WO2018193536A1 - 走行制御方法及び運転制御装置 - Google Patents

走行制御方法及び運転制御装置 Download PDF

Info

Publication number
WO2018193536A1
WO2018193536A1 PCT/JP2017/015673 JP2017015673W WO2018193536A1 WO 2018193536 A1 WO2018193536 A1 WO 2018193536A1 JP 2017015673 W JP2017015673 W JP 2017015673W WO 2018193536 A1 WO2018193536 A1 WO 2018193536A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
vehicle
jerk
acceleration
automatic driving
Prior art date
Application number
PCT/JP2017/015673
Other languages
English (en)
French (fr)
Inventor
平松 真知子
ファソン ジャン
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2019513128A priority Critical patent/JP6756402B2/ja
Priority to PCT/JP2017/015673 priority patent/WO2018193536A1/ja
Publication of WO2018193536A1 publication Critical patent/WO2018193536A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers

Definitions

  • the present invention relates to a driving control method and driving in which driving operation during manual driving by a driver is learned in a vehicle capable of switching between manual driving and automatic driving by a driver, and the learning result is applied to driving control of automatic driving.
  • the present invention relates to a control device.
  • Patent Document 1 is disclosed as a travel control system that executes travel control of a vehicle by automatic driving or driving assistance.
  • the travel control system disclosed in Patent Document 1 in order to prevent an occupant's anxiety during travel control by automatic driving or driving assistance, when anxiety is measured with an electroencephalogram or the like, Adjust vehicle speed and inter-vehicle distance to remove anxiety. Therefore, in situations where passengers feel uneasy, automatic driving is performed so as to match the vehicle speed and inter-vehicle distance during manual driving.
  • the present invention has been proposed in view of the above-described circumstances, and it is possible to easily grasp that automatic driving is operating normally, and to reduce the burden of occupant system monitoring. It is an object of the present invention to provide a travel control method and an operation control apparatus that can be used.
  • the traveling control method and the driving control device make the jerk during automatic driving of the vehicle different from the jerk during manual driving obtained as a learning result. To control the driving.
  • the occupant can easily grasp that the automatic operation is operating normally, and the burden on the system monitoring of the occupant can be reduced.
  • FIG. 1 is a block diagram showing a configuration of an operation control system including an operation control apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating temporal changes in speed, acceleration, and jerk during deceleration in manual operation.
  • FIG. 3 is a diagram illustrating temporal changes in speed, acceleration, and jerk during deceleration in the automatic operation of the operation control apparatus according to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a processing procedure of driving operation learning processing by the driving control apparatus according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a learning result of an acceleration generation time from when the brake is turned on to when 0.1 G is generated.
  • FIG. 6 is a diagram illustrating an example of a learning result of an acceleration generation time from when the accelerator is turned off until 0.1 G is generated.
  • FIG. 7 is a flowchart showing a processing procedure of automatic driving control processing by the driving control apparatus according to the embodiment of the present invention.
  • FIG. 8 is a view for explaining a method of setting acceleration / deceleration parameters in the automatic operation control process according to the embodiment of the present invention.
  • FIG. 9 is a diagram for explaining an acceleration / deceleration parameter setting method in the automatic operation control process according to the embodiment of the present invention.
  • FIG. 10 is a diagram for explaining an acceleration / deceleration parameter setting method in the automatic operation control process according to the embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a method for setting acceleration / deceleration parameters in the automatic operation control process according to the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating an example of a speed change during deceleration of manual operation.
  • FIG. 13 is a diagram illustrating an example of a speed change at the time of deceleration of the automatic driving that is travel-controlled by the automatic driving control process according to the embodiment of the present invention.
  • FIG. 14 is a diagram illustrating an example of a speed change during acceleration of manual operation.
  • FIG. 15 is a diagram illustrating an example of a speed change during acceleration of automatic driving that is travel-controlled by the automatic driving control process according to the embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of an operation control system including an operation control device according to the present embodiment.
  • the driving control system 100 includes a driving control device 1, a driving state detecting unit 3, a driving environment detecting unit 5, a driving changeover switch 7, an occupant monitoring unit 8, And a control state presentation unit 9. Furthermore, the operation control system 100 is connected to an actuator 11 mounted on the vehicle.
  • the driving control device 1 learns driving operation during manual driving by the driver in a vehicle that can be switched between manual driving and automatic driving by the driver, and executes a process of applying the learning result to the driving control of the automatic driving. Controller.
  • the driving control device 1 executes the traveling control process so that the jerk during automatic driving of the vehicle is different from the jerk during manual driving obtained as a learning result. That is, in this travel control process, the travel control may be performed such that the absolute value of the jerk during automatic driving of the vehicle is greater than the absolute value of the jerk during manual operation obtained as a learning result.
  • the traveling control may be performed so as to be small.
  • the jerk is a rate of change of acceleration
  • the jerk learned in manual driving may be a jerk in the front-rear direction of the vehicle or a jerk in the vehicle width direction of the vehicle.
  • the driving control device 1 includes a driving operation learning unit 21, a situation determination unit 23, a parameter setting unit 25, and an automatic driving control execution unit 27.
  • this embodiment demonstrates the case where the operation control apparatus 1 is mounted in a vehicle, you may install a communication apparatus in a vehicle and install the operation control apparatus 1 in an external server.
  • the driving state detection unit 3 includes vehicle speed, acceleration, jerk, acceleration / deceleration operations, steering angle, presence / absence of a preceding vehicle, inter-vehicle distance and relative speed, current position, direction indicator display state, headlight Travel data indicating the travel state of the vehicle such as the lighting state and the wiper operating state is detected.
  • the traveling state detection unit 3 is an in-vehicle network such as CAN (Controller Area Network), a navigation device, a laser radar, a camera, or the like. It should be noted that parameters such as vehicle speed, acceleration, and jerk may be detected from the behavior of the vehicle or may be obtained from the amount of operation by the occupant.
  • the traveling environment detection unit 5 includes the current position of the vehicle, the speed limit of the road on which the vehicle travels, the display state of the traffic signal in front of the vehicle, the distance to the intersection in front of the vehicle, the distance from pedestrians and bicycles, the number of vehicles in front of the vehicle Detect environmental information that represents the environment around the vehicle, such as the presence or absence of a toll booth. In addition to this, the state where the horn is activated at the railroad crossing, TTC (Time to collision) with the vehicle ahead, road regulation information, traffic jam information, and the like are also detected.
  • the traveling environment detection unit 5 is a camera, a laser radar, a navigation device or the like mounted on the vehicle.
  • the number of vehicles in front of the vehicle may be detected using inter-vehicle communication or a cloud service linked with a smartphone.
  • the planned course of the intersection ahead of the vehicle is acquired from the display state of the navigation device and the direction indicator.
  • the road surface condition and the weather condition around the vehicle are acquired from an illuminance sensor, an outside air temperature sensor, a wiper switch, and the like.
  • the illuminance may be obtained from a headlight switch.
  • the operation changeover switch 7 is a switch that is mounted on the vehicle and is switched between automatic operation and manual operation when operated by a vehicle occupant.
  • the operation switch 7 is installed on the steering of the vehicle.
  • the occupant monitoring unit 8 is a vehicle interior camera or the like installed in the vehicle, and detects the occupant's line-of-sight direction from the image captured by the vehicle interior camera to detect the occupant's forward monitoring state.
  • a device for detecting a biological signal may be provided so that the wakefulness or tension of the occupant can be detected.
  • the control state presentation unit 9 displays whether the current control state is manual operation or automatic operation on a meter display unit, a display screen of a navigation device, a head-up display, or the like. In addition, a notification sound indicating the start and end of automatic driving is also output to indicate whether or not learning of driving operation has ended.
  • Actuator 11 receives an execution command from operation control device 1 and drives each part such as an accelerator, a brake, and a steering of the vehicle.
  • the driving operation learning unit 21 acquires driving data regarding the driving state of the vehicle and environmental information regarding the driving environment around the vehicle from the driving state detection unit 3 and the driving environment detection unit 5, and learns the driving operation during manual driving of the driver. To do.
  • the driving operations to be learned are an acceleration / deceleration operation and a steering operation, and a driving operation in a situation where acceleration, deceleration, and jerk occur during traveling is learned. For example, the acceleration, deceleration, and jerk from the start (including start) to the end of the acceleration operation are learned, and the acceleration, deceleration, and jerk from the start to the end (including stop) of the deceleration operation are learned.
  • the driving operation learning unit 21 learns by associating the speed and acceleration at the time of acceleration / deceleration operation in manual driving, the jerk, and the traveling environment.
  • the driving operation learning unit 21 learns the relationship between the speed and jerk at the start of acceleration / deceleration operation in manual driving. Further, the relationship between the speed at the start of the acceleration / deceleration operation in manual operation and the acceleration generation time from the start of the acceleration / deceleration operation to the occurrence of the predetermined acceleration is also learned. Further, jerk may be learned from the start of acceleration / deceleration operation in manual operation until a predetermined acceleration is generated.
  • the situation determination unit 23 obtains travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5, so The usage status is determined.
  • the driving conditions to be judged include turning left and right at an intersection or stopping, avoiding objects such as parked vehicles and pedestrians, passing through railroad crossings, situations where there are road restrictions, situations where there are merges and overtakings, There are situations where roads are congested or congested, weather conditions, visibility, and poor road conditions.
  • the situation determination unit 23 determines the front monitoring state of the occupant of the vehicle, and determines whether the traveling environment around the vehicle is a specific environment set in advance such as a school zone or a living road. To do. Further, the usage situation to be determined is whether it is a predetermined period after shifting from manual driving to automatic driving, whether it is a predetermined period after the vehicle starts automatic driving, whether automatic driving to manual driving Whether or not it is a predetermined period before moving to.
  • the parameter setting unit 25 executes the automatic driving based on the learning result learned by the driving operation learning unit 21 and the driving situation and the usage situation determined by the situation determination unit 23 when shifting to the automatic driving.
  • Set the parameters for Parameters to be set include jerk, acceleration, deceleration, acceleration generation time, and the like.
  • the parameter setting unit 25 sets the parameters so that the jerk during automatic driving of the vehicle is different from the jerk during manual driving obtained as a learning result. That is, the parameter may be set so that the absolute value of the jerk during automatic driving of the vehicle is larger than the absolute value of the jerk during manual driving obtained as a learning result, May be set.
  • FIG. 2 is a diagram showing temporal changes in speed, acceleration, and jerk when decelerating from 50 km / h during manual operation.
  • the accelerator is turned off at time t1, and the acceleration decreases by 0.1 G at time t2.
  • the time from when the accelerator is turned off to when it decreases by 0.1 G is the acceleration generation time T1.
  • the driving operation learning unit 21 learns such a driving operation and stores it as a learning result.
  • the parameter setting unit 25 sets the jerk during automatic driving to be different from the jerk during manual driving obtained as a learning result.
  • the parameter setting unit 25 sets the absolute value of the jerk during automatic driving to be larger than the absolute value of the jerk during manual driving obtained as a learning result.
