WO2018193762A1 - 半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法 - Google Patents

半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法 Download PDF

Info

Publication number
WO2018193762A1
WO2018193762A1 PCT/JP2018/010111 JP2018010111W WO2018193762A1 WO 2018193762 A1 WO2018193762 A1 WO 2018193762A1 JP 2018010111 W JP2018010111 W JP 2018010111W WO 2018193762 A1 WO2018193762 A1 WO 2018193762A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
main surface
chamfered
irradiated
polishing
Prior art date
Application number
PCT/JP2018/010111
Other languages
English (en)
French (fr)
Inventor
和弥 冨井
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2018193762A1 publication Critical patent/WO2018193762A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a semiconductor wafer evaluation method for evaluating the presence / absence of overpolishing on the main surface of a semiconductor wafer generated by mirror chamfering after polishing and the amount of overpolishing, and a semiconductor using the semiconductor wafer evaluation method
  • the present invention relates to a method for managing a wafer manufacturing process.
  • the main surface consists of a main surface and a main back surface.
  • Patent Documents 1-4 Methods for suppressing this overpolish are disclosed in Patent Documents 1-4.
  • a surface shape measuring machine such as an edge roll-off or a flatness measuring machine is used as a method for confirming the occurrence of overpolishing.
  • Patent Document 5 discloses an overpolish suppression method, and a video microscope is used as the overpolish confirmation method.
  • the present invention has been made in view of the above-described problems, and its purpose is to evaluate the presence or absence of overpolish in the main surface of a semiconductor wafer generated by mirror chamfering and to measure the amount of overpolish entering.
  • An object of the present invention is to provide a method for evaluating a semiconductor wafer that can be evaluated in a short time and non-destructively.
  • the present invention provides a method for chamfering and grinding a semiconductor wafer having a main surface composed of a main surface and a main back surface sliced from a semiconductor ingot, and then chamfering and grinding the main surface of the semiconductor wafer.
  • the main surface of the semiconductor wafer is irradiated with laser light, the scattered light from the irradiated surface is detected in a dark field, and the boundary between the chamfered surface and the main surface is determined by the mirror chamfering process.
  • Provided is a method for evaluating a semiconductor wafer, characterized by inspecting overpolish polished beyond.
  • the semiconductor wafer has a notch portion, and the laser beam is irradiated to a region from the boundary between the chamfered surface and the main surface in the vicinity of the notch portion to the inner side of the semiconductor wafer by 2 mm.
  • the wavelength of the laser beam is preferably 200 nm to 700 nm.
  • the present invention also provides a semiconductor wafer manufacturing process management method characterized by performing mirror chamfering process management using the results obtained by the semiconductor wafer evaluation method described above.
  • the semiconductor wafer evaluation method of the present invention As described above, according to the semiconductor wafer evaluation method of the present invention, the presence or absence of overpolish generated by mirror chamfering processing and the amount of overpolish intrusion can be evaluated in a short time. There is no decrease in yield. Further, since the semiconductor wafer evaluation method of the present invention can also acquire data effective for the process control of the mirror chamfering process, the semiconductor wafer manufacturing of the present invention using the result obtained by the semiconductor wafer evaluation method of the present invention is used. If it is a process management method, the process management of the process which performs a mirror chamfering process can be performed efficiently.
  • FIG. 6 is an ESFQR graph of the semiconductor wafer of FIG. It is a schematic diagram of the detection mechanism of the edge inspection apparatus used in the present embodiment. It shows how the detection part of the edge inspection apparatus used in the present example moves with respect to the edge part of the semiconductor wafer to be evaluated.
  • the inventor of the present invention is capable of evaluating a semiconductor wafer that can be evaluated in a short time and in a nondestructive manner by evaluating the presence or absence of overpolishing in the main surface of the semiconductor wafer generated by mirror chamfering and measuring the amount of overpolishing. We conducted extensive studies on the evaluation method.
  • the present inventor has found that the presence or absence of overpolishing and the amount of overpolishing can be visually confirmed by utilizing dark field observation of the laser light irradiation surface.
  • an inspection machine equipped with a semiconductor wafer the main surface of the semiconductor wafer in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer can be observed, enabling online inspection.
  • the present invention has been completed by finding out that the labor required by the process can be reduced and that nondestructive inspection can be performed.
  • FIG. 1 is a flowchart showing an example of a semiconductor wafer evaluation method of the present invention.
  • the semiconductor wafer refers to a substrate material used to produce a compound semiconductor such as silicon or GaAs, or a semiconductor IC (Integrated Circuit) such as GaN or SiC, and has a main surface composed of a main surface and a main back surface. Yes.
  • steps such as ingot production, slicing, chamfering, lapping, surface grinding, double-head grinding, etching, and cleaning are appropriately performed.
  • a cleaning process and other inspection processes may be included between the single-side polishing or double-side polishing process (S1) and the mirror chamfering process (S2) in FIG.
  • the semiconductor wafer subjected to this single-side polishing or double-side polishing step (S1) has a main surface composed of a main surface and a main back surface, and a chamfered surface.
