WO2023101299A1 - 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법 - Google Patents

시각적 내부 거칠기를 가지는 유리 및 이의 제조방법 Download PDF

Info

Publication number
WO2023101299A1
WO2023101299A1 PCT/KR2022/018590 KR2022018590W WO2023101299A1 WO 2023101299 A1 WO2023101299 A1 WO 2023101299A1 KR 2022018590 W KR2022018590 W KR 2022018590W WO 2023101299 A1 WO2023101299 A1 WO 2023101299A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
chemically strengthened
ion
slurry
roughness
Prior art date
Application number
PCT/KR2022/018590
Other languages
English (en)
French (fr)
Inventor
최용규
이지인
고세영
Original Assignee
한국항공대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220149499A external-priority patent/KR20230081616A/ko
Application filed by 한국항공대학교산학협력단 filed Critical 한국항공대학교산학협력단
Publication of WO2023101299A1 publication Critical patent/WO2023101299A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Definitions

  • the present invention relates to chemically ion strengthened glass and manufacturing methods, and in particular to glass having visual internal roughness and manufacturing methods.
  • the chemical strengthening method applies compressive stress to the surface by replacing sodium ions or lithium ions present inside the glass with other alkali ions of larger size, such as potassium ions, and is applied to glass with a thinner thickness than physical strengthening methods. It can be done, and recently, demand has diversified, and it is applied to more expanded fields such as automobile window glass in relatively limited application fields such as cover glass of existing mobile electronic devices. In the future, it is expected that the application field will continue to expand, such as applying chemical strengthening to thin glass and applying it to flexible displays such as foldable types.
  • various functions for example, glass with improved antiglare performance, etc. are required.
  • various methods etching, coating, sandblasting, roller pressing, etc.
  • etching, coating, sandblasting, roller pressing, etc. are applied to intentionally prevent the surface of the glass from being flat for intentional scattering of light penetrating through the glass, and these (patterned) glass is increasing the practicality of engineering by generating diffuse reflection.
  • a regular or irregular concavo-convex structure is introduced on the surface of the glass to impart anti-glare properties and at the same time increase the transmittance and condensation rate of sunlight.
  • the surface of the glass according to the existing invention is uneven, there is a problem in that the effect of physical and chemical strengthening is lowered.
  • An object of the present invention is to provide a glass and a method for manufacturing the same, in which optical properties are changed without changing the shape of the outer surface in addition to chemical strengthening.
  • a chemically strengthened glass manufacturing method includes the steps of preparing a slurry or paste containing a salt of a second ion including a second ion to be ion exchanged with a first ion inside the glass, Applying the slurry or paste to the surface of glass to form a coating film, drying the coating film made of the slurry or paste on the surface of the glass, forming a different distribution of the precipitated phase of the salt of the second ion on the surface of the glass and heat-treating the glass on which the coating film is formed, which is provided between the first and second surfaces facing each other and diffuses reflection and/or scattering of light passing through the first or second surface. forming a visual internal roughness that induces
  • the distribution of the precipitated phase of the salt of the second ion is the composition of the slurry or paste (eg, the content of the salt of the second ion in the slurry or paste), the thickness of the coating film, the It may be controlled by at least one of the drying temperature of the coating film, the drying humidity of the coating film, the ion exchange heat treatment time of the coating film, and the ion exchange heat treatment temperature of the coating film.
  • the visual internal roughness may correspond to a boundary between a diffusion region in which the second ions are diffused and a non-diffusion region in which the second ions are not diffused.
  • the boundary may have an irregular concavo-convex shape.
  • the depth of the diffusion region from the first surface or the second surface may have different values depending on positions.
  • At least one surface of the first surface and the second surface may have a flat surface.
  • the visual internal roughness may have a non-parallel texture to the flat surface.
  • the refractive index of the glass may have different values at two different points having different visual internal roughness.
  • the refractive index of the glass may have an irregular value at a plurality of points where the visual internal roughness is different.
  • the salt of the second ion may be KNO 3 .
  • the slurry or paste includes metal oxide particles and may further include a viscosity modifier.
  • An embodiment of the present invention includes chemically strengthened glass manufactured by the above method, and the chemically strengthened glass is provided between first and second surfaces facing each other through the first or second surface. It has an optical internal roughness that induces diffuse reflection and/or scattering of traveling light.
  • the component of the second ion included therein may be different according to a position between the first and second surfaces.
  • a difference in concentration of the second ion at different positions on the first surface and/or the second surface may be 0.1 at% or more.
  • glass and a method for manufacturing the glass having optical properties changed without chemical strengthening and without changing the shape of the outer surface are provided.
  • One embodiment of the present invention provides a glass in which a diffusion front of exchange ions is non-parallel to the curvature of the glass surface without significant change in glass surface roughness through non-immersion ion exchange.
  • FIG. 1 is a diagram conceptually illustrating a chemically strengthened glass according to an embodiment of the present invention.
  • Figure 3 is a photograph of the glass after general ion exchange according to the existing invention with a polarization microscope.
  • FIG. 4 is a photograph of a glass according to an embodiment of the present invention with a polarizing microscope.
  • FIG. 5 is a photograph of a glass according to an embodiment of the present invention with a polarizing microscope.
  • 6a and 6b are pictures taken with a polarization microscope of the glass according to an embodiment of the present invention.
  • 7a and 7b are photographs taken with a general microscope and a polarization microscope, respectively, of the glass according to an embodiment of the present invention, and correspond to cases with small visual internal roughness and dimples.
  • BED backscattered electron detector
  • 9a and 9b are LED (lower electron detector) and BED images of SEM showing a glass manufactured to have an intermediate visual internal roughness in an embodiment of the present invention, respectively, and show the surface shape and atomic distribution well, respectively. .
  • 10A and 10B are SEM LED and BED images, respectively, illustrating a glass manufactured to have large visual internal roughness in one embodiment of the present invention.
  • EDS energy dispersive spectroscopy
  • FIG. 13 is a surface EDS analysis image of a chemically strengthened glass according to the present invention having concave portions.
  • FIG. 14 is a cross-sectional LED image and EDS mapping analysis results obtained after forming a large visual internal roughness on glass according to an embodiment of the present invention.
  • 15A to 15C are cross-sectional EDS mapping analysis results magnified by 250 times after forming chemically strengthened glass according to an embodiment to have large visual internal roughness, medium visual internal roughness, and small visual internal roughness, respectively.
  • 15D is a result of 250-fold EDS mapping analysis of a cross section of chemically strengthened glass according to the existing invention when the cross section is strengthened.
  • 16A and 16B are graphs of cross-sectional EDS mapping analysis results and K content analysis results according to depth after forming chemically strengthened glass according to an embodiment to have large visual internal roughness and medium visual internal roughness, respectively.
  • 16C is a graph of EDS mapping analysis results and K content analysis results according to depth for chemically strengthened glass cross-sections that are strengthened on only one side but have no significant visual internal roughness.
  • 17 is an image of a coating film contact surface of a glass having a coating film containing a salt of an ion to be exchanged in the manufacture of chemically strengthened glass according to the existing invention.
  • 19 is an image of a coating film contact surface of glass to which a coating film containing a salt of an ion to be exchanged is attached during manufacture of chemically strengthened glass according to an embodiment of the present invention.
  • 20 is a picture taken with a polarizing microscope after ion exchange is performed through a coating film containing a salt of an ion to be exchanged and the coating film is removed during the manufacture of chemically strengthened glass according to an embodiment of the present invention.
  • 21 is a photograph of a coating film contact surface of a glass to which a coating film containing a salt of an ion to be exchanged is attached before and after heat treatment when chemically strengthened glass is manufactured according to an embodiment of the present invention, and large visual internal roughness is formed. This is an image of the contact surface of the coating film and glass in the case of
  • 22a and 22b show that a chemically strengthened region and an unstrengthened region were defined in one glass, and small visual internal roughness and medium visual internal roughness were respectively generated through chemical strengthening only in the strengthened region according to an embodiment of the present invention, and their It is an image taken by SEM of the cross section of the strengthening region and the chemical strengthening region.
  • 23 is a view showing the external surface roughness when chemical strengthening is performed according to the existing invention and an embodiment of the present invention so that it can be checked at once.
  • 25 is a general microscope and a polarization microscope image of a boundary between a reinforced surface and an unenhanced surface in glass having small visual internal roughness after undergoing ion exchange according to an embodiment of the present invention.
  • the present invention relates to chemically strengthened glass and methods of making the same.
  • the glass is produced through a chemical ion exchange process.
  • the chemical ion exchange process is a process in which alkali ions inside the glass are mutually diffused with ions to be ion exchanged outside, and the physical properties of the glass are changed through the ion exchange.
  • the ion exchange process is performed using a salt of a second ion containing a counter ion, which will be described later.
  • the present invention relates to a glass whose roughness characteristics are internally controlled so that light scattering or refraction occurs as if there is roughness on the glass surface while maintaining the glass surface exposed to the outside after going through a chemical ion exchange process without any change in roughness.
  • a glass whose roughness characteristics are internally controlled so that light scattering or refraction occurs as if there is roughness on the glass surface while maintaining the glass surface exposed to the outside after going through a chemical ion exchange process without any change in roughness.
  • this texture-type structure is called “visual internal roughness”.
  • FIG. 1 is a diagram conceptually illustrating a chemically strengthened glass according to an embodiment of the present invention.
  • a chemically strengthened glass according to an embodiment of the present invention is provided in a plate shape having both surfaces facing each other, that is, a first surface S1 and a second surface S2.
  • At least one surface of the first surface S1 and the second surface S2 is a surface that is chemically strengthened through exchange of second ions to be ion exchanged with the first ions inside the glass.
  • first side S1 of the glass is reinforced, rather than both sides of the glass.
  • both sides of the glass, that is, the first surface S1 and the second surface S2 may be strengthened.
  • both the first surface (S1) and the second surface (S2) of the glass may have a flat shape, in one embodiment of the present invention, the first surface (S1) and Visual internal roughness is formed inside the glass between the second surfaces S2.
  • the visual internal roughness corresponds to a boundary formed according to the degree of diffusion of the second ions provided during ion exchange.
  • the region in which the second ions are diffused/exchanged is referred to as a diffusion region R1
  • the region in which the second ions are not diffused/exchanged and retains the first ions of the original glass as it is is referred to as a non-diffusion region R2
  • the visual internal roughness corresponds to a boundary between the diffusion region R1 in which the second ions are diffused and the non-diffusion region R2 in which the second ions are not diffused.
  • the boundary is irregular in shape and has a texture that is not parallel to the first surface S1 or the second surface S2, that is, unevenness. Accordingly, the depth of the diffusion region R1 from the first surface S1 or the second surface S2 may have different values depending on positions and may have irregular values depending on positions. For example, in the boundary, if one of points close to the first surface S1 is referred to as a first depth D1 and one of points close to the second surface S2 is referred to as a second depth D2. , The first depth D1 and the second depth D2 may have different values, and the difference between the values may vary according to positions.
  • the diffusion region R1 and the non-diffusion region R2 are second objects to be ion exchanged between alkali ions in the glass on the first surface S1 or the second surface S2 and the alkali ions. It can be formed by a component difference between the salt and the second ion containing the ion.
  • the diffusion region R1 and the non-diffusion region R2 have different concentrations of the first ions and the second ions inside the glass.
  • ion exchange may occur in the diffusion region R1 and the concentration of second ions may be high, and ion exchange may not occur in the non-diffusion region R2 and the concentration of first ions may be high.
  • the light passing through the diffusion region R1 and the non-diffusion region R2 have different refractive indices.
  • the refractive index may have an irregular value at a plurality of points having different visual internal roughness.
  • the effective refractive index of the diffusion region R1 varies depending on the position, and the portion having visual internal roughness.
  • the refractive index distribution of silver is not uniform, causing scattering of light.
  • the first ion may be Na ion
  • the second ion may be K ion
  • the salt of the second ion may be KNO 3 .
  • the visual internal roughness of the chemically strengthened glass having the above-described structure can be formed by intentionally controlling the exchanged area distribution of salt during chemical ion exchange and thus the concentration distribution.
  • it can be manufactured by controlling the diffusion of the second ions to be ion exchanged with the first ions inside the glass.
  • Glass having visible internal roughness can be formed by controlling process conditions such that salts to be exchanged diffuse to different degrees during ion exchange depending on positions in the ion exchange step.
  • a slurry or paste containing a salt of the second ion including the second ion to be ion exchanged with the first ion inside the glass is prepared, and the slurry or paste A film is applied to the surface of glass to form a film, and after drying the film made of the slurry or paste on the surface of the glass, the glass formed with the film is heat-treated to form a visual internal roughness.
  • a process of differently forming the distribution of the precipitated phase of the salt of the second ion on the surface of the glass is included.
  • the visual internal roughness is formed differently depending on the distribution of the precipitated phase of the salt of the second ion, and the distribution of the precipitated phase of the salt of the second ion depends on the composition of the slurry or paste (eg, the second ion in the slurry or paste) salt content), thickness of the film made of the slurry or paste, drying temperature of the film made of the slurry or paste, drying humidity of the film made of the slurry or paste, ion exchange heat treatment time of the film made of the slurry or paste, slurry or paste At least one of the ion exchange heat treatment temperatures of the formed membrane may be adjusted, and through this, diffusion of the second ions is controlled.
  • the process of forming the visual internal roughness does not substantially affect the appearance of the glass itself. That is, in the chemically strengthened glass, the shapes of the first surface S1 and the second surface S2 before and after chemical strengthening are not substantially deformed.
  • the first surface (S1) and the second surface (S2) may be provided with flat as in the above-described embodiment, such a flat shape before or after the process of forming the visual internal roughness All can be flat.
  • the first and second surfaces S1 and S2 of the glass are provided with non-flat glass, both before and after forming the visual internal roughness are in the original state.
  • the non-flat shape of can be maintained.
  • the visual internal roughness does not form the corresponding roughness at the interface between two materials, for example, between glass and air, while actually exhibiting the same optical effect as when roughness is formed on the outer surface, and there is a visual difference inside the glass. create only In other words, when the surface of glass is chemically strengthened through non-immersion ion exchange, the diffuse species (e.g., the ions to be ion exchanged) that interdiffusion occurs without visible change in the roughness of the surface of the strengthened glass.
  • the concentration distribution in the glass and the spatial distribution accordingly are differently formed to give visual internal roughness characteristics.
  • the spatial distribution of the diffusion species may impart visual internal roughness characteristics in such a way that the effective diffusion depth is formed differently depending on the location.
  • the spatial distribution of these diffusing species can be represented by the concentration of the diffusing species (eg, the concentration of alkali ions) on the surface of the glass. That is, the spatial distribution of the diffusing species may depend on the effective diffusion depth, but the effective diffusion depth is substantially directly dependent on the concentration of the diffusing species on the surface. Accordingly, in one embodiment of the present invention, the visual internal roughness is controlled by controlling the concentration and distribution of the alkali salt on the glass surface.
  • the relative ratio of the content ratio of the alkali salt and the metal oxide and the metal oxide and the solvent It is possible to control the size and distribution of the precipitate phase such as KNO 3 formed on the glass surface after forming the coating film and control the ion exchange process conditions by adjusting the etc.
  • the maximum component difference of alkali salts eg, potassium and sodium
  • various visual internal roughnesses can be formed, for example, large visual internal roughness, medium visual internal roughness, and small visual internal roughness according to the degree of roughness.
  • Large visual internal roughness, medium visual internal roughness, and small optical internal roughness can be defined as:
  • the size of each visual internal roughness can be checked with the naked eye, more precisely, the size can be checked with a polarizing microscope, and the average is based on 20 measurements.
  • the contrast of the refractive index change shown in the image tends to weaken as the range unit showing a similar tendency decreases.
  • the difference in visual internal roughness can be adjusted by controlling the mixing ratio of alkali salt and metal oxide particles, the size and shape of metal oxide particles, coating film formation and drying conditions, ion exchange heat treatment conditions, and the like.
  • a salt of a second ion (a salt of an alkali ion, e.g., a salt of an alkali ion, e. , KNO 3 ) to prepare a slurry and/or paste containing an alkali salt, and apply it to a glass surface to form a coating film.
  • a salt of an alkali ion e.g., a salt of an alkali ion, e. , KNO 3
  • an alkali salt a salt of the second ion (hereinafter referred to as an alkali salt) is formed and a coating film is formed on a glass surface
  • a general spray-based coating method or a paste-based coating method may be used.
  • composition and process in which an alkali salt existing in a molten or semi-melted state under heat treatment conditions for ion exchange after forming a film on the glass surface uniformly contacts and distributes on the surface of the glass and further aids in ion exchange this can be provided.
  • a slurry or paste containing no alkali salt or containing a relatively small amount after making a slurry or paste containing no alkali salt or containing a relatively small amount, forming a film on the glass surface by a general spray-based coating method or a paste-based coating method, respectively, spraying an alkali salt (aqueous) solution
  • an alkali salt aqueous
  • the alkali salt existing in a molten or semi-melted state under heat treatment conditions for ion exchange uniformly contacts and distributes the surface of the glass.
  • compositions and processes that aid in ion exchange may be provided.
  • the slurry and/or paste may further include metal oxide particles in addition to the alkali salt.
  • the contents of the alkali salt and the metal oxide particles may be one factor controlling the distribution of the precipitated phase of the alkali salt.
  • a film formed by a conventional spray-based process in a slurry state with metal oxide particles may be dried under a predetermined relative humidity for a predetermined time.
  • humidity conditions during drying, drying time, and drying temperature may also be other factors that control the distribution of the precipitated phase of the alkali salt thereafter.
  • the coating film applied in the slurry / paste state when drying the coating film applied in the slurry / paste state, it may be dried for 5 seconds to 12 hours at 0 °C to 200 °C. At this time, the humidity condition may be 10% to 90% relative humidity.
  • the step of drying the coating film is for precipitation of ion salts of ions contained in the coating film, in addition to volatilizing the solvent (mainly water) to achieve drying of the coating film.
  • the degree of precipitation of the ion salt can be controlled by controlling the coating film thickness, drying temperature, drying time, and humidity conditions during the drying.
  • the salt eg, KNO 3
  • the salt may be precipitated as solid particles as the solvent evaporates and disappears, and the size and distribution of the solid particles may vary depending on drying conditions.
  • the composition of the slurry or paste (eg, the content of the salt of the second ion in the slurry or paste), the coating film thickness of the slurry or paste, the drying temperature of the slurry or paste , at least one of the drying humidity of the slurry or paste, the drying time of the slurry or paste, the heat treatment temperature, and the heat treatment time may be adjusted, through which diffusion of the second ions is controlled.
  • the shape of the precipitate phase may vary depending on the composition, and visual internal roughness may occur to different degrees depending on the shape of the precipitate phase.
  • the metal oxide particles that can be mixed with the alkali salt may have a composition of at least one of TiO 2 , ZnO, ZrO 2 , CuO and NiO.
