층의 두께는 70 nm 이하, 더욱 구체적으로 3 nm 내지 70 nm, 더욱 더 구체적으로 3 nm 내지 60 nm일 수 있다. 상기 적층 시스템은 저굴절률층의 두께에 따라 표면 또는 코팅면의 반사율이 달라질 수 있으며, 이로 인해 색상 및 깊이감이 달라질 수 있다. 상기 저굴절률층의 두께가 70 nm를 초과하는 경우, 본 발명에서 목적하는 반사율 또는 색상을 구현할 수 없으므로, 고품위 색감이나 투명감이 떨어질 수 있다.
또한, 본 발명의 기전이 이에 제한되는 것은 아니나, 상기 적층 시스템에 있어서, 굴절률이 서로 다른 고굴절률층 및 저굴절률층은 상기 층들 간의 굴절률의 차이 및/또는 표면 반사율의 차이로 인해 은은하면서도 다양한 칼라감을 구현할 수 있다.
예를 들어, 상기 적층 시스템에 있어서, 상기 고굴절률층 및 저굴절률층의 굴절률 차이는 0.2 내지 1.5, 구체적으로 0.3 내지 1.2일 수 있다. 상기 범위를 만족하는 고굴절률층 및 저굴절률층을 포함하는 적층 시스템은 본 발명에서 목적하는 반사율 및 색상, 구체적으로 표면 반사율이 8 % 내지 40 %이고, 코팅면(적층 표면)의 색상 a* 값이 -5 내지 +5 범위이고, b* 값이 -10 내지 +10 범위를 만족할 수 있다.
또한, 상기 적층 시스템에 있어서, 고굴절률층 및 저굴절률층의 광학두께가 상기 범위를 구현하는데 중요할 수 있다. 여기서 광학두께는 등방성 광학 소자인 고굴절률층 및 저굴절률층에서 이들의 물리적인 두께에 굴절률을 곱한 값. 즉, 매질의 굴절률 n과 두께 d의 곱인 nd를 말한다.
본 발명에 있어서, 상기 저굴절률층의 광학두께는 3 내지 100 nm, 구체적으로 3 내지 70 nm일 수 있으며, 상기 저굴절률층의 광학두께가 100 nm를 초과하거나 3 nm 미만인 경우, 본 발명에서 목적하는 반사율 또는 색상을 구현할 수 없으므로, 고품위 색감이나 투명감이 저하되는 문제가 나타날 수 있다.
본 발명에 있어서, 상기 고굴절률층의 광학두께는 6 nm 내지 180 nm, 구체적으로 6 nm내지 100 nm일 수 있으며, 상기 고굴절률층의 광학두께가 180 nm를 초과하거나 6 nm 미만인 경우 본 발명에서 목적하는 반사율 또는 색상을 구현할 수 없으므로, 고품위 색감이나 투명감이 저하되는 문제가 나타날 수 있다.
또한, 본 발명에 따른 적층 시스템이 다층 시스템인 경우, 각각의 고굴절률층 및 각각의 저굴절률층의 두께는 서로 동일하거나, 또는 서로 상이할 수 있다. 예를 들어, 기재 상에 두께가 모두 20 nm인 고굴절률층, 저굴절률층 및 고굴절률층이 차례로 적층될 수 있으며, 또는 기재 상에 두께가 15 nm인 고굴절률층, 두께가 13 nm인 저굴절률층, 및 두께가 25 nm인 고굴절률층이 차례로 적층될 수 있다.