  • the CMP process is performed on a chamfered portion (chamfered surface) made by chamfering by grinding preceding the single-side polishing or double-side polishing step (S1). It is. As described above, the CMP process is performed on the chamfered portion of the semiconductor wafer. However, the polishing cloth used there has a thickness and is flexible. Further, in the case of CMP processing on the main surface of a semiconductor wafer, it is common to apply an abrasive cloth substantially parallel to the surface, but for CMP processing on a chamfered portion (chamfered surface), the semiconductor wafer It is necessary to incline the polishing cloth with respect to the main surface. It is known that not only the chamfered surface but also the main surface is polished depending on the tilt angle, the thickness of the polishing cloth, and the flexibility of the polishing cloth, and the amount of this over-polishing changes.
  • a cleaning process and other polishing and inspection processes may be included between the mirror chamfering process (S2) and the edge inspection process (S3) in FIG.
  • the edge inspection step (S3) is a step of inspecting the chamfered portion (chamfered surface) and the main surface near the chamfered portion, for example, a defect such as a flaw, chip, or crack from the most advanced portion of the semiconductor wafer to the inside of several millimeters. is there.
  • the most advanced part of the semiconductor wafer refers to the outermost peripheral part farthest in the radial direction from the center of the circle of the main surface of the semiconductor wafer.
  • the inside of several millimeters means, for example, that defects such as scratches on the main surface of a semiconductor wafer and particle inspection cannot be inspected about 2 mm to 3 mm from the most advanced part of the semiconductor wafer, and there is an inspection range that covers the outer periphery.
  • the above-mentioned number of mm is an edge inspection target portion.
  • a laser beam inspection is generally used, and defects are identified by observing light reflected on scratches, nicks, cracks, etc. as described above.
  • the present invention in order to observe traces of over-polished in the mirror chamfering process from the boundary between the chamfering grinding process (chamfered surface) and the main surface of the semiconductor wafer, the main surface in the vicinity thereof is observed.
  • the laser beam is irradiated and the light is received in the dark field.
  • the semiconductor wafer in the overpolished portion By mirror chamfering after single-sided or double-side polishing of the semiconductor wafer, it is additionally polished inside the main surface of the semiconductor wafer from the boundary between the main surface and the chamfered surface of the semiconductor wafer made by chamfering grinding before the polishing process, It is known that the thickness of the semiconductor wafer in the overpolished portion, which is the additionally polished portion, is reduced and the flatness of the semiconductor wafer is also deteriorated.
  • the main surface in the vicinity of the chamfered surface described above is not specified in value, but can be an area several mm inside from the most advanced portion of the semiconductor wafer.
  • the laser beam it is preferable to irradiate the laser beam to a region from the boundary between the chamfered surface and the main surface to the inner side of the semiconductor wafer by 2 mm. Further, it is also preferable that the semiconductor wafer has a notch portion, and the laser beam is irradiated to a region from the boundary between the chamfered surface and the main surface in the vicinity of the notch portion to the center side of the semiconductor wafer by 2 mm.
  • the range of laser light irradiation (that is, the inspection range) is preferably 2 mm inside from the boundary between the chamfered surface and the main surface of the semiconductor wafer to the center side of the semiconductor wafer. Since the width is approximately 0.2 mm to 0.4 mm, it can be said that the edge inspection range is appropriate 2 mm to 3 mm inside from the most advanced part of the semiconductor wafer.
  • the wavelength of this laser beam is preferably 200 nm to 700 nm. In this way, by limiting the wavelength of the irradiated laser light to the visible light region and the ultraviolet region, it is possible to perform a better evaluation, that is, an evaluation that can more reliably measure the presence or absence of overpolishing and the amount of overpolishing. Become.
  • the inspection device using laser light may be provided with a means for automatically calculating the amount of overpolish intrusion from the image of the overpolished portion and recording it, and the presence or absence of overpolish and the presence of overpolish. Only the intensity of the trace of the polish may be recorded.
  • the semiconductor wafer manufacturing process management method of the present invention performs mirror chamfering process management using the results obtained by the semiconductor wafer evaluation method of the present invention described above.
  • the semiconductor wafer evaluation method of the present invention By acquiring the presence / absence of overpolishing and the amount of overpolishing during mirror chamfering by the semiconductor wafer evaluation method of the present invention, it is possible to manage the process of performing the mirror chamfering process. Specifically, it can be used for grasping the machine difference of the mirror chamfering machine and changing the processing conditions of the mirror chamfering process.
  • Example 2 a semiconductor wafer obtained from a silicon single crystal ingot having a diameter of 300 mm grown by the Czochralski method was used. Referring to the flowchart of FIG. 1, the semiconductor wafer used here is subjected to the double-side polishing (S1) of FIG. 1, and is subjected to mirror chamfering (S2) after cleaning.
  • S1 double-side polishing
  • S2 mirror chamfering
  • DSP-20B manufactured by Fujikoshi Machine Industry Co., Ltd. was used for double-side polishing (S1).
  • the polishing allowance of the semiconductor wafer was approximately 12 ⁇ m on both sides.
  • SC1 cleaning in which water, ammonia and hydrogen peroxide are mixed.
  • FIG. 2A is a dark field image of the main surface in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer shown in this example. How to view this image will be described.
  • the horizontal direction shows 360 degrees of one round of the wafer as indicated by the entire circumference of the semiconductor wafer in the image.