  • the metal oxide particles mainly have a composition of TiO 2 , ZnO, ZrO 2 , CuO or NiO, and the TiO 2 , ZnO, ZrO 2 , CuO or NiO particles alone or jointly mixed with an aqueous salt solution form a slurry/paste state. can form
  • the metal oxide particles may be Cr 2 O 3 , MnO 2 , MnO, Fe 2 O 3 , FeO, Co 2 O 3 , Y 2 O 3 , TeO 2 , CeO 2 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 and Er 2 O 3
  • a plurality of particles having a composition of at least one of can include
  • metal oxide particles are Cr 2 O 3 , MnO 2 , MnO, Fe 2 O 3 , FeO, Co 2 O 3 , Y 2 O 3 , TeO 2 , CeO 2 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 or Er 2 O 3 , mainly having
  • the glass on which the coating film is formed may be heat treated in a predetermined temperature range (eg, about 100 to about 600 °C).
  • a predetermined temperature range eg, about 100 to about 600 °C.
  • the film-formed glass is heat-treated in a temperature range in which all or part of the salt in the coating film becomes liquid, and through the salt spread inside the film, between alkali ions and alkali ions (for example, sodium ions) inside the glass ion exchange can occur.
  • the heat treatment step may be performed at, for example, about 250 °C or higher.
  • the salt eg, KNO 3
  • the salt eg, KNO 3
  • alkali ions such as sodium ions in the glass and ion exchange inside the membrane Ion exchange occurs between the second ions (for example, alkali ions such as potassium ions, silver ions, copper ions, or gold ions) via the liquid phase or via the surface of the particles.
  • the salt solution may be a silver salt solution, a gold salt solution or a copper salt solution.
  • silver ions, gold ions, or copper ions inside the coating film may be ion exchanged with alkali ions (eg, sodium ions) inside the glass as second ion exchange ions.
  • silver ions When silver ions enter the glass through ion exchange, they may exist as Ag + ions or as metallic clusters or metal nanoparticles in the form of Ag 0 under the influence of other components included in the glass. That is, in order to reduce the Ag + state to the Ag 0 state, a small amount of elements such as Fe, V, Mn, Co, Ce, Eu, and Cr should basically be included in the glass. The characteristics of the corresponding elements are multi-valent with two or more oxidation values. For example, through a redox reaction in the form of Fe 2+ + Ag + ⁇ Fe 3+ + Ag 0 , Ag + ions are reduced to metal particles in the Ag 0 state.
  • surface plasmon resonance absorption formed by the silver nanoparticles can occur, and the color of the glass can be changed by other ions that have undergone a change in oxidation value. It can be used as a biosensor.
  • the multi-valent ion does not exist inside the glass, the Ag + ion entering the inside of the glass maintains its state, so it can additionally exhibit an antibacterial effect as well as a surface strengthening effect.
  • Silver ions can also be replaced with gold ions or copper ions.
  • silver ions have a higher interdiffusion coefficient than potassium ions, so ion exchange occurs faster, and a visual internal roughness effect may occur more distinctly due to a large polarizability.
  • the metal oxide particles are a salt solution (an alkali salt solution such as potassium salt, a silver salt solution, a gold salt solution, or a copper salt solution) to form a film on the surface of the glass by a paste-based coating method, and It may be a particle that satisfies the conditions for forming a paste state by mixing with the viscosity control additive.
  • a salt solution an alkali salt solution such as potassium salt, a silver salt solution, a gold salt solution, or a copper salt solution
  • the viscosity control additive may be an industrial or edible composition commonly used in preparing a general paste.
  • an industrial or edible composition commonly used in preparing a general paste may be used as a viscosity control additive.
  • the viscosity control additive may include one or more of glycerin, terpinol, glucose, and xanthan gum.
  • the viscosity control additive is an additive added to increase the viscosity of a mixed solution (slurry) in which an aqueous salt solution and metal oxide particles are mixed to form a paste state, and may include one or more of glycerin, terpinol, glucose, and xanthan gum.
  • the viscosity control additive may include one or more of alcohol, polyvinyl alcohol, polyethylene glycol, methylcellulose, polyvinylpyridone, hydroxypropyl cellulose, hydroxypropyl methylcellulose, and the like.
  • the salt of the second ion generated on the glass surface after drying is different from each other by location on the glass surface. to form Accordingly, the visual internal roughness occurs due to the different refractive indices caused by the difference in diffusion phenomena by position after heat treatment for ion exchange, and additionally, compressive stress is applied to the surface to have chemical strengthening characteristics.
  • the chemically strengthened glass according to an embodiment of the present invention is manufactured using the non-immersion method ion exchange, and the exchanged ion diffusion surface is non-parallel to the curvature of the glass surface without significant change in glass surface roughness. It is characterized by what has been done. In a general ion exchange process, mutual diffusion of each ion occurs in a direction perpendicular to the glass surface, and after ion exchange, the depth of layer occurs parallel to the curvature of the glass surface and does not cause a significant difference by location.
  • a method of intentionally roughening the surface of the glass is used for intentional scattering of light penetrating the glass.
  • the surface of the glass is roughened by physical/chemical etching, coating, sandblasting, or roller pressing.
  • the glass manufactured in this way and having roughness on the surface by generating diffuse reflection, effects such as improvement of anti-glare characteristics due to such roughness can be obtained, and thus engineering practicality can be increased.
  • a regular or irregular concavo-convex structure is introduced on the surface of the glass to impart anti-glare properties and at the same time increase the transmittance and condensation rate of sunlight.
  • a nanostructure is formed using a lithography technique to have an antireflection property.
  • a nanostructure having irregularities was formed on the glass surface.
  • a silica-based thin film having anti-reflection and anti-vibration properties was formed on a cover glass for a solar cell by a spray method.
  • the antireflection property can be imparted by forming the visual internal roughness through the difference in internal refractive index distribution without changing the surface roughness, an additional thin film deposition process is not required, and different refractive index distributions are given for each position only with the strengthening process. to implement anti-reflection properties.
  • the diffusion surface where mutual diffusion occurs in a state where there is no visible change in surface roughness through non-immersion ion exchange is not parallel to the surface of the glass.
  • one embodiment of the existing invention features glass having scratch resistance by forming a surface roughness on the glass surface through texturing and forming a compressive stress region through ion exchange.
  • roughness does not exist on the glass surface depending on the composition of the metal oxide slurry, whereas a compressive stress region can be formed as well as visual internal roughness through a difference in ion exchange depth layer.
  • the existing invention is limited to scratch-resistant glass, and has an appropriate Knoop scratch threshold through texturing on the surface and relates to a glass capable of forming a compressive stress region, but the present invention does not change the glass surface roughness Glass having visual internal roughness caused by location-specific refractive index differences due to location-specific differences in the diffusion depth layer through ion exchange is provided.
  • Example 1 Visual internal roughness polarization microscopy according to the present invention and the present invention
  • FIG. 2 is a photograph of the original glass in which ion exchange has not proceeded with a polarizing microscope
  • Figure 3 is a photograph of the glass after general ion exchange according to the existing invention with a polarizing microscope
  • Figure 4 is a photograph according to an embodiment of the present invention The glass is photographed with a polarization microscope
  • FIG. 5 is a photograph of the glass of FIG. 4 in which internal residual stress is removed through additional heat treatment with a polarization microscope.
  • 3 to 5 show that the precipitation phase is controlled differently even under the same drying conditions for precipitation of the alkali salt after forming a coating film by varying the composition of the slurry containing the alkali salt.
  • FIG. 3 is a conventional invention, after forming a coating film using a slurry having a mass ratio of 29:71 of TiO 2 : KNO 3 in 100 ml of water solvent, drying at room temperature and 80% humidity, and drying it at 450 ° C. This is an image taken using a polarizing microscope of the glass surface after ion exchange heat treatment for 8 minutes and removal of the coating film.
  • a coating film was formed using a slurry having a mass ratio of 60:40 of TiO 2 : KNO 3 in 40 ml of water solvent, and then dried at room temperature and 80% humidity, and then dried at 450 ° C. for 8 minutes. This is an image taken using a polarizing microscope of the glass surface after removing the coating film by performing ion exchange heat treatment during the process.
  • the same specimen as in FIG. 4 was prepared by removing the coating film after the occurrence of visual internal roughness and performing an additional heat treatment at 610 ° C. for 2 hours.
  • 6a and 6b are images taken with a polarizing microscope of the glass according to an embodiment of the present invention.
  • 6a and 6b the slurry prepared by adding TiO 2 :KNO 3 in a mass ratio of 60:40 to 40 ml water solvent was applied, dried at room temperature and 60% humidity, and then ionized at 440 ° C. for 15 minutes It is a polarizing microscope image after the exchange heat treatment is performed and the coating film is removed, and it can be clearly confirmed that irregular roughness (ie, visual internal roughness) appears on the front surface of the ion-exchanged region.
  • irregular roughness ie, visual internal roughness
  • Figures 7a and 7b are images of the glass according to an embodiment of the present invention with a general microscope and a polarizing microscope, respectively, and correspond to the case where there is a concave portion.
  • a slurry prepared by adding TiO 2 : KNO 3 in a mass ratio of 60:40 to 40 ml water solvent was applied, dried at room temperature and 60% humidity, and ion exchange heat treatment was performed at 440 ° C. for 20 minutes.
  • These are general microscope and polarized light microscope images of the glass with the coating film removed.
  • FIGS. 7A and 7B a change in surface roughness was not confirmed in a general microscope image. However, it was confirmed that surface waviness appeared in the polarization microscope when observing mainly the concave portion.
  • the slurry was applied to the glass film so that a large difference in the composition of alkali ions appeared depending on the glass surface area, and at least one of the slurry composition, drying temperature, and drying humidity conditions was changed to form a different visual internal roughness.
  • 8A and 8B are SEM BED images illustrating a glass manufactured to have small visual internal roughness in an embodiment of the present invention.
  • a slurry prepared by adding TiO 2 :KNO 3 in a mass ratio of 60:40 to 40 ml water solvent was used, and after drying at room temperature and 60% humidity, heat treatment at 440 ° C. for 11 minutes proceeded.
  • the BED image changes in surface components can be confirmed, and it can be confirmed that differences in contrast appear due to differences in components (ie, different concentration distributions of each component) at specific locations.
  • a bright part and a dark part are identified on an image, which correspond to a contrast difference due to a component difference.
  • Dark areas are areas with relatively high Na content
  • bright areas are areas with relatively large amounts of K content.
  • the dark area corresponded to the area with relatively high Na
  • the bright area corresponded to the area with relatively high K.
  • FIGS. 9A and 9B are SEM LED and BED images, respectively, illustrating a glass manufactured to have an intermediate visual internal roughness in one embodiment of the present invention.
  • a slurry prepared by adding TiO 2 :KNO 3 in a mass ratio of 60:40 to 50 ml water solvent was used, and after drying at room temperature and 60% humidity, heat treatment at 440 ° C. for 11 minutes proceeded.
  • FIGS. 9A and 9B different shapes are shown depending on the types of images or detectors on the same surface.
  • surface morphology can be confirmed, and it shows a characteristic that is sensitive to surface roughness. Accordingly, as can be seen in FIG.
  • the glass according to an embodiment of the present invention shows a change in surface height, and no change in surface roughness other than impurities present on the surface occurs.
  • the BED image it was possible to confirm the change in the surface component, and it was possible to confirm the difference in the component at a specific location.
  • Figures 9a and 9b it was prepared by controlling the precipitation amount of the alkali salt in the slurry, and as a result, the components of the dark and bright parts were adjusted as shown in Tables 3 and 4 below.
  • 10A and 10B are SEM LED and BED images, respectively, illustrating a glass manufactured to have large visual internal roughness in one embodiment of the present invention. Specifically, the slurry prepared by adding TiO 2 : KNO 3 in a 60:40 mass ratio to 100 ml water solvent was left at room temperature to precipitate TiO 2 , and then about 50 ml of the solvent was removed.
  • Precipitated sludge was applied, After drying at room temperature and 60% humidity, ion exchange heat treatment was performed at 440 ° C for 11 minutes. Referring to FIGS. It could be seen that it occurred clearly, but it was judged that there was no actual change in height. In the case of the BED image, it was possible to confirm the change in the surface component, and it was possible to confirm the difference in the component at a specific location.
  • EDS mapping analysis was performed on the chemically strengthened glass in which the composition of the coating film was adjusted according to an embodiment of the present invention. Specifically, a slurry prepared by adding TiO 2 : KNO 3 in a mass ratio of 60:40 to 100 ml water solvent was applied, dried at room temperature and 60% humidity, and then heat treated at 300 ° C. for 6 hours did Even though the same conditions were used, the coating film was arbitrarily formed so that the thickness and quality of the film formed were different depending on the position at the time of application (general spraying, long-time spraying, multiple spraying), resulting in a simple chemical strengthening effect according to the existing invention, or visual internal roughness It can be confirmed that a , or a concave portion occurs.
  • FIG. 11 is an EDS analysis image of a glass surface portion formed identically to the surface of a simple chemically strengthened glass according to the existing invention
  • FIG. 12 is an EDS analysis image of the surface of a chemically strengthened glass according to an embodiment of the present invention
  • FIG. 13 is this This is a surface EDS analysis image of a chemically strengthened glass according to an embodiment of the present invention with concave portions.
  • FIG. 15d shows a slurry prepared by adding TiO 2 :KNO 3 ratio to 60:40 by mass in 40 ml water solvent. was applied to one side of both sides of the glass, dried at room temperature and 30% humidity, and heat treatment was performed at 440 ° C. for 11 minutes.
  • FIG. 14 is a cross-sectional LED image and EDS mapping analysis results obtained after forming a large visual internal roughness on glass according to an embodiment of the present invention.
  • 15A to 15C are cross-sectional EDS mapping analysis results magnified by 250 times after forming chemically strengthened glass according to an embodiment to have large visual internal roughness, medium visual internal roughness, and small visual internal roughness, respectively.
  • 15D is a 250-fold cross-sectional EDS mapping analysis result of a chemically strengthened surface according to the existing invention when one side of both sides of glass is strengthened.
  • K content analysis was performed according to the cross-sectional position in order to confirm the component change according to the depth of the cross-section of the chemically strengthened glass according to an embodiment of the present invention.
  • the large visual internal roughness, the medium visual internal roughness and the one-sided chemically strengthened glass of the glass shown in Examples 2 and 4 are the same.
  • 16A and 16B are graphs of EDS mapping analysis results and K content analysis results according to depth after forming chemically strengthened glass according to an embodiment to have large visual internal roughness and medium visual internal roughness, respectively.
  • 16C is a graph of EDS mapping analysis results and K content analysis results according to depth for a cross section chemically strengthened according to the existing invention when one side of glass is strengthened.
  • the K content changes according to the depth from one surface to the other surface, and it can be confirmed that K ions are exchanged at different depths depending on the location on the surface.
  • the overall depth of layer (DOL) and K content showed a great difference depending on the position. That is, the distribution was varied, such as there being a part with a high K content and a large DOL, while there was a part with a low K content and a small DOL depending on the location.
  • chemical strengthening was performed without visual internal roughness, and the DOL was uniformly about 10 ⁇ m and the surface K content was constant.
  • a coating film was formed by changing the composition of the slurry and/or paste for the chemically strengthened glass according to an embodiment of the present invention, or the degree of visual internal roughness was adjusted according to the treatment of the coating film after forming the coating film.
  • 17 is an image of a contact surface of a glass having a coating film containing a salt of an ion to be exchanged in the manufacture of chemically strengthened glass according to the existing invention. Specifically, a slurry prepared by adding TiO 2 :KNO 3 in a mass ratio of 29:71 to 100 ml of water solvent was used, and drying was performed at room temperature and humidity of 30%.
  • KNO 3 precipitated phase is very small and the distance between them is narrow before heat treatment, and after heat treatment (425 °C, 20 minutes condition), KNO 3 melts and spreads, and then the temperature drops to room temperature According to this, it can be confirmed that KNO 3 is precipitated again.
  • the dark part in FIG. 17 was determined to be KNO 3 .
  • the glass having the coating film containing the salt of the ion to be exchanged in the manufacture of chemically strengthened glass according to the existing invention is ion-exchange heat treated at 425 ° C. for 20 minutes, and the coating film is removed. This is an image when the surface is observed with a polarizing microscope.
  • 19 is an image of a contact surface of glass having a coating film containing a salt of an ion to be exchanged during manufacture of chemically strengthened glass according to an embodiment of the present invention, and the surface of the glass in the case of forming a small visual internal roughness corresponds to Specifically, a slurry prepared by adding TiO 2 :KNO 3 in a mass ratio of 46:54 to 40 ml of water solvent was used, and drying was performed at room temperature and humidity of 50%.
  • the length of the KNO 3 precipitated phase was lengthened, the ratio of KNO 3 in contact with the surface decreased, and the distance between the contact surfaces widened can confirm that After heat treatment, KNO 3 was melted and spread, but it can be confirmed that the range did not cover the entire surface of the glass and covered it non-uniformly.
  • FIG. 20 is an image of a surface of a glass subjected to ion exchange heat treatment with a coating film containing a salt of an ion to be exchanged when manufacturing chemically strengthened glass according to an embodiment of the present invention, when observed with a polarizing microscope, FIG. 19 It is the same as the glass of , but corresponds to the glass after drying and removing the ion exchange heat treatment at 425 °C for 20 minutes and the coating film.
  • 21 is an image of a contact surface of glass having a coating film containing a salt of an ion to be exchanged during manufacture of chemically strengthened glass according to an embodiment of the present invention, and the surface of the glass in the case of forming a large visual internal roughness corresponds to Specifically, a slurry prepared by adding TiO 2 :KNO 3 in a mass ratio of 46:54 to 40 ml of water solvent was used, and drying was performed at a high temperature and a humidity of 10%, and the glass according to this example was applied When the film was formed, a step of drying at 50° C. or higher was performed.
  • the length of the KNO 3 precipitated phase is long and very little in contact with the surface, and the distance between them is very wide before heat treatment through changing the drying conditions (temperature: 50 ° C. or more).
  • the drying conditions temperature: 50 ° C. or more.
  • the melted and spread portion of KNO 3 appears irregularly in a very large range.
  • the KNO 3 and TiO 2 content ratio control and drying conditions show the distribution of the KNO 3 precipitation phase. This means that the size of the visual internal roughness can be adjusted accordingly. When these conditions are satisfied, changes appear on a polarization microscope and small or large visual internal roughness is confirmed.
  • glass surface roughness was observed according to conditions.
  • FIG. 22a and 22b are cross-sectional images taken when a chemically strengthened region and a non-reinforced region are determined in one glass specimen and chemical strengthening is performed only on the strengthened region according to an embodiment of the present invention.
  • Fig. 22a corresponds to a glass with small visual internal roughness
  • Fig. 22b corresponds to a glass with medium optical internal roughness.
  • FIG. 22a used a slurry prepared by adding TiO 2 :KNO 3 ratio in a mass ratio of 60:40 to 40 ml water solvent, dried at room temperature and 60% humidity, and then at 425 ° C. Heat treatment was performed for 15 minutes
  • FIG. 22b corresponds to a glass in which a slurry having the same composition and heat treatment conditions were used, but the humidity was increased to 80% in dry conditions.
  • 23 is a view showing the external surface roughness at once when chemical strengthening is performed according to the existing invention and an embodiment of the present invention, and is an image showing each glass specimen with surface roughness according to the visual internal roughness .
  • FIG. 24 is a general microscope and a polarizing microscope image of a boundary between a reinforced surface and a non-enhanced surface when chemical strengthening is performed according to the existing invention
  • FIG. 25 is a chemical strengthening according to an embodiment of the present invention.
  • These are general microscope and polarization microscope images taken at the boundary between the reinforced surface and the non-enhanced surface in glass with small visual internal roughness.
  • FIG. 24 used a slurry prepared by adding TiO 2 :KNO 3 ratio at a mass ratio of 60:40 to 40 ml water solvent, dried at room temperature and 30% humidity, and then at 425 ° C. Heat treatment was performed for 15 minutes
  • FIG. 25 is a glass manufactured under the same conditions as FIG. 22a.
  • a boundary line occurs due to a difference in refractive index between the enhanced surface and the non-enhanced surface, and was observed in the polarization mode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