본 발명의 일 실시예에 따르면, 상기 적층 시스템에서 고굴절률층의 소재는 굴절률이 2.0 이상을 만족하고, 본 발명의 효과를 저해하지 않은 범위에서 다양하게 사용될 수 있으며, 상기 고굴절률층의 소재는 예를 들어 알루미늄 질화물, 실리콘 질화물, 실리콘지르코늄 질화물, 티타늄 산화물, 아연 산화물, 주석 산화물, 지르코늄 산화물, 아연-주석 산화물, 크롬 산화물 및 니오븀 산화물로 구성된 군으로부터 선택되는 1종 이상의 물질을 포함할 수 있다. 더욱 구체적으로 상기 고굴절률층의 소재는 티타늄 산화물 또는 실리콘 질화물 등을 포함할 수 있으며, 바람직하게는 실리콘 질화물을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 적층 시스템에서 저굴절률층의 소재는 굴절률이 1.8 이하를 만족하고, 본 발명의 효과를 저해하지 않은 범위에서 다양하게 사용될 수 있으며, 상기 저굴절률층의 소재는 예를 들어 플루오린화마그네슘, 알루미늄 산화물, 규소 산화물, 규소 옥시질화물, 규소 옥시탄화물 및 규소-알루미늄 혼합 산화물로 구성된 군으로부터 선택되는 1종 이상의 물질을 포함할 수 있다. 더욱 구체적으로 상기 저굴절률층의 소재는 규소 산화물 또는 알루미늄 산화물 등을 포함할 수 있다.
또한, 상기 적층 시스템이 다층 시스템인 경우, 각각의 고굴절률층 및 각각의 저굴절률층의 소재에 포함되는 물질의 종류는 각각의 굴절률을 만족하는 범위에서 서로 동일하거나 서로 상이할 수 있다.
본 발명의 일 실시예에 따르면, 상기 적층 시스템의 표면 반사율은 8 % 내지 40 %, 구체적으로 8 % 내지 30 %일 수 있다. 상기 표면 반사율은 예를 들면, 380 내지 780 nm 파장대역에서 표면 또는 코팅면에서의 광 반사율을 분광투과율 측정기(모델명 Lambda 950, Perkin Elmer社)를 사용하여 측정할 수 있다. 상기 적층 시스템의 표면 반사율에 따라 구현되는 색상 및 깊이감이 달라질 수 있다. 상기 적층 시스템의 표면 반사율이 8 % 미만인 경우, 심미성 측면에서 세라믹 느낌 구현에 문제가 있을 수 있고, 40 %를 초과하는 경우 높은 반사율로 인하여 은은한 색감의 느낌 구현에 문제가 있을 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 적층 시스템은 10°의 관찰자 각에 대한 CIELAB 색 공간 좌표에 제시된 코팅면 색상 a* 값이 -5 내지 +5 범위이고, b* 값이 -10 내지 +10 범위일 수 있으며, 상기 범위인 경우 세라믹 질감의 깊고 은은한 칼라감을 우수하게 구현할 수 있다.
상기 적층 시스템에 있어서, 기재 상에 고굴절률층 및 저굴절률층을 적층하는 방법은 예를 들어, 스퍼터링법(Sputtering), 증착법(Evaporation), 이온 플레이팅법(Ion plating) 및 화학 기상 증착법(Chemical Vapor Deposition, CVD) 중에서 선택된 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 적층 시스템을 이용하여 다양한 구조를 구현할 수 있다. 예를 들어, 상기 적층 시스템의 배면 및/또는 전면에 다양한 코팅층을 코팅하거나 적층하는 수단으로 다양한 구조를 구현할 수 있다.
예를 들면, 도 4와 같이, 기재 및 고굴절률층을 포함하는 단층 또는 다층의 적층 시스템(400), 및 상기 적층 시스템(400) 상에 SiO2를 포함하는 프라이머층(410); 및 지문 방지층(Anti-Finger Coating film, 420)을 포함하는 구조를 구현할 수 있다.
또한, 도 5와 같이, 기재 및 고굴절률층을 포함하는 단층 또는 다층의 적층 시스템(500), 및 상기 적층 시스템(500) 상에 SiO2를 포함하는 프라이머층(510); 및 지문 방지층(520)을 포함하고, 기재 배면에 다양한 도료 코팅층(530)을 포함하는 구조를 구현할 수 있다. 이때, 상기 도료 코팅층 (530)은 예를 들면, 유리 프라이머층, 차폐층, 차폐 칼라층, UV층 및 비산 방지층 중에서 선택된 1층 이상의 코팅층을 포함할 수 있다. 이러한 다양한 코팅층을 포함함으로써, 칼라감 또는 기타 물성 효과를 원하는 목적에 따라 구현할 수 있다.