  • the vertical direction indicates the vicinity of the chamfered portion (chamfered surface) in the present invention, as described on the right side of the image as the wafer main surface side, the chamfered grinding region, and the wafer main back surface side. In this way, the entire circumference of the semiconductor wafer in the vicinity of the chamfered portion (chamfered surface) is stretched and shown in a rectangle like this image, which is a feature of this image.
  • FIG. 2A The image in FIG. 2A was obtained using an edge inspection apparatus called CV350 manufactured by KLA-Tencor.
  • FIG. 7 shows a schematic diagram of a dark field image and bright field image detection mechanism of the edge inspection apparatus.
  • the dark field image in FIG. 2A is an image in which the laser beam emitted from the laser source in FIG. 7 is irradiated onto the wafer and the scattered light from the irradiated surface is detected by the scattered light detector.
  • the wavelength of the laser beam used here was 405 nm.
  • FIG. 2B is a bright-field image of the main surface in the vicinity of the chamfered portion (chamfered surface) of the semiconductor wafer shown in the reference example, which is obtained using the edge inspection apparatus.
  • the bright field image of FIG. 2B is an image in which the laser beam emitted from the laser source in FIG. 7 is irradiated onto the wafer and the reflected light from the irradiated surface is detected by the reflected light detector.
  • the detection unit including the laser source, the scattered light detector, and the reflected light detector shown in FIG. 7 starts from step 1 on the left side to the edge part as shown in FIG. ⁇ It was obtained by moving in the order of the upper surface and observing the wafer surface. Incidentally, both the images in FIGS.
  • FIGS. 2A and 2B have the same vertical magnification, and the images in both FIGS. 2A and 2B have the same horizontal magnification.
  • the reason why the bright field image of FIG. 2B is mounted is that the boundary between the chamfered grinding region (chamfered surface) and the main surface of the semiconductor wafer is unclear in the dark field image of FIG. 2A, and this boundary is clear in the bright field. It is because it can be made.
  • the boundary between the chamfered grinding region (chamfered surface) obtained in FIG. 2B and the main surface of the semiconductor wafer is the same as in FIG. 2A. Can be shown in position.
  • white lines extending laterally can be seen in the regions on the main surface side and main back side of the semiconductor wafer.
  • This line is a trace of overpolish that can be seen in the dark field of the present invention.
  • the most in-plane center side of the over-polished portion additionally polished by the mirror chamfering process is manifested as a white line. Therefore, the amount of overpolis entering can be measured by measuring the length in the radial direction from the most advanced portion of the semiconductor wafer to the white line.
  • the semiconductor wafer was 600 ⁇ m in the radial direction.
  • the white line is not a straight line in detail as in the image, but a wave is hit, the maximum amount of penetration is acquired as the amount of overpolish penetration.
  • FIG. 3A is a dark field image near the notch portion of the semiconductor wafer shown in this example. Unlike the image of FIG. 2A, the image of FIG. 3A is taken near the notch portion on the main surface side of the semiconductor wafer.
  • FIG. 3B is a bright-field image near the notch portion of the semiconductor wafer shown in the reference example.
  • FIG. 3A and FIG. 3B were also acquired with the CLA-350 manufactured by KLA-Tencor. Similar to FIG. 2B, FIG. 3B is obtained for reference of the boundary portion of FIG. 3A because the boundary between the chamfered grinding region (chamfered surface) and the main surface of the semiconductor wafer is clear. A 3B bright field image is not required.
  • the dark field inspection has high utility value not only on the main surface near the normal chamfered portion (chamfered surface) but also on the main surface near the chamfered portion (chamfered surface) of the notch portion. .
  • FIG. 4 is an ESFQR graph of the semiconductor wafer shown in this example.
  • ESFQR Edge Site Frontsurface referenced squares Range
  • SFQR Site Front Last Squares Range
  • SFQR Site Front Last Squares Range
  • EE 0.5 mm measures the area 0.5 mm to 34.5 mm in the radial direction inside the leading edge of the semiconductor wafer (because one side in the radial direction is 35 mm).
  • a WaferSight series manufactured by KLA-Tencor was used as an ESFQR measuring machine.
  • the data in the graph of FIG. 4 is measured using the same semiconductor wafer used in FIGS. 2A and 2B and FIGS. 3A and 3B.
  • FIG. 4 it can be seen that the value of ESFQR of EE 0.5 mm is disturbed and deteriorated as compared with EE 1 mm and EE 2 mm.
  • the cause of this deterioration is due to overpolishing in mirror chamfering.
  • overpolish has entered from the most advanced portion of the semiconductor wafer to the inner side of 600 ⁇ m. Therefore, at EE 0.5 mm, the shape formed by the last double-side polishing process collapsed due to the influence of over polishing, leading to deterioration of ESFQR.
  • EE1mm and EE2mm are not affected by over polishing, and the deterioration of ESFQR is not observed.
  • FIG. 5 is a dark field image near the chamfered portion (chamfered surface) of the semiconductor wafer shown in this embodiment. Unlike the semiconductor wafer used in FIG. 2A, the semiconductor wafer of FIG. 5 is experimentally manufactured so as not to generate overpolish on the main surface side of the semiconductor wafer in the mirror chamfering process. From the image of FIG. 5, it can be seen that the trace of over polish as shown in FIG. 2A cannot be confirmed in the region written as the wafer main surface side.
  • FIG. 6 is an ESFQR graph of the semiconductor wafer of FIG. Due to the effect of over polishing that can be confirmed in FIG. 2A described above, ESFQR deteriorated at EE 0.5 mm in FIG. 4. However, as shown in FIG. 6, the ESFQR of EE 0.5 mm is obtained in a semiconductor wafer having no overpolish on the main surface side. It can be seen that no deterioration is observed even when the is measured.
  • the main surface and edge portion of the semiconductor wafer were irradiated with laser light for explanation.
  • the main surface may be irradiated with laser light.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

