WO2018190170A1 - 微細藻類における硝酸の基質アナログに対する耐性を向上させる方法 - Google Patents

微細藻類における硝酸の基質アナログに対する耐性を向上させる方法 Download PDF

Info

Publication number
WO2018190170A1
WO2018190170A1 PCT/JP2018/014097 JP2018014097W WO2018190170A1 WO 2018190170 A1 WO2018190170 A1 WO 2018190170A1 JP 2018014097 W JP2018014097 W JP 2018014097W WO 2018190170 A1 WO2018190170 A1 WO 2018190170A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
amino acid
acid sequence
nannochloropsis
gene
Prior art date
Application number
PCT/JP2018/014097
Other languages
English (en)
French (fr)
Inventor
真由美 和田
達郎 尾崎
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201880024485.4A priority Critical patent/CN110536961B/zh
Priority to US16/499,945 priority patent/US20210102161A1/en
Priority to AU2018252745A priority patent/AU2018252745B2/en
Publication of WO2018190170A1 publication Critical patent/WO2018190170A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a method for improving resistance to a substrate analog of nitrate in microalgae, a transformant of microalgae having resistance to a substrate analog of nitrate, and a method of producing a transformant having resistance to a substrate analog of nitrate.
  • the cultivation of microorganisms for the production of biofuels and useful substances is premised on the pure cultivation of target microorganisms. Therefore, in order to prevent contamination of microorganisms other than the target microorganism, sterilization treatment or sterilization treatment is usually performed on the culture medium or the culture apparatus.
  • sterilization treatment or sterilization treatment is usually performed on the culture medium or the culture apparatus.
  • the larger the culture scale the higher the energy and equipment costs required for sterilization of the medium and the sterilization process.
  • microorganisms particularly microalgae
  • the risk of contamination is increased.
  • microorganisms into which foreign gene markers such as antibiotic resistance genes have been introduced by gene recombination techniques can be used.
  • a strain prepared by introducing a foreign gene corresponds to a gene recombinant, and its use is restricted by the request of the Cartagena method or the like as a risk of the foreign gene spreading to the natural environment.
  • foreign genes introduced into the cells of microorganisms may spread to other species due to horizontal transmission or the like. Therefore, a technique for selectively culturing a target microorganism using a property obtained by altering an endogenous gene without using a foreign gene and utilizing the gene has attracted attention.
  • NR gene nitrate reductase
  • NR is one of nitrogen metabolism enzymes, as shown in FIG. 1, nitrate ions catalyze the reaction to produce (NO 3 - -) The reduced nitrite ion (NO 2).
  • the NR can also reduce the chlorate ion (ClO 3 ⁇ ), which is a substrate analog of nitrate ion, to catalyze the reaction of generating chlorite ion (ClO 2 ⁇ ).
  • NRT nitrate transporter
  • NRT gene a gene encoding NRT (hereinafter, also simply referred to as “NRT gene”) in Chlamydomonas reinhardtii (Non-patent Document 2). reference).
  • microalgae of the true eye point algae class such as algae belonging to the genus Nannochloropsis
  • the present invention deletes the gene encoding the following protein (A) or (B) on the genome of microalgae or suppresses the expression of the gene encoding the following protein (A) or (B),
  • the present invention relates to a method for improving the resistance of nitric acid to a substrate analog.
  • the present invention suppresses deletion or expression of a gene encoding the following protein (A) or (B) and a gene encoding the following protein (C) or (D) on the genome of microalgae
  • the present invention relates to a method for improving tolerance of nitric acid to a substrate analog of nitric acid.
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 41 A protein comprising the amino acid sequence represented by SEQ ID NO: 41.
  • B A protein comprising an amino acid sequence having 70% or more identity with the amino acid sequence of the protein (A) and having nitrate transporter activity (hereinafter also simply referred to as “NRT activity”).
  • C A protein consisting of the amino acid sequence represented by SEQ ID NO: 42.
  • D A protein comprising an amino acid sequence having 70% or more identity with the amino acid sequence of the protein (C) and having nitrate reductase activity (hereinafter also simply referred to as “NR activity”).
  • the present invention also provides a nitrate substrate in which a gene encoding the protein (A) or (B) on the genome is deleted or expression of the gene encoding the protein (A) or (B) is suppressed.
  • the present invention relates to a microalgae transformant having resistance to an analog.
  • the present invention also provides a gene encoding the protein (A) or (B) on the genome and a gene encoding the protein (C) or (D), wherein the deletion or expression of the nitrate is suppressed.
  • the present invention relates to a microalgae transformant having resistance to a substrate analog.
  • the present invention also provides a deletion of a gene encoding the protein (A) or (B) on the genome of microalgae or suppressing the expression of the gene encoding the protein (A) or (B),
  • the present invention relates to a method for producing a transformant having resistance to a substrate analog of nitrate, wherein a transformant is obtained using resistance to the substrate analog as an index.
  • the present invention provides a gene encoding the protein (A) or (B) on the microalgae genome and a gene encoding the protein (C) or (D), wherein deletion or expression is suppressed,
  • the present invention relates to a method for producing a transformant having resistance to a substrate analog of nitrate, wherein a transformant is obtained using as an index the resistance to the substrate analog.
  • FIG. 3 (a) is a schematic diagram of the NRT gene homologous recombination plasmid prepared in Example 1.
  • FIG. 3 (b) is a schematic diagram of the plasmid for homologous recombination of NR gene prepared in Example 1.
  • FIG. 4 (a) is a diagram schematically showing a method for producing an NR gene disrupted strain using an NR gene homologous recombination cassette.
  • FIG. 4 (b) is a schematic diagram comparing the sizes of DNA fragments to be amplified in order to confirm introduction of the cassette for homologous recombination between the wild strain of Nannochloropsis oculata and the NR gene-disrupted strain.
  • FIG. 4 (c) is an electrophoresis photograph (drawing substitute photograph) of the genomic fragment amplified by PCR.
  • FIG. 5 (a) is a diagram schematically showing a method for producing an NRT gene disrupted strain using an NRT gene homologous recombination cassette.
  • FIG. 5 (b) is a schematic diagram comparing the sizes of DNA fragments to be amplified in order to confirm the introduction of the homologous recombination cassette between the wild strain of Nannochloropsis oculata and the NRT gene disruption strain.
  • FIG. 5 (c) is an electrophoresis photograph (drawing substitute photograph) of the genomic fragment amplified by PCR.
  • FIG. 6 (a) is a diagram schematically showing a method for producing an NRT-NR gene-disrupted strain using an NRT-NR gene homologous recombination cassette.
  • FIG. 6 (b) is a schematic diagram comparing the sizes of DNA fragments to be amplified in order to confirm introduction of the cassette for homologous recombination between the wild strain of Nannochloropsis oculata and the NRT-NR gene disrupted strain.
  • FIG. 6 (c) is an electrophoresis photograph (drawing substitute photograph) of the genomic fragment amplified by PCR.