본 발명의 일 실시예에 따른 적층 시스템은 기재 상에 특정 범위의 굴절률 및 두께를 만족하는 굴절률층을 포함함으로써, 투명하면서도 은은한 칼라감 및 반사 효과를 나타낼 수 있으므로, 기재 상에 세라믹 질감의 깊고 은은한 칼라감 또는 고급 질감을 구현 할 수 있다. 또한, 기재의 배면에 칼라 도료 조성물과 함께 사용하는 경우, 유기 도료의 색감을 세라믹 느낌으로 나타낼 수 있으므로, 모바일 기기를 비롯한 다양한 용도로 유용하게 사용할 수 있다.
실시예
<적층 시스템의 제조>
실시예 1
두께가 0.5 mm인 유리 기재 상에 굴절률이 2.4(ellipsometer 측정기)인 TiO2를 50 nm의 두께로 스퍼터링법에 의해 적층시킴으로써 단층의 코팅층을 포함하는 적층 시스템을 얻었다.
실시예 2
두께가 0.5 mm인 유리 기재 상에 하기 표 1의 두께로 굴절률이 2.4인 TiO2(고굴절률층), 굴절률이 1.4인 SiO2(저굴절률층) 및 TiO2(고굴절률층)를 스퍼터링법에 의해 순차적으로 적층시킴으로써 다층 코팅층을 포함하는 적층 시스템을 얻었다.
실시예 3 내지 6
하기 표 1과 같이 TiO2 및 SiO2의 두께를 변경한 것을 제외하고는, 실시예 2와 동일한 방법을 수행하여 다층 코팅층을 포함하는 적층 시스템을 얻었다.
실시예 7
두께가 0.5 mm인 유리 기재 상에 하기 표 2의 두께로 굴절률이 2.1인 SixNy(x=3, y=4, 고굴절률층), 굴절률이 1.7인 Al2O3(저굴절률층) 및 SixNy(x=3, y=4, 고굴절률층)를 스퍼터링법에 의해 순차적으로 적층시킴으로써 다층 코팅층을 포함하는 적층 시스템을 얻었다.
실시예 8 및 9
하기 표 2와 같이 SiXNy 및 Al2O3의 두께를 변경한 것을 제외하고는, 실시예 7과 동일한 방법을 수행하여 다층 코팅층을 포함하는 적층 시스템을 얻었다.
비교예 1 내지 4
하기 표 3과 같이 TiO2 및 SiO2의 두께를 변경한 것을 제외하고는, 실시예 2와 동일한 방법을 수행하여 다층 코팅층을 포함하는 적층 시스템을 얻었다.
비교예 5 내지 7
두께가 0.5 mm 유리 기재 상에 하기 표 4의 두께로 굴절률이 1.97인 AZO(고굴절률층), 굴절률이 1.8인 SnO(저굴절률층) 및 AZO (고굴절률층)를 스퍼터링법에 의해 순차적으로 적층시킴으로써 다층 코팅층을 포함하는 적층 시스템을 얻었다.
비교예 8 내지 10
두께가 0.5 mm인 유리 기재 상에 하기 표 5의 두께로 굴절률이 2.4인 TiO2 (고굴절률층), 굴절률이 2.1인 SixNy(x=3, y=4), 저굴절률층) 및 TiO2 (고굴절률층)를 스퍼터링법에 의해 순차적으로 적층시킴으로써 다층 코팅층을 포함하는 적층 시스템을 얻었다.
비교예 11 내지 13
두께가 0.5 mm인 유리 기재 상에 하기 표 6의 두께로 굴절률이 1.7인 Al2O3 (고굴절률층), 굴절률이 1.4인 SiO2 (저굴절률층) 및 Al2O3 (고굴절률층)를 스퍼터링법에 의해 순차적으로 적층시킴으로써 다층 코팅층을 포함하는 적층 시스템을 얻었다.
