WO2018192556A1 - Composition d'électrolyte polymère et batterie secondaire polymère - Google Patents
Composition d'électrolyte polymère et batterie secondaire polymère Download PDFInfo
- Publication number
- WO2018192556A1 WO2018192556A1 PCT/CN2018/083810 CN2018083810W WO2018192556A1 WO 2018192556 A1 WO2018192556 A1 WO 2018192556A1 CN 2018083810 W CN2018083810 W CN 2018083810W WO 2018192556 A1 WO2018192556 A1 WO 2018192556A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- positive electrode
- polymer electrolyte
- mass
- negative electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0045—Room temperature molten salts comprising at least one organic ion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to polymer electrolyte compositions and polymer secondary batteries.
- Lithium secondary batteries are energy devices having a high energy density and are spread as power sources for mobile electronic devices and electric vehicles.
- a wound electrode body is accommodated inside a cylindrical battery can.
- the wound electrode body is configured such that a microporous separator is sandwiched between a positive electrode and a negative electrode and these are wound around in a swirl, and the separator is immersed in a flammable liquid electrolyte.
- the temperature of the battery abruptly rises in an emergency, there is a possibility that the liquid electrolyte vaporizes and the inner pressure rises to thereby lead to a burst. If the temperature of the battery abruptly rises, there is also a possibility that the liquid electrolyte fires.
- lithium secondary battery ignites or fires in design of lithium secondary batteries.
- the safety it is required that the safety be further improved with the aim of achieving a higher energy density and enlargement.
- PEO polyethylene oxide
- non-aqueous solvents In order to improve the ionic conductivity, investigations are actively conducted on non-aqueous solvents to be combined with polymer electrolytes.
- organic solvents such as dialkyl carbonate are widely used (see, e.g., Patent Literature 2) .
- Patent Literature 1 JP 2006-294326 A
- Patent Literature 2 JP 2007-141467 A
- Non Patent Literature 1 P. Hovington et. al., Nano Lett. 2015, 15, 2671-2678
- the polymer electrolyte combined with an organic solvent described in Patent Literature 2 shows a high ionic conductivity but there is a safety concern. Moreover, since an organic solvent is easily vaporize, when the polymer electrolyte is formed into a sheet form, its handling is hard, and removal of moisture by drying, which is essential for improving the characteristics of batteries, is difficult. Furthermore, depending on the type of polymer electrolyte and organic solvent, the polymer electrolyte and the organic solvent become separate, and there is a concern that the ionic conductivity and mechanical strength of the polymer electrolyte sheet are markedly reduced.
- the present invention has been made in consideration of the situation described above, and it is a major object to provide a polymer electrolyte composition that makes it possible to produce a sheet that has an excellent ionic conductivity at room temperature (e.g., 25°C) even without use of an organic solvent and a high self-supportability.
- room temperature e.g. 25°C
- a first aspect of the present invention is a polymer electrolyte composition
- a polymer having a structural unit represented by the following formula (1) at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, magnesium salts, and calcium salts, and N-ethyl-N-methylpyrrolidinium bis (fluorosulfonyl) imide (hereinafter, referred to as [Py12] [FSI] in some cases) :
- the polymer electrolyte composition according to the first aspect of the present invention it is possible to produce a sheet that has an excellent ionic conductivity at room temperature even without use of an organic solvent and a high self-supportability.
- [Py12] [FSI] does not substantially vaporize in a drying process (e.g., drying at 60°C under reduced pressure of 1.0 ⁇ 10 4 Pa or less (0.1 atmospheres or less) for 10 hours or more) , and thus, the polymer electrolyte composition may become a highly thermal-stable material.
- the content of [Py12] [FSI] may be 10 to 70%by mass based on the total amount of the composition.
- the anion of the electrolyte salt may be at least one selected from the group consisting of PF 6 - , BF 4 - , N (FSO 2 ) 2 - , N (CF 3 SO 2 ) 2 - , B (C 2 O 4 ) 2 - , and ClO 4 - .
- the electrolyte salt may be lithium salt.
- the polymer electrolyte composition may be formed into a sheet form. Sheets formed by employing the polymer electrolyte composition may become sheets that can retain their shape even without a substrate or the like. It should be noted herein that the polymer electrolyte composition formed into a sheet form may be referred to as "a polymer electrolyte sheet" .
- the present invention may further relate to application of the aforementioned composition as a polymer electrolyte and to application of the aforementioned composition for producing a polymer electrolyte.
- a second aspect of the present invention is a polymer secondary battery that comprises a positive electrode, a negative electrode, and an electrolyte layer comprising the aforementioned polymer electrolyte composition placed between the positive electrode and the negative electrode.
- a polymer electrolyte composition that makes it possible to produce a sheet that has an excellent ionic conductivity at room temperature even without use of an organic solvent and a high self-supportability.
- a polymer secondary battery employing such a polymer electrolyte composition.
- Figure 1 is a perspective view showing a polymer secondary battery according to First Embodiment
- Figure 2 is an exploded perspective view showing one embodiment of an electrode group in the polymer secondary battery shown in Figure 1;
- Figure 3 is a schematic cross sectional view showing one embodiment of the electrode group in the polymer secondary battery shown in Figure 1;
- Figure 4A is a schematic cross sectional view showing a polymer electrolyte sheet according to one embodiment
- Figure 4B is a schematic cross sectional view showing a polymer electrolyte sheet according to another embodiment
- Figure 5 is a schematic cross sectional view showing one embodiment of an electrode group in the polymer secondary battery according to Second Embodiment
- Figure 6 is a current-potential curve showing the result of linear sweep voltammetry (LSV) of a polymer electrolyte sheet according to Example 2;
- Figure 7 is a chart showing the relationship between the discharge capacity and coulombic efficiency versus the cycle number of the polymer secondary battery produced using a polymer electrolyte sheet according to Example 2.
- Figure 8 is a chart showing the discharge capacities for each output current of the polymer secondary battery produced using a polymer electrolyte sheet according to Example 2.
- FIG 1 is a perspective view showing a polymer secondary battery according to First Embodiment.
- a polymer secondary battery 1 comprises an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-like battery outer packaging 3 to accommodate the electrode group 2.
- a positive electrode collector tab 4 on the positive electrode and a negative electrode collector tab 5 on the negative electrode are provided respectively.
- the positive electrode collector tab 4 and the negative electrode collector tab 5 protrude from the inside of the battery outer packaging 3 to the outside such that the positive electrode and the negative electrode can each electrically connect to the outside of the polymer secondary battery 1.