화학 강화 유리는, 유리 내부의 제1 이온과의 이온교환 대상이 되는 제2 이온을 포함하는 제2 이온의 염 용액을 포함하는 슬러리 또는 페이스트를 제조하고, 상기 슬러리 또는 페이스트를 유리의 표면에 도포하여 도포막을 형성하고, 상기 유리 표면 상의 상기 슬러리 또는 페이스트로 이루어진 도포막을 건조하고, 상기 유리의 표면 상에서 상기 제2 이온의 염의 석출상의 분포를 달리 형성하고, 상기 도포막이 형성된 유리를 열처리하여, 상기 유리의 서로 대향하는 제1 면과 제2 면 사이에 제공되어 상기 제1 면 또는 상기 제2 면을 통해 진행하는 광을 확산 반사(diffuse reflection) 및/또는 산란을 유도하는 시각적 내부 거칠기(visual internal roughness)를 형성하여 제조된다.

Description

시각적 내부 거칠기를 가지는 유리 및 이의 제조방법
본 발명은 화학적 이온 강화 유리 및 제조 방법에 관한 것으로, 상세하게는 시각적 내부 거칠기를 갖는 유리 및 제조 방법에 관한 것이다.
유리의 표면부에 압축응력을 인가하여 표면을 강화하는 상용화된 방법은 크게 물리강화와 화학강화로 구분된다. 화학강화 방법은 유리 내부에 존재하는 나트륨 이온 또는 리튬 이온을 칼륨 이온과 같이 크기가 더 큰 여타 알칼리 이온으로 치환하여 표면부에 압축응력을 인가하는 방식으로, 물리강화 방법보다 얇은 두께의 유리에 적용할 수 있으며, 최근 들어 수요처가 다양해져서 기존 이동형 전자기기의 커버 유리 등의 비교적 제한된 응용분야에서 자동차 창유리 등의 보다 확장된 분야에도 적용되고 있다. 향후, 박판 유리를 대상으로 화학강화가 적용되어 폴더블 형태 등의 유연 디스플레이에도 적용되는 등, 지속적으로 응용분야가 확장될 것으로 판단된다.
최근 응용분야의 확장에 따라 다양한 기능, 예를 들어, 방현(antiglare) 성능이 향상된 유리 등이 필요하다. 그런데, 기존 발명에 따르면 유리를 관통하는 빛의 의도적인 산란을 위해서는 유리의 표면을 의도적으로 평평하지 않도록 하는 다양한 방법(식각, 코팅, 샌드 블라스트, 롤러 압착 등)이 적용되며, 이러한 (무늬)유리는 확산 반사(diffuse reflection)를 발생시킴으로써 공학적인 실용성을 높이고 있는 실정이다. 일례로, 태양전지 커버유리의 경우 유리 표면에 규칙적 또는 불규칙적 요철구조를 도입하여 방현 특성을 부여함과 동시에 태양광의 투과율 및 집광율을 높인다. 그러나, 이러한 기존 발명에 따른 유리의 표면은 울퉁불퉁하기 때문에 물리강화 및 화학강화의 효과가 낮아지는 문제가 있다.
본 발명은 화학 강화와 더불어 외부 표면의 형상 변화 없이 광학적 특성을 변화시킨 유리 및 이의 제조 방법을 제공하는 데 목적이 있다.
본 발명의 일 실시예에 따른 화학 강화 유리 제조 방법은, 유리 내부의 제1 이온과의 이온교환 대상이 되는 제2 이온을 포함하는 제2 이온의 염을 포함하는 슬러리 또는 페이스트를 제조하는 단계, 상기 슬러리 또는 페이스트를 유리의 표면에 도포하여 도포막을 형성하는 단계, 상기 유리 표면 상의 상기 슬러리 또는 페이스트로 이루어진 도포막을 건조하는 단계, 상기 유리의 표면 상에서 상기 제2 이온의 염의 석출상의 분포를 달리 형성하는 단계, 및 상기 도포막이 형성된 유리를 열처리하여, 상기 유리의 서로 대향하는 제1 면과 제2 면 사이에 제공되어 상기 제1 면 또는 상기 제2 면을 통해 진행하는 광의 확산 반사 및/또는 산란을 유도하는 시각적 내부 거칠기(visual internal roughness)를 형성하는 단계를 포함한다.
본 발명의 일 실시예에 있어서, 상기 제2 이온의 염의 석출상의 분포는 상기 슬러리 또는 페이스트의 조성 (예를 들어, 상기 슬러리 또는 페이스트 내의 상기 제2 이온의 염의 함량), 상기 도포막의 두께, 상기 도포막의 건조 온도, 상기 도포막의 건조 습도, 상기 도포막의 이온교환 열처리 시간, 상기 도포막의 이온교환 열처리 온도 중 적어도 하나에 의해 조절될 수 있다.
본 발명의 일 실시예에 있어서, 상기 시각적 내부 거칠기는 상기 제2 이온이 확산된 확산 영역과, 상기 제2 이온이 확산되지 않은 비확산 영역의 경계에 대응될 수 있다.
본 발명의 일 실시예에 있어서, 상기 경계는 불규칙한 요철 형상을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 확산 영역의 상기 제1 면 또는 상기 제2 면으로부터의 깊이는 위치에 따라 서로 상이한 값을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 면과 상기 제2 면 중 적어도 한 면은 편평한 표면을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 시각적 내부 거칠기는 상기 편평한 표면에 대해 평행하지 않는 텍스쳐를 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 유리의 굴절률은 상기 시각적 내부 거칠기가 다른 서로 다른 두 지점에서 서로 다른 값을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 유리의 굴절률은 상기 시각적 내부 거칠기가 다른 복수의 지점에서 불규칙한 값을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 제2 이온의 염은 KNO3일 수 있다.
본 발명의 일 실시예에 있어서, 상기 슬러리 또는 페이스트는 금속 산화물 입자를 포함하며 추가적으로 점도 조절제를 더 포함할 수도 있다.
본 발명의 일 실시예는 상기한 방법으로 제조된 화학 강화 유리를 포함하며, 상기 화학 강화 유리는 서로 대향하는 제1 면과 제2 면 사이에 제공되어 상기 제1 면 또는 상기 제2 면을 통해 진행하는 광의 확산 반사 및/또는 산란을 유도하는 시각적 내부 거칠기를 가진다.
본 발명의 일 실시예에 있어서, 상기 제1 면과 제2 면 사이의 위치에 따라 그 내부에 포함된 상기 제2 이온의 성분 차이를 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 제1 면 및/또는 상기 제2 면의 서로 다른 위치에서 상기 제2 이온의 농도 차이가 0.1 at% 이상일 수 있다.
본 발명의 일 실시예에 따르면, 화학 강화와 더불어 외부 표면의 형상 변화 없이 광학적 특성을 변화시킨 유리 및 이의 제조 방법을 제공한다. 본 발명의 일 실시예는 특히 비침지 방식 이온교환을 통하여 유리 표면 거칠기의 유의미한 변화가 없이 교환이온의 확산면(diffusion front)을 유리 표면의 굴곡과 비평행하게 발생시킨 유리를 제공한다.
도 1은 본 발명의 일 실시예에 따른 화학 강화 유리를 개념적으로 도시한 도면이다.
도 2는 이온교환이 진행되지 않은 원장 유리를 편광 현미경으로 촬영한 것이다.
도 3은 기존 발명에 따른 일반적인 이온 교환 후의 유리를 편광 현미경으로 촬영한 것이다.
도 4는 본 발명의 일 실시예에 따른 유리를 편광 현미경으로 촬영한 것이다.
도 5는 본 발명의 일 실시예에 따른 유리를 편광 현미경으로 촬영한 것이다.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 유리를 편광 현미경으로 촬영한 것들이다.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 유리를 각각 일반 현미경 및 편광 현미경으로 촬영한 것들로서 작은 시각적 내부 거칠기 및 오목부(dimple)가 있는 경우에 해당한다.
도 8a 및 도 8b는 본 발명의 일 실시예에 있어서 작은 시각적 내부 거칠기를 가지도록 제조된 유리를 도시한 SEM(scanning electron microscope)의 BED(backscattered electron detector) 이미지로서 표면의 형상보다 원자 분포를 더욱 잘 나타낸다.
도 9a 및 도 9b는 각각 본 발명의 일 실시예에 있어서 중간 시각적 내부 거칠기를 가지도록 제조된 유리를 도시한 SEM의 LED(lower electron detector) 및 BED 이미지이며, 각각 표면 형상과 원자 분포를 잘 나타낸다.
도 10a 및 도 10b는 각각 본 발명의 일 실시예에 있어서 큰 시각적 내부 거칠기를 가지도록 제조된 유리를 도시한 SEM의 LED 및 BED 이미지이다.
도 11은 기존 발명에 따른 단순 화학 강화 유리의 표면과 동일하도록 제작된 유리 표면의 EDS(energy dispersive spectroscopy) 분석 이미지이다.
도 12는 본 발명의 일 실시예에 따른 화학적 강화 유리의 표면 EDS 분석 이미지이다.
도 13은 기존 발명에 따른 화학적 강화 유리로서 오목부가 존재하는 것의 표면 EDS 분석 이미지이다.
도 14는 본 발명의 일 실시예에 따라 유리에 큰 시각적 내부 거칠기를 형성한 후 얻은 단면 LED 이미지 및 EDS 매핑 분석 결과이다.
도 15a 내지 도 15c는 각각 본 발명의 일 실시예에 따른 화학적 강화 유리를 큰 시각적 내부 거칠기, 중간 시각적 내부 거칠기, 및 작은 시각적 내부 거칠기를 갖도록 형성한 후 250배로 확대한 단면 EDS 매핑 분석 결과이다. 도 15d는 단면 강화시의 기존 발명에 따른 화학적 강화 유리 단면의 250배 EDS 매핑 분석 결과이다.
도 16a 및 도 16b는 각각 본 발명의 일 실시예에 따른 화학적 강화 유리를 큰 시각적 내부 거칠기 및 중간 시각적 내부 거칠기를 갖도록 형성한 후의 단면 EDS 매핑 분석 결과 및 깊이에 따른 K 함량 분석 결과 그래프이다. 도 16c는 한쪽면만 강화되었으나 유의미한 시각적 내부 거칠기가 없는 화학 강화 유리 단면에 대한 EDS 매핑 분석 결과 및 깊이에 따른 K 함량 분석 결과 그래프이다.
도 17은 기존 발명에 따른 화학 강화 유리의 제조시 교환하고자 하는 이온의 염을 포함하는 도포막이 붙어 있는 유리의 도포막 접촉면을 촬상한 이미지이다.
도 18은 기존 발명에 따른 화학 강화 유리의 제조 시 교환대상 이온의 염을 포함하는 도포막을 통해 이온교환이 되고 도포막을 제거한 후의 유리를 편광현미경으로 촬영한 것이다.
도 19는 본 발명의 일 실시예에 따른 화학 강화 유리의 제조 시 교환대상 이온의 염을 포함하는 도포막이 붙어 있는 유리의 도포막 접촉면을 촬상한 이미지이다.
도 20은 본 발명의 일 실시예에 따른 화학 강화 유리의 제조 시 교환대상 이온의 염을 포함하는 도포막을 통해 이온교환이 된 후 도포막을 제거한 후의 유리를 편광현미경으로 촬영한 것이다.
도 21은 본 발명의 일 실시예에 따른 화학 강화 유리의 제조 시 교환대상 이온의 염을 포함하는 도포막이 붙어있는 유리의 도포막 접촉면을 열처리 전 및 열처리 후에 촬영한 것으로, 큰 시각적 내부 거칠기를 형성하는 경우의 도포막과 유리의 접촉면 이미지이다.
도 22a 및 도 22b는 하나의 유리 내에 화학 강화 영역과 미강화 영역을 정하고 강화 영역에만 본 발명의 일 실시예에 따라 화학 강화를 통해 각각 작은 시각적 내부 거칠기 및 중간 시각적 내부 거칠기가 발생하였고 이들의 미강화 영역 및 화학 강화 영역의 단면을 SEM으로 촬상한 이미지이다.
도 23은 기존 발명 및 본 발명의 일 실시예에 따라 화학 강화를 진행하였을 때의 외부 표면 거칠기를 한 번에 확인할 수 있도록 나타낸 도면이다.
도 24는 기존 발명에 따라 화학 강화를 진행하였을 때의 강화면과 비강화면의 경계를 촬영한 일반 현미경 및 편광 현미경 이미지이다.
도 25는 본 발명의 일 실시예에 따라 이온교환을 거친 후 작은 시각적 내부 거칠기를 갖는 유리에서의 강화면과 비강화면의 경계를 촬영한 일반 현미경 및 편광 현미경 이미지이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명은 화학적으로 강화된 유리 및 이의 제조 방법에 관한 것이다. 상기 유리는 화학적 이온 교환 공정을 거쳐 제조된다. 화학적 이온 교환 공정은 유리 내부의 알칼리 이온이 외부의 이온 교환 대상 이온과 상호확산되는 과정이며, 이온 교환을 통해 유리의 물성이 변화된다. 상기 이온 교환 공정은 상대 이온을 포함하는 제2 이온의 염을 이용하여 수행되며, 이에 대해서는 후술한다.