  • 2 is a drawing-substituting photograph in which various transformants prepared in Example 1 were cultured on an agar medium.
  • FIG. 8 (a) is a schematic diagram of the NRT-NR gene homologous recombination plasmid prepared in Example 2.
  • FIG. 8 (b) is a diagram schematically showing a method for producing an NRT gene and an NR gene-disrupted strain using an NRT gene and an NR gene homologous recombination cassette.
  • FIG. 8 (c) is a schematic diagram comparing the sizes of DNA fragments to be amplified in order to confirm introduction of the cassette for homologous recombination between the wild strain of Nannochloropsis oculata and the NRT gene / NR gene disrupted strain.
  • FIG. 8 (d) is an electrophoresis photograph (drawing substitute photograph) of the genomic fragment amplified by PCR.
  • the present invention relates to the provision of algae that can be selectively cultured for a long period of time without using a foreign drug gene marker by modifying an endogenous gene.
  • Non-Patent Document 1 based on the previous knowledge described in Non-Patent Document 1, the present inventors obtained a strain in which the NR gene of nannochloropsis of the true eyed algae was destroyed and the expression of the gene was suppressed, Resistance to chloric acid, which is a substrate analog, was confirmed. However, the improvement of chloric acid resistance as reported in general was not observed. Furthermore, suppression of the expression of the NRT gene was tried with reference to the knowledge of the Euglena described in Non-Patent Document 2. However, the NRT gene for Nannochloropsis has not been identified so far.
  • the present inventors newly identified the NRT gene of Nannochloropsis, disrupted the identified NRT gene, and measured the chlorate resistance of the obtained transformant.
  • chloric acid resistance was improved as compared with the case where only the NR gene was destroyed.
  • transformants in which the NRT gene and the NR gene were disrupted were prepared and chlorate resistance was measured.
  • chloric acid resistance was drastically improved by suppressing both NRT and NR activities.
  • by culturing in the presence of a substrate analog of nitric acid such as chloric acid the growth of undesired microorganisms can be suppressed and the transformant can be selectively cultured.
  • the present invention has been completed based on these findings.
  • the substrate analog of nitric acid in the microalgae to such an extent that a long-term selective pure culture is possible without introducing a foreign gene. Resistance can be improved.
  • the transformant of the present invention has excellent resistance to a substrate analog of nitric acid, and can be cultured for a long period of time even under selective pressure conditions (under the condition of nitric acid substrate analog).
  • the method for producing a transformant of the present invention can be cultured for a long period of time even under selective pressure conditions (under the conditions of nitric acid substrate analogs), using the resistance to nitric acid substrate analogs as an index, without introducing foreign genes. Can be produced.
  • the identity of a base sequence and an amino acid sequence is calculated by the Lipman-Pearson method (Science, 1985, vol. 227, p. 1435-1441). Specifically, it is calculated by performing an analysis assuming that Unit size to compare (ktup) is 2 using the homology analysis (Search homology) program of genetic information processing software Genetyx-Win.
  • Examples of “stringent conditions” include the method described in Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell., Cold Spring Harbor Laboratory Press].
  • upstream of a gene indicates a position on the 5 ′ end side of a gene or region regarded as a target or a region subsequent thereto, not a position from the translation start point.
  • downstream of a gene indicates a site on the 3 ′ end side of a gene or region regarded as a target or a region subsequent thereto.
  • a microalga obtained by modifying a desired gene in a host is referred to as a “transformant”.
  • the NRT gene on the genome of a particular microalga is deleted.
  • the expression of the NRT gene encoded in the genome of a specific microalgae is suppressed.
  • resistance to a substrate analog of nitric acid that affects the viability of microalgae preferably chlorate resistance
  • the transformant of the present invention can also be selected using improved resistance to nitric acid substrate analogs (preferably chloric acid resistance) as an index.
  • chlorite ions produced by reduction of chlorate ions by nitrogen metabolism are highly toxic to ordinary microorganisms.
  • the transformant of the present invention has high resistance to chloric acid. Therefore, when the transformant of the present invention is cultured in a medium containing chloric acid, contamination of unintended microorganisms can be prevented. In particular, even when the transformant of the present invention is cultured outdoors where there is a high possibility that various microorganisms and nutrients thereof will be mixed, it is possible to adequately cope with contamination during the culture.
  • the term “NRT gene” refers to DNA consisting of the nucleotide sequence of the region encoding NRT, DNA consisting of the nucleotide sequence of the region that regulates NRT expression, and the region encoding NRT and the NRT It also includes DNA consisting of the base sequence of the region that regulates expression.
  • NRT in the present invention refers to the protein (A) or (B).
  • the amino acid sequence represented by SEQ ID NO: 41 is NRT derived from Nannochloropsis oculata strain NIES-2145 (hereinafter also referred to as “NoNRT”). It should be noted that the homology of the amino acid sequence represented by SEQ ID NO: 41 with respect to the amino acid sequence of NRT of Konamitomushi (described in Non-Patent Document 2) is about 38%.
  • Both the proteins (A) and (B) have NRT activity.
  • NRT activity means the ability to transport nitrate ions and chlorate ions from the outside to the inside of cells.
  • a protein has NRT activity means that, for example, a gene in which a gene encoding the protein is linked downstream of a promoter that functions in the host cell is introduced into a host cell lacking a nitrate ion transporter, and the introduced gene is introduced. It can be confirmed by culturing the cells under the condition where the expression of sucrose and analyzing whether it can grow using nitric acid as a nitrogen source.
  • the protein (B) consists of an amino acid sequence having 70% or more identity with the amino acid sequence of the protein (A) and has NRT activity.
  • an amino acid sequence encoding a protein does not necessarily indicate a function as a protein unless the entire region is conserved, and there are regions that do not affect the function even if the amino acid sequence changes. It is known to exist. In such a region that is not essential for the function, the original activity of the protein can be maintained even if a mutation such as amino acid deletion, substitution, insertion or addition is introduced. Also in the present invention, a protein that retains NRT activity and is partially mutated in amino acid sequence can be used.
  • the identity with the amino acid sequence of the protein (A) is preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more. More preferably, 92% or more is more preferable, 95% or more is more preferable, 98% or more is more preferable, and 99% or more is further preferable.
  • one or more (for example, 1 to 141, preferably 1 to 117, more preferably 1 to 94) amino acid sequences of the protein (A). More preferably 1 to 71, more preferably 1 to 47, more preferably 1 to 38, more preferably 1 to 24, and more preferably 1 to 10 , More preferably, 1 to 5 amino acids) are deleted, substituted, inserted or added.
  • Examples of the gene encoding the protein (A) or (B) include a gene consisting of the following DNA (a) or (b).
  • the base sequence of SEQ ID NO: 39 is the base sequence of the gene encoding NoNRT.