本発明は、半導体インゴットからスライスされた主表面と主裏面からなる主面を有する半導体ウェーハのエッジを面取り研削加工した後に、面取り研削加工された半導体ウェーハの前記主表面もしくは前記主表面と主裏面の両面を研磨加工して前記主面と面取り面を有する半導体ウェーハを作製し、その後鏡面面取り加工が施された半導体ウェーハの評価方法であって、前記面取り面近傍の半導体ウェーハの前記主面に対してレーザー光を照射し、照射面からの散乱光を検知することで暗視野にて検査し、前記鏡面面取り加工により前記面取り面と前記主面との境界を越えて研磨されるオーバーポリッシュを検査することを特徴とする半導体ウェーハの評価方法である。これにより、鏡面面取り加工で発生する半導体ウェーハ主面内へのオーバーポリッシュの有無の評価及びオーバーポリッシュの入り込み量の測定を短時間かつ非破壊にて評価することができる半導体ウェーハの評価方法が提供される。

Description

半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法
 本発明は、研磨加工後の鏡面面取り加工で発生する半導体ウェーハ主面へのオーバーポリッシュの有無及びオーバーポリッシュの入り込み量を評価する半導体ウェーハの評価方法、及びこの半導体ウェーハの評価方法を用いた半導体ウェーハ製造工程の管理方法に関する。
 半導体ウェーハの片面もしくは両面研磨加工後に鏡面面取り加工を施すと、前記半導体ウェーハの表裏の主面の一方もしくは両面研磨加工面が再度研磨(以下、追研磨)され、オーバーポリッシュと言われる過研磨が発生する。ここで主面とは主表面と主裏面からなるものである。このオーバーポリッシュを抑制する方法が特許文献1-4で開示されている。これらの特許文献では、オーバーポリッシュの発生を確認する方法としてエッジロールオフや平坦度測定機などの表面形状測定機が利用されている。また特許文献5でもオーバーポリッシュ抑制方法が開示されており、オーバーポリッシュの確認方法ではビデオマイクロスコープが使用されている。
特開2006-128269号公報 特開2013-258226号公報 特開2013-258227号公報 特開2015-153939号公報 WO2002/005337号公報
 しかしながら、上記のオーバーポリッシュを確認する方法として、上記のような表面形状測定機を利用した場合、視覚的に面取り加工部近傍からの入り込み量が把握できないという問題があった。また視覚的であるビデオマイクロスコープは半導体ウェーハ1枚1枚を作業者が確認する必要があり手間と時間が掛かり、また製造検査ラインとは別のオフラインでの作業となるため破壊検査となるという問題があった。
 本発明は、前述のような問題に鑑みてなされたものであって、その目的は、鏡面面取り加工で発生する半導体ウェーハ主面内へのオーバーポリッシュの有無の評価及びオーバーポリッシュの入り込み量の測定を短時間かつ非破壊にて評価することができる半導体ウェーハの評価方法を提供することにある。
 上記目的を達成するために、本発明は、半導体インゴットからスライスされた主表面と主裏面からなる主面を有する半導体ウェーハのエッジを面取り研削加工した後に、面取り研削加工された半導体ウェーハの前記主表面もしくは前記主表面と主裏面の両面を研磨加工して前記主面と面取り面を有する半導体ウェーハを作製し、その後鏡面面取り加工が施された半導体ウェーハの評価方法であって、前記面取り面近傍の半導体ウェーハの前記主面に対してレーザー光を照射し、照射面からの散乱光を検知することで暗視野にて検査し、前記鏡面面取り加工により前記面取り面と前記主面との境界を越えて研磨されるオーバーポリッシュを検査することを特徴とする半導体ウェーハの評価方法を提供する。
 半導体ウェーハの片面もしくは両面研磨加工後の鏡面面取り加工により、研磨加工より前段の面取り研削加工で作られた半導体ウェーハの主面と面取り加工部(面取り面)の境界より半導体ウェーハの主面内側にも追研磨され、この追研磨された部分をオーバーポリッシュと本発明では記している。このオーバーポリッシュされた部分の半導体ウェーハ厚さは薄化し、また半導体ウェーハの平坦度も悪化することが知られている。このオーバーポリッシュが想定される半導体ウェーハの面取り加工部(面取り面)近傍の主面にレーザー光を照射し、暗視野にて検査することにより、オーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定が短時間かつ非破壊にて可能となる。
 このとき、面取り面と前記主面との境界から、前記半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することが好ましい。
 また、半導体ウェーハがノッチ部を有しており、ノッチ部近傍における面取り面と主面との境界から、半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することも好ましい。
 レーザー光を照射する範囲を、上記のような範囲に指定することで、より短時間での観察及び評価が可能となる。
 このとき、レーザー光の波長を200nm~700nmとすることが好ましい。
 このように、照射するレーザー光の波長を可視光域と紫外域と限定することでより優れた評価、すなわち、より確実にオーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定ができる評価が可能となる。
 また、本発明は、上記の半導体ウェーハの評価方法によって得られた結果を用いて、鏡面面取り加工の工程管理を行うことを特徴とする半導体ウェーハ製造工程の管理方法を提供する。
 鏡面面取り加工時のオーバーポリッシュの有無やオーバーポリッシュの入り込み量を取得しておくことにより、鏡面面取り加工を行う工程の工程管理が可能となる。具体的には、鏡面面取り加工機の機差の把握や鏡面面取り加工の加工条件の変更に役立てることが可能である。
 以上のように、本発明の半導体ウェーハの評価方法であれば、鏡面面取り加工により発生するオーバーポリッシュの有無や、オーバーポリッシュの入り込み量を短時間で評価でき、また非破壊検査であるため製品の収率低下もない。さらには、本発明の半導体ウェーハの評価方法では鏡面面取り工程の工程管理に有効なデータも取得可能であるので、本発明の半導体ウェーハの評価方法によって得られた結果を用いる本発明の半導体ウェーハ製造工程の管理方法であれば、鏡面面取り加工を行う工程の工程管理を効率的に行うことができる。