본 발명은 화학적 이온교환 공정을 거친 후 외부로 노출된 유리 표면을 거칠기의 변화가 없이 그대로 유지하면서도 유리 표면에 거칠기가 있는 것과 같이 광 산란이나 굴절이 일어나도록 거칠기 특성이 내부적으로 제어된 유리에 관한 것이다. 본 발명의 일 실시예에 따르면, 유리 표면의 편평도와 상관없이 유리의 내부를 지나는 광을 유리 내부에서 확산 반사 및/또는 산란을 유도하는 텍스처 형태의 구조를 가지며, 이러한 텍스처 형태의 구조를 “시각적 내부 거칠기”라 지칭한다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 일 실시예에 따른 화학 강화 유리를 개념적으로 도시한 도면이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 화학 강화 유리는 서로 대향하는 양면, 즉, 제1 면(S1)과 제2 면(S2)을 갖는 판상으로 제공된다.
상기 제1 면(S1)과 제2 면(S2) 중 적어도 한 면은 유리 내부의 제1 이온과의 이온 교환 대상이 되는 제2 이온의 교환을 통해 화학적으로 강화된 면이다. 본 실시예에서는, 설명의 편의를 위해 유리의 양면이 아닌, 어느 한 면, 예를 들어, 제1 면(S1)이 강화된 것을 일 예로서 설명한다. 본 발명의 다른 실시예에서는 유리의 양면, 즉, 제1 면(S1)과 제2 면(S2)이 모두 강화될 수 있다.
본 발명의 일 실시예에 있어서, 유리의 제1 면(S1)과 제2 면(S2)은 모두 편평한 형상을 가질 수 있으며, 본 발명의 일 실시예에 있어서, 상기 제1 면(S1)과 제2 면(S2) 사이의 유리 내부에는 시각적 내부 거칠기가 형성된다.
상기 시각적 내부 거칠기는 이온 교환 시에 제공된 제2 이온의 확산 정도에 따라 형성된 경계에 해당한다.
상기 제2 이온이 확산/교환된 영역을 확산 영역(R1)이라 하고, 제2 이온이 확산/교환되지 않아 원 유리가 가지고 있는 제1 이온을 그대로 가지고 있는 영역을 비확산 영역(R2)이라고 하면, 시각적 내부 거칠기는 상기 제2 이온이 확산된 확산 영역(R1)과 상기 제2 이온이 확산되지 않은 비확산 영역(R2)과의 경계에 해당된다.
본 발명의 일 실시예에 있어서, 상기 경계는 불규칙한 형상으로서 상기 제1 면(S1)이나 상기 제2 면(S2)에 대해 평행하지 않는 텍스처, 즉, 요철을 갖는다. 이에 따라, 상기 확산 영역(R1)의 상기 제1 면(S1) 또는 상기 제2 면(S2)으로부터의 깊이는 위치에 따라 서로 다른 값을 가질 수 있으며, 위치에 따라 불규칙한 값을 가질 수 있다. 예를 들어, 상기 경계에 있어서, 제1 면(S1)에 가까운 지점 중 하나를 제1 깊이(D1)라고 하고, 제2 면(S2)에 가까운 지점 중 하나를 제2 깊이(D2)라고 하면, 제1 깊이(D1)와 제2 깊이(D2)는 서로 다른 값을 가질 수 있으며, 그 값의 차이는 위치에 따라 다를 수 있다.
상기 확산 영역(R1)과 상기 비확산 영역(R2)은 상기 제1 면(S1) 또는 상기 제2 면(S2)에서의 유리 내부의 알칼리 이온과, 상기 알칼리 이온과의 이온 교환 대상이 되는 제2 이온을 포함하는 제2 이온의 염과의 성분 차이에 의해 형성될 수 있다. 예를 들어, 상기 확산 영역(R1)과 상기 비확산 영역(R2)은 유리 내부의 제1 이온과 상기 제2 이온의 농도에서 차이가 있다. 예를 들어, 상기 확산 영역(R1)에서는 이온 교환이 일어나 제2 이온의 농도가 높을 수 있으며, 상기 비확산 영역(R2)에서는 이온 교환이 일어나지 않아 제1 이온의 농도가 높을 수 있다. 상기 제1 이온과 상기 제2 이온의 농도의 차이로 인해 상기 확산 영역(R1)과 비확산 영역(R2)을 지나는 광은 서로 다른 굴절률을 느끼게 된다. 상기 굴절률은 상기 시각적 내부 거칠기가 다른 복수의 지점에서 불규칙한 값을 가질 수 있다. 이를 통해, 본 발명의 일 실시예에 따른 화학 강화 유리에 있어서, 제1 면(S1) 또는 상기 제2 면(S2)을 통해 진행하는 광은 상기 시각적 내부 거칠기에 의해 확산 반사되거나 산란되거나 확산 반사 및 산란이 동시에 일어나거나 한다.
이에 따라, 빛이 통과하는 위치에 따라 상기 확산 영역(R1)과 상기 비확산 영역(R2)의 길이가 달라지기 때문에 확산 영역(R1)의 유효 굴절률이 위치에 따라 달라지며, 시각적 내부 거칠기를 갖는 부분은 굴절률 분포가 일정하지 않아서 광의 산란을 일으킨다.
본 발명의 일 실시예에 있어서, 상기 제1 이온은 Na 이온일 수 있으며, 제2 이온은 K 이온일 수 있다. 상기 제2 이온의 염은 KNO3일 수 있다.
상술한 구조를 갖는 화학 강화 유리의 시각적 내부 거칠기는 화학적 이온 교환시의 염의 교환된 영역 분포 및 이에 따른 농도 분포를 의도적으로 제어함으로써 형성될 수 있다. 특히, 유리 내부의 제1 이온과의 이온교환 대상이 되는 제2 이온의 확산을 제어함으로써 제조될 수 있다. 시각적 내부 거칠기를 갖는 유리는 이온교환 단계에서 위치에 따라 이온 교환 시 교환하고자 하는 염이 상이한 정도로 확산되도록 공정조건을 제어함으로써 형성될 수 있는 것이다.
이를 위해, 본 발명의 일 실시예에서는, 유리 내부의 제1 이온과의 이온교환 대상이 되는 제2 이온을 포함하는 제2 이온의 염을 포함하는 슬러리 또는 페이스트를 제조하고, 상기 슬러리 또는 페이스트를 유리의 표면에 도포하여 막을 형성하고, 상기 유리 표면 상의 상기 슬러리 또는 페이스트로 이루어진 막을 건조한 후, 상기 막이 형성된 유리를 열처리함으로써, 시각적 내부 거칠기를 형성한다.
여기서, 상기 유리의 표면 상에서 상기 제2 이온의 염의 석출상의 분포를 달리 형성하는 과정이 포함된다. 상기 시각적 내부 거칠기는 상기 제2 이온의 염의 석출상의 분포에 따라 달리 형성되며, 상기 제2 이온의 염의 석출상의 분포는 상기 슬러리 또는 페이스트의 조성 (예를 들어, 상기 슬러리 또는 페이스트 내의 상기 제2 이온의 염의 함량), 상기 슬러리 또는 페이스트로 이루어진 막의 두께, 상기 슬러리 또는 페이스트로 이루어진 막의 건조 온도, 상기 슬러리 또는 페이스트로 이루어진 막의 건조 습도, 상기 슬러리 또는 페이스트로 이루어진 막의 이온교환 열처리 시간, 슬러리 또는 페이스트로 이루어진 막의 이온교환 열처리 온도 중 적어도 하나가 조절될 수 있으며, 이를 통해 제2 이온의 확산이 제어된다.
본 발명의 일 실시예에 있어서, 상기 시각적 내부 거칠기를 형성하는 공정은 유리 자체의 외형에 실질적으로 영향을 미치지 않는다. 즉, 화학 강화 유리에 있어서, 상기 제1 면(S1)과 제2 면(S2)은 모두 화학 강화를 거치는 과정 전과 후의 형상이 실질적으로 변형되지 않는 것이다.
본 발명의 일 실시예에서는, 상기 제1 면(S1)과 제2 면(S2)은 상술한 실시예와 같이 편평한 것이 제공될 수 있으며, 이러한 편평한 형상은 시각적 내부 거칠기를 형성하는 과정 전이나 후에도 모두 편평할 수 있다. 이와 달리, 본 발명의 다른 실시예에서는 상기 유리의 제1 면(S1)과 제2 면(S2)이 편평하지 않는 형상의 유리가 제공되는 경우, 시각적 내부 거칠기를 형성하기 전이나 후에도 모두 원 상태의 편평하지 않는 형상이 유지될 수 있다. 이를 좀더 상세히 설명하면 다음과 같다.
상기 시각적 내부 거칠기는 실제로 외표면에 거칠기가 형성된 경우와 같은 광학적인 효과를 나타내면서도, 두 물질 사이, 예를 들어, 유리와 공기 사이의 계면에서 해당 거칠기를 형성하는 것이 아니며, 유리 내부에 시각적 차이만을 만들어낸다. 다시 말해, 비침지 방식 이온교환을 통하여 화학적으로 유리의 표면을 강화할 때, 강화된 유리의 표면의 거칠기의 가시적인 변화 없이, 상호확산이 발생하는 확산 종(예를 들어, 이온 교환하고자 하는 이온)의 유리 내 농도 분포 및 이에 따른 공간적 분포를 달리 형성하여 시각적 내부 거칠기 특성을 부여한다. 확산 종의 공간적 분포는 유효 확산 깊이를 위치에 따라 다르게 형성하는 방식으로 시각적 내부 거칠기 특성을 부여할 수 있다. 이러한 확산 종의 공간적 분포는 유리의 표면 상에서의 확산 종의 농도(예를 들어, 알칼리 이온의 농도)로 대표될 수 있다. 즉, 확산 종의 공간적 분포는 유효 확산 깊이에 따라 달라질 수 있으나, 이러한 유효 확산 깊이는 표면 상에서의 확산 종의 농도에 실질적으로 직접적으로 영향을 받는다. 이에 따라, 본 발명의 일 실시예에서는 유리 표면에서의 알칼리 염의 농도 및 분포를 제어함으로써 시각적 내부 거칠기를 조절하는 것이다.
구체적으로, 상기 특징의 구현을 위하여, KNO3 등의 알칼리염, 물을 위시한 해당 알칼리염의 용매 및 금속산화물 등을 포함하는 슬러리 제작 시 알칼리염과 금속산화물의 함량비와 금속산화물과 용매의 상대비율 등을 조절하여 도포막 형성 후 유리표면에 형성되는 KNO3 등의 석출상의 크기 및 분포를 제어하고 이온교환 공정조건을 제어할 수 있다. 이러한 KNO3 등의 석출상의 크기 및 분포에 따라 유리 표면에서의 알칼리 염(예를 들어, 칼륨과 나트륨)의 최대 성분 차이가 발생한다.
이러한 이온교환 공정 조건을 제어함으로써, 시각적 내부 거칠기를 다양하게 형성할 수 있는 바, 예를 들어, 거칠기의 정도에 따라 큰 시각적 내부 거칠기, 중간 시각적 내부 거칠기, 및 작은 시각적 내부 거칠기로 형성할 수 있다. 큰 시각적 내부 거칠기, 중간 시각적 내부 거칠기, 및 작은 시각적 내부 거칠기는 다음과 같이 정의될 수 있다. 여기서, 각 시각적 내부 거칠기는 육안으로 그 크기를 확인할 수 있으며, 보다 정확하게는 편광현미경으로 그 크기를 확인할 수 있으며, 평균은 20번 측정을 기준으로 한다.
1) 작은 시각적 내부 거칠기 : 임의로 표면에 500 μm 길이의 직선을 그었을 때 해당 성분 차이가 평균 1 at% 이하로 발생하며 평균적으로 10 번 이상의 빈도로 나타나는 경우에 해당됨.
2) 중간 시각적 내부 거칠기 : 임의로 표면에 500 μm 길이의 직선을 그었을 때 해당 성분 차이가 평균 1 at% 초과 2 at% 미만으로 발생하며 평균적으로 5 번 이상의 빈도로 나타남.
3) 큰 시각적 내부 거칠기 : 임의로 표면에 500 μm 길이의 직선을 그었을 때 해당 성분 차이가 평균 2 at% 이상으로 발생하며 평균적으로 5 번 미만의 빈도로 나타남.
본 발명의 일 실시예에 따른 유리를 편광 현미경으로 관찰 시, 유사한 경향을 보이는 범위 단위가 작아짐에 따라 이미지에서 나타난 굴절률 변화의 콘트라스트는 약해지는 경향을 보인다. 상기 시각적 내부 거칠기의 차이는 알칼리염과 금속산화물 입자의 혼합비, 금속 산화물 입자의 크기 및 형상, 도포막 형성 및 건조 조건, 이온교환 열처리 조건 등을 제어하여 조절할 수 있다.
본 발명의 일 실시예에 따르면, 시각적 내부 거칠기를 형성하기 위해 유리 내부의 제1 이온(알칼리 이온, 예를 들어, Na 이온)과 교환되는 제2 이온의 염(알칼리 이온의 염, 예를 들어, KNO3)과 같은 알칼리염을 포함하는 슬러리 및/또는 페이스트를 제조하고, 이를 유리 표면에 제공하여 도포막을 형성한다.
상기 제2 이온의 염(이하, 알칼리염이라고 지칭)을 함유하는 슬러리나 페이스트를 만들어 이를 유리 표면에 도포막을 형성할 시, 각각 일반적인 스프레이 기반 코팅 방법이나 페이스트 기반 코팅 방법으로 형성할 수 있다.
예를 들어, 유리 표면에 막을 형성한 후에 이온교환을 위한 열처리 조건에서 용융 또는 반용융 상태로 존재하는 알칼리염이 유리의 표면부와 균일하게 접촉하여 분포하고 나아가 이온교환에 도움을 주는 조성물 및 공정이 제공될 수 있다. 또한, 본 발명에 의하면, 알칼리염을 함유하지 않거나 비교적 소량 함유하는 슬러리나 페이스트를 만들어 이를 각각 일반적인 스프레이 기반 코팅 방법이나 페이스트 기반 코팅 방법으로 유리 표면에 막을 형성한 후에 알칼리염 (수)용액을 스프레이 방식으로 도포하거나 알칼리염 (수)용액에 침지하는 방식으로 알칼리염을 추가한 이후에 이온교환을 위한 열처리 조건에서 용융 또는 반용융 상태로 존재하는 알칼리염이 유리의 표면부와 균일하게 접촉하여 분포하고 나아가 이온교환에 도움을 주는 조성물 및 공정이 제공될 수 있다. 상기 슬러리 및/또는 페이스트는 알칼리염 이외에 금속 산화물 입자를 더 포함할 수 있다. 상기 알칼리염과 금속 산화물 입자의 함량은 이후 알칼리염의 석출상의 분포를 제어하는 하나의 인자가 될 수 있다. 또한, 금속 산화물 입자는 염과 함께 슬러리 상태에서 통상의 스프레이 기반 공정으로 형성된 막을 소정 상대습도 하에서 소정 시간 건조할 수 있다. 여기서, 건조시의 습도 조건, 건조 시간, 건조 온도 또한 이후 알칼리염의 석출상의 분포를 제어하는 다른 인자가 될 수 있다.