두께(nm) 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
TiO2 - 25 10 18 13 5
SiO2 - 13 13 35 50 30
TiO2 50 15 15 13 4 5
Glass ( 5T )
굴절률 : TiO2 = 2.4, SiO2 = 1.4
두께(nm) 실시예7 실시예8 실시예9
Si3N4 30 30 10
Al2O3 10 30 30
Si3N4 30 10 30
Glass ( 5T )
굴절률 : Si3N4 = 2.1, Al2O3 = 1.7
두께(nm) 비교예1 비교예2 비교예3 비교예4
TiO2 30 30 80 80
SiO2 80 10 10 80
TiO2 10 80 30 80
Glass ( 5T )
굴절률 : TiO2 = 2.4, SiO2 = 1.4
두께(nm) 비교예5 비교예6 비교예7
AZO 30 30 60
SnO 60 30 30
AZO 30 60 40
Glass ( 5T )
굴절률 : AZO = 1.97, SnO = 1.88
두께(nm) 비교예8 비교예9 비교예10
TiO2 30 60 30
Si3N4 60 30 30
TiO2 30 30 60
Glass ( 5T )
굴절률 : TiO2 = 2.4, SiO2 = 2.1
두께(nm) 비교예11 비교예12 비교예13
Al2O3 15 10 10
SiO2 65 65 70
Al2O3 10 30 30
Glass ( 5T )
굴절률 : Al2O3 = 1.7, SiO2 = 1.4
실험예
상기 실시예 및 비교예에 따라 얻어진 단층 또는 다층 도막(적층 시스템)을 이용하여 반사율 및 코팅면 색상을 다음과 같이 측정하고, 그 결과를 하기 표 7 내지 12에 나타내었다.
(1) 반사율 평가
상기 제조된 실시예 및 비교예의 적층 시스템에 대하여, 380 내지 780 nm 파장대역에서 코팅면(표면)에서의 광 반사율을 분광투과율 측정기(모델명 Lambda 950, Perkin Elmer社)로 측정하였다. 측정된 광 반사율에 ISO9050 규격에 따라 AM1.5에 해당하는 중가계수(Weighting function)를 곱한 평균값(Y)을 구하였다.
(2) 코팅면 색상
10°의 관찰자 각에 대한 CIELAB 색 공간 좌표(CIE L*, CIE a*, CIE b*)는, F. W. Billmeyer, Jr., "Current American Practice in Color Measurement," Applied Optics, Vol. 8, No. 4, pp. 737-750 (April 1969)에 의한 값을 나타낸다.
실시예1 실시예2 실시예3 실시예4 실시예5 실시예6
Y(반사율, %) 32.1 25.7 15.8 17.3 10.9 11.4
L* 63.5 57.8 46.7 48.6 39.4 40.3
a* -2.2 -2.1 -1.8 -2.2 -0.9 -0.9
b* -5.1 -6.0 -1.8 0.6 -1.8 -4.3
실시예7 실시예8 실시예9
Y(반사율, %) 21.8 18.1 18.2
L* 53.8 49.7 49.7
a* -2.1 -1.6 -1.9
b* 3.7 0.3 3.7
비교예1 비교예2 비교예3 비교예4
Y(반사율, %) 18.6 8.3 13.4 48.9
L* 50.3 34.6 43.3 75.4
a* 2.2 23.3 13.1 -1.5
b* -24.8 -34.9 -25.9 60.5
비교예5 비교예6 비교예7
Y(반사율, %) 10.8 10.7 9.6
L* 39.3 39.1 37.2
a* 10.8 10.7 13.6
b* 0.3 2.3 -14.2
비교예8 비교예9 비교예10
Y(반사율, %) 10.9 12.9 9.3
L* 39.4 42.6 36.5
a* 17.4 14.4 21.5
b* -38.8 -33.2 -39.4
비교예11 비교예12 비교예13
Y(반사율, %) 7.1 6.9 6.6
L* 32.1 31.6 30.8
a* -0.5 0 0.3
b* 0.4 4.4 4.1
본 발명의 실시예에 따라 얻은 상기 실시예 1 내지 9의 적층 시스템은 모두 반사율이 8 % 내지 40 % 이내의 범위를 만족하고, 코팅면 색상 a* 값이 -5 내지 +5 범위, b* 값이 -10 내지 +10 범위를 만족하였다. 이에 반해, 비교예 1 내지 13의 적층 시스템은 상기 반사율 및 코팅면 색상 범위를 만족하지 못하였다.