本発明の半導体ウェーハの評価方法の一例を示すフロー図である。 本実施例で示す半導体ウェーハの面取り加工部近傍の暗視野画像である。 参考例で示す半導体ウェーハの面取り加工部近傍の明視野画像である。 本実施例で示す半導体ウェーハのノッチ部近傍の暗視野画像である。 参考例で示す半導体ウェーハのノッチ部近傍の明視野画像である。 本実施例で示す半導体ウェーハのESFQRグラフである。 本実施例で示す半導体ウェーハの面取り加工部近傍の主面の暗視野画像である。 図5の半導体ウェーハのESFQRグラフである。 本実施例で用いたエッジ検査装置の検出機構の模式図である。 本実施例で用いたエッジ検査装置の検出部が評価対象の半導体ウェーハのエッジ部に対してどのように移動するかを示したものである。
 上述したように、オーバーポリッシュを確認する方法として、表面形状測定機を利用した場合、視覚的に面取り加工部近傍からの入り込み量が把握できないという問題があり、また視覚的であるビデオマイクロスコープは手間と時間が掛かり、また製造検査ラインとは別のオフラインでの作業となるため破壊検査となるという問題があった。
 そこで、本発明者は、鏡面面取り加工で発生する半導体ウェーハ主面内へのオーバーポリッシュの有無の評価及びオーバーポリッシュの入り込み量の測定を短時間かつ非破壊にて評価することができる半導体ウェーハの評価方法について鋭意検討を重ねた。
 その結果、本発明者は、レーザー光照射面の暗視野観察を利用することで、オーバーポリッシュの有無やオーバーポリッシュの入り込み量が視覚的に確認できることを見出し、またレーザー発光部と暗視野受光部を備えた検査機を利用して、半導体ウェーハの面取り加工部(面取り面)近傍の半導体ウェーハの主面を観察することで、オンラインでの検査も可能となり、その結果、検査時間短縮や作業者による手間も軽減でき、さらに非破壊検査が可能となることを見出し、本発明を完成させた。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 まず、本発明の半導体ウェーハの評価方法について、図1を参照しながら説明する。
 図1は、本発明の半導体ウェーハの評価方法の一例を示すフロー図である。ここで半導体ウェーハとは、シリコン、GaAsなどの化合物半導体、GaN、SiCなど半導体IC(Integrated Circuit)を作製するために用いられる基板材料をいい、主表面と主裏面からなる主面を有している。
 図1に記載のフローより前段では、例えばインゴット作製、スライス、面取り、ラップ、平面研削、両頭研削、エッチング、洗浄などの工程が適宜行われる。
 尚、図1の片面研磨もしくは両面研磨工程(S1)と鏡面面取り工程(S2)との間には、洗浄工程やその他検査工程が入っていても良い。
 図1の片面研磨もしくは両面研磨工程(S1)とは、CMP(Chemical Mechanical Polishing)加工が一般的である。本発明では、このCMP加工を半導体ウェーハの主表面もしくは主裏面に適用した加工を片面研磨としており、主表面と主裏面の両面にCMP加工したものを両面研磨と記している。このCMP加工は一般の手法によればよく、詳細については省略する。この片面研磨もしくは両面研磨工程(S1)が行われた半導体ウェーハは、主表面と主裏面からなる主面と、面取り面とを有している。
 図1の鏡面面取り工程(S2)とは、片面研磨もしくは両面研磨工程(S1)より前段にある研削による面取り加工にて作られた面取り部(面取り面)に対して、上記CMP加工を施すものである。このCMP加工は前述の通り、半導体ウェーハの面取り部に対して行うものであるが、そこで使用される研磨布には厚みがあり柔軟性を持つ。また、半導体ウェーハの主面へのCMP加工の場合は、その面に対してほぼ平行に研磨布を当てることが一般的であるが、面取り部(面取り面)へのCMP加工に関しては、半導体ウェーハの主面に対して研磨布を傾ける必要がある。この傾ける角度や前述の研磨布の厚み、研磨布の柔軟性により、面取り面のみならず、主面までを研磨をしてしまい、このオーバーポリッシュの入り込み量が変化することが知られている。
 尚、図1の鏡面面取り工程(S2)とエッジ検査工程(S3)との間には、洗浄工程や、その他の研磨や検査工程が入っていても良い。
 このエッジ検査工程(S3)とは、上記面取り部(面取り面)とその近傍の主面、例えば半導体ウェーハの最先端部から数mm内側までのキズやカケ、クラックなどの欠陥を検査する工程である。ここで前述の半導体ウェーハの最先端部とは、半導体ウェーハの主面の円の中心から径方向に最も遠い最外周部を指す。また数mm内側とは、例えば、半導体ウェーハの主面へのキズなどの欠陥やパーティクル検査では半導体ウェーハの最先端部から2mm~3mm程度内側は検査ができず、その外周部分を補う検査範囲が前記数mmでありエッジ検査対象部分となる。
 このエッジ検査では一般的に主にレーザー光による検査が用いられ、前述のようにキズ、カケ、クラックなどに反射した光を観察することで欠陥を特定している。本発明では、前述のように面取り研削加工(面取り面)と半導体ウェーハの主面との境界から内側に、鏡面面取り加工時に追研磨されたオーバーポリッシュの痕跡を観察するため、その近傍の主面にレーザー光を照射し、さらに暗視野による受光までをこのエッジ検査工程(S3)で行っている。
 半導体ウェーハの片面もしくは両面研磨加工後の鏡面面取り加工により、研磨加工より前段の面取り研削加工で作られた半導体ウェーハの主面と面取り面の境界より半導体ウェーハの主面内側にも追研磨され、この追研磨された部分であるオーバーポリッシュ部分の半導体ウェーハ厚さは薄化し、また半導体ウェーハの平坦度も悪化することが知られている。このオーバーポリッシュが想定される半導体ウェーハの面取り面近傍の主面にレーザー光を照射し、暗視野を用いて検査することにより、オーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定が短時間かつ非破壊にて可能となる。
 上述した面取り面近傍の主面とは、値の指定はしないが、半導体ウェーハの最先端部から数mm内側の領域とすることができる。