- the battery outer packaging 3 may be formed with a laminate film, for example.
- the laminate film may be a layered film in which, for example, a resin film such as a polyethylene terephthalate (PET) film, a foil of metal such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are layered in this order.
- PET polyethylene terephthalate
- a sealant layer such as polypropylene
- FIG 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the polymer secondary battery 1 shown in Figure 1.
- Figure 3 is a schematic cross sectional view showing one embodiment of the electrode group 2 in the polymer secondary battery 1 shown in Figure 1.
- an electrode group 2A according to the present embodiment comprises a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
- the positive electrode 6 comprises a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
- the positive electrode collector tab 4 is provided on the positive electrode current collector 9.
- the negative electrode 8 comprises a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
- the negative electrode collector tab 5 is provided.
- the positive electrode current collector 9 may be formed with aluminum, stainless steel, titanium or the like.
- the positive electrode current collector 9 may be specifically, for example, an aluminum perforated foil having pores of which pore diameter is 0.1 to 10 mm, an expanded metal, a foamed metal sheet or the like.
- the positive electrode current collector 9 may be formed with any material other than those described above as long as the material is not subject to change such as dissolution and oxidation during use of the battery, and additionally, its shape and production method are not limited.
- the thickness of the positive electrode current collector 9 may be 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
- the thickness of the positive electrode current collector 9 may be 100 ⁇ m or less, 50 ⁇ m or less, or 20 ⁇ m or less.
- the positive electrode mixture layer 10 in one embodiment, contains a positive electrode active material, a conductive agent, and a binder.
- the positive electrode active material may be ungranulated primary particles or granulated secondary particles.
- the particle size of the positive electrode active material is adjusted to be equal to or smaller than the thickness of the positive electrode mixture layer 10.
- the coarse particles are removed by sieve classification, wind flow classification, or the like in advance to select positive electrode active material having a particle size equal to or smaller than the thickness of the thickness of the positive electrode mixture layer 10.
- the average particle size of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more and preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, still more preferably 20 ⁇ m or less from the viewpoint of suppressing reduction in filling of the positive electrode active material due to decrease in the particle size as well as of enhancing the electrolyte retention capability.
- the average particle size of the positive electrode active material is the particle size (D 50 ) when the ratio based on the total volume of the positive electrode active material (volume fraction) is 50%.
- the average particle size of the positive electrode active material (D 50 ) is obtained by measuring a suspension, prepared by suspending the positive electrode active material in water, by the laser scattering method using a laser scattering type particle size measuring apparatus (e.g., Microtrac) .
- the content of the positive electrode active material may be 80%by mass or more, 85%by mass or more, or 90%by mass or more based on the total amount of the positive electrode active material, the conductive agent, and the binder.
- the content of the positive electrode active material may be, for example, 99%by mass or less based on the total amount of the positive electrode active material, the conductive agent, and the binder.
- the conductive agent may be carbon black, graphite, carbon fiber, carbon nanotubes, acetylene black, or the like.
- the content of the conductive agent may be 1%by mass or more, 3%by mass or more, or 5%by mass or more based on the total amount of the positive electrode active material, the conductive agent, and the binder.
- the content of the conductive agent is preferably 15%by mass or less, more preferably 12%by mass or less, still more preferably 9%by mass or less based on the total amount of the positive electrode active material, the conductive agent, and the binder. from the viewpoint of suppressing increase in the volume of the positive electrode 6 and reduction in the energy density of the polymer secondary battery 1 associated with the increase.
- the binder is not particularly limited as long as the binder dose not decomposed on the surface of the positive electrode 6, and is a polymer, for example.
- the binder may include resins such as polyvinylidene fluoride, polyacrylonitrile, styrene-butadiene rubber, carboxymethyl cellulose, fluorine rubber, ethylene-propylene rubber, polyacrylic acid, polyimide, and polyamide; and copolymer resins having these resins as the main skeleton (e.g., polyvinylidene fluoride-hexafluoropropylene copolymer) .
- the content of the binder may be 1%by mass or more, 3%by mass or more, or 5%by mass or more based on the total amount of the positive electrode active material, the conductive agent, and the binder.
- the content of the binder may be 15%by mass or less, 12%by mass or less, or 9%by mass or less based on the total amount of the positive electrode active material, the conductive agent, and the binder.
- the positive electrode mixture layer 10 may further contain a molten salt such as ionic liquid and plastic crystal and the like, as required.
- the content of molten salt may be 0.01 to 20%by mass based on the total amount of the positive electrode mixture layer.
- the thickness of the positive electrode mixture layer 10 is a thickness equal to or larger than the average particle size of the positive electrode active material from the viewpoint of further increasing the electrical conductivity, and is specifically preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, still more preferably 30 ⁇ m or more.
- the thickness of the positive electrode mixture layer 10 is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 60 ⁇ m or less.
- the mixture density of the positive electrode mixture layer 10 is preferably 1 g/cm 3 or more from the viewpoint of bringing the conductive agent and the positive electrode active material into close contact to each other to thereby reduce the electronic resistance of the positive electrode mixture layer 10.
- the negative electrode current collector 11 may be formed with copper, stainless steel, titanium, nickel or the like.
- the negative electrode current collector 11 may be specifically a rolled copper foil, for example, a perforated copper foil having a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal sheet or the like.
- the negative electrode current collector 11 may be formed with any material other than those described above, and additionally, its shape and production method are not limited.
- the thickness of the negative electrode current collector 11 may be 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more.
- the thickness of the negative electrode current collector 11 is 100 ⁇ m or less, 50 ⁇ m or less, or 20 ⁇ m or less.
- the negative electrode mixture layer 12 in one embodiment, contains a negative electrode active material and a binder.
- the negative electrode active material those used as a negative electrode active material in the field of common energy devices such as secondary batteries can be used.
- the negative electrode active material include a lithium metal, a lithium alloy, a metal compound, a carbon material, a metal complex, an organic polymer compound, and the like. These may be used singly or two or more of these may be used in combination.
- the negative electrode active material is preferably a carbon material.
- the carbon material include carbon black such as natural graphite (flaky graphite or the like) , graphite such as artificial graphite, acetylene black, Ketjen black, channel black, furnace black, lamp black, thermal black and the like, amorphous carbon, Carbon fibers and the like.
- the average particle size of the negative electrode active material (D 50 ) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more and preferably 20 ⁇ m or less, more preferably 18 ⁇ m or less, still more preferably 16 ⁇ m or less from the viewpoint of suppressing increase in the irreversible capacity due to reduction in the particle size as well as of obtaining a well-balanced negative electrode 8 of which electrolyte retention capability is enhanced.