구체적으로 살펴보면, 유리 기재 상에 70 nm 이하의 두께로 굴절률이 2.4인 TiO2(고굴절률층), 굴절률이 1.4인 SiO2(저굴절률층) 및 TiO2(고굴절률층)를 차례로 적층한 실시예 2 내지 6의 적층 시스템의 경우, 반사율이 10 % 내지 26 % 이내였고, 코팅면 색상 a* 값이 -3 내지 0, b* 값이 -6.0 내지 +0.6이었다.
이에 반해, 실시예 2 내지 6과 같이 유리 기재 상에 TiO2, SiO2 및 TiO2를 적층하더라도, 고굴절률층 또는 저굴절률층 중 한층이라도 두께가 70 nm를 초과하는 비교예 1 내지 4의 적층 시스템의 경우, 본 발명에서 목적하는 반사율의 범위 및 코팅면 색상값이 벗어남을 확인하였다.
또한, 실시예 7 내지 9와 같이 굴절률이 실시예 2 내지 6과 다르지만, 굴절률이 2.1인 SixNy(x=3, y=4), 고굴절률층), 굴절률이 1.7인 Al2O3(저굴절률층) 및 SixNy(x=3, y=4), 고굴절률층)를 유리 기재 상에 70 nm 이하로 적층한 적층 시스템의 경우 반사율이 18 % 내지 22 % 이내였고, 코팅면 색상 a* 값이 -3 내지 0, b* 값이 0 내지 +4이었다.
이에 반해, 고굴절률 및 저굴절률의 범위값이 모두 본 발명의 범위에서 벗어난 경우, 즉, 굴절률이 1.97인 AZO, 굴절률이 1.88인 SnO 및 AZO를 적층한 비교예 5 내지 7의 경우, 각각 두께가 70nm 이하로 적층하더라도, 코팅면 색상 a* 값이 본 발명의 범위에서 벗어났고, 비교예 7의 경우 코팅면 색상 a* 및 b* 값 모두 본 발명의 범위에서 벗어남을 확인하였다.
이와 더불어, 유리 기재 상에 두께가 70 nm 이하로 3층 모두 고굴절률층을 구현한 비교예 8 내지 10의 경우, 코팅면 색상 a* 및 b* 값 모두 본 발명의 범위에서 벗어남을 확인하였다.
또한, 유리 기재 상에 두께가 70 nm 이하로 3층 모두 저굴절률층을 구현한 비교예 11 내지 13의 경우, 코팅면 색상 a* 및 b* 값 모두 본 발명의 범위를 만족하나, 반사율이 6.6% 내지 7.1%의 범위로 8% 미만이었다.

Claims (13)

  1. 기재, 및
    상기 기재 상에 굴절률이 2.0 이상이고, 두께가 70 nm 이하인 고굴절률층을 포함하는 것인 적층 시스템.
  2. 청구항 1에 있어서,
    상기 고굴절률층 상에 고굴절률층 보다 굴절율이 낮은 저굴절률층이 적층된, 또는 상기 고굴절률층 및 상기 저굴절률층이 반복되어 적층된 2층 이상의 다층 코팅층을 포함하는 것인 적층 시스템.
  3. 청구항 2에 있어서,
    상기 저굴절률층은 굴절률이 1.8 이하이고, 두께가 70 nm 이하인 것인 적층 시스템.
  4. 청구항 2에 있어서,
    상기 고굴절률층 및 저굴절률층의 굴절률 차이는 0.2 내지 1.5인 것인 적층 시스템.
  5. 청구항 1에 있어서,
    상기 고굴절률층의 광학두께는 6 내지 180 nm인 것인 적층 시스템.