본 발명의 일 실시예에 있어서, 상기 슬러리/페이스트 상태로 도포된 도포막을 건조할 때, 0 ℃ 내지 200 ℃로 5초 내지 12시간 동안 건조할 수 있다. 이때, 습도 조건은 상대습도 10 % 내지 90 %일 수 있다. 여기서, 참고로, 도포막을 건조하는 단계는 용매(주로 물)을 휘발시켜 도포막의 건조를 달성하는 것 이외에, 도포막 내에 포함된 이온의 이온염의 석출을 위한 것이다. 상기 건조시의 도포막 두께, 건조 온도, 건조 시간, 및 습도 조건 등을 제어함으로써 상기 이온염의 석출 정도를 제어할 수 있다. 이 단계에서, 염(이를 테면, KNO3)은 용매가 휘발되어 없어짐에 따라 고상의 입자로 석출될 수 있으며, 건조 조건에 따라 고상 입자의 크기와 분포가 달라질 수 있다.
본 발명의 일 실시예에 있어서, 슬러리 또는 페이스트의 조성(예를 들어, 상기 슬러리 또는 페이스트의 내의 상기 제2 이온의 염의 함량), 상기 슬러리 또는 페이스트의 도포막 두께, 상기 슬러리 또는 페이스트의 건조 온도, 상기 슬러리 또는 페이스트의 건조 습도, 상기 슬러리 또는 페이스트의 건조 시간, 상기 열처리 온도, 열처리 시간 중 적어도 하나가 조절될 수 있으며, 이를 통해 제2 이온의 확산이 제어된다. 예를 들어, 슬러리 또는 페이스트의 조성을 달리하여 도포막을 형성하는 경우, 조성에 따라 석출상의 형상이 달라질 수 있으며, 석출상의 형상에 따라 서로 다른 정도로 시각적 내부 거칠기가 발생할 수도 있다.
본 발명의 일 실시예에 있어서, 상기 알칼리 염과 혼합될 수 있는 금속 산화물 입자는 TiO2, ZnO, ZrO2, CuO 및 NiO의 조성 중 적어도 하나의 조성을 가질 수 있다. 예를 들어, 금속 산화물 입자는 TiO2, ZnO, ZrO2, CuO 또는 NiO 조성을 주로 가지며, TiO2, ZnO, ZrO2, CuO 또는 NiO 입자는 단독으로 또는 공동으로 염 수용액과 혼합되어 슬러리/페이스트 상태를 형성할 수 있다.
또는, 금속 산화물 입자는 Cr2O3, MnO2, MnO, Fe2O3, FeO, Co2O3, Y2O3, TeO2, CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3 및 Er2O3의 조성 중 적어도 하나의 조성을 갖는 복수의 입자를 포함할 수 있다. 예를 들어, 금속 산화물 입자는 Cr2O3, MnO2, MnO, Fe2O3, FeO, Co2O3, Y2O3, TeO2, CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3 또는 Er2O3 조성을 주로 가지며, Cr2O3, MnO2, MnO, Fe2O3, FeO, Co2O3, Y2O3, TeO2, CeO2, La2O3, Nd2O3, Pr2O3, Sm2O3, Eu2O3, Gd2O3, Tb2O3, Dy2O3, Ho2O3 또는 Er2O3 입자는 단독으로 또는 공동으로 염 수용액과 혼합되어 슬러리/페이스트 상태를 형성할 수 있다.
상기 도포막이 형성된 유리는 소정 온도 범위(예를 들어, 약 100 ~ 약 600 ℃범위)에서 열처리될 수 있다. 열처리를 통해 도포막의 염의 전부 또는 일부가 액상이 되는 온도 범위에서 막이 형성된 유리를 열처리하여 막 내부에 퍼져 있는 염을 경유하여 알칼리 이온과 유리 내부의 알칼리 이온(예를 들어, 나트륨이온 등) 사이에 이온 교환을 발생시킬 수 있다. 본 발명의 일 실시예에 있어서, 열처리 단계는, 예를 들어, 약 250 ℃이상에서 수행될 수 있다. 막이 통상 약 250 ℃이상 온도에서 열처리될 때, 염(이를 테면, KNO3)은 전부 또는 일부가 용융되어 (준)액상 상태가 되며, 유리 내부의 나트륨 이온 등의 알칼리 이온과 막 내부의 이온교환 제2 이온(이를 테면, 칼륨 이온 등의 알칼리 이온, 은 이온, 구리 이온 또는 금 이온 등) 사이에서 액상을 경유하거나 입자의 표면을 경유하는 이온교환이 발생한다.
이러한 열처리 단계를 거쳐, 도포막 내부에 퍼져 있는 액상 칼륨염 등의 알칼리염을 경유하여 칼륨 등의 알칼리 이온과 유리 내부의 나트륨 이온 등의 알칼리 이온 사이에 이온 교환을 발생시킬 수 있다. 본 발명의 다른 실시예에서는 상기 염용액은 은염 용액, 금염 용액 또는 구리염 용액일 수 있다. 이러한 경우, 도포막 내부의 은 이온, 금 이온 또는 구리 이온이 이온교환 제2 이온으로서 유리 내부의 알칼리 이온(예를 들어, 나트륨 이온 등)과 이온교환될 수 있다.
은 이온이 이온교환을 통해 유리 내부로 들어가는 경우, 유리에 포함된 여타 성분의 영향을 받아 Ag+ 이온 상태로 존재하거나 Ag0 형태의 메탈릭 클러스터 또는 금속 나노입자로 존재할 수 있다. 즉, Ag+ 상태를 환원시켜서 Ag0 상태로 만들기 위해서는 기본적으로 유리 내부에 미량의 Fe, V, Mn, Co, Ce, Eu, Cr 등의 원소가 포함되어야 한다. 해당 원소들의 특징은 공히 두 개의 이상의 산화가를 가지는 multi-valent한 특징을 가진다. 예를 들어, Fe2+ + Ag+ ↔Fe3+ + Ag0 형태의 산화 환원 반응을 통하여 Ag+ 이온이 Ag0 상태의 금속 입자로 환원된다. 이에 따라 은 나노입자에 의하여 형성되는 표면 플라스몬 공명 흡수(surface plasmon resonance absorption)가 발생할 수 있고, 산화가의 변화를 겪은 여타 이온에 의하여 유리의 색이 바뀔 수 있으며, 표면 플라스몬 공명 현상을 이용한 바이오 센서 등으로 활용할 수 있을 것이다. 또한, 유리 내부에 상기 multi-valent 이온이 존재하지 않으면 유리 내부로 들어간 Ag+ 이온은 그 상태를 유지하기 때문에 표면강화 효과와 더불어 항균 효과 등을 추가로 나타낼 수 있다. 은 이온은 금 이온 또는 구리 이온으로도 대체될 수 있다. 한편, 나트륨 함유 유리에서 은 이온은 칼륨 이온보다 상호확산계수가 커서 이온교환이 더 빨리 발생하며, 분극률이 커서 시각적 내부 거칠기 효과가 더 뚜렷하게 발생할 수 있다.
본 발명의 일 실시예에 있어서, 금속 산화물 입자는 페이스트 기반 코팅법으로 유리의 표면에 막을 형성할 수 있도록, 염 수용액(칼륨염 등의 알칼리 염 용액, 은염 용액, 금염 용액 또는 구리염 용액) 및 점도 조절 첨가제와 혼합하여 페이스트 상태를 형성하는 조건을 만족하는 입자일 수 있다.
참고로, 점도 조절 첨가제는 일반적인 페이스트 제작시 통상적으로 사용되는 공업용 또는 식용 조성물일 수 있다. 예를 들어, 일반적인 페이스트 제작시 통상적으로 사용되는 공업용 또는 식용 조성물이 그대로 점도 조절 첨가제로 사용될 수 있다.
예를 들어, 점도 조절 첨가제는, 글리세린, 터피놀, 글루코스 및 잔탄검 중 하나 이상을 포함할 수 있다. 다시 말해, 점도 조절 첨가제는 염 수용액과 금속 산화물 입자가 혼합된 혼합액(슬러리)의 점도를 높여 페이스트 상태로 만들기 위하여 추가되는 첨가제로서, 글리세린, 터피놀, 글루코스, 잔탄검을 하나 이상 포함할 수 있다. 이외에도, 점도 조절 첨가제는 알코올, 폴리바이닐 알코올, 폴리에틸렌 글리콜, 메틸셀룰로오스, 폴리비닐 피로리돈, 하이드록시프로필 셀룰로오스, 하이드록시 프로필 메틸셀룰로오스 등 중 하나 이상을 포함할 수 있다.
이와 같이, 본 발명은 제2 이온의 염과 금속산화물 입자를 혼합하여 슬러리를 제작하고 유리표면에 도포막을 형성함에 있어 건조 후 유리표면에 생성되는 제2 이온의 염을 유리표면 상의 위치별로 서로 상이하게 형성한다. 이에 따라, 이온교환을 위한 열처리 후 발생하는 확산 현상의 위치 별 차이에 기인하는 상이한 굴절률로 인하여 시각적 내부 거칠기 현상이 발생하며 추가적으로 표면부에 압축응력이 부여되어 화학강화 특성을 가지게 된다.
본 발명의 일 실시예에 따른 화학 강화 유리는 상술한 바와 같이 비침지 방식의 이온 교환을 이용하여 제조되며, 유리 표면 거칠기의 유의미한 변화가 없이 교환 이온의 확산면을 유리 표면의 굴곡과 비평행하게 발생시킨 것에 특징이 있다. 일반적인 이온교환 공정에서 각 이온의 상호확산은 유리 표면과 수직한 방향으로 발생하며, 이온교환 후 depth of layer는 유리 표면의 굴곡과 평행하게 발생하며 위치별로 현저한 차이를 발생시키지 않는다. 즉, 일반적인 이온교환 공정을 거친 후 유리 표면을 육안으로 관찰하면, 뒤틀림(warpage)이나 오목부(dimple), 구덩이(pit)와 같은 결함이 없는 경우, 이온교환 공정 전 유리 표면의 거칠기를 유지하며 따라서 반사율 및 반사형태(specular reflection 또는 diffuse reflection) 역시 유의미한 차이가 없다.
실제로, 기존 발명에 따르면 유리를 관통하는 빛의 의도적인 산란을 위해서는 유리의 표면을 의도적으로 거칠게 하는 방법이 사용되었다. 예를 들어, 물리/화학적 식각, 코팅, 샌드 블라스트, 롤러 압착 등으로 유리의 표면을 거칠게 하였다. 이러한 방식으로 제조되어 표면에 거칠기를 가지는 유리의 경우 확산 반사를 발생시킴으로써 이러한 거칠기에 의한 방현특성의 향상 등의 효과를 얻을 수 있어, 공학적인 실용성이 높아질 수 있었다. 일례로, 태양전지 커버유리의 경우 유리 표면에 규칙적 또는 불규칙적 요철구조를 도입하여 방현 특성을 부여함과 동시에 태양광의 투과율 및 집광율을 높인다. 예를 들어, 기존 발명에 따르면 태양전지용 커버 유리의 표면의 경우 반사 방지 특성을 가지도록 나노구조를 리소그래피 기술을 이용하여 형성하였다. 여기서, 반사 방지 특성 및 태양전지 효율 증대 효과를 얻기 위해 유리 표면에 요철을 가지는 나노구조를 형성하였다. 이를 위해, 태양전지용 커버 유리에 스프레이 방식으로 반사 방지 및 방진 특성을 가지는 실리카 기반의 박막을 형성하였다. 그 결과, 기존 발명에 따르면, 태양전지 커버 유리 표면에 박막을 형성하여 투과율 증가 및 반사율 감소 효과를 얻을 수 있었다. 그러나, 이러한 기존 발명에 따른 유리의 표면은 표면 자체가 울퉁불퉁하기 때문에 물리강화 및 화학강화의 효과가 낮아지는 동시에 오염물 세척이 어려워지는 등의 문제가 있다.
이에 비해 본 발명에서는 표면 거칠기의 변화 없이 내부 굴절률 분포 차이를 통해 시각적 내부 거칠기를 형성하여 반사 방지 특성을 부여할 수 있으므로, 추가적인 박막 증착 공정이 요구되지 않으며, 강화 공정만으로 위치별로 상이한 굴절률 분포를 부여하여 반사 방지 특성을 구현한다.
본 발명에서는 일반적인 플로트 유리 수준으로 편평한 표면을 가지는 알칼리 함유 유리를 대상으로, 비침지 방식 이온교환을 통하여 표면 거칠기의 가시적인 변화가 없는 상태에서 상호확산이 발생하는 확산면을 유리의 표면과 평행하지 않게 한다.
특히, 기존 발명의 일 실시예는 유리 표면에 텍스쳐링을 통해 표면 거칠기를 형성하고 이온교환을 통해 압축 응력 영역을 형성하여 내스크래치성을 갖는 유리를 특징으로 한다. 반면, 본 특허에서는 금속산화물 슬러리의 조성에 따라 유리 표면에 거칠기는 존재하지 않는 반면, 이온교환 깊이층의 차이를 통해 시각적인 내부 거칠기를 형성함과 동시에 압축 응력 영역을 형성할 수 있다. 이에 더해, 기존 발명은 내스크래치성 유리에 한정하여, 표면에 텍스쳐링을 통해 적정 누프 스크래치 임계값을 가지며, 압축응력영역을 형성할 수 있는 유리에 관한 것이나, 본 발명은 유리 표면 거칠기는 변화하지 않고 이온교환을 통해 확산 깊이층의 위치별 상이함으로 굴절률이 위치별로 달라 발생하는 시각적 내부 거칠기를 가진 유리를 제공한다.
이하에서는 각 실시예를 통해 본 발명에 대해 설명한다.
실시예 1. 기존 발명과 본 발명에 따른 시각적 내부 거칠기 편광 현미경 촬영
도 2는 이온교환이 진행되지 않은 원장 유리를 편광 현미경으로 촬영한 것이며, 도 3은 기존 발명에 따른 일반적인 이온교환 후의 유리를 편광 현미경으로 촬영한 것이며, 도 4는 본 발명의 일 실시예에 따른 유리를 편광 현미경으로 촬영한 것이며, 도 5는 도 4의 유리에 추가적인 열처리를 통해 내부 잔류 응력을 제거한 유리를 편광 현미경으로 촬영한 것이다.