- the average particle size of the negative electrode active material (D 50 ) is measured by the same method as for the average particle size of the positive electrode active material (D 50 ) .
- the content of the negative electrode active material may be similar to the content of the positive electrode active material in the positive electrode mixture layer 10 aforementioned.
- the binder and its content may be similar to the binder and its content in the positive electrode mixture layer 10 aforementioned.
- the negative electrode mixture layer 12 may further contain a conductive agent from the viewpoint of further reducing the resistance of the negative electrode 8.
- the conductive agent and its content may be similar to the conductive agent and its content in the positive electrode mixture layer 10 aforementioned.
- the negative electrode mixture layer 12 may further contain a molten salt such as ionic liquid and plastic crystal and the like, as required.
- the content of molten salt may be 0.01 to 20%by mass based on the total amount of the negative electrode mixture layer.
- the thickness of the negative electrode mixture layer 12 is equal to or larger than the average particle size of the negative electrode active material from the viewpoint of further increasing the electrical conductivity, and is specifically preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more.
- the thickness of the negative electrode mixture layer 12 is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less.
- the mixture density of the negative electrode mixture layer 12 is preferably 1 g/cm 3 or more from the viewpoint of bringing the conductive agent and the negative electrode active material into close contact to each other to thereby reduce the electronic resistance of the negative electrode mixture layer 12.
- the electrolyte layer 7 contains a polymer having a specific structural unit, a specific electrolyte salt, and a specific molten salt ( [Py12] [FSI] ) .
- the polymer electrolyte composition contains a polymer having a structural unit represented by the following formula (1) :
- X - represents a counter anion.
- Examples of X - herein include BF 4 - (tetrafluoroborate anion) , PF 6 - (hexafluorophosphate anion) , N (FSO 2 ) 2 - (bis (fluorosulfonyl) imide anion, [FSI] - ) , N (CF 3 SO 2 ) 2 - (bis (trifluoromethanesulfonyl) imide anion, [TFSI] - ) , C (SO 2 F) 3 - (tris (fluorosulfonyl) carbanion, [f3C] - ) , B (C 2 O 4 ) 2 - (bis oxalate borate anion, [BOB] - ) , BF 3 (CF 3 ) - , BF 3 (C 2 F 5 ) - , BF 3 (C 3 F 7 ) - , BF 4 -
- X - be at least one selected from the group consisting of BF 4 - , PF 6 - , [FSI] - , [TFSI] - , and [f3C] - , and it is more preferred that X - be [TFSI] - or [FSI] - .
- the viscosity average molecular weight Mv (g ⁇ mol -1 ) of the polymer having a structural unit represented by the formula (1) is not particularly limited, and preferably 1.0 ⁇ 10 4 or more, more preferably 1.0 ⁇ 10 5 or more. Also, the viscosity average molecular weight of the polymer is 5.0 ⁇ 10 6 or less, more preferably 1.0 ⁇ 10 6 or less. When the viscosity average molecular weight is 1.0 ⁇ 10 5 or more, the self-supportability of the polymer electrolyte tends to be more excellent. Additionally, when the viscosity average molecular weight is 5.0 ⁇ 10 6 or less, the handling ability of forming by application tends to be higher.
- the "viscosity average molecular weight” can be evaluated by viscometry, which is a general measuring method, and can be calculated from, for example, an intrinsic-viscosity number [ ⁇ ] measured based on JISK7367-3: 1999.
- the polymer having a structural unit represented by the formula (1) be a polymer composed only of the structural unit represented by the formula (1) , that is a homopolymer, from the viewpoint of ionic conductivity.
- the polymer having a structural unit represented by the formula (1) may be a polymer represented by the following formula (2) :
- n 300 to 4000
- Y - represents a counter anion.
- Y - it is possible to use one similar to those exemplified for X - .
- n is 300 or more, preferably 400 or more, more preferably 500 or more. n is also 4000 or less, preferably 3500 or less, more preferably 3000 or less. n is also 300 to 4000, preferably 400 to 3500, more preferably 500 to 3000. When n is 300 or more, the self-supportability of the polymer electrolyte sheet tends to be more excellent. When n is 4000 or less, the ionic conductivity of the polymer electrolyte sheet tends to be further increased.
- the method for producing a polymer having a structural unit represented by the formula (1) is not particularly limited, and it is possible to use, for example, the method for production described in Journal of Power Sources 2009, 188, 558-563.
- poly (diallyldimethyl ammonium) chloride [P (DADMA) ] [Cl]
- [P (DADMA) ] [Cl] poly (diallyldimethyl ammonium) chloride
- [P (DADMA) ] [Cl] for example, a commercially available product can be used as it is.
- Li [TFSI] is separately dissolved in deionized water to prepare an aqueous solution containing Li [TFSI] .
- the two aqueous solutions are mixed such that the molar ratio of Li [TFSI] to [P (DADMA) ] [Cl] (molar number of Li [TFSI] /molar number of [P (DADMA) ] [Cl] ) falls within 1.2 to 2.0 and stirred for 2 to 8 hours to precipitate solid out, and the resulting solid is collected by filtration.
- the molar ratio of Li [TFSI] to [P (DADMA) ] [Cl] molar number of Li [TFSI] /molar number of [P (DADMA) ] [Cl]
- the content of the polymer having a structural unit represented by the formula (1) is not particularly limited and is preferably 10%by mass or more, more preferably 20%by mass or more, still more preferably 30%by mass or more based on the total amount of the composition.
- the content of the polymer is also preferably 80%by mass or less, more preferably 70%by mass or less, still more preferably 60%by mass or less based on the total amount of the composition.
- the strength of the polymer electrolyte sheet tends to be further increased.
- the polymer electrolyte composition contains at least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, magnesium salts, and calcium salts.
- electrolyte salt those used as an electrolyte salt for liquid electrolytes for common ion batteries.