  6. 청구항 2에 있어서,
    상기 저굴절률층의 광학두께는 3 내지 100 nm인 것인 적층 시스템.
  7. 청구항 1에 있어서,
    상기 고굴절률층은 알루미늄 질화물, 실리콘 질화물, 실리콘지르코늄 질화물, 티타늄 산화물, 아연 산화물, 주석 산화물, 지르코늄 산화물, 아연-주석 산화물, 크롬 산화물 및 니오븀 산화물로 구성된 군으로부터 선택되는 1종 이상의 물질을 포함하는 것인 적층 시스템.
  8. 청구항 2에 있어서,
    상기 저굴절률층은 플루오린화마그네슘, 알루미늄 산화물, 규소 산화물, 규소 옥시질화물, 규소 옥시탄화물 및 규소-알루미늄 혼합 산화물로부터 선택되는 1종 이상의 물질을 포함하는 것인 적층 시스템.
  9. 청구항 2에 있어서,
    상기 다층 코팅층의 최외층이 고굴절률층인 것인 적층 시스템.
  10. 청구항 1에 있어서,
    상기 적층 시스템의 표면 반사율이 8 % 내지 40 %인 것인 적층 시스템.
  11. 청구항 1에 있어서,
    상기 적층 시스템은 10°의 관찰자 각에 대한 CIELAB 색 공간 좌표에 제시된 코팅면 색상 a* 값이 -5 내지 +5 범위이고, b* 값이 -10 내지 +10 범위인 것인 적층 시스템.
  12. 청구항 1에 있어서,
    상기 기재는 유리, 폴리에틸렌테레프탈레이트(PET), 또는 유리/PET인 것인 적층 시스템.
  13. 청구항 1에 있어서,
    상기 적층 시스템은 스퍼터링법(Sputtering), 증착법(Evaporation), 이온 플레이팅법(Ion plating) 및 화학 기상 증착법(Chemical Vapor Deposition, CVD) 중에서 선택된 1종 이상인 방법에 의해 형성된 것인 적층 시스템.
PCT/KR2018/004449 2017-04-17 2018-04-17 적층 시스템 WO2018194348A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880024779.7A CN110494588A (zh) 2017-04-17 2018-04-17 层压系统
US16/499,336 US20200024185A1 (en) 2017-04-17 2018-04-17 Laminated System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170049003A KR20180116566A (ko) 2017-04-17 2017-04-17 적층 시스템
KR10-2017-0049003 2017-04-17

Publications (1)

Publication Number Publication Date
WO2018194348A1 true WO2018194348A1 (ko) 2018-10-25

Family

ID=63856310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004449 WO2018194348A1 (ko) 2017-04-17 2018-04-17 적층 시스템

Country Status (4)

Country Link
US (1) US20200024185A1 (ko)
KR (1) KR20180116566A (ko)
CN (1) CN110494588A (ko)
WO (1) WO2018194348A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082199B1 (fr) * 2018-06-12 2020-06-26 Saint-Gobain Glass France Materiau comprenant un empilement a proprietes thermiques et esthetiques
FR3082198B1 (fr) * 2018-06-12 2020-06-26 Saint-Gobain Glass France Materiau comprenant un empilement a proprietes thermiques et esthetique
KR102281299B1 (ko) * 2019-04-15 2021-07-23 도레이첨단소재 주식회사 비산방지 데코필름, 이를 포함하는 전자 디스플레이 및 전자장치, 및 상기 비산방지 데코필름의 제작방법
CN110937821A (zh) * 2019-12-30 2020-03-31 青岛锦绣前程节能玻璃有限公司 一种可钢化阳光控制镀膜玻璃及制备方法
CN113549872B (zh) * 2020-04-07 2023-11-17 纳峰真空镀膜(上海)有限公司 黑色涂层
KR102536801B1 (ko) * 2021-02-09 2023-05-26 (주) 비엘에스 유리 용기에 레인보우 색상 코팅 방법
CN113233785B (zh) * 2021-05-25 2023-11-03 广东旗滨节能玻璃有限公司 半反半透膜玻璃及其制备方法