  • the accelerator is turned off at time t3, the acceleration decreases by 0.1 G at time t4, and the acceleration generation time is T2. Comparing FIG. 2 and FIG. 3, the acceleration generation time T2 during the automatic operation is shorter than the acceleration generation time T1 during the manual operation.
  • the parameter setting unit 25 sets the absolute value of the jerk during automatic operation to be larger than the absolute value of the jerk during manual operation. Comparing the jerk during the period T1 in FIG. 2 with the jerk during the period T2 in FIG. 3, the absolute value of the jerk during the automatic operation shown in FIG. 3 is the absolute value of the jerk during the manual operation shown in FIG. It is larger than the value.
  • the jerk during automatic driving by setting the jerk during automatic driving to be different from the jerk during manual driving obtained as a learning result, the difference between automatic driving and manual driving becomes clear. It can be easily grasped that it is operating normally. As a result, the burden on the system monitoring of the occupant can be greatly reduced. In particular, an occupant's anxiety about automatic driving increases at the time of acceleration / deceleration or right / left turn when the vehicle speed or acceleration of the vehicle changes. However, when acceleration / deceleration is started (T1 in FIG. 2 or T2 in FIG. 3), if the jerk during automatic driving is set to be different from the jerk during manual driving obtained as a learning result, the occupant Can easily grasp that automatic driving is operating normally. Therefore, the occupant can obtain a sense of security and reliability with respect to automatic driving. 2 and 3, the absolute value of the jerk during automatic operation has been described as being greater than the absolute value of the jerk during manual operation, but it may be set to be smaller.
  • the automatic operation control execution unit 27 executes automatic operation control when an automatic operation section is entered or when the driver selects automatic operation using the operation switch 7. At this time, the automatic driving control execution unit 27 applies the learning result learned by the driving operation learning unit 21 to the driving control of the automatic driving, and the automatic driving control is performed with the acceleration, deceleration, and jerk set by the parameter setting unit 25. Execute.
  • the operation control device 1 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU, and peripheral devices such as a memory. And by operating a specific program, it operates as the driving operation learning unit 21, the situation determination unit 23, the parameter setting unit 25, and the automatic driving control execution unit 27 described above.
  • Each function of the operation control apparatus 1 can be implemented by one or a plurality of processing circuits.
  • the processing circuit includes a programmed processing device such as, for example, a processing device including an electrical circuit, and an application specific integrated circuit (ASIC) or conventional circuit arranged to perform the functions described in the embodiments. It also includes devices such as parts.
  • ASIC application specific integrated circuit
  • step S ⁇ b> 101 the driving operation learning unit 21 determines whether or not the vehicle is in manual driving according to the state of the driving changeover switch 7. If the vehicle is in manual driving, the process proceeds to step S103. If the vehicle is in automatic driving, the driving operation learning process is terminated and automatic driving control is executed.
  • step S103 the driving operation learning unit 21 detects driving data related to the driving state of the vehicle and environmental information related to the driving environment around the vehicle from the driving state detection unit 3 and the driving environment detection unit 5.
  • the detected travel data includes vehicle speed, steering angle, acceleration, deceleration, jerk, inter-vehicle distance, relative speed with the preceding vehicle, current position, planned route at the front intersection, brake pedal and accelerator pedal. It detects the amount of operation, the lighting state of the headlight, the operating state of the wiper, etc.
  • the environmental information includes the speed limit of the road on which the vehicle is traveling, the toll booth, whether or not there are temporary stop restrictions or the display state of the traffic light in front of the vehicle, the distance from the vehicle to the front intersection, the number of vehicles in front of the vehicle, and walking from the vehicle. It detects the distance to the person or bicycle, the road surface condition, the weather condition around the vehicle, and the like. In addition to this, the state where the horn is activated at the railroad crossing, TTC (Time to collision) with the vehicle ahead, road regulation information, traffic jam information, and the like are also detected. Furthermore, the driving operation learning unit 21 detects the occupant's forward monitoring state, the arousal level, the tension level, and the like from the occupant monitoring unit 8.
  • step S105 the driving operation learning unit 21 determines whether the vehicle is decelerating or accelerating. As a determination method, it is determined that the vehicle is decelerating or accelerating when the deceleration or acceleration of the vehicle acquired in step S103 is a predetermined value or more. If it is determined that the vehicle is decelerating or accelerating, the process proceeds to step S107. If it is determined that the vehicle is not decelerating or accelerating, the process returns to step S103.
  • step S107 the driving operation learning unit 21 learns the driving data and environment information determined to be decelerating or accelerating in the process of step S105 from the driving data and environment information detected in step S103.
  • the driving operation learning unit 21 learns the driving data and environment information determined to be decelerating or accelerating in the process of step S105 from the driving data and environment information detected in step S103.
  • the data is stored after being selected in advance has been described. However, after all the data during manual operation is stored once, the above-described processing in step S105 may be performed for selection.
  • step S109 the driving operation learning unit 21 determines whether or not a predetermined amount of learning data has been stored. If the predetermined amount is not reached, the process returns to step S103. Proceed to S111.
  • step S111 the driving operation learning unit 21 learns the driving operation during manual driving of the driver.
  • the driver's acceleration / deceleration operation is learned.
  • the relationship between the speed and jerk at the start of acceleration / deceleration operation in manual operation is learned, and a linear function is obtained as a learning result.
  • the linear function may be obtained by learning the relationship between the speed at the start of the acceleration / deceleration operation and the acceleration generation time in manual operation.
  • the acceleration generation time is a time from the start of the acceleration / deceleration operation until a predetermined acceleration is generated.
  • the acceleration generation time is defined as the time until a predetermined deceleration (for example, 0.1 G) is generated with the accelerator being turned off or the brake being turned on as the starting point of the deceleration operation.
  • a predetermined deceleration for example, 0.1 G
  • the acceleration generation time from when the brake is turned on until the deceleration of 0.1G is generated is learned for each driver A to G, and the average value and standard deviation are obtained. May be.
  • the acceleration generation time from when the accelerator is turned off until the deceleration of 0.1G is generated is learned for each driver A to G, and the average value and standard deviation of each is calculated. You may ask for it. Note that not only the average value and standard deviation but also the maximum value may be obtained.
  • the jerk from the start of the acceleration / deceleration operation in the manual operation until the predetermined acceleration is generated may be learned. In this case, a section where jerk occurs, such as before an intersection, is specified in advance, and the jerk of the section is learned.
  • the jerk at the time of the acceleration / deceleration operation in the manual operation and the traveling environment of the vehicle may be learned in association with each other.
  • the vehicle may approach other objects such as other vehicles and pedestrians.
  • the jerk during the deceleration operation is learned in association with the distance between the vehicle and the object, the relative speed, or TTC (Time-to-collision).
  • the jerk during deceleration operation is learned in relation to the situation such as interruption or sudden deceleration of the preceding vehicle, appearance of traffic jams, appearance of parked vehicles, entry of crossing or merging vehicles, crossing of pedestrians or bicycles, etc. be able to.
  • the jerk during the deceleration operation is learned in relation to the distance or time (distance / speed) to the stop line when switching from yellow to red.
  • the jerk during a deceleration operation is learned in relation to the distance or time (distance / speed) to the stop line when the horn is activated.
  • the jerk during the deceleration operation is learned in association with the distance or time (distance / speed) to the road regulation point.
  • environmental factors that affect jerk and acceleration during acceleration operations include, for example, merging and overtaking.
  • the jerk during the accelerating operation is learned in association with the length of the joining or overtaking section or the speed of the joining destination.
  • the jerk during the acceleration operation is learned in association with whether turning right or left, whether starting from a temporarily stopped intersection, or whether traveling on a narrow road.
  • the jerk during the acceleration operation is learned in association with whether the own lane or the adjacent lane is congested or congested.
  • the jerk during the acceleration operation may be learned in association with whether or not the vehicle is traveling in a specific environment such as a school zone or a living road.
  • step S113 the driving operation learning unit 21 stores the learning result calculated in step S111 and ends the driving operation learning process according to the present embodiment.
  • step S ⁇ b> 201 the automatic driving control execution unit 27 determines whether or not learning of the driving operation is completed by the driving operation learning process shown in FIG. 4. If learning has been completed, the process proceeds to step S203, and if learning has not been completed, the process proceeds to step S211.
  • step S ⁇ b> 203 the situation determination unit 23 acquires travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5, and the travel state where the vehicle is traveling And a use situation in which automatic driving is used.
  • the detected driving situation includes turning left and right at an intersection or stopping, avoiding objects such as parked vehicles and pedestrians, passing through a railroad crossing, situations where there are road restrictions, situations where there is merging or overtaking, There are situations where roads are congested or congested, weather conditions, visibility, and poor road conditions.
  • the situation determination unit 23 detects the front monitoring state of the vehicle occupant and detects whether the driving environment around the vehicle is a specific environment set in advance such as a school zone or a living road. To do.
  • the detected usage status is whether or not it is a predetermined period after shifting from manual driving to automatic driving, whether or not it is a predetermined period after the vehicle starts automatic driving, whether automatic driving to manual driving Whether or not it is a predetermined period before moving to.
  • step S205 the parameter setting unit 25 sets acceleration / deceleration parameters for executing automatic driving based on the learning result learned in the driving operation learning process and the driving situation and usage situation detected in step S203.
  • Parameters to be set include jerk, acceleration, deceleration, acceleration generation time, and the like.
  • the parameter setting unit 25 sets the jerk during automatic driving of the vehicle to be different from the jerk during manual driving obtained as a learning result. That is, the absolute value of the jerk during automatic driving of the vehicle may be set so as to be larger or smaller than the absolute value of the jerk during manual driving obtained as a learning result. Also good.
  • the parameter setting unit 25 sets the absolute value of the jerk during automatic driving to be larger than the absolute value of the jerk during manual driving obtained as a learning result.
  • the relationship between the speed and jerk at the start of the acceleration / deceleration operation in the automatic operation is obtained by subtracting a predetermined value from the learning result X indicated by the dotted line, and is indicated by the solid line Y.
  • the absolute value of the jerk during automatic driving is set to be smaller than the absolute value of the jerk during manual driving obtained as a learning result. If the jerk during manual operation is large, that is, if the driver has a lot of sudden acceleration or deceleration, the difference between automatic operation and manual operation will be better if the jerk during automatic operation is smaller than the jerk during manual operation. There are cases where it is possible to clarify.
  • the jerk during automatic driving may be made smaller than just the jerk during manual driving.
  • acceleration generation time may be set instead of jerk.
  • the relationship between the speed at the start of acceleration / deceleration operation and the acceleration generation time in manual operation is learned, and the learning result is indicated by a dotted line X.