  • the identity with the base sequence of the DNA (a) is more preferably 60% or more, preferably 65% or more, more preferably 70% or more, and 75% or more. More preferably, 80% or more is more preferable, 85% or more is more preferable, 90% or more is more preferable, 92% or more is more preferable, 95% or more is more preferable, 98% or more is more preferable, and 99% or more is further preferable.
  • the DNA (b) one or more (for example, 1 to 634, preferably 1 to 563, more preferably 1 to 493 in the base sequence of the DNA (a), 1 to 423, preferably 1 to 352, more preferably 1 to 282, more preferably 1 to 212, more preferably 1 to 141, more preferably 1. And 113 or less, more preferably 1 or more and 71 or less, more preferably 1 or more and 29 or less, more preferably 1 or more and 15 or less) bases have been deleted, substituted, inserted, or added. Also preferred is a DNA encoding the protein (A) or (B) having NRT activity. Further, the DNA (b) encodes the protein (A) or (B) that hybridizes with a DNA having a base sequence complementary to the DNA (a) under stringent conditions and has NRT activity. DNA is also preferred.
  • NRT gene can be obtained by ordinary genetic engineering techniques.
  • the NRT gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 41 or the base sequence shown in SEQ ID NO: 39.
  • services such as Invitrogen can be used for NRT gene synthesis.
  • It can also be obtained by cloning from Nannochloropsis oculata.
  • it can be performed by the method described in Molecular-Cloning-A-LABORATORY-MANUAL-THIRD-EDITION- [Joseph-Sambrook, David-W.-Russell, Cold-Spring-Harbor-Laboratory-Press (2001)].
  • Nannochloropsis oculata NIES-2145 used in the examples can be obtained from the National Institute for Environmental Studies (NIES).
  • NR in the present specification is an enzyme that reduces nitrate ions to generate nitrite ions.
  • chlorate ions are reduced as a substrate analog of nitrate ions to generate chlorite ions.
  • NR gene refers to DNA consisting of a nucleotide sequence of a region encoding NR, DNA consisting of a nucleotide sequence of a region that regulates expression of NR, or a region encoding NR and NR. It also includes DNA consisting of the base sequence of the region that regulates expression.
  • “deletion or suppression of NRT gene and NR gene” means the genetic manipulation shown in the following (I), (II), (III) or (IV).
  • the NRT gene and NR gene are deleted respectively.
  • II Suppress the expression of NRT gene and NR gene, respectively.
  • III The NRT gene is deleted and the expression of the NR gene is suppressed.
  • IV Suppress NRT gene expression and delete NR gene.
  • NR in this specification refers to the protein (C) or (D).
  • the protein consisting of the amino acid sequence of SEQ ID NO: 42 is NR (hereinafter also referred to as “NoNR”) derived from Nannochloropsis oculata strain NIES-2145, which is a microalga belonging to the genus Nannochloropsis.
  • Both the proteins (C) and (D) have NR activity.
  • NR activity refers to the activity of catalyzing the reaction of reducing nitrate ion to produce nitrite ion, or the activity of catalyzing the reaction of reducing chlorate ion to produce chlorite ion. means.
  • the protein (D) is composed of an amino acid sequence having 70% or more identity with the amino acid sequence of the protein (C) and has NR activity.
  • an amino acid sequence encoding an enzyme protein does not necessarily indicate enzyme activity unless the sequence of the entire region is conserved, and there are regions that do not affect enzyme activity even if the amino acid sequence changes. It is known to exist. In such a region that is not essential for enzyme activity, the original activity of the enzyme can be maintained even if a mutation such as amino acid deletion, substitution, insertion or addition is introduced. Also in the present invention, a protein that retains NR activity and has a partially mutated amino acid sequence can be used.
  • the identity with the amino acid sequence of the protein (C) is preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more. More preferably, 92% or more is more preferable, 95% or more is more preferable, 98% or more is more preferable, and 99% or more is further preferable.
  • one or more amino acid sequences of the protein (C) are deleted, substituted, inserted or added.
  • Nannochloropsis oculata can be obtained from conservation institutions such as private or public laboratories.
  • Nannochloropsis oculata strain NIES-2145 can be obtained from the National Institute for Environmental Studies (NIES).
  • Examples of the gene encoding the NR include the gene consisting of the following DNA (c) or (d).
  • the base sequence of SEQ ID NO: 40 is the base sequence of the gene encoding NoNR.
  • the identity with the base sequence of the DNA (c) is preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more. More preferably, 92% or more is more preferable, 95% or more is more preferable, 98% or more is more preferable, and 99% or more is further preferable.
  • DNA (d) one or more (for example, 1 or more and 764 or less, preferably 1 or more and 636 or less, more preferably 1 or more and 509 or less) in the base sequence represented by SEQ ID NO: 40, Preferably from 1 to 382, more preferably from 1 to 255, more preferably from 1 to 204, more preferably from 1 to 128, more preferably from 1 to 51, and more
  • a DNA encoding the protein (C) or (D), preferably having 1 to 26 bases) deleted, substituted, inserted or added and having NR activity, is also preferred.
  • the DNA (d) encodes the protein (C) or (D) that hybridizes with a DNA comprising a base sequence complementary to the DNA (c) under stringent conditions and has NR activity. DNA is also preferred.
  • NR gene can be obtained by ordinary genetic engineering techniques.
  • the NR gene can be artificially synthesized based on the amino acid sequence shown in SEQ ID NO: 42 or the base sequence shown in SEQ ID NO: 40.
  • services such as Invitrogen can be used.
  • It can also be obtained by cloning from Nannochloropsis oculata.
  • it can be performed by the method described in Molecular-Cloning-A-LABORATORY-MANUAL-THIRD-EDITION- [Joseph-Sambrook, David-W.-Russell, Cold-Spring-Harbor-Laboratory-Press (2001)].
  • Nannochloropsis oculata NIES-2145 used in the examples can be obtained from the National Institute for Environmental Studies (NIES).
  • the method for suppressing the deletion or expression of the NRT gene or NR gene on the genome is not particularly limited and can be appropriately selected from conventional methods. Whether the NRT gene or NR gene is deleted or their expression is suppressed can be confirmed by analyzing the genome sequence of the transformant and measuring the NRT activity and NR activity in a conventional manner.
  • the NRT gene or NR gene can be deleted by destroying the NRT gene or NR gene on the genome. Specifically, an appropriate DNA fragment containing a part of the NRT gene or NR gene is taken into the cells of microalgae, and the NRT gene on the genome is obtained by homologous recombination in a partial region of the NRT gene or NR gene.
  • Site-specific point mutations eg, frameshift mutations, inframe mutations, insertion of stop codons
  • NRT gene or NR gene eg, active site, substrate binding site, and transcription or translation initiation region
  • antisense method e.g., antisense method, RNA interference method, promoter competition and the like.