- the anion of electrolyte salt may be halide anion (I - , Cl - , Br - or the like) , SCN - , BF 4 - , BF 3 (CF 3 ) - , BF 3 (C 2 F 5 ) - , BF 3 (C 3 F 7 ) - , BF 3 (C 4 F 9 ) - , PF 6 - , ClO 4 - , SbF 6 - , [FSI] - , [TFSI] - , N (C 2 F 5 SO 2 ) 2 - , BPh 4 - , B (C 2 H 4 O 2 ) 2 - , [f3C] - , C (CF 3 SO 2 ) 3 - , CF 3 COO - , CF 3 SO 2 O - , C 6 F 5 SO
- the anion of electrolyte salt is preferably at least one selected from the group consisting of PF 6 - , BF 4 - , [FSI] - , [TFSI] - , [BOB] - and ClO 4 - , more preferably [TFSI] - or [FSI] -
- Example of the lithium salt include LiPF 6 , LiBF 4 , Li [FSI] , Li [TFSI] , Li [f3C] , Li [BOB] , LiClO 4 , LiBF 3 (CF 3 ) , LiBF 3 (C 2 F 5 ) , LiBF 3 (C 3 F 7 ) , LiBF 3 (C 4 F 9 ) , LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, LiRCOO (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group) . These may be used singly or two or more of these may be used in combination.
- sodium salt examples include NaPF 6 , NaBF 4 , Na [FSI] , Na [TFSI] , Na [f3C] , Na [BOB] , NaClO 4 , NaBF 3 (CF 3 ) , NaBF 3 (C 2 F 5 ) , NaBF 3 (C 3 F 7 ) , NaBF 3 (C 4 F 9 ) , NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, NaRCOO (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group) . These may be used singly or two or more of these may be used in combination.
- magnesium salt examples include Mg (PF 6 ) 2 ⁇ Mg (BF 4 ) 2 ⁇ Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f3C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg [BF 3 (CF 3 ) 3 ] 2 , Mg [BF 3 (C 2 F 5 ) ] 2 , Mg [BF 3 (C 3 F 7 ) ] 2 , Mg [BF 3 (C 4 F 9 ) ] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , Mg (CF 3 SO 2 O) 2 , Mg (CF 3 COO) 2 , Mg (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group) . These may be used singly or two or more of these may be used in combination.
- Examples of the calcium salt include Ca (PF 6 ) 2 ⁇ Ca (BF 4 ) 2 ⁇ Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 ) 3 ] 2 , Ca [BF 3 (C 2 F 5 ) ] 2 , Ca [BF 3 (C 3 F 7 ) ] 2 , Ca [BF 3 (C 4 F 9 ) ] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , Ca (CF 3 SO 2 O) 2 , Ca (CF 3 COO) 2 , Ca (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group) . These may be used singly or two or more of these may be used in combination.
- the electrolyte salt is preferably lithium salt, more preferably at least one selected from the group consisting of LiPF 6 , LiBF 4 , Li [FSI] , Li [TFSI] , Li [BOB] and LiClO 4 , still more preferably Li [TFSI] or Li [FSI] , from the viewpoint of dissociation ability and electrochemical stability.
- the mass ratio of the electrolyte salt to the polymer having a structural unit represented by the formula (1) is not particularly limited, and is preferably 0.1 or more, more preferably 0.2 or more, still more preferably 0.3 or more.
- the mass ratio is also preferably 1.0 or less, more preferably 0.9 or less, still more preferably 0.8 or less.
- the mass ratio of the electrolyte salt is 0.1 or more, the ion carrier concentration of the polymer electrolyte sheet becomes sufficient and the ionic conductivity tends to be further increased.
- the mass ratio of the electrolyte salt is 1.0 or less, the mechanical strength of the polymer electrolyte sheet tends to be more excellent.
- the content of the electrolyte salt is not particularly limited and preferably 3%by mass or more, more preferably 5%by mass or more, still more preferably 7%by mass or more based on the total amount of the composition.
- the content of the electrolyte salt is preferably 30%by mass or less, more preferably 25%by mass or less, still more preferably 20%by mass or less based on the total amount of the composition.
- the content of the electrolyte salt is 3%by mass or more, the ionic conductivity tends to be further increased.
- the content of the electrolyte salt is 30%by mass or less, the flexibility of the polymer electrolyte sheet tends to be further increased.
- the polymer electrolyte composition contains [Py12] [FSI] .
- [FSI] can be obtained by, for example, the reaction of N-ethyl-N-methylpyrrolidine and lithium bis (fluorosulfonyl) imide (Li [FSI] ) .
- the content of [Py12] [FSI] is not particularly limited and may be 10 to 70%by mass based on the total amount of the composition.
- the content of [Py12] [FSI] is preferably 20%by mass or more, more preferably 30%by mass or more based on the total amount of the composition.
- the content of [Py12] [FSI] is also preferably 65%by mass or less, more preferably 55%by mass or less based on the total amount of the composition.
- the content of [Py12] [FSI] is 10%by mass or more, the ionic conductivity of the polymer electrolyte sheet tends to be further increased.
- the content of the [Py12] [FSI] is 70%by mass or less, the self-supportability of the polymer electrolyte sheet tends to be more excellent.
- the polymer electrolyte composition may further contain an inorganic solid electrolyte such as Li 7 La 3 Zr 2 O 12 (LLZ) , an additive having a lithium-salt dissociation ability such as borate ester and aluminate ester and the like, as required. These can be used singly or two or more of these can be used in combination. In the case where these components are further contained in the polymer electrolyte composition, the content of these components may be 0.01 to 20%by mass based on the total amount of the composition.
- an inorganic solid electrolyte such as Li 7 La 3 Zr 2 O 12 (LLZ)
- an additive having a lithium-salt dissociation ability such as borate ester and aluminate ester and the like
- the polymer electrolyte composition may be formed into a sheet form.
- the thickness of the polymer electrolyte sheet may be adjusted to a desired thickness in accordance with the configuration of the battery and is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more.
- the thickness of the polymer electrolyte sheet is also preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less. When the thickness is 1 ⁇ m or more, a short circuit between electrodes tends to be further reduced. When the thickness is 100 ⁇ m or less, the energy density tends to be further increased.
- the method for producing the polymer secondary battery 1 comprises a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, a second step of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 to obtain the negative electrode 8, and a third step of providing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8.
- the positive electrode 6 is obtained by, for example, dispersing materials used for the positive electrode mixture layer in a dispersion medium using a kneading machine, a disperser or the like to obtain a slurried positive electrode mixture, then applying this positive electrode mixture by a doctor blade method, a dipping method, a spray method or the like on the positive electrode current collector 9, and then vaporizing the dispersion medium.
- a compression molding step by a roll press may be provided as required.
- the positive electrode mixture layer 10 may be formed as a positive electrode mixture layer of a multi-layer structure by performing the aforementioned steps from application of the positive electrode mixture to vaporization of the dispersion medium a plurality of times.