  • the learning result X By subtracting a predetermined value from the learning result X, the relationship between the speed at the start of the acceleration / deceleration operation in the automatic operation and the acceleration generation time is obtained, and is indicated by a solid line Y.
  • the acceleration generation time during automatic driving is set to be shorter than the acceleration generation time during manual driving obtained as a learning result. Since the acceleration generation time is the time from the start of the acceleration / deceleration operation until the predetermined acceleration is reached, the jerk increases as the acceleration generation time decreases. Accordingly, the parameter setting unit 25 is set so that the absolute value of the jerk during automatic driving is larger than the absolute value of the jerk during manual driving obtained as a learning result.
  • a predetermined value is added to the learning result X indicated by the dotted line to obtain the relationship between the speed at the time of starting the acceleration / deceleration operation in the automatic operation and the acceleration generation time, and is indicated by the solid line Y.
  • the acceleration generation time during automatic driving is set to be longer than the acceleration generation time during manual driving obtained as a learning result.
  • the parameter setting unit 25 is set so that the absolute value of the jerk during automatic driving is smaller than the absolute value of the jerk during manual driving obtained as a learning result.
  • the parameter setting unit 25 may adjust the jerk during automatic driving according to the usage situation in which automatic driving of the vehicle is used. For example, when the vehicle shifts from manual driving to automatic driving, parameters are set so that the difference between jerk during automatic driving and jerk during manual driving is greater than a predetermined value for a predetermined period after the shift. And run control.
  • the predetermined value may be set in advance so that the occupant can clearly recognize the difference between the jerk during automatic driving and the jerk during manual driving.
  • the parameter setting unit 25 sets the parameter so that the difference between the jerk during automatic driving and the manual driving during a predetermined period after the start becomes greater than a predetermined value.
  • the start of the automatic driving means a case where the driving starts from an unused state such as immediately after purchasing the vehicle.
  • the parameter setting unit 25 increases the difference between the jerk during automatic driving and the jerk during manual driving larger than a predetermined value for a predetermined period before the shift.
  • the parameters are set so that the travel is controlled.
  • the parameter setting unit 25 may adjust the jerk during automatic driving according to the front monitoring state of the vehicle occupant. For example, if it is determined that the wakefulness level of the occupant is decreasing, the jerk is increased according to the decrease level to increase the wakefulness level of the occupant. Further, when it is detected that the occupant is not looking forward, the jerk is increased to facilitate the occupant's forward monitoring.
  • the parameter setting unit 25 learns by associating the jerk during the acceleration / deceleration operation in the manual driving of the vehicle with the traveling environment of the vehicle, and sets the parameter based on the learning result to control the traveling. For example, when the vehicle is approaching an object such as another vehicle or a pedestrian, the jerk or deceleration is increased as the distance decreases. Further, the jerk and the deceleration may be increased as the relative speed with respect to the object increases or as TTC (Time-to-collision) decreases.
  • TTC Time-to-collision
  • the parameter setting unit 25 increases the jerk and deceleration as the distance or time (distance / speed) to the stop line when switching from yellow to red decreases. Further, when a horn is activated at a level crossing, the jerk or deceleration is increased as the distance or time (distance / speed) to the stop line when the horn is activated decreases. When there is road regulation, the jerk or deceleration is increased as the distance or time (distance / speed) to the road regulation point or toll gate becomes shorter.
  • the parameter setting unit 25 increases the jerk and acceleration as the merging or overtaking section becomes shorter when the vehicles merge or overtake. Further, the jerk or acceleration may be increased as the speed of the joining destination increases. Further, when traveling on intersections or narrow roads, the jerk or acceleration is made smaller than the learning results when turning left or right, starting from a temporarily stopped intersection, or traveling on narrow roads. Further, when the road ahead of the vehicle is congested or congested, the jerk or acceleration is made smaller than the learning result.
  • the parameter setting unit 25 makes jerk and acceleration smaller than the learning result in a weather condition, visibility, and road surface condition (rain, snow, road surface freezing). Further, when the vehicle is traveling in a specific environment set in advance such as a school zone or a living road, the jerk or acceleration is made smaller than the learning result.
  • step S207 the automatic driving control execution unit 27 executes the automatic driving control using the acceleration / deceleration parameters set in step S205.
  • the acceleration generation time at the start of deceleration is Ts
  • the acceleration generation time at the end of deceleration is Tf.
  • the acceleration generation time Ts'Tf ' is the acceleration generation time shown in FIG. It is shorter than the times Ts and Tf.
  • the acceleration generation time at the time of starting acceleration in manual operation is Ts
  • the acceleration generation time at the time of ending acceleration is Tf.
  • the acceleration generation time Ts′Tf ′ is the acceleration generation shown in FIG. It is shorter than the times Ts and Tf.
  • the automatic operation control execution unit 27 transmits a control execution command to the actuator 11 so that such automatic operation is executed, and executes operations such as accelerator, brake, and steering necessary for automatic operation.
  • step S209 the automatic operation control execution unit 27 determines whether or not the automatic operation has ended. If not, the automatic operation control execution unit 27 returns to step S203 and continues the automatic operation. On the other hand, when the automatic operation is switched to the manual operation and the automatic operation is finished, the automatic operation control process according to the present embodiment is finished.
  • step S ⁇ b> 211 the situation determination unit 23 acquires travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5, and the travel state in which the vehicle is traveling. And a use situation in which automatic driving is used.
  • the detected driving situation includes turning left and right at an intersection or stopping, avoiding objects such as parked vehicles and pedestrians, passing through a railroad crossing, situations where there are road restrictions, situations where there is merging or overtaking, There are situations where roads are congested or congested, weather conditions, visibility, and poor road conditions.
  • the situation determination unit 23 detects the front monitoring state of the vehicle occupant and detects whether the driving environment around the vehicle is a specific environment set in advance such as a school zone or a living road. To do.
  • the detected usage status is whether or not it is a predetermined period after shifting from manual driving to automatic driving, whether or not it is a predetermined period after the vehicle starts automatic driving, whether automatic driving to manual driving Whether or not it is a predetermined period before moving to.
  • step S213 the parameter setting unit 25 sets a predetermined value set in advance as an acceleration / deceleration parameter.
  • a predetermined value a general acceleration / deceleration value or average value may be used.
  • step S215 the automatic operation control execution unit 27 executes automatic operation control using the set acceleration / deceleration parameters. Specifically, the automatic driving control execution unit 27 transmits a control execution command to the actuator 11 and executes operations such as an accelerator, a brake, and a steering necessary for automatic driving.
  • step S217 the automatic operation control execution unit 27 determines whether or not the automatic operation has ended, and if not, returns to step S211 and continues the automatic operation. On the other hand, when the automatic operation is switched to the manual operation and the automatic operation is finished, the automatic operation control process according to the present embodiment is finished.
  • the traveling control is performed so that the jerk during automatic driving of the vehicle is different from the jerk during manual driving obtained as a learning result. To do. As a result, the occupant can easily grasp that the automatic operation is operating normally, and the occupant's feeling of system monitoring can be reduced.
  • traveling control is performed so that the absolute value of the jerk during automatic driving of the vehicle is larger than the absolute value of the jerk during manual driving obtained as a learning result.
  • crew can grasp
  • the required acceleration can be accurately estimated by using the passenger's jerk obtained as a result of learning as a reference, it is possible to inform the passenger that the jerk is different from manual driving. become.
  • the occupant can easily grasp that the automatic driving system is operating normally from the behavior of the vehicle, it is possible to obtain a sense of security and reliability with respect to the automatic driving.
  • the jerk during automatic driving may be increased by not reflecting the learning result.
  • the jerk during automatic driving is adjusted according to the situation where automatic driving of the vehicle is used.
  • a sense of security and trust can be given to the passengers.
  • the jerk can be reduced to provide a comfortable ride.
  • the travel control method when the vehicle shifts from manual driving to automatic driving, the difference between the jerk during automatic driving and the jerk during manual driving is a predetermined value during a predetermined period after the shift. Travel control is performed so as to be larger. As a result, immediately after shifting to automatic driving, it is possible to positively tell the occupant that the automatic driving system is operating normally, and the occupant can obtain a sense of security.
  • Travel control when the vehicle starts automatic driving, the difference between the jerk during automatic driving and the manual driving during a predetermined period after the start becomes greater than a predetermined value. Travel control is performed as follows. Thus, at the time when the automatic driving of the vehicle is started, it can be positively notified to the occupant that the automatic driving system is operating normally, and the occupant can obtain a sense of security.
  • the difference between the jerk during automatic driving and the jerk during manual driving is a predetermined value during a predetermined period before the shift. Travel control is performed so as to be larger. This allows the occupant to understand that the return to manual operation is approaching due to the change in jerk immediately before returning from automatic operation to manual operation. Can be prepared.
  • the front monitoring state of the vehicle occupant is detected, and the jerk during automatic driving is adjusted according to the detected front monitoring state.
  • the travel control method according to the present embodiment, the relationship between the speed and jerk at the start of the acceleration / deceleration operation in the manual operation of the vehicle is learned, and the travel control of the automatic operation is performed based on the learning result.
  • the traveling control reflecting the driving characteristics of each driver is possible.
  • the travel control method according to the present embodiment, the relationship between the speed at the start of the acceleration / deceleration operation in manual driving of the vehicle and the acceleration generation time from the start of the acceleration / deceleration operation to the occurrence of a predetermined acceleration is learned. Then, based on the learning result, the traveling control of the automatic driving is performed. Thereby, since the learning result can be reflected in the acceleration / deceleration operation of the automatic driving, the traveling control reflecting the driving characteristics of each driver is possible.
  • the jerk from the start of the acceleration / deceleration operation in the manual driving of the vehicle to the occurrence of the predetermined acceleration is learned, and the running control of the automatic driving is performed based on the learning result. .
  • the traveling control reflecting the driving characteristics of each driver is possible.
  • learning is performed by associating the jerk during acceleration / deceleration operation in the manual driving of the vehicle with the traveling environment of the vehicle, and the traveling control of the automatic driving is performed based on the learning result.
  • driving control can be performed by adjusting the driving characteristics of each driver according to various driving environments.
  • the jerk during automatic driving is adjusted when the traveling environment around the vehicle is a specific environment set in advance. This allows the occupant to understand the high-risk environment and the situation where the driver needs to intervene in automated driving, so the occupant should be encouraged to actively monitor the surrounding environment. it can.
  • the jerk learned in the manual driving of the vehicle is the jerk in the longitudinal direction of the vehicle. Therefore, it is possible to learn the driving characteristics of the driver when stopping at an intersection or when approaching an object such as another vehicle.
  • the jerk learned in the manual driving of the vehicle is the jerk in the vehicle width direction of the vehicle. Therefore, it is possible to learn the driving characteristics of the driver when making a right or left turn at an intersection.