WO2023101299A1 (ko) * 2021-11-30 2023-06-08 한국항공대학교산학협력단 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566634B2 (ja) * 1988-10-04 1996-12-25 キヤノン株式会社 多層反射防止膜
KR20060058712A (ko) * 2003-08-13 2006-05-30 쌩-고벵 글래스 프랑스 반사방지 코팅을 포함하는 투명기판
KR100847313B1 (ko) * 2000-09-20 2008-07-21 쌩-고벵 글래스 프랑스 기재 및 상기 기재를 포함하는 글레이징
JP2014508711A (ja) * 2011-03-24 2014-04-10 サン−ゴバン グラス フランス 多層薄膜を有する透明基材
KR101469318B1 (ko) * 2012-07-05 2014-12-04 (주)엘지하우시스 반사방지막을 포함하는 투명적층체 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566634B2 (ja) * 1988-10-04 1996-12-25 キヤノン株式会社 多層反射防止膜
KR100847313B1 (ko) * 2000-09-20 2008-07-21 쌩-고벵 글래스 프랑스 기재 및 상기 기재를 포함하는 글레이징
KR20060058712A (ko) * 2003-08-13 2006-05-30 쌩-고벵 글래스 프랑스 반사방지 코팅을 포함하는 투명기판
JP2014508711A (ja) * 2011-03-24 2014-04-10 サン−ゴバン グラス フランス 多層薄膜を有する透明基材
KR101469318B1 (ko) * 2012-07-05 2014-12-04 (주)엘지하우시스 반사방지막을 포함하는 투명적층체 및 그의 제조방법

Also Published As

Publication number Publication date
KR20180116566A (ko) 2018-10-25
US20200024185A1 (en) 2020-01-23
CN110494588A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018194348A1 (ko) 적층 시스템
WO2013141478A1 (ko) 반사방지 기능을 구비한 투명기판
WO2018084411A1 (ko) 비산방지 필름
KR101124076B1 (ko) 터치 패널
US20120181063A1 (en) Transparent conductive film and touch panel
AU2004207750B2 (en) Multi-layer effect pigment with the outermost layer having a larger thickness
JP2009122416A (ja) 光学薄膜フィルム
EP4130806A1 (en) Optical laminate and article
CA2526216A1 (en) Appliance with coated transparency
WO2020080851A1 (ko) 커버 부재 및 이를 포함하는 전자 장치, 및 커버 부재 제조 방법
WO2016017999A1 (ko) 저방사 코팅, 및 저방사 코팅을 포함하는 창호용 기능성 건축 자재
JP2009083183A (ja) 光学薄膜積層体
WO2013103259A1 (ko) 시인성이 우수한 양면 투명 전도성 필름 및 그 제조 방법
WO2019216661A1 (en) Transparent substrate provided with multi-layered coating and insulation glazing unit including the same
JP2011037258A (ja) 透明導電性積層体及びその色度均一性改善法
WO2021167378A1 (ko) 다층 필름 및 이를 포함하는 적층체
WO2016148518A1 (ko) 광학 필터 및 이를 포함하는 촬상 장치
WO2015108385A1 (ko) 배리어 필름 및 그 제조 방법
JP7488671B2 (ja) 反射防止フィルムおよび画像表示装置
WO2020141717A1 (en) Transparent substrate with a multilayer thin film and multiple glazing unit comprising the same
WO2016093517A1 (ko) 터치 스크린 패널 및 이를 구비하는 화상표시장치
US20240019605A1 (en) Optical laminate and article
WO2014042360A1 (ko) 디스플레이용 보호 글라스 및 그 제조방법
WO2019004723A1 (ko) 장식 부재 및 이의 제조방법
WO2019125000A1 (ko) 내마모성 및 발색력이 우수한 스테인레스 발색 기판 및 이를 위한 스테인레스 기판의 발색방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18788343

Country of ref document: EP

Kind code of ref document: A1