도 3 내지 도 5는 알칼리 염을 포함하는 슬러리의 조성을 달리하여 도포막을 형성한 후 알칼리염의 석출을 위해 동일한 건조 조건임에도 석출상이 다르게 제어된 것이다.
상세하게는, 도 3은 기존 발명으로서, 100 ml의 물 용매에 TiO2:KNO3 질량비가 29:71인 슬러리를 사용하여 도포막을 형성한 후 상온 및 80 % 수준의 습도에서 건조하고 이를 450 ℃에서 8분 동안 이온교환 열처리를 진행하고 도포막 제거 후의 유리 표면을 편광 현미경을 사용하여 촬영한 이미지이다.
도 4 및 도 5의 경우, 40 ml의 물 용매에 TiO2:KNO3 질량비가 60:40인 슬러리를 사용하여 도포막을 형성한 후 상온 및 80 % 수준의 습도에서 건조하고 이를 450 ℃에서 8분동안 이온교환 열처리를 진행하여 도포막 제거 후의 유리 표면을 편광 현미경을 사용하여 촬영한 이미지이다.
도 5의 경우, 도 4와 동일한 시편으로, 시각적 내부 거칠기 발생 이후 도포막을 제거하고 추가적인 열처리를 610 ℃에서 2시간 진행하여 제조하였다.
먼저, 도 2를 참조하면, 이온교환이 진행되지 않았음에 따라 편광 현미경으로 관찰 시 어떠한 거칠기의 변화도 나타나지 않는다. 또한 도 3의 경우, 기존 발명에 따른 일반적인 이온교환 후임에도 원장 유리와 동일한 수준으로 거칠기의 변화가 나타나지 않는다. 그러나, 도 4의 경우, 이온 교환된 영역의 전면에서 불규칙한 거칠기(즉 시각적 내부 거칠기)가 나타남을 명확하게 확인할 수 있다. 도 4에 도시된 유리의 경우 큰 시각적 내부 거칠기를 가졌다. 또한 도 5를 참조하면, 도 4에 도시된 유리에 대하여 추가적인 열처리를 통해 내부 응력이 제거됨에 따라 도 4에서 발생하였던 시각적 내부 거칠기가 사라짐을 확인할 수 있다.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 유리를 편광 현미경으로 촬상한 것들이다. 도 6a 및 도 6b의 경우, 40 ml 물 용매에 TiO2:KNO3 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 도포하고 이를 상온 및 60 % 수준의 습도에서 건조 후 440 ℃에서 15분동안 이온교환 열처리가 이루어지고 도포막을 제거 후 편광 현미경 이미지이며, 이온 교환된 영역의 전면에서 불규칙한 거칠기(즉 시각적 내부 거칠기)가 나타남을 명확하게 확인할 수 있다.
도 7a 및 도 7b는 본 발명의 일 실시예에 따른 유리를 각각 일반 현미경 및 편광 현미경으로 촬상한 것들로서 오목부가 있는 경우에 해당한다. 상세하게는, 40 ml 물 용매에 TiO2:KNO3 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 도포하고 이를 상온 및 60 % 수준의 습도에서 건조하고 440 ℃에서 20분 이온교환 열처리를 진행하여 도포막을 제거한 유리의 일반 현미경 및 편광 현미경 이미지이다. 도 7a 및 도 7b를 참조하면, 일반 현미경 이미지에서는 표면 거칠기 변화가 확인되지 않았다. 그러나, 오목부 위주로 관찰시 편광 현미경에서 표면 굴곡이 나타난 것을 확인할 수 있었다.
실시예 2. 표면 성분 변화에 따른 시각적 내부 거칠기 변화 (SEM)
유리 표면 영역에 따른 알칼리 이온의 성분차이가 많이 나타나도록 유리 막에 슬러리를 도포하되, 슬러리의 조성, 건조 온도, 건조시 습도 조건 중 적어도 하나를 변경하여 시각적 내부 거칠기를 달리 형성하였다.
도 8a 및 도 8b는 본 발명의 일 실시예에 있어서 작은 시각적 내부 거칠기를 가지도록 제조된 유리를 도시한 SEM의 BED 이미지이다. 상세하게는, 40 ml 물 용매에 TiO2:KNO3 비율을 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 사용하였으며, 상온 및 60 % 수준의 습도에서 건조를 진행한 뒤 440 ℃에서 11분 열처리를 진행하였다. BED 이미지의 경우 표면 성분 변화를 확인할 수 있는 바, 특정 위치에서의 성분의 다름(즉 각 구성요소의 농도 분포가 다름)으로 인해 명암의 차이가 나타남을 확인할 수 있다.
도 8a 및 도 8b에서 확인할 수 있는 바와 같이, 100배에서는 변화가 잘 확인되지 않았으며, 배율을 높여야 확인되는 것으로 나타났으며, 200배에서 시각적 내부 거칠기가 관찰되었다.
도면을 참조하면, 이미지 상에서 밝은 부분과 어두운 부분이 확인되는 바, 이는 성분 차이에 의한 명암 차이에 해당한다. 어두운 부분은 Na이 상대적으로 많은 영역이며 밝은 부분은 K이 상대적으로 많은 영역이다.
도 8a 및 도 8b에 있어서, 슬러리/페이스트에서의 알칼리 염의 석출량을 제어하여 제조하였으며 그 결과 다음 표 1 및 표 2와 같이 어두운 부분과 밝은 부분의 성분이 조절되었다. 슬러리/페이스트에서의 알칼리 염의 석출량은 도포막 형성시의 조건을 조절하는 방식으로 수행되었으며, 도포막 형성에 관한 내용에 대해서는 이후 실시예에서 설명한다.
검토 결과 어두운 부분은 상대적으로 Na가 많은 영역, 밝은 부분은 상대적으로 K가 많은 영역에 해당하였다.
Element wt% at %
O 50.24 63.60
Na 7.13 6.28
Mg 1.73 1.45
Al 9.00 6.75
Si 26.54 19.14
K 5.36 2.78
Total: 100.00 100.00
Element wt% at %
O 50.01 63.96
Na 5.21 4.64
Mg 1.70 1.43
Al 8.84 6.71
Si 26.03 18.97
K 8.21 4.30
Total: 100.00 100.00
도 9a 및 도 9b는 각각 본 발명의 일 실시예에 있어서 중간 시각적 내부 거칠기를 가지도록 제조된 유리를 도시한 SEM의 LED 및 BED 이미지이다. 상세하게는, 50 ml 물 용매에 TiO2:KNO3 비율을 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 사용하였으며, 상온 및 60 % 수준의 습도에서 건조를 진행한 뒤 440 ℃에서 11분 열처리를 진행하였다. 도 9a 및 도 9b를 참조하면, 동일 표면에서 이미지나 검출기의 종류에 따라 다른 형상을 나타낸다. LED 이미지의 경우 표면 모폴로지를 확인할 수 있는 것으로서, 표면 거칠기에 민감(surface roughness sensitive)한 특성을 나타낸다. 이에 도 9a에서 확인할 수 있는 바와 같이, 본 발명의 일 실시예에 따른 유리는 표면 높낮이 변화가 나타나며, 표면에 존재하는 불순물 외의 표면 거칠기 변화는 발생하지 않았다. BED 이미지의 경우 표면 성분 변화를 확인할 수 있는 바, 특정 위치에서의 성분의 다름을 확인할 수 있었다. 도 9a 및 도 9b에 있어서, 슬러리에서의 알칼리 염의 석출량을 제어하여 제조하였으며 그 결과 다음 표 3 및 표 4와 같이 어두운 부분과 밝은 부분의 성분이 조절되었다.
Element wt% at %
O 51.05 63.98
Na 7.15 6.24
Mg 1.79 1.48
Al 9.44 7.01
Si 27.90 19.92
K 2.67 1.37
Total: 100.00 100.00
Element wt% at %
O 50.15 64.13
Na 4.72 4.20
Mg 1.69 1.43
Al 8.92 6.76
Si 26.37 19.21
K 8.15 4.27
Total: 100.00 100.00
도 8a 및 도 8b, 도 9a 및 도 9b를 참조하면, 건조 온도 및 습도가 동일함에도 불구하고 슬러리 조성, 상세하게는, 물 함량비가 달라짐에 따라 작은 시각적 내부 거칠기 및 중간 시각적 내부 거칠기로 그 크기의 차이가 발생함을 확인할 수 있다. 도 10a 및 도 10b는 각각 본 발명의 일 실시예에 있어서 큰 시각적 내부 거칠기를 가지도록 제조된 유리를 도시한 SEM의 LED 및 BED 이미지이다. 상세하게는, 100 ml 물 용매에 TiO2:KNO3 비율을 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 상온에 두어 TiO2를 침강시킨 뒤 약 50 ml의 용매를 제거한 침강 슬러지를 도포하였으며, 상온 및 60 % 수준의 습도에서 건조를 진행한 뒤 440 ℃에서 11분 이온교환 열처리를 진행하였다.도 10a 및 도 10b를 참조하면, LED 이미지의 경우 표면 명암의 차이가 크게 나타나며, 이는 성분 차이가 극명하게 발생한 것으로 볼 수 있었으나 실제 높낮이의 변화는 없는 것으로 판단되었다. BED 이미지의 경우 표면 성분 변화를 확인할 수 있는 바, 특정 위치에서의 성분의 다름을 확인할 수 있었다.
도 10a 및 도 10b에 있어서, 슬러리에서의 알칼리 염의 석출량을 제어하여 제조하였으며 그 결과 다음 표 5 및 표 6와 같이 어두운 부분과 밝은 부분의 성분이 조절되었다.
Element wt% at %
O 51.69 65.19
Na 5.44 4.78
Mg 1.70 1.41
Al 8.83 6.60
Si 26.39 18.96
K 5.94 3.07
Total: 100.00 100.00
Element wt% at %
O 50.84 64.89
Na 4.27 3.79
Mg 1.73 1.45
Al 8.66 6.55
Si 25.80 18.76
K 8.71 4.55
Total: 100.00 100.00
도 9a 및 도 9b, 도 10a 및 도 10b를 참조하면, 건조 온도 및 습도가 동일함에도 불구하고 슬러리 조성이 달라짐에 따라 중간 시각적 내부 거칠기 및 큰 시각적 내부 거칠기로 그 크기의 차이가 발생함을 확인할 수 있다.상술한 실험 결과에 있어서, 작은 시각적 내부 거칠기는 양면 및 표면에서 위치에 따른 K 및 Na 성분의 차이가 평균 0.1 at% 이상 1 at% 이하로 발생하였으며, 편광 현미경 관찰 시, 100 x 100 μm 이하 범위 단위로 유사한 경향을 보였다. 중간 시각적 내부 거칠기는 양면 및 표면에서 위치에 따른 K 및 Na 성분의 차이가 평균 1 at% 초과 2 at% 미만으로 발생하였으며, 편광 현미경 관찰 시, 100 x 100 μm 초과 300 x 300 μm 미만 범위 단위로 유사한 경향을 보였다. 큰 시각적 내부 거칠기는 양면 및 표면에서 위치에 따른 K 및 Na 성분의 차이가 2 at% 이상으로 발생하였으며 편광 현미경 관찰 시, 300 x 300 μm 이상 범위 단위로 유사한 경향을 보였다.
실시예 3. 표면 성분 변화에 따른 시각적 내부 거칠기 변화 (표면 EDS)
본 발명의 일 실시예에 따라 도포막의 구성성분을 조절한 화학적 강화 유리에 대해 LED 이미지에 더해 EDS 매핑 분석을 수행하였다. 상세하게는, 100 ml 물 용매에 TiO2:KNO3 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 도포하였으며, 상온 및 60 % 수준의 습도에서 건조를 진행한 뒤 300 ℃에서 6시간 열처리를 진행하였다. 동일한 조건을 활용하였음에도, 도포 시 위치에 따라 형성된 막의 두께 및 품질이 다르도록(일반 분사, 장시간 분사, 다회 분사) 임의적으로 도포막을 형성하여 기존 발명에 따른 단순 화학적 강화 효과가 발생하거나, 시각적 내부 거칠기가 발생하거나, 오목부가 발생함을 확인할 수 있다.
도 11은 기존 발명에 따른 단순 화학적 강화 유리의 표면과 동일하게 형성된 유리 표면부의 EDS 분석 이미지이며, 도 12는 본 발명의 일 실시예에 따른 화학적 강화 유리의 표면 EDS 분석 이미지이며, 도 13은 본 발명의 일 실시예에 따른 화학적 강화 유리로서 오목부가 존재하는 것의 표면 EDS 분석 이미지이다.
도 11을 참조하면, LED 이미지에 있어서 불순물을 제외하고는 표면 높낮이의 변화가 관찰되지 않았다. EDS 표면 분석 결과, Na와 K의 성분 차이가 거의 존재하지 않음을 확인할 수 있었다.
도 12를 참조하면, 본 발명의 일 실시예에 따른 유리 표면의 경우 LED 이미지에 있어서 높낮이의 변화가 존재하지 않는 점을 확인할 수 있었다. 그러나, 기존 발명에 따른 유리의 표면과 달리, 본 발명의 일 실시예에 따른 유리의 표면의 경우 이미지상의 콘트라스트 차이가 현저하게 나타남으로써 Na와 K의 성분 차이가 크게 나타남을 확인할 수 있었다.