Abstract

本発明の走行特性学習方法は、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の運転操作を学習して、この学習結果を自動運転の走行制御に適用し、車両の自動運転時の加加速度が、学習結果として得られた手動運転時の加加速度と異なるように走行制御する。

Description

走行制御方法及び運転制御装置
 本発明は、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の運転操作を学習し、この学習結果を自動運転の走行制御に適用する走行制御方法及び運転制御装置に関する。
 従来では、自動運転や運転支援により車両の走行制御を実行する走行制御システムとして、特許文献1が開示されている。特許文献1に開示された走行制御システムでは、自動運転や運転支援による走行制御中に、乗員の不安感を防止するために、脳波等で不安度を測定し、不安を感じているときには、その不安を取り除くように車速や車間距離を調整する。そのため、乗員が不安に感じる状況では、手動運転のときの車速や車間距離と一致するように自動運転を行っていた。
特開2016-52881号公報
 ここで、上述した従来の走行制御システムのように自動運転の走行制御が手動運転のときと一致するように制御されていると、乗員は自動運転が正常に作動しているのか分かりづらいので、システムの作動状態を常に気にしなければならない。その結果、乗員のシステム監視に対する負担感が増大するという問題点があった。
 そこで、本発明は、上述した実情に鑑みて提案されたものであり、自動運転が正常に作動していることを容易に把握することができ、乗員のシステム監視に対する負担感を軽減することのできる走行制御方法及び運転制御装置を提供することを目的とする。
 上述した課題を解決するために、本発明の一態様に係る走行制御方法及び運転制御装置は、車両の自動運転時の加加速度を、学習結果として得られた手動運転時の加加速度と異なるように走行制御する。
 本発明によれば、自動運転が正常に作動していることを乗員が容易に把握することができ、乗員のシステム監視に対する負担感を軽減することができる。
図1は、本発明の一実施形態に係る運転制御装置を含む運転制御システムの構成を示すブロック図である。 図2は、手動運転における減速時の速度と加速度と加加速度の時間的な変化を示す図である。 図3は、本発明の一実施形態に係る運転制御装置の自動運転における減速時の速度と加速度と加加速度の時間的な変化を示す図である。 図4は、本発明の一実施形態に係る運転制御装置による運転操作学習処理の処理手順を示すフローチャートである。 図5は、ブレーキオンから0.1Gが発生するまでの加速度発生時間の学習結果の一例を示す図である。 図6は、アクセルオフから0.1Gが発生するまでの加速度発生時間の学習結果の一例を示す図である。 図7は、本発明の一実施形態に係る運転制御装置による自動運転制御処理の処理手順を示すフローチャートである。 図8は、本発明の一実施形態に係る自動運転制御処理における加減速パラメータの設定方法を説明するための図である。 図9は、本発明の一実施形態に係る自動運転制御処理における加減速パラメータの設定方法を説明するための図である。 図10は、本発明の一実施形態に係る自動運転制御処理における加減速パラメータの設定方法を説明するための図である。 図11は、本発明の一実施形態に係る自動運転制御処理における加減速パラメータの設定方法を説明するための図である。 図12は、手動運転の減速時における速度変化の一例を示す図である。 図13は、本発明の一実施形態に係る自動運転制御処理によって走行制御された自動運転の減速時における速度変化の一例を示す図である。 図14は、手動運転の加速時における速度変化の一例を示す図である。 図15は、本発明の一実施形態に係る自動運転制御処理によって走行制御された自動運転の加速時における速度変化の一例を示す図である。
 以下、本発明を適用した一実施形態について図面を参照して説明する。
 [運転制御システムの構成]
 図1は、本実施形態に係る運転制御装置を含む運転制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係る運転制御システム100は、運転制御装置1と、走行状態検出部3と、走行環境検出部5と、運転切替スイッチ7と、乗員監視部8と、制御状態呈示部9とを備えている。さらに、運転制御システム100は、車両に搭載されたアクチュエータ11に接続されている。
 運転制御装置1は、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の運転操作を学習し、この学習結果を自動運転の走行制御に適用する処理を実行するコントローラである。特に、運転制御装置1は、車両の自動運転時の加加速度が、学習結果として得られた手動運転時の加加速度と異なるように走行制御処理を実行する。すなわち、この走行制御処理では、車両の自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも大きくなるように走行制御してもよいし、小さくなるように走行制御してもよい。尚、加加速度は加速度の変化率であり、手動運転において学習される加加速度は車両の前後方向の加加速度でもよいし、車両の車幅方向の加加速度でもよい。
 また、運転制御装置1は、運転操作学習部21と、状況判定部23と、パラメータ設定部25と、自動運転制御実行部27とを備えている。本実施形態では、運転制御装置1を車両に搭載した場合について説明するが、車両に通信装置を設置して運転制御装置1を外部サーバに設置してもよい。
 走行状態検出部3は、車速、加速度、加加速度、加減速の操作、操舵角、先行車の有無、先行車との車間距離及び相対速度、現在位置、方向指示器の表示状態、ヘッドライトの点灯状態、ワイパーの作動状態等の車両の走行状態を示す走行データを検出する。例えば、走行状態検出部3は、CAN(Controller Area Network)のような車載ネットワークやナビゲーション装置、レーザレーダ、カメラ等である。尚、車速や加速度、加加速度といったパラメータは、車両の挙動から検出してもよく、乗員による操作量から求めるようにしてもよい。
 走行環境検出部5は、車両の現在位置、車両が走行する道路の制限速度、車両前方の信号機の表示状態、車両前方の交差点までの距離、歩行者や自転車との距離、車両前方の車両台数、料金所の有無等の車両周囲の環境を表す環境情報を検出する。この他に、踏切の警笛発動状態や前方車両とのTTC(衝突余裕時間:Time to collision)、道路の規制情報、渋滞情報等も検出する。例えば、走行環境検出部5は、車両に搭載されたカメラやレーザレーダ、ナビゲーション装置等である。尚、車両前方の信号機の表示状態は路車間通信を利用して検出してもよい。また、車両前方の車両台数は車車間通信やスマートフォンと連携したクラウドサービスを利用して検出してもよい。さらに、ナビゲーション装置や方向指示器の表示状態等から車両前方の交差点の予定進路を取得する。また、車両周囲の路面状態や天候状態を照度センサ、外気温センサ、ワイパースイッチ等からそれぞれ取得する。ただし、照度はヘッドライトのスイッチから取得してもよい。
 運転切替スイッチ7は、車両に搭載され、車両の乗員が操作することによって自動運転と手動運転の切り替えを行うスイッチである。例えば、運転切替スイッチ7は、車両のステアリングに設置されている。
 乗員監視部8は、車内に設置された車室内カメラ等であり、車室内カメラで撮像した画像から乗員の視線方向を検出して乗員の前方監視状態を検出する。また、生体信号を検出する装置を具備して、乗員の覚醒度や緊張度を検出できるようにしてもよい。
 制御状態呈示部9は、現在の制御状態が手動運転であるか自動運転であるかをメータ表示部やナビゲーション装置の表示画面、ヘッドアップディスプレイ等に表示する。また、自動運転の開始、終了を伝える報知音も出力し、運転操作の学習が終了したか否かも呈示する。
 アクチュエータ11は、運転制御装置1からの実行指令を受信して、車両のアクセルやブレーキ、ステアリング等の各部を駆動する。
 次に、運転制御装置1を構成する各部について説明する。運転操作学習部21は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データや車両周囲の走行環境に関する環境情報を取得し、運転者の手動運転中における運転操作を学習する。学習する運転操作は加減速操作と操舵操作であり、走行中に加速度や減速度、加加速度が発生する状況の運転操作を学習する。例えば、加速操作の開始(発進を含む)から終了までの加速度や減速度、加加速度を学習し、また減速操作の開始から終了(停止含む)までの加速度や減速度、加加速度を学習する。さらに、操舵操作の開始から終了までの車幅方向の加速度や減速度、加加速度を学習する。そして、運転操作学習部21は、手動運転における加減速操作時の速度や加速度、加加速度と走行環境とを関連付けて学習する。
 具体的に、運転操作学習部21は、手動運転における加減速操作開始時の速度と加加速度との間の関係を学習する。また、手動運転における加減速操作開始時の速度と、加減速操作の開始から所定の加速度が発生するまでの加速度発生時間との間の関係についても学習する。さらに、手動運転における加減速操作の開始から所定の加速度が発生するまでの加加速度を学習してもよい。
 状況判定部23は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データや車両周囲の走行環境に関する環境情報を取得し、車両が走行している走行状況と自動運転が利用されている利用状況とを判定する。判定される走行状況としては、交差点で右左折や停止する状況、駐車車両や歩行者等の物体を回避する状況、踏切を通過する状況、道路規制がある状況、合流や追越がある状況、道路が混雑または渋滞している状況、天候状態や視界、路面状態が悪い状況等がある。この他にも、状況判定部23は、車両の乗員の前方監視状態を判定したり、車両周囲の走行環境がスクールゾーンや生活道路等の予め設定された特定の環境であるか否かを判定したりする。また、判定される利用状況としては、手動運転から自動運転へ移行した後の所定期間であるか否か、車両が自動運転を開始した後の所定期間であるか否か、自動運転から手動運転へ移行する前の所定期間であるか否か、がある。