  • the size of the DNA cassette for homologous recombination used for the destruction of the NRT gene or NR gene can be appropriately set in consideration of the efficiency of introduction into microalgae, the efficiency of homologous recombination, the sizes of the various genes, and the like.
  • 400 bp or more is preferable, and 500 bp or more is more preferable.
  • the upper limit is preferably 2.0 kbp, more preferably 2.5 kbp.
  • the length of the genome to be deleted by homologous recombination is preferably 15 kbp or less, more preferably 10 kbp or less.
  • the length of various genes to be introduced is preferably 10 kbp or less, and more preferably 8 kbp or less.
  • the transformation method for introducing the DNA cassette for homologous recombination into microalgae can be appropriately selected from conventional methods according to the type of microalgae. For example, transformation methods using calcium ions, general competent cell transformation methods, protoplast transformation methods, electroporation methods, LP transformation methods, methods using Agrobacterium, particle gun methods, etc. . In the present invention, transformation can also be performed using the electroporation method described in Nature Communications, DOI: 10.1038 / ncomms1688, 2012 or the like.
  • the microalgae used in the present invention is preferably a true algae microalgae, more preferably an Eustigmatales microalgae, more preferably a Nannochloropsis microalgae from the viewpoint of establishing genetic modification techniques. More preferred.
  • Specific examples of the microalgae of the genus Nannochloropsis include Nannochloropsis oceanica , Nannochloropsis gaditana , Nannochloropsis salina , Nannochloropsis salina , Nannochloropsis salina Examples thereof include Nannochloropsis atomus , Nannochloropsis maculata , Nannochloropsis granulata , Nannochloropsis sp. Of these, Nannochloropsis oculata, Nannochloropsis oceanica or oculata, and Nannochloropsis gaditana are preferred, and Nannochloropsis oculata is more preferred.
  • Selection of transformants in which NRT gene or NR gene is deleted or their expression is suppressed can be performed by a conventional method, but it is preferable to use resistance to nitrate substrate analogs as an index, and chlorate resistance as an index. It is more preferable.
  • the concentration of the substrate analog of nitrate (preferably chloric acid) or a salt thereof contained in the medium and the culture period of the transformant are appropriately selected, and the substrate analog of nitrate (preferably Is selected as a transformant that has acquired resistance to a substrate analog of nitric acid (preferably chloric acid).
  • the concentration of chloric acid or a salt thereof contained in the medium is preferably 3 mM or more, and more preferably 5 mM or more.
  • the culture period is preferably 1 week or longer, more preferably 2 weeks or longer, and preferably 8 weeks or shorter.
  • the transformant is preferably cultured in a medium containing urea, ammonia, nitrous acid or the like as a nitrogen source.
  • the concentration of the nitrogen source contained in the medium can be set as appropriate. Specifically, the concentration of the nitrogen source is preferably 1 mg / L or more, more preferably 5 mg / L or more, and more preferably 10 mg / L or more in terms of nitrogen atom equivalent.
  • the upper limit is preferably 2,000 mg / L, more preferably 1,000 mg / L, more preferably 500 mg / L, and more preferably 200 mg / L.
  • the present invention further discloses a method and a transformant for improving resistance to a substrate analog of nitric acid in the following microalgae.
  • Nitric acid in microalgae by deleting the gene encoding the following protein (A) or (B) on the genome of microalgae or suppressing the expression of the gene encoding the following protein (A) or (B) Of improving resistance to substrate analogs.
  • a protein comprising the amino acid sequence represented by SEQ ID NO: 41.
  • the identity with the amino acid sequence of the protein (A) is 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 92 % Or more, more preferably 95% or more, more preferably 98% or more, more preferably 99% or more, and a protein having NRT activity.
  • the identity with the amino acid sequence of the protein (A) is 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 92 % Or more, more preferably 95% or more, more preferably 98% or more, more preferably 99% or more, and a protein having NRT activity.
  • C A protein consisting of the amino acid sequence represented by SEQ ID NO: 42.
  • the identity with the amino acid sequence of the protein (C) is 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 92 % Or more, more preferably 95% or more, more preferably 98% or more, more preferably 99% or more, and a protein having NR activity.
  • a substrate analog of nitrate wherein the gene encoding the protein (A) or (B) on the genome of microalgae is deleted or the expression of the gene encoding the protein (A) or (B) is suppressed.
  • ⁇ 6> Deletion or expression of a gene encoding the protein (A) or (B) on the genome of microalgae and a gene encoding the protein (C) or (D) is suppressed, and a nitrate substrate A method for producing a transformant having resistance to a substrate analog of nitrate, wherein the transformant is obtained using resistance to the analog as an index.
  • ⁇ 7> The method or transformant according to any one of ⁇ 1> to ⁇ 6>, wherein the nitric acid substrate analog is chloric acid.
  • the transformant can grow when cultured in a medium containing chloric acid or a salt thereof at 3 mM or more, preferably 5 mM or more for 1 week or more, preferably 2 weeks or more, 8 weeks or less.
  • ⁇ 9> Any one of the above ⁇ 1> to ⁇ 8>, wherein the transformant is cultured in a medium containing at least one selected from the group consisting of urea, ammonia, and nitrous acid as a nitrogen source. Or a transformant.
  • the concentration of the nitrogen source contained in the medium is 1 mg / L or more, preferably 5 mg / L or more, more preferably 10 mg / L or more, and 2,000 mg / L or less, preferably in terms of nitrogen atom equivalent.
  • the protein (B) has one or more, preferably 1 to 141, more preferably 1 to 117, more preferably 1 or more amino acid sequences in the protein (A). 94 or less, more preferably 1 or more and 71 or less, more preferably 1 or more and 47 or less, more preferably 1 or more and 38 or less, more preferably 1 or more and 24 or less, more preferably 1 or more.
  • the method or trait according to any one of the above ⁇ 1> to ⁇ 10> which is a protein in which 10 or less, more preferably 1 or more and 5 or less amino acids are deleted, substituted, inserted or added Convertible.
  • ⁇ 12> The method according to any one of ⁇ 1> to ⁇ 11>, wherein the gene encoding the protein (A) or (B) is a gene consisting of the following DNA (a) or (b): Or a transformant.
  • the DNA (b) has one or more, preferably 1 or more and 634 or less, more preferably 1 or more and 563 or less, more preferably 1 or more, in the base sequence of the DNA (a).
  • the protein (D) has one or more, preferably 1 or more and 523 or less, more preferably 1 or more and 457 or less, more preferably 1 or more, in the amino acid sequence of the protein (C). 392 or less, more preferably 1 or more and 327 or less, more preferably 1 or more and 261 or less, more preferably 1 or more and 196 or less, more preferably 1 or more and 130 or less, more preferably 1 or more 104 or less, more preferably 1 or more and 65 or less, more preferably 1 or more and 26 or less, and even more preferably 1 or more and 13 or less amino acids deleted, substituted, inserted or added.