- the dispersion medium used in the first step may be water, 1-methyl-2-pyrrolidone (hereinbelow, also referred to as NMP) or the like.
- the method for forming the negative electrode mixture layer 12 on the negative electrode current collector 11 may be a method similar to the first step aforementioned.
- the electrolyte layer 7 is formed by producing a polymer electrolyte sheet containing the aforementioned polymer electrolyte composition on a substrate, for example.
- Figure 4A is a schematic cross sectional view showing a polymer electrolyte sheet according to one embodiment. As shown in Figure 4A, the polymer electrolyte sheet 13A comprises a substrate 14 and an electrolyte layer 7 provided on the substrate 14.
- the polymer electrolyte sheet 13A is produced by, for example, dispersing a polymer electrolyte composition used for the electrolyte layer 7 in a dispersion medium to obtain a slurry, then applying the slurry on the substrate 14, and then vaporizing the dispersion medium.
- the dispersion medium into which the polymer electrolyte composition used for the electrolyte layer 7 is dispersed may be acetone, ethyl methyl ketone, ⁇ -butyrolactone or the like, for example.
- the substrate 14 is one having heat resistance that may tolerate heating when the dispersion medium is vaporized, is not limited as long as the substrate does not react with the polymer electrolyte composition, and is not swelled with the polymer electrolyte composition, and examples of the substrate include metal foils, and films composed of a resin.
- the substrate 14 may be specifically a metal foil such as an aluminum foil, a copper foil, or a nickel foil, a film composed of a resin such as polyethylene terephthalate, polytetrafluoroethylene, polyimide, polyethersulfone, or polyetherketone (general-purpose engineering plastic) or the like.
- the heat resistant temperature of the substrate 14 is preferably 50°C or more, more preferably 100°C or more, still more preferably 150°C or more, and may be for example, 400°C or less, from the viewpoint of adaptability with the dispersion medium used for the electrolyte layer 7.
- the heat resistant temperature of the substrate 14 in the case where a film composed of a resin is used represents the melting point or decomposition temperature of the resin.
- the thickness of the substrate 14 be is as small as possible while the strength to tolerate the tensile strength in an applicator is maintained.
- the thickness of the substrate 14 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 25 ⁇ m or more and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less from the viewpoint of reducing the total volume of the polymer electrolyte sheet 13 as well as of retaining the strength when the polymer electrolyte composition is applied to the substrate 14.
- the polymer electrolyte sheet may be one in which a protective material is provided on the side of the electrolyte layer 7 opposite to the substrate 14.
- Figure 4B is a schematic cross sectional view showing a polymer electrolyte sheet according to another embodiment. As shown in Figure 4B, the polymer electrolyte sheet 13B is further provided with a protective material 15 on the side of the electrolyte layer 7 opposite to the substrate 14.
- the protective material 15 may be one that is easily peelable from the electrolyte layer 7, and is preferably an apolar resin film such as polyethylene, polypropylene, polytetrafluoroethylene and the like. When an apolar resin film is used, the electrolyte layer 7 and the protective material 15 do not stick to each other, and it is possible to easily peel the protective material 15 off.
- an apolar resin film such as polyethylene, polypropylene, polytetrafluoroethylene and the like.
- the thickness of the protective material 15 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m and preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 30 ⁇ m or less from the viewpoint of reducing the total volume of the polymer electrolyte sheet 13B as well as of retaining the strength.
- the heat resistant temperature of the protective material 15 is preferably -30°C or more, more preferably 0°C or more and preferably 100°C or less, more preferably 50°C or less from the viewpoint of suppressing deterioration under low-temperature environments as well as suppressing softening under high-temperature environments.
- a step of vaporizing the dispersion medium aforementioned is not essential, and thus it is not necessary to making the heat resistant temperature higher.
- the electrolyte layer 7 is provided between the positive electrode 6 and the negative electrode 8 by using the polymer electrolyte sheet 13A
- the polymer secondary battery 1 by, for example, peeling the substrate 14 from the polymer electrolyte sheet 13A and layering the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 via lamination.
- lamination is carried out such that the electrolyte layer 7 is positioned on the side of the positive electrode mixture layer 10 of the positive electrode 6 and on the side of the negative electrode mixture layer 12 of the negative electrode 8, that is, such that the positive electrode current collector 9, the positive electrode mixture layer 10, the electrolyte layer 7, the negative electrode mixture layer 12, and the negative electrode current collector 11 are placed in this order.
- the electrolyte layer 7 is formed by application on at least either one of the side of the positive electrode mixture layer 10 of the positive electrode 6 or the side of the negative electrode mixture layer 12 of the negative electrode 8, and is formed by application on preferably both of the side of the positive electrode mixture layer 10 of the positive electrode 6 and the side of the negative electrode mixture layer 12 of the negative electrode 8.
- the polymer secondary battery 1 it is possible to obtain the polymer secondary battery 1 by, for example, layering the positive electrode 6 on which the electrolyte layer 7 is provided and the negative electrode 8 on which the electrolyte layer 7 is provided via lamination such that the electrolyte layers 7 are brought in contact to each other.
- the method for forming the electrolyte layer 7 on the positive electrode mixture layer 10 by application is, for example, a method in which the polymer electrolyte composition used for the electrolyte layer 7 is dispersed in a dispersion medium to obtain a slurry and then the polymer electrolyte composition is applied on the positive electrode mixture layer 10 using an applicator.
- the dispersion medium into which the polymer electrolyte composition used for the electrolyte layer 7 is dispersed may be acetone, ethyl methyl ketone, and ⁇ -butyrolactone, for example.
- the method for forming the electrolyte layer 7 on the negative electrode mixture layer 12 by application may be a method similar to the method for forming the electrolyte layer 7 on the positive electrode mixture layer 10 by application.
- FIG. 5 is a schematic cross sectional view showing one embodiment of an electrode group in the polymer secondary battery according to Second Embodiment.
- an electrode group 2B comprises a bipolar electrode 16. That is, the electrode group 2B comprises a positive electrode 6, a first electrolyte layer 7, a bipolar electrode 16, a second electrolyte layer 7, and a negative electrode 8 in this order.
- the bipolar electrode 16 comprises a bipolar electrode current collector 17, a positive electrode mixture layer 10 provided on the surface of the side of the negative electrode 8 of the bipolar electrode current collector 17, and a negative electrode mixture layer 12 on the surface of the side of the positive electrode 6 of the bipolar electrode current collector 17.
- the bipolar electrode current collector 17 may be formed with aluminum, stainless steel, titanium or the like.