 パラメータ設定部25は、自動運転に移行したときに、運転操作学習部21によって学習された学習結果と、状況判定部23で判定された走行状況及び利用状況とに基づいて、自動運転を実行するためのパラメータを設定する。設定されるパラメータとしては、加加速度、加速度、減速度、加速度発生時間等である。特に、パラメータ設定部25は、車両の自動運転時の加加速度が、学習結果として得られた手動運転時の加加速度と異なるようにパラメータを設定する。すなわち、車両の自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも大きくなるようにパラメータを設定してもよいし、小さくなるようにパラメータを設定してもよい。
 例えば、図2、3を参照して、車両が時速50kmから減速する場合について説明する。図2は、手動運転時に時速50kmから減速する場合の速度と加速度と加加速度の時間的な変化を示す図である。図2では、時刻t1にアクセルをオフして時刻t2に加速度が0.1G低下している。このアクセルのオフから0.1G低下するまでの時間が加速度発生時間T1である。運転操作学習部21は、このような運転操作を学習して学習結果として記憶している。
 一方、パラメータ設定部25は、図3に示すように、自動運転時の加加速度が、学習結果として得られた手動運転時の加加速度と異なるように設定する。特に、パラメータ設定部25は、加減速を開始するときに、自動運転時の加加速度の絶対値を、学習結果として得られた手動運転時の加加速度の絶対値より大きくなるように設定する。図3では、時刻t3にアクセルをオフして時刻t4に加速度が0.1G低下しており、加速度発生時間はT2となっている。図2と図3を比較すると、自動運転時の加速度発生時間T2は、手動運転時の加速度発生時間T1よりも短くなっている。これは、パラメータ設定部25が、自動運転時の加加速度の絶対値を手動運転時の加加速度の絶対値よりも大きくなるように設定したためである。図2のT1の期間における加加速度と図3のT2の期間における加加速度を比較すると、図3に示す自動運転時の加加速度の絶対値は、図2に示す手動運転時の加加速度の絶対値よりも大きくなっている。
 このように自動運転時の加加速度を、学習結果として得られた手動運転時の加加速度と異なるように設定することによって、自動運転と手動運転の違いが明確になるので、乗員は自動運転が正常に作動していることを容易に把握することができる。これにより、乗員のシステム監視に対する負担感を大幅に軽減することができる。特に、車両の車速や加速度が変化する加減速時や右左折時には、乗員の自動運転に対する不安感は高まるものである。しかし、加減速を開始するときに(図2のT1や図3のT2)、自動運転時の加加速度を、学習結果として得られた手動運転時の加加速度と異なるように設定すれば、乗員は自動運転が正常に作動していることを容易に把握することができる。したがって、乗員は自動運転に対する安心感と信頼感を得ることができる。尚、図2、3では、自動運転時の加加速度の絶対値を、手動運転時の加加速度の絶対値より大きくする場合について説明したが、小さくなるように設定してもよい。
 自動運転制御実行部27は、自動運転区間になった場合や運転者が運転切替スイッチ7により自動運転を選択した場合に、自動運転制御を実行する。このとき、自動運転制御実行部27は、運転操作学習部21で学習した学習結果を自動運転の走行制御に適用し、パラメータ設定部25で設定された加速度や減速度、加加速度で自動運転制御を実行する。
 尚、運転制御装置1は、マイクロコンピュータ、マイクロプロセッサ、CPUを含む汎用の電子回路とメモリ等の周辺機器から構成されている。そして、特定のプログラムを実行することにより、上述した運転操作学習部21、状況判定部23、パラメータ設定部25、自動運転制御実行部27として動作する。このような運転制御装置1の各機能は、1または複数の処理回路によって実装することができる。処理回路は、例えば電気回路を含む処理装置等のプログラムされた処理装置を含み、また実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や従来型の回路部品のような装置も含んでいる。
 [運転操作学習処理の手順]
 次に、本実施形態に係る運転制御装置1による運転操作学習処理の手順を図4のフローチャートを参照して説明する。図4に示す運転操作学習処理は、車両のイグニッションがオンされると開始する。
 図4に示すように、まずステップS101において、運転操作学習部21は、運転切替スイッチ7の状態により車両が手動運転であるか否かを判定する。車両が手動運転である場合にはステップS103に進み、自動運転である場合には運転操作学習処理を終了して自動運転制御を実行する。
 ステップS103において、運転操作学習部21は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データと車両周囲の走行環境に関する環境情報を検出する。検出される走行データとしては、車速、操舵角、加速度、減速度、加加速度、先行車との車間距離、先行車との相対速度、現在位置、前方交差点の予定進路、ブレーキペダル及びアクセルペダルの操作量、ヘッドライトの点灯状態、ワイパーの作動状態等を検出する。また、環境情報としては、走行している道路の制限速度、料金所、一時停止規制の有無または車両前方の信号機の表示状態、車両から前方交差点までの距離、車両前方の車両台数、車両から歩行者や自転車までの距離、路面状態、車両周辺の天候状態等を検出する。この他に、踏切の警笛発動状態や前方車両とのTTC(衝突余裕時間:Time to collision)、道路の規制情報、渋滞情報等も検出する。さらに、運転操作学習部21は、乗員監視部8から乗員の前方監視状態や覚醒度、緊張度等を検出する。
 ステップS105において、運転操作学習部21は、車両が減速中または加速中であるか否かを判定する。判定方法としては、ステップS103で取得した車両の減速度または加速度が所定値以上である場合に、車両が減速中または加速中であると判定する。そして、減速中または加速中であると判定された場合にはステップS107に進み、減速中または加速中ではないと判定された場合にはステップS103に戻る。
 ステップS107において、運転操作学習部21は、ステップS103で検出された走行データと環境情報のうち、ステップS105の処理で減速中または加速中であると判定された走行データと環境情報を学習用データとして記憶する。尚、本実施形態では、予めデータを選別した後に記憶する場合について説明したが、手動運転中のデータを一度すべて記憶してから、上述したステップS105の処理を実施して選別してもよい。
 ステップS109において、運転操作学習部21は、所定量の学習用データを記憶できたか否かを判定し、所定量に満たない場合にはステップS103に戻り、所定量以上蓄積できた場合にはステップS111に進む。
 ステップS111において、運転操作学習部21は、運転者の手動運転中の運転操作を学習する。特に、運転者の加減速操作を学習する。例えば、手動運転における加減速操作開始時の速度と加加速度との間の関係を学習し、学習結果として一次関数を求める。同様に、手動運転における加減速操作開始時の速度と加速度発生時間との間の関係を学習して一次関数を求めてもよい。加速度発生時間は、加減速操作の開始から所定の加速度が発生するまでの時間である。例えば、減速操作の場合では、アクセルのオフまたはブレーキのオンを減速操作の開始時点として所定の減速度(例えば、0.1G)が発生するまでの時間を、加速度発生時間とする。
 また、加速度発生時間だけを学習してもよい。例えば、図5に示すように、ブレーキをオンしてから0.1Gの減速度が発生するまでの加速度発生時間を、運転者A~G毎に学習してそれぞれの平均値や標準偏差を求めてもよい。同様に、図6に示すように、アクセルをオフしてから0.1Gの減速度が発生するまでの加速度発生時間を、運転者A~G毎に学習してそれぞれの平均値や標準偏差を求めてもよい。尚、平均値や標準偏差だけではなく最大値を求めてもよい。また、加速度発生時間を学習する代わりに、手動運転における加減速操作の開始から所定の加速度が発生するまでの加加速度を学習してもよい。この場合には、交差点の手前等の加加速度が発生する区間を予め特定しておき、その区間の加加速度を学習する。
 さらに、手動運転における加減速操作時の加加速度と車両の走行環境とを関連付けて学習してもよい。走行環境のうち減速操作時の加加速度や加速度に影響を与える環境要因としては、例えば、車両が他車両や歩行者等の物体と接近する場合がある。この場合には、車両と物体との間の距離や相対速度、あるいはTTC(Time to collision)と関連付けて減速操作時の加加速度を学習する。これにより、先行車の割り込みや急減速、渋滞の出現、駐車車両の出現、交差車両や合流車両の進入、歩行者や自転車の横断等の状況と関連付けて、減速操作時の加加速度を学習することができる。
 また、信号機が切り替わる場合では、黄色から赤へ切り替わるときの停止線までの距離または時間(距離/速度)と関連付けて、減速操作時の加加速度を学習する。踏切で警笛が発動される場合では、警笛発動時の停止線までの距離または時間(距離/速度)と関連付けて、減速操作時の加加速度を学習する。さらに、道路規制がある場合では、道路規制地点までの距離または時間(距離/速度)と関連付けて、減速操作時の加加速度を学習する。これにより、道路工事等による車線規制や料金所への接近、制限速度の低下等の状況と関連付けて、減速操作時の加加速度を学習することができる。また、視界や天候状態、路面状態と関連付けて、減速操作時の加加速度を学習してもよい。これにより、雨や雪、路面の凍結等の状況と関連付けて、減速操作時の加加速度を学習することができる。