 このとき、面取り面と主面との境界から、半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することが好ましい。また、半導体ウェーハがノッチ部を有しており、ノッチ部近傍における面取り面と主面との境界から、半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することも好ましい。レーザー光を照射する範囲を、上記のような範囲に指定することで、より短時間での観察及び評価が可能となる。
 上述したように、レーザー光を照射する範囲、(すなわち、検査範囲)を面取り面と半導体ウェーハの主面の境界から半導体ウェーハの中心側に2mm内側が好ましいとしたが、面取り研削加工の径方向幅は概ね0.2mm~0.4mmであるため、エッジ検査範囲は半導体ウェーハの最先端部から2mm~3mm内側が妥当であると言える。
 このレーザー光の波長は200nm~700nmとすることが好ましい。このように、照射するレーザー光の波長を可視光域と紫外域と限定することでより優れた評価、すなわち、より確実にオーバーポリッシュの有無やオーバーポリッシュの入り込み量の測定ができる評価が可能となる。
 またこのエッジ検査工程では、レーザー光による検査装置が、そのオーバーポリッシュ部の画像から自動的にオーバーポリッシュ入り込み量を算出し、それを記録する手段を備えても良いし、オーバーポリッシュの有無やオーバーポリッシュの痕跡の強弱だけを記録しても良い。これらの記録により鏡面面取り工程の工程管理、例えば鏡面面取り加工機の機差の把握や、鏡面面取り加工機ごとの経時変化を捕らえることに役立てられる。
 このように、本発明の半導体ウェーハ製造工程の管理方法では、上記で説明した本発明の半導体ウェーハの評価方法によって得られた結果を用いて、鏡面面取り加工の工程管理を行うものである。本発明の半導体ウェーハの評価方法により鏡面面取り加工時のオーバーポリッシュの有無やオーバーポリッシュの入り込み量を取得しておくことにより、鏡面面取り加工を行う工程の工程管理が可能となる。具体的には、鏡面面取り加工機の機差の把握や鏡面面取り加工の加工条件の変更に役立てることが可能である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 本実施例では、チョクラルスキー法で成長させた直径300mmのシリコン単結晶インゴットから得られた半導体ウェーハを使用した。図1のフロー図を参照すると、ここで使用した半導体ウェーハは、図1の両面研磨(S1)を実施し、洗浄後に鏡面面取り加工(S2)を実施している。
 ここで両面研磨(S1)は、不二越機械工業株式会社製のDSP-20Bを用いた。半導体ウェーハの研磨取り代は両面で概ね12μmであった。
 両面研磨(S1)の次工程の半導体ウェーハに対する洗浄は、水、アンモニア、過酸化水素を混合した、いわゆるSC1洗浄である。
 さらに、鏡面面取り加工(S2)では、スピードファム株式会社製IV型エッジポリッシュ装置を使用し、両面研磨(S1)と概ね同じ研磨取り代になるよう加工を行った。
 図2Aは本実施例で示す半導体ウェーハの面取り加工部(面取り面)近傍の主面の暗視野画像である。この画像の見方を説明する。横方向は、画像に半導体ウェーハ全周と示した通り、このウェーハの1周360度を示している。また縦方向は、画像の右側にウェーハ主表面側、面取り研削加工領域、ウェーハ主裏面側と記している通り、本発明でいう面取り加工部(面取り面)近傍を示した。このように、半導体ウェーハの面取り加工部(面取り面)近傍の全周を引き延ばし、この画像のように長方形に示したことがこの画像の特徴である。
 図2Aの画像は、KLA-Tencor社製CV350というエッジ検査装置を用いて取得したものである。
 図7に上記のエッジ検査装置の暗視野像及び明視野像の検出機構の模式図を示す。
 図2Aの暗視野画像は、図7においてレーザー源から出たレーザー光をウェーハ上に照射し、照射面からの散乱光を散乱光検知器で検知した画像である。ここで使用するレーザー光の波長は405nmであった。
 図2Bは参考例で示す半導体ウェーハの面取り加工部(面取り面)近傍の主面の明視野画像であり、上記のエッジ検査装置を用いて取得したものである。
 図2Bの明視野画像は、図7においてレーザー源から出たレーザー光をウェーハ上に照射し、照射面からの反射光を反射光検知器で検知した画像である。
 また、図2Aと図2Bの画像は、図7に示すレーザー源、散乱光検知器、反射光検知器を含む検出部が、図8に示すように、左のステップ1から、下面→エッジ部→上面という順に動いて、ウェーハ表面を観察することで得られたものである。
 ちなみに図2Aと図2Bの両方の画像の縦倍率が同じであり、また、図2Aと図2Bの両方の画像の横倍率が同じである。図2Bの明視野画像を載せた理由は、図2Aの暗視野画像では面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界が不明瞭であり、明視野ではこの境界部が明瞭化できるためである。このように縦倍率同士が同じであり、横倍率同士が同じであるため、図2Bで得られた面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界を、図2Aの同一の位置に示すことができる。
 ここで図2Aにおいて、半導体ウェーハの主表面側や主裏面側の領域内に横に伸びる白い線が見える。この線が本発明の暗視野で見ることのできるオーバーポリッシュの痕跡である。詳しくは、鏡面面取り加工により追研磨されたオーバーポリッシュ部の最も面内中心側が白い線として顕在化している。そのため、半導体ウェーハの最先端部からこの白い線までの径方向の長さを測定することでオーバーポリッシュ入り込み量が測定可能となる。
 図2Aの画像では半導体ウェーハの最先端部からオーバーポリッシュの痕跡である白い線まで、この半導体ウェーハでは径方向に600μmであった。ここで白い線は、画像のように、詳細には直線ではなく波を打っているため、オーバーポリッシュ入り込み量としては、入り込んだ最大量を取得している。
 実際の検査では、面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界を明らかにする必要はないため、図2Bの明視野画像は不要である。
 図3Aは本実施例で示す半導体ウェーハのノッチ部近傍の暗視野画像である。図3Aの画像は図2Aとは異なり、半導体ウェーハの主表面側ノッチ部近傍を撮影している。