도 13을 참조하면, LED 이미지에 있어서 오목부가 있는 부분에서 표면 높낮이가 관찰되었다. 그러나, EDS 분석 결과 표면 성분에 변화가 없는 것으로 확인되었다. 이를 통해, 표면 상에 오목부가 형성되더라도, 표면 성분의 변화에 영향을 거의 주지 않으며 내부 거칠기의 차이에 영향을 미치지 않다는 것을 확인할 수 있었다.
실시예 4. 표면 성분 변화에 따른 시각적 내부 거칠기 변화 (단면 EDS 분석)
표면 성분 변화가 시각적 내부 거칠기에 영향을 미치는지 여부를 확인하기 위해 본 발명의 일 실시예에 따른 화학적 강화 유리의 단면에 대해 LED 이미지 및 EDS 매핑 분석을 수행하였다. 상세하게는, 실시예 2에 도시된 큰, 중간, 작은 시각적 내부 거칠기 제어 유리와 동일한 것이며, 도 15d는 40 ml 물 용매에 TiO2:KNO3 비율을 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 유리의 양면 중 한쪽 면에 도포하고 이를 상온 및 30 % 수준의 습도에서 건조를 진행한 뒤 440 ℃에서 11분 열처리를 진행하였다.
도 14는 본 발명의 일 실시예에 따라 유리에 큰 시각적 내부 거칠기를 형성한 후 얻은 단면 LED 이미지 및 EDS 매핑 분석 결과이다.
도 14를 참조하면, LED 이미지 상에서 표면 높낮이 변화가 존재하지 않는 것이 확인되었다. 단면 성분의 차이는 EDS 분석 결과 이미지에서의 명암의 변화로 확인할 수 있으며 위치에 따라 Na 및 K의 성분이 달리 형성된 것이 확인되었다. 특히 1번 위치에서는 Na과 K의 이온 교환이 표면으로부터 비교적 얕은 위치에서 진행되었으나, 2번 위치에서는 1번 대비 더 깊은 위치에서 Na과 K의 이온 교환이 진행된 것을 확인할 수 있었다.
도 15a 내지 도 15c는 각각 본 발명의 일 실시예에 따른 화학적 강화 유리를 큰 시각적 내부 거칠기, 중간 시각적 내부 거칠기, 및 작은 시각적 내부 거칠기를 갖도록 형성한 후 250배로 확대한 단면 EDS 매핑 분석 결과이다. 도 15d는 유리의 양면 중 한쪽 면 강화시의 기존 발명에 따른 화학적 강화가 이루어진 표면의 250배 단면 EDS 매핑 분석 결과이다.
도 15a 내지 도 15d를 참조하면, 동일 시편에서 시각적 내부 거칠기의 크기에 따라 단면에서 색 명암이 변화되는 것을 확인할 수 있으며, 이러한 명암의 변화로 K 성분의 위치별 함량을 확인할 수 있다. 명암의 차이는 큰 시각적 내부 거칠기를 나타내는 유리에서 위치에 따라 가장 크게 발생하였다. 작은 시각적 내부 거칠기를 나타내는 유리에 있어서, 위치에 따른 차이가 크게 나타나는 것으로 보이지는 않으나 이는 배율이 작게 촬상된 것 때문으로 배율을 더 높일시 확인이 가능할 것으로 판단되었다. 유리의 한쪽 면 강화시 화학적 강화가 이루어진 면에서는 위치에 따른 K 성분의 함량의 차이가 나타나지 않았다.
실시예 5. 표면 성분 변화에 따른 시각적 내부 거칠기 변화 (단면 EDS 분석 및 구성 요소 농도 분석)
본 발명의 일 실시예에 따른 화학적 강화 유리의 단면에 대해 깊이에 따른 성분 변화를 확인하기 위해 단면 위치에 따른 K 함량 분석을 수행하였다. 상세하게는, 실시예 2 및 실시예 4에 도시된 큰 시각적 내부 거칠기, 중간 시각적 내부 거칠기 및 유리의 한쪽 면 화학강화 유리와 동일한 것이다.
도 16a 및 도 16b는 각각 본 발명의 일 실시예에 따른 화학적 강화 유리를 큰 시각적 내부 거칠기 및 중간 시각적 내부 거칠기를 갖도록 형성한 후의 EDS 매핑 분석 결과 및 깊이에 따른 K 함량 분석 결과 그래프이다. 도 16c는 유리의 한쪽 면 강화시의 기존 발명에 따른 화학적 강화가 이루어진 단면에 대한 EDS 매핑 분석 결과 및 깊이에 따른 K 함량 분석 결과 그래프이다.
도 16a 내지 도 16c를 참조하면, 일 표면으로부터 다른 표면 방향으로의 깊이에 따라 K의 함량이 변화하는 것을 확인할 수 있으며, 표면 상에서의 위치에 따라 K 이온이 서로 다른 깊이로 교환된 것을 확인할 수 있다. 시각적 내부 거칠기를 갖는 유리의 경우 전반적인 DOL(depth of layer) 및 K 함량이 위치에 따라 그 값이 크게 차이가 나타났다. 즉, 위치에 따라 높은 K함량 및 큰 DOL을 가진 부분이 있는 반면, 낮은 K함량 및 작은 DOL을 가진 부분이 있는 등 그 분포가 다양하게 나타났다. 이에 비해, 기존 발명에 따른 유리의 경우 시각적 내부 거칠기가 발생하지 않고 화학 강화가 이루어졌으며 DOL이 약 10 μm로 균일하게 나타나고 표면 K 함량이 일정하게 나타났다.
실시예 6. 도포막 형성 및 도포막 관찰
본 발명의 일 실시예에 따른 화학적 강화 유리에 대해 슬러리 및/또는 페이스트의 조성을 바꾸어 도포막을 형성하거나, 도포막 형성 후 도포막의 처리에 따라 시각적 내부 거칠기의 정도가 조절되는 점을 확인하였다.
도 17은 기존 발명에 따른 화학 강화 유리의 제조시 교환하고자 하는 이온의 염을 포함하는 도포막을 갖는 유리의 접촉면을 촬상한 이미지이다. 상세하게는, 100 ml 물 용매에 TiO2:KNO3 질량비 기준 29:71으로 첨가하여 제작된 슬러리를 사용하였으며, 상온 및 30 % 수준의 습도에서 건조를 진행한 것이다.
도 17을 참조하면, 열처리 전, KNO3 석출상의 크기가 매우 작고 그 사이의 거리가 좁은 것을 확인할 수 있으며, 열처리 후(425 ℃, 20분 조건), KNO3가 녹아 퍼진 후 상온으로 온도가 떨어짐에 따라 다시 KNO3가 석출된 것을 확인할 수 있다. 도 17의 어두운 부분은 KNO3로 판단되었다.
도 18은 도 17과 동일한 시편이되, 기존 발명에 따른 화학 강화 유리의 제조시 교환하고자 하는 이온의 염을 포함하는 도포막을 갖는 유리를 425 ℃에서 20분동안 이온교환 열처리 후 도포막이 제거된 유리 표면을 편광현미경으로 관찰했을 때의 이미지이다.
도 18을 참조하면, 편광현미경 관찰 시, 위치에 따른 굴절률 차이가 거의 존재하지 않는 것으로 확인되었으며, 이는 기존의 침지 방식과 유사한 수준의 시각적 평탄도에 해당하였다.
도 19는 본 발명의 일 실시예에 따른 화학 강화 유리의 제조시 교환하고자 하는 이온의 염을 포함하는 도포막을 갖는 유리의 접촉면을 촬상한 이미지로서, 작은 시각적 내부 거칠기를 형성하는 경우의 유리의 표면에 해당한다. 상세하게는, 40 ml 물 용매에 TiO2:KNO3 질량비 기준 46:54로 첨가하여 제작된 슬러리를 사용하였으며, 상온 및 50 % 수준의 습도에서 건조를 진행한 것이다.
도 19를 참조하면, 건조 조건 조절(온도: 상온, 상대습도: 30 % 이상)을 통해 열처리 전, KNO3 석출상의 길이가 길어지고 표면에 접촉된 KNO3 비율이 감소하였으며 접촉면 사이의 거리가 넓어진 것을 확인할 수 있다. 열처리 후, KNO3가 녹아 퍼졌으나 그 범위가 유리 전면을 커버하지 못하고 불균일하게 커버한 한 것을 확인할 수 있다.
도 20은 본 발명의 일 실시예에 따른 화학 강화 유리의 제조시 교환하고자 하는 이온의 염을 포함하는 도포막을 가지고 이온교환 열처리가 진행된 유리의 표면을 편광현미경으로 관찰했을 때의 이미지로서, 도 19의 유리와 동일하되, 건조 후 425 ℃에서 20분동안 이온교환 열처리 및 도포막을 제거한 유리에 해당한다.
도 20을 참고하면, 편광현미경 관찰 시, 위치에 따른 굴절률 차이가 확연히 존재하는 것을 확인할 수 있다.
도 21은 본 발명의 일 실시예에 따른 화학 강화 유리의 제조시 교환하고자 하는 이온의 염을 포함하는 도포막을 갖는 유리의 접촉면을 촬상한 이미지로서, 큰 시각적 내부 거칠기를 형성하는 경우의 유리의 표면에 해당한다. 상세하게는, 40 ml 물 용매에 TiO2:KNO3 질량비 기준 46:54로 첨가하여 제작된 슬러리를 사용하였으며, 고온 및 10 % 수준의 습도에서 건조를 진행한 것으로 본 실시예에 따른 유리는 도포막 형성시 50 ℃ 이상에서 건조하는 단계를 거쳤다.
도 21을 참조하면, 건조 조건 변경(온도: 50 ℃ 이상)을 통해 열처리 전, KNO3 석출상의 길이가 길고 표면에 매우 적게 접촉되어 있으며 그 사이의 거리가 아주 넓은 것을 확인할 수 있다. 또한, 열처리 후, KNO3가 녹아 퍼진 부분이 매우 큰 범위에서 불규칙적으로 나타남을 확인할 수 있다.
도 18과 도 20, 도 20과 도 21을 참조하면, 각각 슬러리 내부의 KNO3 및 TiO2 함량비 조절 및 건조조건(온도 및 상대습도 조절을 통한 건조 시간 조절)을 통해 KNO3 석출상의 분포를 조절할 수 있으며, 이에 따라 시각적 내부 거칠기 크기를 조절할 수 있다는 것을 의미한다. 이와 같은 조건을 만족할 경우, 편광 현미경 상에서 변화가 나타나며 작은 또는 큰 시각적 내부 거칠기가 확인되었다.
실시예 7. 유리 표면 거칠기 변화 관찰
본 발명의 일 실시예에 따른 화학적 강화 시 유리의 외부 표면에 거칠기를 유도하는지에 대해 확인하기 위해 조건에 따라 유리 표면 거칠기를 관찰하였다.
도 22a 및 도 22b는 하나의 유리 시편 내에 화학 강화 영역과 비강화 영역을 정하고 강화 영역에만 본 발명의 일 실시예에 따라 화학 강화를 하였을 때의 단면을 촬영한 이미지이다. 여기서 도 22a는 작은 시각적 내부 거칠기를 갖는 유리이며 도 22b는 중간 시각적 내부 거칠기를 갖는 유리에 해당한다. 상세하게는, 도 22a는 40 ml 물 용매에 TiO2:KNO3 비율을 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 사용하였으며, 상온 및 60 % 수준의 습도에서 건조를 진행한 뒤 425 ℃에서 15분 열처리를 진행하였고, 도 22b는 동일한 조성의 슬러리 및 열처리 조건을 사용하였으나, 건조 조건에서 습도를 80 % 수준으로 높인 유리에 해당한다.
도 22a 및 도 22b를 참조하면, 동일한 열처리 온도(425℃) 및 시간(15분)을 진행하였으나, 비강화면은 도포막이 존재하지 않아 열처리 후에도 프리스틴 유리와 동일하였으며, 강화면은 시각적 내부 거칠기 발생하였다. 그러나, 어느 경우에도 실제 표면 거칠기 변화는 발생하지 않았다.
도 23은 기존 발명 및 본 발명의 일 실시예에 따라 화학 강화를 진행하였을 때의 외부 표면 거칠기를 한 번에 확인할 수 있도록 나타낸 도면으로서, 시각적 내부 거칠기에 따른 표면 거칠 각 유리 시편을 도시한 이미지이다.
도 23을 참고하면, 시각적 내부 거칠기 크기 변화에 따른 표면 거칠기는 거의 관찰되지 않았으며, 일부 거칠기 변화가 있더라도 깨끗하게 강화가 진행된 시편의 표면 거칠기와 비교하여도 큰 차이가 나지 않음을 확인하였다.
실시예 8. 화학 강화시 강화 및 비강화 경계선 관찰 변화 관찰
본 발명의 일 실시예에 따른 부분 화학적 강화 시 강화 및 비강화 경계선의 시인 여부에 대해 관찰하였다.
도 24는 기존 발명에 따라 화학 강화를 진행하였을 때의 강화면과 비강화면의 경계를 촬영한 일반 현미경 및 편광 현미경 이미지이며, 도 25는 본 발명의 일 실시예에 따라 화학 강화를 진행하였을 때의 작은 시각적 내부 거칠기를 갖는 유리에서 강화면과 비강화면의 경계를 촬영한 일반 현미경 및 편광 현미경 이미지이다. 상세하게는, 도 24는 40 ml 물 용매에 TiO2:KNO3 비율을 질량비 기준 60:40으로 첨가하여 제작된 슬러리를 사용하였으며, 상온 및 30 % 수준의 습도에서 건조를 진행한 뒤 425 ℃에서 15분 열처리를 진행하였고, 도 25는 도 22a와 동일한 조건으로 제작된 유리이다.
도 24를 참조하면, 강화면과 비강화면 사이에 굴절률 차이로 인해 경계선이 발생하며, 편광모드에서 관찰되었다.
도 25를 참조하면, 시각적 내부 거칠기를 갖는 유리 시편에서 일반 현미경으로 관찰 시 차이가 발생하지 않았다. 이에 비해, 편광 현미경 관찰 시, 비강화면에서는 굴곡이 발생하지 않고 강화면에서 굴곡이 발생하는 것을 확인하였으며, 굴곡 유무에 따른 경계선을 확인할 수 있었다. 편광 현미경 관찰로 인해 나타나는 굴곡의 경우, 실제 표면 거칠기 변화가 아닌 내부 거칠기 변화로 국부적인 굴절률 차이가 발생하여 나타난 것으로 확인되었다.