 次に、加速操作時の加加速度や加速度に影響を与える環境要因としては、例えば、合流や追い越しをする場合がある。この場合では、合流または追越区間の長さや合流先の速度と関連付けて、加速操作時の加加速度を学習する。また、交差点や狭路を走行する場合では、右左折時か否か、一時停止交差点からの発進時か否か、狭路走行時か否かと関連付けて、加速操作時の加加速度を学習する。さらに、混雑や渋滞している場合では、自車線または隣接車線が混雑または渋滞しているか否かと関連付けて、加速操作時の加加速度を学習する。また、視界や天候状態、路面状態と関連付けて、加速操作時の加加速度を学習してもよい。これにより、雨や雪、路面の凍結等の状況と関連付けて、加速操作時の加加速度を学習することができる。さらに、スクールゾーンや生活道路等の特定の環境を走行しているか否かと関連付けて、加速操作時の加加速度を学習してもよい。
 ステップS113において、運転操作学習部21は、ステップS111で算出した学習結果を記憶して本実施形態に係る運転操作学習処理を終了する。
 [自動運転制御処理の手順]
 次に、本実施形態に係る運転制御装置1による自動運転制御処理の手順を図7のフローチャートを参照して説明する。
 図7に示すように、ステップS201において、自動運転制御実行部27は、図4に示す運転操作学習処理によって運転操作の学習が完了しているか否かを判定する。学習が完了している場合にはステップS203に進み、学習が完了していない場合にはステップS211に進む。
 まず、運転操作の学習が完了している場合について説明する。ステップS203において、状況判定部23は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データと車両周囲の走行環境に関する環境情報を取得し、車両が走行している走行状況と、自動運転が利用されている利用状況とを検出する。検出される走行状況としては、交差点で右左折や停止する状況、駐車車両や歩行者等の物体を回避する状況、踏切を通過する状況、道路規制がある状況、合流や追越がある状況、道路が混雑または渋滞している状況、天候状態や視界、路面状態が悪い状況等がある。この他にも、状況判定部23は、車両の乗員の前方監視状態を検出したり、車両周囲の走行環境がスクールゾーンや生活道路等の予め設定された特定の環境であるか否かを検出したりする。また、検出される利用状況としては、手動運転から自動運転へ移行した後の所定期間であるか否か、車両が自動運転を開始した後の所定期間であるか否か、自動運転から手動運転へ移行する前の所定期間であるか否か、がある。
 ステップS205において、パラメータ設定部25は、運転操作学習処理で学習した学習結果と、ステップS203で検出された走行状況と利用状況とに基づいて、自動運転を実行するための加減速パラメータを設定する。設定されるパラメータとしては、加加速度、加速度、減速度、加速度発生時間等である。特に、パラメータ設定部25は、車両の自動運転時の加加速度が、学習結果として得られた手動運転時の加加速度と異なるように設定する。すなわち、車両の自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも大きくなるように設定してもよいし、小さくなるように設定してもよい。
 例えば、図8では、手動運転における加減速操作開始時の速度と加加速度との間の関係を学習し、学習結果を点線Xで示している。この学習結果Xに所定値を加算することによって、自動運転における加減速操作開始時の速度と加加速度との間の関係を求め、実線Yで示している。これにより、パラメータ設定部25は、自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも大きくなるように設定している。
 また、図9では、点線で示す学習結果Xから所定値を減算することによって、自動運転における加減速操作開始時の速度と加加速度との間の関係を求め、実線Yで示している。これにより、自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも小さくなるように設定している。手動運転のときの加加速度が大きい場合、すなわち急加速や急減速の多い運転者の場合では、自動運転時の加加速度を手動運転時の加加速度より小さくしたほうが自動運転と手動運転の違いを明確にできる場合がある。したがって、自動運転時の加加速度を手動運転時の加加速度よりも大きくするだけではなく、小さくしてもよい。ただし、急加速や急減速の多い運転者に限定する必要はなく、通常の運転者の場合でも自動運転時の加加速度を手動運転時の加加速度より小さくしてもよい。
 さらに、加加速度ではなく加速度発生時間を設定してもよい。図10では、手動運転における加減速操作開始時の速度と加速度発生時間との間の関係を学習し、学習結果を点線Xで示している。この学習結果Xから所定値を減算することによって、自動運転における加減速操作開始時の速度と加速度発生時間との間の関係を求め、実線Yで示している。これにより、自動運転時の加速度発生時間が、学習結果として得られた手動運転時の加速度発生時間よりも小さくなるように設定している。加速度発生時間は加減速操作の開始から所定の加速度に到達するまでの時間なので、加速度発生時間を小さくすると加加速度は大きくなる。したがって、パラメータ設定部25は、自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも大きくなるように設定している。
 また、図11では、点線で示す学習結果Xに所定値を加算することによって、自動運転における加減速操作開始時の速度と加速度発生時間との間の関係を求め、実線Yで示している。これにより、自動運転時の加速度発生時間が、学習結果として得られた手動運転時の加速度発生時間よりも大きくなるように設定している。加速度発生時間を大きくすると加加速度は小さくなる。したがって、パラメータ設定部25は、自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値よりも小さくなるように設定している。
 さらに、パラメータ設定部25は、車両の自動運転が利用されている利用状況に応じて、自動運転時の加加速度を調整してもよい。例えば、車両が手動運転から自動運転へ移行するときに、移行後の所定期間については、自動運転時の加加速度と手動運転時の加加速度との差が所定値以上大きくなるようにパラメータを設定して走行制御する。所定値については、自動運転時の加加速度と手動運転時の加加速度との違いを、乗員が明確に認識できるような値を予め設定しておけばよい。
 また、パラメータ設定部25は、車両が自動運転を開始するときに、開始後の所定期間については自動運転時の加加速度と手動運転時の加加速度との差が所定値以上大きくなるようにパラメータを設定して走行制御する。ここで、自動運転の開始とは、車両を購入した直後のような自動運転が未利用の状態から走行を開始するような場合を意味する。
 さらに、パラメータ設定部25は、車両が自動運転から手動運転へ移行するときに、移行前の所定期間については、自動運転時の加加速度と手動運転時の加加速度との差が所定値以上大きくなるようにパラメータを設定して走行制御する。
 また、パラメータ設定部25は、車両の乗員の前方監視状態に応じて、自動運転時の加加速度を調整してもよい。例えば、乗員の覚醒度が低下していると判断した場合には、その低下度合いに応じて加加速度を大きくして乗員の覚醒度を高めるようにする。また、乗員が前方を見ていないことを検出したときには、加加速度を大きくして乗員の前方監視を促進する。
 さらに、パラメータ設定部25は、車両の手動運転における加減速操作時の加加速度と車両の走行環境とを関連付けて学習し、この学習結果に基づいてパラメータを設定して走行制御する。例えば、車両が他車両や歩行者等の物体と接近している場合には、その距離が小さくなるにしたがって加加速度や減速度を大きくする。また、物体との相対速度が大きくなるにしたがって、あるいはTTC(Time to collision)が小さくなるにしたがって加加速度や減速度を大きくしてもよい。これにより、先行車の割り込みや急減速、渋滞の出現、駐車車両の出現、交差車両や合流車両の進入、歩行者または自転車の横断等の場合に、適切なパラメータを設定することができる。
 また、パラメータ設定部25は、信号機が切り替わる場合には、黄色から赤へ切り替わるときの停止線までの距離または時間(距離/速度)が短くなるにしたがって加加速度や減速度を大きくする。さらに、踏切で警笛が発動している場合には、警笛発動時の停止線までの距離または時間(距離/速度)が短くなるにしたがって加加速度や減速度を大きくする。また、道路規制がある場合には、道路規制地点や料金所までの距離または時間(距離/速度)が短くなるにしたがって加加速度や減速度を大きくする。
 さらに、パラメータ設定部25は、車両が合流や追越をする場合には、合流または追越区間が短くなるにしたがって加加速度や加速度を大きくする。また、合流先の速度が大きくなるにしたがって加加速度や加速度を大きくしてもよい。さらに、交差点や狭路を走行している場合には、右左折時や一時停止交差点からの発進時、狭路走行時には学習結果よりも加加速度や加速度を小さくする。また、車両前方の道路が混雑または渋滞している場合には、学習結果よりも加加速度や加速度を小さくする。
 さらに、パラメータ設定部25は、天候状態や視界、路面状態が悪い状況(雨、雪、路面凍結)では、学習結果よりも加加速度や加速度を小さくする。また、スクールゾーンや生活道路等の予め設定された特定の環境を車両が走行している場合には、加加速度や加速度を学習結果よりも小さくする。