 図3Bは参考例で示す半導体ウェーハのノッチ部近傍の明視野画像である。図3Aと図3Bも前述のKLA-Tencor社製CV-350にて取得した。図2B同様、図3Bも面取り研削加工領域(面取り面)と半導体ウェーハの主面との境界が明瞭であるため、図3Aの境界部の参考のために取得したが、実際の検査では、図3Bの明視野画像は不要である。
 図3Aの画像ではオーバーポリッシュの痕跡をより明瞭に見ることができる。このように通常の面取り加工部(面取り面)近傍の主面だけでなく、ノッチ部の面取り加工部(面取り面)近傍の主面であっても暗視野の検査は利用価値が高いことが分かる。
 図4は本実施例で示す半導体ウェーハのESFQRグラフである。ESFQR(Edge Site Frontsurface referenced least sQuares Range)とは、半導体ウェーハ全周の外周域に形成した扇型の領域内のSFQRを測定したものである。SFQR(Site Front Least Squares Range)とは、設定されたサイト内でデータを最小二乗法にて算出したサイト内平面を基準平面とし、この平面からの+側(すなわち、半導体ウェーハの主表面を上に向け水平に置いた場合の上側)、-側(同下側)の最大偏差のことである。
 図4のグラフ取得時の上記扇型のサイズは、ウェーハ全周を5度間隔で72分割し、径方向の一辺の長さは35mmとした。またグラフにはEE0.5mmやEE1mm、EE2mmとあるが、このEE(Edge Exclusion)とは、ESFQR測定時の外周除外領域を示している。したがって、EE0.5mmとは半導体ウェーハの最先端部から内側の、径方向に0.5mm~34.5mm(前述の径方向の一辺が35mmであるため)の領域を測定している。ちなみに、ESFQRの測定機には、KLA-Tencor社製WaferSightシリーズを使用した。
 図4のグラフのデータは、図2A、Bや図3A、Bで使用した同一の半導体ウェーハを使用して測定したものである。この図4ではEE1mmやEE2mmと比較してEE0.5mmのESFQRの値が乱れ、悪化している様子が分かる。この悪化の原因は、鏡面面取り加工でのオーバーポリッシュによるものである。図2Aの画像では半導体ウェーハの最先端部から600μm内側までオーバーポリッシュが入り込んでいた。そのためEE0.5mmでは、オーバーポリッシュの影響で、直前の両面研磨加工で形成された形状が崩れたため、ESFQRの悪化につながった。一方で、EE1mmやEE2mmはオーバーポリッシュの影響を受けておらず、ESFQRの悪化も見られないということである。
 図5は本実施例で示す半導体ウェーハの面取り加工部(面取り面)近傍の暗視野画像である。図5の半導体ウェーハは、図2Aで使用した半導体ウェーハとは異なり、実験的に、鏡面面取り工程にて半導体ウェーハの主表面側にオーバーポリッシュを発生させないように作製したものである。図5の画像からウェーハ主表面側と書かれた領域に、図2Aのようなオーバーポリッシュの痕跡が確認できないことが分かる。
 図6は図5の半導体ウェーハのESFQRグラフである。前述の図2Aで確認できるオーバーポリッシュの影響により図4ではEE0.5mmでは、ESFQRの悪化が見られたが、図6のように主表面側にオーバーポリッシュが無い半導体ウェーハではEE0.5mmのESFQRを測定しても悪化が見られないことが分かる。
 以上の結果から、本発明の暗視野によるエッジ検査を行うことで、オーバーポリッシュの有無やオーバーポリッシュ入り込み量を簡単に評価でき、非破壊の評価および測定が可能であるため製品の収率低下もなく、さらには鏡面面取り工程の工程管理にも利用可能なデータが得られることが分かる。
 以上説明したように、オーバーポリッシュの位置と入り込み量を測定するために、上記では説明のために半導体ウェーハの主面及びエッジ部にレーザー光を照射したが、オーバーポリッシュを測定するだけであれば、レーザー光を主面に照射すればよい。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  半導体インゴットからスライスされた主表面と主裏面からなる主面を有する半導体ウェーハのエッジを面取り研削加工した後に、面取り研削加工された半導体ウェーハの前記主表面もしくは前記主表面と主裏面の両面を研磨加工して前記主面と面取り面を有する半導体ウェーハを作製し、その後鏡面面取り加工が施された半導体ウェーハの評価方法であって、
     前記面取り面近傍の半導体ウェーハの前記主面に対してレーザー光を照射し、照射面からの散乱光を検知することで暗視野にて検査し、前記鏡面面取り加工により前記面取り面と前記主面との境界を越えて研磨されるオーバーポリッシュを検査することを特徴とする半導体ウェーハの評価方法。
  2.  前記面取り面と前記主面との境界から、前記半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することを特徴とする請求項1に記載の半導体ウェーハの評価方法。
  3.  前記半導体ウェーハがノッチ部を有しており、
     前記ノッチ部近傍における前記面取り面と前記主面との境界から、前記半導体ウェーハの中心側に2mm内側までの領域にレーザー光を照射することを特徴とする請求項1に記載の半導体ウェーハの評価方法。
  4.  前記レーザー光の波長を200nm~700nmとすることを特徴とする請求項1から請求項3のいずれか一項に記載の半導体ウェーハの評価方法。
  5.  請求項1から請求項4のいずれか一項に記載の半導体ウェーハの評価方法によって得られた結果を用いて、前記鏡面面取り加工の工程管理を行うことを特徴とする半導体ウェーハ製造工程の管理方法。
PCT/JP2018/010111 2017-04-18 2018-03-15 半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法 WO2018193762A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082219A JP2018182160A (ja) 2017-04-18 2017-04-18 半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法
JP2017-082219 2017-04-18