  • the identity with the base sequence of DNA (c) is 70% or more, preferably 75% or more, more preferably 80% or more, more preferably 85% or more, more preferably 90% or more, more preferably 92 % Or more, more preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more, and a DNA encoding a protein having NR activity.
  • the DNA (d) has one or more, preferably 1 or more and 764 or less, more preferably 1 or more and 636 or less, more preferably 1 or more and 509, in the base sequence of the DNA (c).
  • microalgae according to any one of the above items ⁇ 1> to ⁇ 16>, wherein the microalgae are true-eyed point algae, preferably Eustigmataceae microalgae, and more preferably a nanoalga belonging to the genus Nannochloropsis The method or transformant as described.
  • Nannochloropsis oculata Nannochloropsis oceanica, Nannochloropsis gaditana, Nannochloropsis salina, Nannochloropsis atoms, Nannochloropsis maculata, Nannochloropsis granulata Selected from the group consisting of Nannochloropsis oculata, preferably Nannochloropsis oceanica, and Nannochloropsis gadana, more preferably Nannochloropsis oculata
  • the method or transformant according to any one of ⁇ 1> to ⁇ 17>, wherein
  • Example 1 Giving chlorate resistance to Nannochloropsis oculata (1) Construction of plasmid for expression of zeocin resistance gene Artificial synthesis of zeocin resistance gene (SEQ ID NO: 1) and using this as a template, primer number 2 shown in Table 1 PCR was carried out using the primer pair of primer No. 3 to amplify the zeocin resistance gene.
  • primer pair of primer number 4 and primer number 5 shown in Table 1 was performed using the primer pair of primer No.
  • VCP1 promoter sequence SEQ ID NO: 8
  • VCP1 terminator sequence SEQ ID NO: 9
  • PCR was performed using the primer pair of primer number 10 and primer number 11 shown in Table 1 to amplify plasmid vector pUC118.
  • the obtained four fragments were fused using In-Fusion HD Cloning Kit (Clontech) to construct a plasmid for expressing zeocin resistance gene.
  • genomic sequence (W) positions 2254 to 3849 of SEQ ID NO: 20 (SEQ ID NO: 21)
  • W genomic sequence
  • X genome Sequence
  • Y Genomic sequence
  • Z genomic sequence
  • PCR was carried out using the above-mentioned zeocin resistance gene expression plasmid as a template and the primer pair of primer number 25 and primer number 26 shown in Table 1 to obtain a zeocin resistance gene expression cassette Pvcp1-ble-Tvcp1.
  • genomic sequence (W) fragment, genomic sequence (X) fragment, zeocin resistant gene expression cassette, and the aforementioned plasmid vector pUC118 were fused using In-Fusion HD Cloning Kit (Clontech), A plasmid for homologous recombination of NRT gene (hereinafter also referred to as “plasmid for NRT gene KO”) was constructed.
  • plasmid for NRT gene KO A plasmid for homologous recombination of NRT gene
  • a genome sequence (Y) fragment, a genome sequence (Z) fragment, a zeocin resistant gene expression cassette fragment, and a plasmid vector pUC118 are fused, and a plasmid for NR gene homologous recombination (hereinafter referred to as “plasmid for NR gene KO”).
  • NRT-NR gene homologous recombination plasmid (1) (hereinafter “NRT- The plasmid for NR gene KO (also referred to as “1”) was constructed.
  • These plasmids include an upstream genomic sequence of SEQ ID NO: 20 (genomic sequence (W) fragment or genomic sequence (Y) fragment), VCP1 promoter sequence, zeocin resistance gene, VCP1 terminator sequence, and downstream genomic sequence of SEQ ID NO: 20 ( It consists of an insert sequence linked in the order of a genomic sequence (X) fragment or a genomic sequence (Z) fragment) and a pUC118 vector sequence (see FIGS. 3A to 3C).
  • SEQ ID NO: 20 genomic sequence (W) fragment or genomic sequence (Y) fragment
  • VCP1 promoter sequence zeocin resistance gene
  • VCP1 terminator sequence VCP1 terminator sequence
  • downstream genomic sequence of SEQ ID NO: 20 It consists of an insert sequence linked in the order of a genomic sequence (X) fragment or a genomic sequence (Z) fragment) and a pUC118 vector sequence (see FIGS. 3A to 3C).
  • PCR was performed using the above-mentioned plasmid for homologous recombination of NRT-NR gene (1) as a template and using the primer pair of primer number 27 and primer number 30 shown in Table 1, and a cassette for homologous recombination of NRT-NR gene ( 1) (the insert sequence of the plasmid shown in FIG. 3 (c)) was amplified.
  • Each amplified DNA fragment was purified using High Pure PCR Product Purification Kit (Roche Applied Science).
  • the cultured Nannochloropsis oculata strain NIES-2145 was collected by centrifugation, washed with a 384 mM sorbitol solution, and a cell solution suspended in sorbitol was used as a host. About 500 ng of the three types of cassettes for homologous recombination amplified above were mixed with host cells, respectively, and electroporation was performed under the conditions of 50 ⁇ F, 500 ⁇ , and 2,200 v / 2 mm.
  • Urea liquid medium (urea 400 mg, NaH 2 PO 4 ⁇ 2H 2 O 30 mg, vitamin B12 0.5 ⁇ g, biotin 0.5 ⁇ g, thiamine 100 ⁇ g, Na 2 SiO 3 ⁇ 9H 2 O 10 mg, Na 2 EDTA ⁇ 2H 2 O 4.4 mg, FeCl 3 ⁇ 6H 2 O 3.16mg, CoCl 2 ⁇ 6H 2 O 12 ⁇ g, ZnSO 4 ⁇ 7H 2 O 21 ⁇ g, MnCl 2 ⁇ 4H 2 O 180 ⁇ g, CuSO 4 ⁇ 5H 2 O 7 ⁇ g, Na 2 MoO 4 ⁇ 2H 2 O 7 ⁇ g / Recovery culture was performed in artificial seawater (1 L) (hereinafter referred to as “urea medium”) for 24 hours.
  • urea medium artificial seawater (1 L)
  • an NR gene disrupted strain (hereinafter also referred to as “ ⁇ NR strain”) comprises a wild (WT) strain genomic DNA and the NR gene homologous recombination cassette (NR-KO fragment). It can be obtained by disrupting the NR gene encoded on the genome by recombination using a homologous sequence. Selection of the ⁇ NR strain was performed using the primer pair of primer number 31 and primer number 32 shown in Table 1, and the difference in length of the amplified fragments was used as an index (FIGS. 4B and 4C). )reference). As shown in FIG. 4 (c), amplification of a gene fragment of about 3.4 kbp was confirmed in the WT strain. In contrast, in the ⁇ NR strain, amplification of a gene fragment of about 5.0 kbp was confirmed.