 ステップS207において、自動運転制御実行部27は、ステップS205で設定された加減速パラメータを用いて自動運転制御を実行する。例えば、手動運転の減速時の速度変化が、図12に示すような変化であるとする。図12では、減速を開始する時点の加速度発生時間がTs、減速を終了する時点の加速度発生時間がTfとなっている。ここで、ステップS205で設定された加減速パラメータを用いて自動運転を行った場合、すなわち自動運転時の加加速度の絶対値が手動運転時の加加速度の絶対値よりも大きくなるように設定すると、図13に示すような速度変化となる。図13では、自動運転時の加加速度の絶対値が手動運転時の加加速度の絶対値よりも大きくなるように設定されているので、加速度発生時間Ts’Tf‘は、図12に示す加速度発生時間Ts、Tfよりも短くなっている。
 また、加速時の速度変化について、図14、15を参照して説明する。図14では、手動運転において加速を開始する時点の加速度発生時間がTs、加速を終了する時点の加速度発生時間がTfとなっている。ここで、ステップS205で設定された加減速パラメータを用いて自動運転を行った場合、すなわち自動運転時の加加速度の絶対値が手動運転時の加加速度の絶対値よりも大きくなるように設定すると、図15に示すような速度変化となる。図15では、自動運転時の加加速度の絶対値が手動運転時の加加速度の絶対値よりも大きくなるように設定されているので、加速度発生時間Ts’Tf‘は、図14に示す加速度発生時間Ts、Tfよりも短くなっている。
 自動運転制御実行部27は、このような自動運転が実行されるように制御実行指令をアクチュエータ11に送信して、自動運転に必要なアクセルやブレーキ、ステアリング等の操作を実行する。
 ステップS209において、自動運転制御実行部27は、自動運転が終了したか否かを判定し、終了していない場合にはステップS203に戻って自動運転を継続する。一方、自動運転が手動運転に切り替わって自動運転が終了している場合には、本実施形態に係る自動運転制御処理を終了する。
 次に、運転操作の学習が完了していない場合について説明する。ステップS211において、状況判定部23は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データと車両周囲の走行環境に関する環境情報を取得し、車両が走行している走行状況と、自動運転が利用されている利用状況とを検出する。検出される走行状況としては、交差点で右左折や停止する状況、駐車車両や歩行者等の物体を回避する状況、踏切を通過する状況、道路規制がある状況、合流や追越がある状況、道路が混雑または渋滞している状況、天候状態や視界、路面状態が悪い状況等がある。この他にも、状況判定部23は、車両の乗員の前方監視状態を検出したり、車両周囲の走行環境がスクールゾーンや生活道路等の予め設定された特定の環境であるか否かを検出したりする。また、検出される利用状況としては、手動運転から自動運転へ移行した後の所定期間であるか否か、車両が自動運転を開始した後の所定期間であるか否か、自動運転から手動運転へ移行する前の所定期間であるか否か、がある。
 ステップS213において、パラメータ設定部25は、加減速パラメータとして予め設定された所定値を設定する。この所定値は、一般的な加減速の値や平均値を使用すればよい。
 ステップS215において、自動運転制御実行部27は、設定された加減速パラメータを用いて自動運転制御を実行する。具体的に、自動運転制御実行部27は、制御実行指令をアクチュエータ11に送信して、自動運転に必要なアクセルやブレーキ、ステアリング等の操作を実行する。
 ステップS217において、自動運転制御実行部27は、自動運転が終了したか否かを判定し、終了していない場合にはステップS211に戻って自動運転を継続する。一方、自動運転が手動運転に切り替わって自動運転が終了している場合には、本実施形態に係る自動運転制御処理を終了する。
 [実施形態の効果]
 以上詳細に説明したように、本実施形態に係る走行制御方法及び運転制御装置では、車両の自動運転時の加加速度が、学習結果として得られた手動運転時の加加速度と異なるように走行制御する。これにより、自動運転が正常に作動していることを乗員が容易に把握することができ、乗員のシステム監視に対する負担感を軽減することができる。
 また、本実施形態に係る走行制御方法では、車両の自動運転時の加加速度の絶対値が、学習結果として得られた手動運転時の加加速度の絶対値より大きくなるように走行制御する。これにより、車両の加減速や停止等の挙動を乗員が容易に把握することができる。単に加加速度を大きくするだけではなく、学習結果として得られた乗員の加加速度を基準にすることで、個人の運転特性を反映させて必要以上に大きい加加速度とならないように設定することができる。また、学習結果として得られた乗員の加加速度を基準にすることで、求められる加速度を正確に見積もることができる為、乗員に対して、加加速度が手動運転と異なることを伝えることができるようになる。また、乗員は車両の挙動から自動運転システムが正常に作動していることを容易に把握できるので、自動運転に対する安心感と信頼感を得ることができる。尚、学習結果として得られた手動運転時の加加速度と異なるように走行制御するために、学習結果を反映しないことにより、自動運転時の加加速度を大きくするようにしてもよい。
 さらに、本実施形態に係る走行制御方法では、車両の自動運転が利用されている状況に応じて、自動運転時の加加速度を調整する。これにより、自動運転が利用されている状況に応じて加加速度のパターン(大きさや時間、回数等)を調整できるので、必要なときには加加速度を大きくして乗員に自動運転システムの作動状態を伝達し、安心感と信頼感を乗員に与えることができる。また、不要なときには加加速度を小さくして、快適な乗り心地を提供することができる。
 また、本実施形態に係る走行制御方法では、車両が手動運転から自動運転へ移行するときに、移行後の所定期間は自動運転時の加加速度と手動運転時の加加速度との差が所定値以上大きくなるように走行制御する。これにより、自動運転へ移行した直後において、自動運転システムが正常に作動していることを乗員に積極的に伝えることができ、乗員は安心感を得ることができる。
 さらに、本実施形態に係る走行制御方法では、車両が自動運転を開始するときに、開始後の所定期間は自動運転時の加加速度と手動運転時の加加速度との差が所定値以上大きくなるように走行制御する。これにより、車両の自動運転を利用し始めた時期において、自動運転システムが正常に作動していることを乗員に積極的に伝えることができ、乗員は安心感を得ることができる。
 また、本実施形態に係る走行制御方法では、車両が自動運転から手動運転へ移行するときに、移行前の所定期間は自動運転時の加加速度と手動運転時の加加速度との差が所定値以上大きくなるように走行制御する。これにより、自動運転から手動運転に復帰する直前において、加加速度の変化によって手動運転への復帰が近づいていることを乗員に理解させることができるので、乗員の前方監視を促進させて手動運転への準備を行わせることができる。
 さらに、本実施形態に係る走行制御方法では、車両の乗員の前方監視状態を検出し、検出した前方監視状態に応じて、自動運転時の加加速度を調整する。これにより、乗員が前方監視を怠っている場合には加加速度を大きくして乗員の前方監視を促すことができる。
 また、本実施形態に係る走行制御方法では、車両の手動運転における加減速操作開始時の速度と加加速度との間の関係を学習し、この学習結果に基づいて自動運転の走行制御を行う。これにより、学習結果を自動運転の加減速操作に反映できるので、各運転者の運転特性を反映させた走行制御が可能となる。
 さらに、本実施形態に係る走行制御方法では、車両の手動運転における加減速操作開始時の速度と、加減速操作の開始から所定の加速度が発生するまでの加速度発生時間との間の関係を学習し、この学習結果に基づいて自動運転の走行制御を行う。これにより、学習結果を自動運転の加減速操作に反映できるので、各運転者の運転特性を反映させた走行制御が可能となる。
 また、本実施形態に係る走行制御方法では、車両の手動運転における加減速操作の開始から所定の加速度が発生するまでの加加速度を学習し、この学習結果に基づいて自動運転の走行制御を行う。これにより、学習結果を自動運転の加減速操作に反映できるので、各運転者の運転特性を反映させた走行制御が可能となる。
 さらに、本実施形態に係る走行制御方法では、車両の手動運転における加減速操作時の加加速度と車両の走行環境とを関連付けて学習し、この学習結果に基づいて自動運転の走行制御を行う。これにより、さまざまな走行環境に応じて各運転者の運転特性を調整して走行制御を行うことができる。
 また、本実施形態に係る走行制御方法では、車両周囲の走行環境が予め設定された特定の環境である場合には、自動運転時の加加速度を調整する。これにより、リスクの高い環境や運転者が自動運転へ介入することが必要な状況であることを、乗員に理解させることができるので、乗員が積極的に周辺環境を監視するように促すことができる。
 さらに、本実施形態に係る走行制御方法では、車両の手動運転において学習される加加速度が車両の前後方向の加加速度である。これにより、交差点で停止する場合や他車両等の物体に接近した場合の運転者の運転特性を学習することができる。
 また、本実施形態に係る走行制御方法では、車両の手動運転において学習される加加速度が車両の車幅方向の加加速度である。これにより、交差点で右左折する場合等の運転者の運転特性を学習することができる。
 なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
 1 運転制御装置
 3 走行状態検出部
 5 走行環境検出部
 7 運転切替スイッチ
 8 乗員監視部
 9 制御状態呈示部
 11 アクチュエータ
 21 運転操作学習部
 23 状況判定部
 25 パラメータ設定部
 27 自動運転制御実行部
 100 運転制御システム