Claims (20)

  1. 유리 내부의 제1 이온과의 이온교환 대상이 되는 제2 이온의 염을 포함하는 슬러리 또는 페이스트를 제조하는 단계;
    상기 슬러리 또는 페이스트를 유리의 표면에 도포하여 도포막을 형성하는 단계;
    상기 유리 표면 상의 상기 슬러리 또는 페이스트로 이루어진 도포막을 건조하는 단계;
    상기 유리의 표면 상에서 상기 제2 이온의 염의 석출상의 분포를 달리 형성하는 단계; 및
    상기 도포막이 형성된 유리를 열처리하여, 상기 유리의 서로 대향하는 제1 면과 제2 면 사이에 제공되어 상기 제1 면 또는 상기 제2 면을 통해 진행하는 광의 확산 반사(diffuse reflection) 및/또는 산란을 유도하는 시각적 내부 거칠기(visual internal roughness)를 형성하는 단계;를 포함하는 화학 강화 유리 제조 방법.
  2. 제1 항에 있어서,
    상기 제2 이온의 염의 석출상의 분포는 상기 슬러리 또는 페이스트의 조성, 상기 슬러리 또는 페이스트로 이루어진 상기 도포막의 건조 온도, 상기 슬러리 또는 페이스트로 이루어진 상기 도포막의 건조 습도, 상기 슬러리 또는 페이스트로 이루어진 상기 도포막의 건조 시간, 상기 열처리 온도, 상기 열처리 시간 중 적어도 하나에 의해 조절되는 화학 강화 유리 제조 방법.
  3. 제1 항에 있어서,
    상기 시각적 내부 거칠기는 상기 제2 이온이 확산된 확산 영역과, 상기 제2 이온이 확산되지 않은 비확산 영역의 경계에 해당하는 화학 강화 유리 제조 방법.
  4. 제3 항에 있어서,
    상기 경계는 불규칙한 요철 형상을 갖는 화학 강화 유리 제조 방법.
  5. 제3 항에 있어서,
    상기 확산 영역의 상기 제1 면 또는 상기 제2 면으로부터의 깊이는 위치에 따라 불규칙한 값을 갖는 화학 강화 유리 제조 방법.
  6. 제1 항에 있어서,
    상기 제1 면과 상기 제2 면 중 적어도 한 면은 편평한 표면을 가지는 화학적 강화유리 제조 방법.
  7. 제6 항에 있어서,
    상기 시각적 내부 거칠기는 상기 편평한 표면에 대해 평행하지 않는 텍스쳐를 갖는 화학 강화 유리 제조 방법.
  8. 제1 항에 있어서,
    상기 유리의 굴절률은 상기 시각적 내부 거칠기가 다른 서로 다른 두 지점에서 서로 다른 값을 갖는 화학 강화 유리 제조 방법.
  9. 제8 항에 있어서,
    상기 유리의 굴절률은 상기 시각적 내부 거칠기가 다른 복수의 지점에서 불규칙한 값을 갖는 화학 강화 유리 제조 방법.
  10. 제1 항에 있어서,
    상기 제2 이온의 염은 KNO3인 화학 강화 유리 제조 방법.
  11. 제1 항에 있어서,
    상기 슬러리 또는 페이스트는 금속 산화물 입자 및 점도 조절제 중 적어도 하나를 더 포함하는 화학 강화 유리 제조 방법.
  12. 서로 대향하는 제1 면과 제2 면 사이에 제공되어 상기 제1 면 또는 상기 제2 면을 통해 진행하는 광의 확산 반사(diffuse reflection) 및/또는 산란을 유도하는 시각적 내부 거칠기(visual internal roughness)를 가지는 화학 강화 유리.
  13. 제12 항에 있어서,
    상기 제1 면과 제2 면 사이의 위치에 따라 그 내부에 포함된 제1 이온 및/또는 제2 이온의 성분 차이를 갖는 화학 강화 유리.
  14. 제13 항에 있어서,
    상기 제1 면 및/또는 상기 제2 면의 상의 서로 다른 위치에서 상기 제1 및 제2 이온들의 농도 차이가 0.1 at% 이상인 화학 강화 유리.
  15. 제13 항에 있어서,
    상기 제1 면과 상기 제2 면 중 적어도 한 면은 편평한 표면을 가지며, 상기 시각적 내부 거칠기는 상기 편평한 표면에 대해 평행하지 않는 텍스쳐를 갖는 화학 강화 유리.
  16. 제12 항에 있어서,
    상기 유리의 굴절률은 상기 시각적 내부 거칠기가 다른 서로 다른 두 지점에서 서로 다른 값을 갖는 화학 강화 유리.
  17. 제16 항에 있어서,
    상기 굴절률은 유리의 굴절률은 상기 시각적 내부 거칠기가 다른 복수의 지점에서 불규칙한 값을 갖는 화학 강화 유리.
  18. 제12 항에 있어서,
    상기 시각적 내부 거칠기는 유리 내부의 제1 이온과의 이온교환 대상이 되는 이온교환 제2 이온의 확산을 제어함으로써 형성되며 상기 제2 이온이 확산된 확산 영역과, 상기 제2 이온이 확산되지 않은 비확산 영역의 경계에 해당하는 화학 강화 유리.
  19. 제18 항에 있어서,
    상기 경계는 불규칙한 형상이며, 요철을 갖는 화학 강화 유리.
  20. 제18 항에 있어서,
    상기 확산 영역의 상기 제1 면 또는 상기 제2 면으로부터의 깊이는 위치에 따라 불규칙한 값을 갖는 화학 강화 유리.
PCT/KR2022/018590 2021-11-30 2022-11-23 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법 WO2023101299A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0168855 2021-11-30
KR20210168855 2021-11-30
KR10-2022-0149499 2022-11-10
KR1020220149499A KR20230081616A (ko) 2021-11-30 2022-11-10 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2023101299A1 true WO2023101299A1 (ko) 2023-06-08

Family

ID=86612699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018590 WO2023101299A1 (ko) 2021-11-30 2022-11-23 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2023101299A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120134025A1 (en) * 2010-11-30 2012-05-31 Shandon Dee Hart Anti-glare glass sheet having compressive stress equipoise and methods thereof
KR20140096145A (ko) * 2011-11-23 2014-08-04 코닝 인코포레이티드 비대칭 내충격성을 갖는 강화 유리 및 유리 적층
KR20180116566A (ko) * 2017-04-17 2018-10-25 주식회사 케이씨씨 적층 시스템
KR102099064B1 (ko) * 2019-12-19 2020-04-08 주식회사 헤펙 방폭등용 조명 유리 커버 적층체 및 그에 따른 적층체의 제조 방법
KR20210031450A (ko) * 2018-04-23 2021-03-19 한국항공대학교산학협력단 비침지 방식을 통한 유리의 이온교환 방법을 이용하여 제공되는 소성 변형 유리, 항균성 유리, 색 변화 유리 및 강화 유리

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120134025A1 (en) * 2010-11-30 2012-05-31 Shandon Dee Hart Anti-glare glass sheet having compressive stress equipoise and methods thereof
KR20140096145A (ko) * 2011-11-23 2014-08-04 코닝 인코포레이티드 비대칭 내충격성을 갖는 강화 유리 및 유리 적층
KR20180116566A (ko) * 2017-04-17 2018-10-25 주식회사 케이씨씨 적층 시스템
KR20210031450A (ko) * 2018-04-23 2021-03-19 한국항공대학교산학협력단 비침지 방식을 통한 유리의 이온교환 방법을 이용하여 제공되는 소성 변형 유리, 항균성 유리, 색 변화 유리 및 강화 유리
KR102099064B1 (ko) * 2019-12-19 2020-04-08 주식회사 헤펙 방폭등용 조명 유리 커버 적층체 및 그에 따른 적층체의 제조 방법

Similar Documents

Publication Publication Date Title
EP3166900B1 (en) Low sparkle glass sheet
EP2490828B1 (de) Einrichtung mit verminderten reibeigenschaften
CN102869629B (zh) 防眩光表面处理方法及其制品
EP2646382B1 (en) Anti-glare surface treatment method and articles thereof
KR20110137820A (ko) 안티글레어 표면을 갖는 유리 및 그 제조방법
DE69916683T2 (de) Glassubstrat für Bildschirme
JP4716245B2 (ja) ガラス基板及びその製造方法
KR102662640B1 (ko) 감소된 정전기 대전을 위한 텍스처된 유리 표면들
US10787384B2 (en) Low sparkle glass sheet and process of making it
WO2011010824A2 (ko) 저방사 유리 및 이의 제조방법
US11560330B2 (en) Patterned glass articles and methods of making the same
US20210070652A1 (en) Textured, antiglare glass articles and methods of making the same
WO2013141478A1 (ko) 반사방지 기능을 구비한 투명기판
TW201938505A (zh) 防眩光玻璃片
WO2023101299A1 (ko) 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법
WO2021107707A1 (en) Chemically durable, low-e coating compatible black enamel compositions
WO2015099503A1 (ko) 발색 처리된 기재 및 이를 위한 기재의 발색 처리방법
DE112018002226T5 (de) Glassubstrat mit aufgebrachtem film, gegenstand und verfahren zur herstellung eines glassubstrats mit aufgebrachtem film
WO2019050193A1 (ko) 창호용 기능성 건축 자재
US20140335346A1 (en) Optical member, image pickup apparatus, and method for manufacturing optical member
KR20230081616A (ko) 시각적 내부 거칠기를 가지는 유리 및 이의 제조방법
JPH01319232A (ja) 防眩処理形陰極線管
WO2017047983A1 (ko) 창호용 기능성 건축 자재
WO2018048038A1 (ko) 저방사 코팅 및 저방사 코팅을 포함하는 창호용 기능성 건축 자재
DE102019003930A1 (de) Transparentes element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901657

Country of ref document: EP

Kind code of ref document: A1