  • the NRT gene disruption strain (hereinafter also referred to as “ ⁇ NRT strain”) has a homologous sequence of the genomic DNA of the WT strain and the cassette for NRT gene homologous recombination (NRT-KO fragment). It can be obtained by destroying the NRT gene encoded on the genome by the recombination utilized. Selection of the ⁇ NRT strain was performed by using the primer pair of primer number 33 and primer number 34 shown in Table 1 and using the presence or absence of fragment amplification as an index (see FIGS. 5B and 5C). As shown in FIG. 5 (c), gene fragments are not amplified in the WT strain. In contrast, amplification of a gene fragment of about 3.3 kbp was confirmed in the ⁇ NR strain.
  • the NRT-NR gene-disrupted strain (hereinafter also referred to as “ ⁇ NRT ⁇ NR strain”) comprises the WT strain genomic DNA and the NRT-NR gene homologous recombination cassette (1) (NRT This can be obtained by disrupting the NRT gene and NR gene encoded on the genome by recombination using the homologous sequence of the -NR-KO fragment (1)).
  • NRT This can be obtained by disrupting the NRT gene and NR gene encoded on the genome by recombination using the homologous sequence of the -NR-KO fragment (1).
  • Selection of the ⁇ NRT ⁇ NR strain was performed using the primer pair of primer number 35 and primer number 36 shown in Table 1, and the difference in length of the amplified fragments was used as an index (FIGS. 6B and 6C). )reference).
  • FIG. 6C amplification of a gene fragment of about 6.9 kbp was confirmed in the WT strain.
  • the state of the agar medium after culture is shown in FIG. As shown in FIG. 7, when the nitrate agar medium was used, growth was possible only for the WT strain, but growth was not confirmed for the ⁇ NR strain, ⁇ NRT strain, and ⁇ NRT ⁇ NR strain. On the other hand, all of the WT strain, ⁇ NR strain, ⁇ NRT strain, and ⁇ NRT ⁇ NR strain were able to grow on a urea agar medium. From these results, when the NRT gene and NR gene are disrupted in algae belonging to the genus Nannochloropsis, the assimilation ability of nitrate is lost. Nannochloropsis also shows that urea can be used as a nitrogen source instead of nitric acid.
  • Nannochloropsis exhibits cytotoxicity by being converted by NR. Therefore, the sensitivity of Nannochloropsis to chloric acid was evaluated by comparing the growth of WT strain, ⁇ NR strain, ⁇ NRT strain, and ⁇ NRT ⁇ NR strain on a chloric acid-containing agar medium. As a result, as shown in the lower part of FIG. 7, the WT strain was killed by exposure to chloric acid. In addition, as is generally said, growth was also evaluated in strains that suppressed NR gene expression ( ⁇ NR strain), but growth was not confirmed under 5 mM chloric acid conditions. Resistance could not be improved.
  • the ⁇ NRT strain was confirmed to grow even under chloric acid exposure conditions, and it was confirmed that suppression of NRT activity improved chloric acid tolerance compared to the WT strain. Furthermore, the ⁇ NRT ⁇ NR strain showed better growth than the ⁇ NRT strain, indicating that chloric acid resistance was dramatically improved by suppressing both NRT and NR activities.
  • the ⁇ NRT strain was confirmed to grow even under the condition where the concentration of chloric acid was 5 mM, and it was confirmed that suppression of NRT activity improved chloric acid resistance compared to the WT strain and ⁇ NR strain. Furthermore, the ⁇ NRT ⁇ NR strain dramatically improved the resistance to chloric acid, and was able to grow even under a chloric acid concentration of 30 mM.
  • the resistance to the substrate analog of nitric acid such as chloric acid can be improved by deleting or suppressing the expression of the NRT gene in the true eyed algae. Furthermore, in addition to the NRT gene, the deletion or expression of the NR gene is also suppressed, so that the resistance to nitrate substrate analogs is significantly improved, and a transformant that can grow in the presence of high concentrations of chloric acid is produced. can do.
  • Example 2 Acquisition of ⁇ NRT ⁇ NR strain using chlorate resistance of Nannochloropsis oculiata as an index