Claims (15)

  1.  運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の運転操作を学習し、この学習結果を自動運転の走行制御に適用する運転制御装置の走行制御方法であって、
     前記車両の自動運転時の加加速度が、前記学習結果として得られた手動運転時の加加速度と異なるように走行制御することを特徴とする走行制御方法。
  2.  前記車両の自動運転時の加加速度の絶対値が、前記学習結果として得られた手動運転時の加加速度の絶対値より大きくなるように走行制御することを特徴とする請求項1に記載の走行制御方法。
  3.  前記車両の自動運転が利用されている状況に応じて、前記自動運転時の加加速度を調整することを特徴とする請求項1または2に記載の走行制御方法。
  4.  前記車両が手動運転から自動運転へ移行するときに、移行後の所定期間は前記自動運転時の加加速度と前記手動運転時の加加速度との差が所定値以上大きくなるように走行制御することを特徴とする請求項3に記載の走行制御方法。
  5.  前記車両が自動運転を開始するときに、開始後の所定期間は前記自動運転時の加加速度と前記手動運転時の加加速度との差が所定値以上大きくなるように走行制御することを特徴とする請求項3または4に記載の走行制御方法。
  6.  前記車両が自動運転から手動運転へ移行するときに、移行前の所定期間は前記自動運転時の加加速度と前記手動運転時の加加速度との差が所定値以上大きくなるように走行制御することを特徴とする請求項3~5のいずれか1項に記載の走行制御方法。
  7.  前記車両の乗員の前方監視状態を検出し、検出した前方監視状態に応じて、前記自動運転時の加加速度を調整することを特徴とする請求項1~6のいずれか1項に記載の走行制御方法。
  8.  前記車両の手動運転における加減速操作開始時の速度と加加速度との間の関係を学習し、この学習結果に基づいて自動運転の走行制御を行うことを特徴とする請求項1~7のいずれか1項に記載の走行制御方法。
  9.  前記車両の手動運転における加減速操作開始時の速度と、前記加減速操作の開始から所定の加速度が発生するまでの加速度発生時間との間の関係を学習し、この学習結果に基づいて自動運転の走行制御を行うことを特徴とする請求項1~7のいずれか1項に記載の走行制御方法。
  10.  前記車両の手動運転における加減速操作の開始から所定の加速度が発生するまでの加加速度を学習し、この学習結果に基づいて自動運転の走行制御を行うことを特徴とする請求項1~7のいずれか1項に記載の走行制御方法。
  11.  前記車両の手動運転における加減速操作時の加加速度と前記車両の走行環境とを関連付けて学習し、この学習結果に基づいて自動運転の走行制御を行うことを特徴とする請求項1~10のいずれか1項に記載の走行制御方法。
  12.  前記車両周囲の走行環境が予め設定された特定の環境である場合には、前記自動運転時の加加速度を調整することを特徴とする請求項1~11のいずれか1項に記載の走行制御方法。
  13.  前記車両の手動運転において学習される加加速度は、前記車両の前後方向の加加速度であることを特徴とする請求項1~12のいずれか1項に記載の走行制御方法。
  14.  前記車両の手動運転において学習される加加速度は、前記車両の車幅方向の加加速度であることを特徴とする請求項1~13のいずれか1項に記載の走行制御方法。
  15.  運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の運転操作を学習し、この学習結果を自動運転の走行制御に適用する運転制御装置であって、
     前記車両の自動運転時の加加速度が、前記学習結果として得られた手動運転時の加加速度と異なるように走行制御することを特徴とする運転制御装置。
PCT/JP2017/015673 2017-04-19 2017-04-19 走行制御方法及び運転制御装置 WO2018193536A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019513128A JP6756402B2 (ja) 2017-04-19 2017-04-19 走行制御方法及び運転制御装置
PCT/JP2017/015673 WO2018193536A1 (ja) 2017-04-19 2017-04-19 走行制御方法及び運転制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015673 WO2018193536A1 (ja) 2017-04-19 2017-04-19 走行制御方法及び運転制御装置

Publications (1)

Publication Number Publication Date
WO2018193536A1 true WO2018193536A1 (ja) 2018-10-25

Family

ID=63855671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015673 WO2018193536A1 (ja) 2017-04-19 2017-04-19 走行制御方法及び運転制御装置

Country Status (2)

Country Link
JP (1) JP6756402B2 (ja)
WO (1) WO2018193536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084502A (ja) * 2019-11-27 2021-06-03 株式会社Subaru 制御装置
JP2021105963A (ja) * 2019-12-27 2021-07-26 アマノ株式会社 自律走行作業装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249003A (ja) * 1993-02-26 1994-09-06 Toyota Motor Corp 車両の駆動力制御装置
JPH11227492A (ja) * 1998-02-13 1999-08-24 Fujitsu Ten Ltd 車両走行速度制御装置
JP2008120271A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 自動運転車両
JP2016132351A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転装置
WO2017057059A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 運転制御装置、および運転制御方法、並びにプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997031B2 (ja) * 2007-09-06 2012-08-08 トヨタ自動車株式会社 車両走行制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249003A (ja) * 1993-02-26 1994-09-06 Toyota Motor Corp 車両の駆動力制御装置
JPH11227492A (ja) * 1998-02-13 1999-08-24 Fujitsu Ten Ltd 車両走行速度制御装置
JP2008120271A (ja) * 2006-11-13 2008-05-29 Toyota Motor Corp 自動運転車両
JP2016132351A (ja) * 2015-01-19 2016-07-25 トヨタ自動車株式会社 自動運転装置
WO2017057059A1 (ja) * 2015-09-30 2017-04-06 ソニー株式会社 運転制御装置、および運転制御方法、並びにプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021084502A (ja) * 2019-11-27 2021-06-03 株式会社Subaru 制御装置
JP7414490B2 (ja) 2019-11-27 2024-01-16 株式会社Subaru 制御装置
JP2021105963A (ja) * 2019-12-27 2021-07-26 アマノ株式会社 自律走行作業装置
JP7462416B2 (ja) 2019-12-27 2024-04-05 アマノ株式会社 自律走行作業装置

Also Published As

Publication number Publication date
JPWO2018193536A1 (ja) 2020-04-16
JP6756402B2 (ja) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6645587B2 (ja) 運転支援方法及び運転支援装置
KR102215704B1 (ko) 표시 제어 방법 및 표시 제어 장치
EP3838700A1 (en) Vehicle travel control method and travel control device
US20140058579A1 (en) Driving assist device and driving assist method
JP5093057B2 (ja) 交差点走行支援システム、走行支援システム、および車載装置
WO2017203691A1 (ja) 運転制御方法及び運転制御装置
JP2017178267A (ja) 運転支援方法およびそれを利用した運転支援装置、自動運転制御装置、車両、プログラム
US10807609B2 (en) Vehicle control device
JP2009536132A (ja) 複雑な交通状況における車両の速度制御方法
JP4702070B2 (ja) 運転者心理判定装置
US20220135061A1 (en) Method for Operating a Driver Information System in an Ego-Vehicle and Driver Information System
JP2019077427A (ja) 車両制御装置、インタフェース装置、およびコンピュータ
CN112601690A (zh) 车辆的行驶控制方法及行驶控制装置
US20220144296A1 (en) Method for Operating a Driver Information System in an Ego-Vehicle and Driver Information System
JPWO2019021429A1 (ja) 運転支援方法及び運転支援装置
JPWO2019186692A1 (ja) 自動運転車両の制御方法および制御装置
CN111615478B (zh) 自动驾驶车辆的控制方法以及控制装置
CN110383361B (zh) 用于在光信号设备处提醒驾驶员起动的方法和装置
CN112874513A (zh) 驾驶支援装置
CN110371021B (zh) 行人指示线的投影方法、系统及车辆
WO2018193536A1 (ja) 走行制御方法及び運転制御装置
US20190120634A1 (en) Vehicle control device
WO2018138767A1 (ja) 走行特性学習方法及び運転制御装置
CN110371110B (zh) 车辆的控制方法、系统及车辆
US20230001946A1 (en) Driving assistance apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17906323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019513128

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17906323

Country of ref document: EP

Kind code of ref document: A1