Publications (1)

Publication Number Publication Date
WO2018193762A1 true WO2018193762A1 (ja) 2018-10-25

Family

ID=63855758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010111 WO2018193762A1 (ja) 2017-04-18 2018-03-15 半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法

Country Status (2)

Country Link
JP (1) JP2018182160A (ja)
WO (1) WO2018193762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227706A (zh) * 2018-12-27 2021-08-06 胜高股份有限公司 半导体晶片的评价方法及半导体晶片的制造方法
WO2021250949A1 (ja) * 2020-06-08 2021-12-16 株式会社Sumco 半導体ウェーハの評価方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298557B2 (ja) * 2020-07-01 2023-06-27 株式会社Sumco 半導体ウェーハの評価方法及び半導体ウェーハの製造方法
JP7327575B1 (ja) 2022-05-19 2023-08-16 株式会社Sumco 半導体ウェーハの鏡面面取り加工時の研磨代の評価方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237055A (ja) * 2005-02-22 2006-09-07 Shin Etsu Handotai Co Ltd 半導体ウェーハの製造方法および半導体ウェーハの鏡面面取り方法
JP2008216054A (ja) * 2007-03-05 2008-09-18 Hitachi High-Technologies Corp 被検査物の検査装置及び被検査物の検査方法
JP2010060532A (ja) * 2008-09-08 2010-03-18 Raytex Corp 表面検査装置
JP2012013632A (ja) * 2010-07-05 2012-01-19 Sumco Corp 表面欠陥検査装置および表面欠陥検出方法
JP2012178463A (ja) * 2011-02-25 2012-09-13 Shin Etsu Handotai Co Ltd 半導体ウェーハ及びその製造方法
JP2014085296A (ja) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd ウェーハ形状測定装置
WO2015196163A1 (en) * 2014-06-20 2015-12-23 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
JP2017072461A (ja) * 2015-10-07 2017-04-13 株式会社Sumco 半導体ウェーハの評価方法および半導体ウェーハ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237055A (ja) * 2005-02-22 2006-09-07 Shin Etsu Handotai Co Ltd 半導体ウェーハの製造方法および半導体ウェーハの鏡面面取り方法
JP2008216054A (ja) * 2007-03-05 2008-09-18 Hitachi High-Technologies Corp 被検査物の検査装置及び被検査物の検査方法
JP2010060532A (ja) * 2008-09-08 2010-03-18 Raytex Corp 表面検査装置
JP2012013632A (ja) * 2010-07-05 2012-01-19 Sumco Corp 表面欠陥検査装置および表面欠陥検出方法
JP2012178463A (ja) * 2011-02-25 2012-09-13 Shin Etsu Handotai Co Ltd 半導体ウェーハ及びその製造方法
JP2014085296A (ja) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd ウェーハ形状測定装置
WO2015196163A1 (en) * 2014-06-20 2015-12-23 Kla-Tencor Corporation In-line wafer edge inspection, wafer pre-alignment, and wafer cleaning
JP2017072461A (ja) * 2015-10-07 2017-04-13 株式会社Sumco 半導体ウェーハの評価方法および半導体ウェーハ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113227706A (zh) * 2018-12-27 2021-08-06 胜高股份有限公司 半导体晶片的评价方法及半导体晶片的制造方法
CN113227706B (zh) * 2018-12-27 2022-11-11 胜高股份有限公司 半导体晶片的评价方法及半导体晶片的制造方法
WO2021250949A1 (ja) * 2020-06-08 2021-12-16 株式会社Sumco 半導体ウェーハの評価方法

Also Published As

Publication number Publication date
JP2018182160A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018193762A1 (ja) 半導体ウェーハの評価方法及び半導体ウェーハ製造工程の管理方法
JP6377459B2 (ja) ウエーハ検査方法、研削研磨装置
KR100861101B1 (ko) 반도체 웨이퍼 및 그 제조 방법
KR101985195B1 (ko) 반도체 웨이퍼의 평가 방법 및 제조 방법
CN108027330B (zh) 半导体晶片的评价方法和半导体晶片
JP5782782B2 (ja) 特定欠陥の検出方法、特定欠陥の検出システムおよびプログラム
CN109690746B (zh) 硅晶片的评价方法、硅晶片制造工序的评价方法、硅晶片的制造方法以及硅晶片
TW201729316A (zh) 缺陷區域的判定方法
KR20160055805A (ko) 연마패드의 평가방법 및 웨이퍼의 연마방법
KR102327328B1 (ko) 접합용 기판의 표면결함의 평가방법
JP2002026096A (ja) シリコンウエハーの品質評価方法及び再生方法
KR20210084633A (ko) 반도체 웨이퍼의 평가 방법 및 제조 방법 그리고 반도체 웨이퍼의 제조 공정 관리 방법
JP6809422B2 (ja) 半導体ウェーハの評価方法
KR102436876B1 (ko) 반도체 웨이퍼의 평가 방법 및 반도체 웨이퍼의 제조 방법
KR101885614B1 (ko) 웨이퍼 검사 방법 및 웨이퍼 검사 장치
JP2005259967A (ja) 化学機械研磨装置及び化学機械研磨方法
JP2001118894A (ja) 半導体ウェーハの検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787093

Country of ref document: EP

Kind code of ref document: A1