  • a fragment in which a partial sequence (genome sequence (W) (SEQ ID NO: 21), genome sequence (Z) (SEQ ID NO: 24)) of the sequence (SEQ ID NO: 20) was linked by the pUC118 vector sequence was amplified.
  • NRT-NR gene for KO the plasmid for homologous recombination of NRT-NR gene not containing the drug resistance gene (ble) expression cassette (2) (hereinafter referred to as “NRT-NR gene for KO”). Plasmid (2) ”) was also constructed.
  • This expression plasmid consists of an insert sequence in which the genome sequence (W) and genome sequence (Z) of the Nannochloropsis oculiata strain NIES-2145 shown in FIG. 2 are sequentially linked, and a pUC118 vector sequence (FIG. 8 (a )reference).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

微細藻類のゲノム上の下記タンパク質(A)又は(B)をコードする遺伝子を欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法。 (A)配列番号41で表されるアミノ酸配列からなるタンパク質。 (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。

Description

微細藻類における硝酸の基質アナログに対する耐性を向上させる方法
 本発明は、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法、硝酸の基質アナログに対する耐性を有する微細藻類の形質転換体、及び硝酸の基質アナログに対する耐性を有する形質転換体の作製方法に関する。
 一般にバイオ燃料や有用物質の生産のために行う微生物の培養は、目的とする微生物の純粋培養を前提としている。よって、目的とする微生物以外の微生物のコンタミネーションを防ぐため、通常、培地や培養機器に対して滅菌処理又は殺菌処理を施す。
 しかし、培養スケールが大きくなるほど、培地等の滅菌処理や殺菌処理にかかるエネルギーや設備費がかさむ。さらに、滅菌処理、殺菌処理を施した培地を用いたとしても、処理後に生じるコンタミネーションに対して目的外の微生物の増殖を抑えることは困難である。特に、開放型のオープンポンド等を用いて屋外で微生物(特に、微細藻類)を培養した場合、コンタミネーションが発生するリスクは高まる。
 このことから、目的外の微生物の増殖を抑え、長期間にわたって目的微生物を選択的に培養することを可能とする、微生物株や微生物の培養方法の開発が重要とされている。
 微生物のコンタミネーションを防ぐ方法として、遺伝子組換え技術により抗生物質耐性遺伝子などの外来遺伝子マーカーを導入した微生物を用いることができる。しかし、外来遺伝子を導入して作製された株は遺伝子組換え体に該当し、自然環境に外来遺伝子が拡散するリスクとして、カルタヘナ法などの要請により、その使用には制限が設けられている。例えば、微生物の細胞内に導入された外来遺伝子は、水平伝播等によって他の生物種へ拡散してしまう可能性が懸念される。
 そこで、外来遺伝子を利用することなく内在性の遺伝子を改変し、これにより獲得する性質を利用した、目的微生物を選択的に培養する技術が注目されている。
 内在性の遺伝子として、硝酸還元酵素(Nitrate Reductase、以下「NR」ともいう)をコードする遺伝子(以下、「NR遺伝子」ともいう)が存在する(非特許文献1参照)。NRは窒素代謝酵素の1種であり、図1に示すように、硝酸イオン(NO3 -)を還元して亜硝酸イオン(NO2 -)を生成する反応を触媒する。また、このNRは硝酸イオンの基質アナログである塩素酸イオン(ClO3 -)を還元し、亜塩素酸イオン(ClO2 -)を生成する反応を触媒することもできる。一般に、亜塩素酸イオンは細胞毒性を示すこと、及び、NR遺伝子の発現を抑制することで塩素酸の存在下でも生育可能となること、が知られている。このことから、NR遺伝子の抑制によって塩素酸耐性を向上させ、この塩素酸耐性を利用して目的微生物の選択的な培養が可能であると期待される。
 また、窒素同化に関連するタンパク質として、硝酸トランスポーター(Nitrate Transporter、以下「NRT」ともいう)が存在する。NRTは、生物における窒素同化(硝酸同化)の最初の段階で、外界から細胞内部へ、硝酸イオンを輸送するタンパク質である。そして、コナミドリムシ(Chlamydomonas reinhardtii)において、NRTをコードする遺伝子(以下単に、「NRT遺伝子」ともいう)の発現を抑制することで、塩素酸耐性を付与できることが知られている(非特許文献2参照)。
 近年、バイオ燃料生産に有用であるとして、微細藻類が注目を集めている。特にナンノクロロプシス(Nannochloropsis)属に属する藻類など、真正眼点藻綱の微細藻類は、バイオディーゼル燃料として利用可能な油脂を光合成によって生産でき、しかも食料と競合しないことから、次世代のバイオマス資源として注目されている。
 そこで、開放型のオープンポンド等を用いてこれら微細藻類を屋外で培養する場合のコンタミネーション対策として、外来の遺伝子を用いることなく内在性の遺伝子を利用し、何らかの薬剤耐性を指標とした、目的藻類の選択的な培養方法の開発が期待される。しかしこれまでに、真正眼点藻綱の内在性遺伝子を利用して、何らかの薬剤耐性を付与することについての報告はない。
Proceedings of the National Academy of Sciences, 2011, vol. 108(52), p. 21265-21269 Mol. Cell. Biology., 1995, vol. 15(10), p. 5762-5769
 本発明は、微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子を欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法に関する。
 また本発明は、微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子、並びに下記タンパク質(C)若しくは(D)をコードする遺伝子を、欠失又は発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法に関する。
(A)配列番号41で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性(以下単に、「NRT活性」ともいう)を有するタンパク質。
(C)配列番号42で表されるアミノ酸配列からなるタンパク質。
(D)前記タンパク質(C)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性(以下単に、「NR活性」ともいう)を有するタンパク質。
 また本発明は、ゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子が欠失、又は前記タンパク質(A)若しくは(B)をコードする遺伝子の発現が抑制されている、硝酸の基質アナログに対する耐性を有する、微細藻類の形質転換体に関する。
 また本発明は、ゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子、並びに前記タンパク質(C)若しくは(D)をコードする遺伝子が、欠失又は発現が抑制されている、硝酸の基質アナログに対する耐性を有する、微細藻類の形質転換体に関する。
 また本発明は、微細藻類のゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子を欠失、又は前記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、硝酸の基質アナログに対する耐性を指標として形質転換体を取得する、硝酸の基質アナログに対する耐性を有する形質転換体の作製方法に関する。
 さらに本発明は、微細藻類のゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子、並びに前記タンパク質(C)若しくは(D)をコードする遺伝子を、欠失又は発現を抑制し、硝酸の基質アナログに対する耐性を指標として形質転換体を取得する、硝酸の基質アナログに対する耐性を有する形質転換体の作製方法に関する。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