- the bipolar electrode current collector 17 may be specifically, for example, an aluminum perforated foil having pores of which pore diameter is 0.1 to 10 mm, an expanded metal, a foamed metal sheet or the like.
- the bipolar electrode current collector 17 may be formed with any material other than those described above as long as the material is not subject to change such as dissolution and oxidation during use of the battery, and additionally, its shape and production method are not limited.
- the thickness of the bipolar electrode current collector 17 may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more.
- the thickness of the bipolar electrode current collector 17 may be 100 ⁇ m or less, 80 ⁇ m or less, or 60 ⁇ m or less.
- the method for producing the secondary battery according to the present embodiment comprises a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6, a second step of forming the negative electrode mixture layer 12 on the negative electrode current collector 11 to obtain the negative electrode 8, a third step of forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 and forming the negative electrode mixture layer 12 on the other surface to obtain the bipolar electrode 16, and a fourth step of forming the electrolyte layer 7 each between the positive electrode 6 and the bipolar electrode 16 and between the negative electrode 8 and the bipolar electrode 16.
- the first step and the second step may be a method similar to the first step and the second step in First Embodiment.
- the method forming the positive electrode mixture layer 10 on one surface of the bipolar electrode current collector 17 may be a method similar to the first step in First Embodiment.
- the method forming the negative electrode mixture layer 12 on the other surface of the bipolar electrode current collector 17 may be a method similar to the second step in First Embodiment.
- the electrolyte layer 7 is formed, for example, by producing a polymer electrolyte sheet comprising the polymer electrolyte composition on a substrate.
- the method for producing the polymer electrolyte sheet may be a method similar to the method for producing the polymer electrolyte sheets 13A and 13B in First Embodiment.
- the method for providing the electrolyte layer 7 between the negative electrode 8 and the bipolar electrode 16 may a method similar to the method for providing electrolyte layer 7 between the positive electrode 6 and the bipolar electrode 16 aforementioned.
- the method for forming the electrolyte layer 7 by application each on the positive electrode mixture layer 10 of the positive electrode 6 and on the negative electrode mixture layer 12 of the bipolar electrode 16 may be a similar method to the method for forming the electrolyte layer 7 by application on the positive electrode mixture layer 10 and the method for forming the electrolyte layer 7 by application on the negative electrode mixture layer 12 according to one embodiment of the third step in First Embodiment.
- the electrolyte layer 7 is formed by application on at least either one of the side of the positive electrode mixture layer 10 of the positive electrode 6 or the side the negative electrode mixture layer 12 of the bipolar electrode 16, and is formed by application preferably both of the side of the positive electrode mixture layer 10 of the positive electrode 6 and the side of the negative electrode mixture layer 12 of the bipolar electrode 16.
- the positive electrode 6 on which the electrolyte layer 7 is provided and the bipolar electrode 16 on which the electrolyte layer 7 is provided are layered, for example, via lamination such that the electrolyte layers 7 are brought in contact to each other.
- a polymer having a structural unit represented by the formula (1) was synthesized by converting the counter anion Cl - of poly (diallyldimethyl ammonium) chloride to [TFSI] - .
- Residual mass ratio [%by mass] [Mass of the polymer electrolyte composition after drying [g] / (Mass of the polymer electrolyte composition before drying [g] -Mass of the volatile component (dispersion medium) contained in the polymer electrolyte composition before drying [g] ) ] ⁇ 100
- the residual mass ratio was determined based on the value obtained by subtracting the mass of the volatile component such as acetone and water remaining in the polymer from the mass of the polymer electrolyte composition before drying. Drying under reduced pressure at 60°Cwas conducted on a polymer electrolyte composition prepared in the same manner as in Example 1 except that [P12] [FSI] was not used, and the above-described "mass of the volatile component (dispersion medium) contained in the polymer electrolyte composition before drying " was determined from the mass changes before and after the drying.
- the polymer electrolyte sheet formed on an aluminum foil obtained in Example 1 was peeled off from the aluminum foil to verify the self-supportability of the polymer electrolyte sheet.
- polymer electrolyte sheets formed on a 20-cm square aluminum foil were used.
- Polymer electrolyte sheets that was able to be peeled off in a size larger than a 10-cm square were evaluated as A, those able to be peeled off in a size from a 5-cm square to a 10-cm square as B, and those able to be peeled off in a size less than a 5-cm square as C.
- Table 2 The results are shown in Table 2.
- the polymer electrolyte sheet obtained in Example 1 was sandwiched between aluminum foils and punched to a diameter of 16 mm to prepare a sample for ionic conductivity measurement.
- This sample was placed in a bipolar closed cell (HS cell, manufactured by Hohsen Corp. ) and measured using an alternating current impedance measuring device (1260 type, manufactured by Solartron Analytical) .
- the temperature was adjusted at a 15°C interval from -5°C to 70°Cin a thermostatic chamber, and the alternating current impedance was measured at 10 mV in the range of 1 Hz to 2 MHz.
- the resistance value was calculated from the intersection with the real axis of the Nyquist plot, and the ionic conductivity was calculated from the resistance value.
- Table 2 It should be noted that placement of a sample in the closed cell was carried out in a glove box under an argon atmosphere.
- LiFePO 4 positive electrode active material
- acetylene black conductive agent, trade name: HS-100, average particle size 48 nm (manufacturer catalog value) , Denka Company Limited
- a polyvinylidene fluoride solution binder, trade name: Kureha KF Polymer #7305, solid content 5%by mass, KUREHA CORPORATION
- NMP N-methyl-2-pyrrolidone
- This positive electrode mixture paste was applied on both surfaces of the positive electrode current collector (an aluminum foil of which thickness is 20 ⁇ m) , dried at 120°C, and then rolled to form a positive electrode active material layer of which thickness of one surface was 91 ⁇ m, of which amount of applied on one surface was 50 g/m 2 , and of which the mixture density was 1.8 g/cm 3 , and a positive electrode was produced.
- the positive electrode a sample punched out to a diameter of 15 mm was provided for producing a coin-type battery for test.
- a lithium foil punched out to a diameter of 16 mm was provided.
- the positive electrode, the polymer electrolyte sheet, and the lithium foil were layered in this order and placed in a CR2032-type coin cell case.
- the lithium foil acts as the negative electrode active material
- the stainless steel of the coin cell case acts as the negative electrode current collector.
- a polymer secondary battery was obtained by crimp-sealing the top of the battery case via an insulating gasket.
- the polymer secondary battery produced by the above-described method was used to evaluate battery performance.
- a charge and discharge device (TOYO SYSTEM CO., LTD., trade name: TOSCAT-3200) was used to conduct charge and discharge measurement at 25°C and 0.2C, and the available/design capacity ratio using the discharge capacity of the fifth cycle was calculated based on the following formula. The results are shown in Table 2. It should be noted that C means “Current value [A] /battery design capacity [Ah] " and 1C represents a current value in full charge or full discharge of the battery in an hour.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the amount of Li [TFSI] was changed from 15 parts by mass to 20 parts by mass (the content of [Py12] [FSI] in the composition: 42%by mass) , and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the amount of Li [TFSI] was changed from 15 parts by mass to 30 parts by mass (the content of [Py12] [FSI] in the composition: 38%by mass) , and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the amount of the polymer was changed to 60 parts by mass, the amount of Li [TFSI] was changed to 15 parts by mass, and the amount of [Py12] [FSI] was changed to 40 parts by mass (the content of [Py12] [FSI] in the composition: 35%by mass) , and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the amount of the polymer was changed to 60 parts by mass, the amount of Li [TFSI] was changed to 20 parts by mass, and the amount of [Py12] [FSI] was changed to 40 parts by mass (the content of [Py12] [FSI] in the composition: 33%by mass) , and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the amount of the polymer was changed to 60 parts by mass, the amount of Li [TFSI] was changed to 30 parts by mass, and the amount of [Py12] [FSI] was changed to 40 parts by mass (the content of [Py12] [FSI] in the composition: 31%by mass) , and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the amount of the polymer was changed to 70 parts by mass, the amount of Li [TFSI] was changed to 20 parts by mass, and the amount of [Py12] [FSI] was changed to 30 parts by mass (the content of [Py12] [FSI] in the composition: 25%by mass) , and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that the molten salt [Py12] [FSI] was replaced with dimethyl carbonate (DMC) , an organic solvent, and evaluation was conducted as in Example 1. The results are shown in Table 2.
- a polymer electrolyte sheet was produced in the same manner as in Example 1 except that a polymer was not used, and evaluation was conducted as in Example 1. The results are shown in Table 2.
- the electrochemical stability of a polymer electrolyte sheet according to Example 2 was tested by linear sweep voltammetry (LSV) measurement.
- a cell composed of SUS electrode (for working electrode) , polymer electrolyte sheets, and metal lithium foil (for a reference electrode and a counter electrode) was used for this measurement.
- voltage was changed up to 6.0 V at 40°C at a sweep rate of 1 mV/s, using a CHI660D electrochemical workstation (manufactured by CH Instruments, Inc. ) .
- Figure 6 is a current-potential curve showing the result of the linear sweep voltammetry (LSV) of the polymer electrolyte sheet of Example 2. As shown in Figure 6, the voltage at the onset of the positive electrode potential is about 4.8 V, indicating an excellent electrochemical stability of the polymer electrolyte sheet of Example 2.
- FIG. 7 is a chart showing the relationship between the discharge capacity and coulombic efficiency versus the cycle number of the polymer secondary battery produced using the polymer electrolyte sheet of Example 2.
- the discharge capacity gradually increases upon cycling at 25°C, perhaps ascribed to an optimization process of the interface between polymer electrolyte sheet and electrode. After 85 cycles, the discharge capacity is increased to about 150 mAh g -1 , and keeps stable throughout following cycles.
- the cell When the temperature rises to 40°C, the cell is capable of exporting a stable discharge capacity of about 152 mAh g -1 only after initial several cycles, demonstrating that an increase of operational temperature accelerate the interface between polymer electrolyte sheet and electrode. As the temperature further rises to 80°C, a stable discharge capacity of about 160 mAh g -1 can be achieved after 150 cycles, which is close to the theoretical capacity (170 mAh g -1 ) . This implies that an undesirable side reaction does not occur at the interface between as-prepared polymer electrolyte sheet and electrode even at high temperature. Also, the coulombic efficiency all approaches 100%after several cycles for cells, indicative of highly reversible lithium ion extraction/insertion ability with ongoing cycling.
- FIG. 8 is a chart showing the discharge capacities for each output current of the polymer secondary battery produced using a polymer electrolyte sheet according to Example 2.
- the polymer secondary battery is capable of delivering stable discharge capacity with continued cycling at each current rate.
- the discharge capacities are 147.6 mAh g -1 and 111.2 mAh g -1 at 0.5 C and 1.0C for 10 cycles in succession. When the current rate is returned to 0.2C, the discharge capacity can recover its original value.
- the polymer electrolyte compositions of Examples 1 to 7 containing a polymer having a structural unit represented by the formula (1) and [Py12] [FSI] had an excellent high ionic conductivity even at room temperature and was be able to retain their shape by the sheet itself even without a substrate or the like. It has also found that the polymer electrolyte compositions of Examples 1 to 7 are materials of which thermal stability is high because their mass was hardly reduced when the compositions were dried at 60°C under a reduced pressure of 1.0 ⁇ 10 4 Pa or less (0.1 atmospheres or less) for 10 hours.
- a polymer electrolyte composition that makes it possible to produce a sheet of which self-supportability is high even without use of an organic solvent, wherein the sheet has an excellent ionic conductivity at room temperature and is able to retain its shape by the sheet itself even without a substrate or the like.
- a polymer secondary battery using such a polymer electrolyte composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
Abstract
L'invention concerne une composition d'électrolyte polymère qui contient un polymère ayant une unité structurale représentée par la formule suivante (1), au moins un sel d'électrolyte choisi dans le groupe constitué par des sels de lithium, des sels de sodium, des sels de magnésium et des sels de calcium, et un imide N-éthyl-N-méthylpyrrolidinium bis(fluorosulfonyle) : (1) X- représentant un contre-anion.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880026155.9A CN110537285A (zh) | 2017-04-21 | 2018-04-19 | 聚合物电解质组合物及聚合物二次电池 |
JP2019554850A JP2020518091A (ja) | 2017-04-21 | 2018-04-19 | ポリマ電解質組成物及びポリマ二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2017/081455 | 2017-04-21 | ||
PCT/CN2017/081455 WO2018191959A1 (fr) | 2017-04-21 | 2017-04-21 | Composition d'électrolyte polymere et batterie secondaire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018192556A1 true WO2018192556A1 (fr) | 2018-10-25 |
Family
ID=63855419
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/081455 WO2018191959A1 (fr) | 2017-04-21 | 2017-04-21 | Composition d'électrolyte polymere et batterie secondaire |
PCT/CN2018/083810 WO2018192556A1 (fr) | 2017-04-21 | 2018-04-19 | Composition d'électrolyte polymère et batterie secondaire polymère |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/081455 WO2018191959A1 (fr) | 2017-04-21 | 2017-04-21 | Composition d'électrolyte polymere et batterie secondaire |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2020518091A (fr) |
CN (1) | CN110537285A (fr) |
WO (2) | WO2018191959A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021193023A1 (fr) * | 2020-03-27 | 2021-09-30 | 第一工業製薬株式会社 | Batterie rechargeable au lithium-ion |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113782827B (zh) * | 2021-09-15 | 2023-03-31 | 山东省科学院新材料研究所 | 一种固态电解质薄膜及其制备方法和应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103682430A (zh) * | 2012-09-21 | 2014-03-26 | 海洋王照明科技股份有限公司 | 凝胶聚合物电解质及其制备方法、电化学电源及其应用 |
CN105390743A (zh) * | 2014-08-28 | 2016-03-09 | 三星电子株式会社 | 复合电解质和包括其的锂电池 |
US20160344063A1 (en) * | 2015-05-20 | 2016-11-24 | Samsung Electronics Co., Ltd. | Lithium metal battery |
US20160372743A1 (en) * | 2015-06-19 | 2016-12-22 | SolidEnergy Systems | Multi-layer polymer coated li anode for high density li metal battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4496366B2 (ja) * | 2005-04-07 | 2010-07-07 | 国立大学法人三重大学 | 高分子固体電解質リチウム2次電池用負極材及びその製造方法 |
JP4774941B2 (ja) * | 2005-11-14 | 2011-09-21 | ソニー株式会社 | ゲル電解質およびゲル電解質電池 |
FR2942235B1 (fr) * | 2009-02-13 | 2011-07-22 | Centre Nat Rech Scient | Gels conducteurs ioniques, leur procede de preparation et leur utilisation comme electrolyte |
KR20130016639A (ko) * | 2011-08-08 | 2013-02-18 | 주식회사 씨트리 | 비스플로로술포닐이미드 음이온을 갖는 전해질용 이온성 액체 |
CN106463771B (zh) * | 2014-02-06 | 2019-09-27 | 格利恩技术私人有限公司 | 凝胶化离子液体膜涂布的表面及其应用 |
JP2016039209A (ja) * | 2014-08-06 | 2016-03-22 | Jsr株式会社 | 電解液、ゲル電解質形成用組成物、ゲル電解質、及び蓄電デバイス |
FR3036856A1 (fr) * | 2015-05-26 | 2016-12-02 | Ecole Normale Superieure Lyon | Gel electrolyte comprenant un polymere et un liquide ionique, son procede de preparation et son utilisation |
-
2017
- 2017-04-21 WO PCT/CN2017/081455 patent/WO2018191959A1/fr active Application Filing
-
2018
- 2018-04-19 WO PCT/CN2018/083810 patent/WO2018192556A1/fr active Application Filing
- 2018-04-19 CN CN201880026155.9A patent/CN110537285A/zh active Pending
- 2018-04-19 JP JP2019554850A patent/JP2020518091A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103682430A (zh) * | 2012-09-21 | 2014-03-26 | 海洋王照明科技股份有限公司 | 凝胶聚合物电解质及其制备方法、电化学电源及其应用 |
CN105390743A (zh) * | 2014-08-28 | 2016-03-09 | 三星电子株式会社 | 复合电解质和包括其的锂电池 |
US20160344063A1 (en) * | 2015-05-20 | 2016-11-24 | Samsung Electronics Co., Ltd. | Lithium metal battery |
US20160372743A1 (en) * | 2015-06-19 | 2016-12-22 | SolidEnergy Systems | Multi-layer polymer coated li anode for high density li metal battery |
Non-Patent Citations (2)
Title |
---|
PONT, ANNE-LAURE ET AL.: "Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes", JOURNAL OF POWER SOURCES, vol. 188, no. 2, 6 December 2008 (2008-12-06), pages 558 - 563, XP025988455, ISSN: 0378-7753 * |
ZHOU, YUNDONG ET AL.: "N-ethyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide-electrospun polyvinylidene fluoride composite electrolytes: characterization and lithium cell studies", PHYS. CHEM. CHEM. PHYS., vol. 19, 19 December 2016 (2016-12-19), pages 2225, XP055545065, ISSN: 1463-9076 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021193023A1 (fr) * | 2020-03-27 | 2021-09-30 | 第一工業製薬株式会社 | Batterie rechargeable au lithium-ion |
JP2021157983A (ja) * | 2020-03-27 | 2021-10-07 | 第一工業製薬株式会社 | リチウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
CN110537285A (zh) | 2019-12-03 |
WO2018191959A1 (fr) | 2018-10-25 |
JP2020518091A (ja) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102470110B1 (ko) | 충전식 배터리 셀 | |
US11462767B2 (en) | Electrochemical device electrode. method for producing electrochemical device electrode and electrochemical device | |
EP3614480A1 (fr) | Composition d'électrolyte polymère et batterie secondaire polymère | |
WO2018193683A1 (fr) | Organe pour dispositifs électrochimiques, et dispositif électrochimique | |
US11296356B2 (en) | Polymer electrolyte composition including polymer having a structural unit represented by formula (1), electrolyte salt, and molten salt, and polymer secondary battery including the same | |
CN110661034A (zh) | 聚合物电解质组合物、聚合物电解质片及其制造方法、电化学装置用电极、聚合物二次电池 | |
WO2018192556A1 (fr) | Composition d'électrolyte polymère et batterie secondaire polymère | |
JP2019129119A (ja) | イオン伝導性セパレータ及び電気化学デバイス | |
JP6881570B2 (ja) | ポリマ電解質組成物及びポリマ二次電池 | |
JP6981071B2 (ja) | ポリマ電解質組成物及びポリマ二次電池 | |
JP2019021539A (ja) | ポリマ電解質組成物及びポリマ二次電池 | |
JP2024504478A (ja) | 充電式電池セル | |
Feng | Physical and electrochemical investigation of various dinitrile plasticizers in highly conductive polymer electrolyte membranes for lithium ion battery application | |
JP2002343435A (ja) | 高分子電解質およびそれを用いた電池 | |
Safa | Poly (Ionic Liquid) Based Electrolyte for Lithium Battery Application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18788478 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019554850 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18788478 Country of ref document: EP Kind code of ref document: A1 |