微細藻類における、NRとNRTとが協働して行う、硝酸イオンとその基質アナログ(塩素酸イオン)の代謝経路を模式的に示す図である。 ナンノクロロプシス・オキュラータ(Nannochloropsis oculata)の野生株における、NRT遺伝子及びNR遺伝子周辺のゲノム配列を模式的に示す図である。 図3(a)は、実施例1で作製したNRT遺伝子相同組換え用プラスミドの模式図である。図3(b)は、実施例1で作製したNR遺伝子相同組換え用プラスミドの模式図である。図3(c)は、実施例1で作製したNRT-NR遺伝子相同組換え用プラスミドの模式図である。 図4(a)は、NR遺伝子相同組換え用カセットを用いたNR遺伝子破壊株の作製方法を模式的に示す図である。図4(b)は、ナンノクロロプシス・オキュラータの野生株とNR遺伝子破壊株について、相同組換え用カセットの導入を確認するために増幅するDNA断片のサイズを比較する模式図である。図4(c)は、PCRにより増幅されたゲノム断片の電気泳動写真(図面代用写真)である。 図5(a)は、NRT遺伝子相同組換え用カセットを用いたNRT遺伝子破壊株の作製方法を模式的に示す図である。図5(b)は、ナンノクロロプシス・オキュラータの野生株とNRT遺伝子破壊株について、相同組換え用カセットの導入を確認するために増幅するDNA断片のサイズを比較する模式図である。図5(c)は、PCRにより増幅されたゲノム断片の電気泳動写真(図面代用写真)である。 図6(a)は、NRT-NR遺伝子相同組換え用カセットを用いたNRT-NR遺伝子破壊株の作製方法を模式的に示す図である。図6(b)は、ナンノクロロプシス・オキュラータの野生株とNRT-NR遺伝子破壊株について、相同組換え用カセットの導入を確認するために増幅するDNA断片のサイズを比較する模式図である。図6(c)は、PCRにより増幅されたゲノム断片の電気泳動写真(図面代用写真)である。 実施例1で作製した各種形質転換体を寒天培地で培養した、図面代用写真である。 図8(a)は、実施例2で作製したNRT-NR遺伝子相同組換え用プラスミドの模式図である。図8(b)は、NRT遺伝子及びNR遺伝子相同組換え用カセットを用いたNRT遺伝子及びNR遺伝子破壊株の作製方法を模式的に示す図である。図8(c)は、ナンノクロロプシス・オキュラータの野生株とNRT遺伝子及びNR遺伝子破壊株について、相同組換え用カセットの導入を確認するために増幅するDNA断片のサイズを比較する模式図である。図8(d)は、PCRにより増幅されたゲノム断片の電気泳動写真(図面代用写真)である。
発明の詳細な説明
 前述のように、真正眼点藻綱の微細藻類において、外来遺伝子を利用することなく内在性の遺伝子を改変し、何らかの薬剤に対して耐性が向上した微細藻類を作製する方法については、ほとんど報告がない。
 そこで本発明は、内在性遺伝子を改変することで、外来の薬剤遺伝子マーカーを利用することなく、長期間にわたって選択的な純粋培養を可能とする藻類の提供に関する。
 本発明者らは上記課題に鑑み、鋭意検討を行った。
 本発明者らはまず、非特許文献1に記載の先行の知見を基に、真正眼点藻綱のナンノクロロプシスのNR遺伝子を破壊しその遺伝子の発現が抑制された株を取得し、硝酸の基質アナログである塩素酸に対する耐性を確認した。しかし、一般に報告されているような塩素酸耐性の向上は見られなかった。
 さらに、非特許文献2に記載のコナミドリムシの知見を参考にNRT遺伝子の発現の抑制を試みた。しかし、ナンノクロロプシスのNRT遺伝子はこれまで同定されていなかった。
 そこで、本発明者らは、ナンノクロロプシスのNRT遺伝子を新たに同定し、同定したNRT遺伝子を破壊して、得られた形質転換体の塩素酸耐性を測定した。その結果、NR遺伝子のみを破壊した場合と比較して、塩素酸耐性が向上した。
 さらに、NRT遺伝子とNR遺伝子を破壊した形質転換体を作製し、塩素酸耐性を測定した。その結果、NRTとNRの活性が共に抑制されることで塩素酸耐性が飛躍的に向上することも見出した。
 そして、塩素酸などの硝酸の基質アナログの存在下で培養を行うことによって、目的外の微生物の増殖を抑制し、前記形質転換体を選択的に培養できることを見出した。
 本発明はこれらの知見に基づき完成されるに至ったものである。
 本発明の微細藻類における硝酸の基質アナログに対する耐性を向上させる方法によれば、外来遺伝子を導入することなく、長期間の選択的な純粋培養を可能にできる程度まで、微細藻類における硝酸の基質アナログ耐性を向上させることができる。
 また本発明の形質転換体は、硝酸の基質アナログに対する耐性に優れ、選択圧条件下(硝酸の基質アナログ条件下)でも、長期間にわたって培養が可能である。
 さらに本発明の形質転換体の作製方法は、外来遺伝子を導入することなく、硝酸の基質アナログに対する耐性を指標に、選択圧条件下(硝酸の基質アナログ条件下)でも、長期間にわたって培養が可能な形質転換体を作製できる。
 本明細書において、塩基配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,vol.227,p.1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Winのホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 また本明細書において「ストリンジェントな条件」としては、例えばMolecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook,David W.Russell.,Cold Spring Harbor Laboratory Press] 記載の方法が挙げられる。例えば、6×SSC(1×SSCの組成:0.15M塩化ナトリウム、0.015Mクエン酸ナトリウム、pH7.0)、0.5%SDS、5×デンハート及び100mg/mLニシン精子DNAを含む溶液にプローブとともに65℃で8~16時間恒温し、ハイブリダイズさせる条件が挙げられる。
 さらに明細書において、遺伝子の「上流」とは、翻訳開始点からの位置ではなく、対象として捉えている遺伝子又は領域の5'末端側の部位又はこれに続く領域を示す。一方、遺伝子の「下流」とは、対象として捉えている遺伝子又は領域の3'末端側の部位又はこれに続く領域を示す。
 また、本明細書において、宿主に対して所望の遺伝子の改変を行い得られた微細藻類を「形質転換体」という。
 本発明の第1の実施態様では、特定の微細藻類のゲノム上のNRT遺伝子を欠失させる。あるいは、特定の微細藻類のゲノムにコードされるNRT遺伝子の発現を抑制する。特定の微細藻類において後述のNRT遺伝子の欠失又はその遺伝子の発現を抑制することで、微細藻類の生育性に影響を与える硝酸の基質アナログに対する耐性、好ましくは塩素酸耐性、が向上する。本発明の形質転換体は、向上した硝酸の基質アナログに対する耐性(好ましくは塩素酸耐性)を指標に選抜することもできる。
 さらに前述のように、窒素代謝により塩素酸イオンが還元されて生成する亜塩素酸イオンは、通常の微生物に対して高い毒性を示す。これに対して本発明の形質転換体は塩素酸に対して高い耐性を有する。そのため、塩素酸を含有する培地で本発明の形質転換体を培養した場合、目的外の微生物のコンタミネーションを防止することができる。特に、本発明の形質転換体を、各種微生物やこれらの栄養源が混入する可能性が高い屋外で培養しても、培養途中でのコンタミネーションに対して十分に適宜対処できる。
 なお、本明細書において「NRT遺伝子」とは、NRTをコードする領域の塩基配列からなるDNAの他、NRTの発現を調節する領域の塩基配列からなるDNAや、NRTをコードする領域とNRTの発現を調節する領域の塩基配列からなるDNAも包含する。
 本発明におけるNRTは、前記タンパク質(A)又は(B)を指す。配列番号41で表されるアミノ酸配列は、ナンノクロロプシス・オキュラータNIES-2145株由来のNRT(以下、「NoNRT」ともいう)である。なお、コナミドリムシ(非特許文献2に記載)のNRTのアミノ酸配列に対する、配列番号41で表されるアミノ酸配列の相同性は、約38%である。
 前記タンパク質(A)及び(B)はいずれも、NRT活性を有する。本明細書において「NRT活性」とは、外界から細胞内部への硝酸イオンや塩素酸イオンの輸送能を意味する。
 タンパク質がNRT活性を有することは、例えば、宿主細胞内で機能するプロモーターの下流に前記タンパク質をコードする遺伝子を連結したDNAを、硝酸イオンの輸送体が欠損した宿主細胞へ導入し、導入した遺伝子が発現する条件下で細胞を培養し、硝酸を窒素源として生育が可能かどうかを分析することで確認できる。
 タンパク質(B)は、前記タンパク質(A)のアミノ酸配列との同一性が70%以上のアミノ酸配列からなり、かつNRT活性を有する。
 一般に、タンパク質をコードしているアミノ酸配列は、必ずしも全領域の配列が保存されていなければタンパク質としての機能を示さないというものではなく、アミノ酸配列が変化しても機能に影響を与えない領域も存在することが知られている。このような機能に必須でない領域においては、アミノ酸の欠失、置換、挿入又は付加といった変異が導入されてもタンパク質本来の活性を維持することができる。本発明においても、このようにNRT活性が保持され、かつアミノ酸配列が一部変異したタンパク質を用いることができる。
 前記タンパク質(B)において、NRT活性の点から、前記タンパク質(A)のアミノ酸配列との同一性は75%以上が好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がより好ましく、95%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。また、前記タンパク質(B)として、前記タンパク質(A)のアミノ酸配列に、1又は複数個(例えば1個以上141個以下、好ましくは1個以上117個以下、より好ましくは1個以上94個以下、より好ましくは1個以上71個以下、より好ましくは1個以上47個以下、より好ましくは1個以上38個以下、より好ましくは1個以上24個以下、より好ましくは1個以上10個以下、より好ましくは1個以上5個以下)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 前記タンパク質(A)又は(B)をコードする遺伝子として、下記DNA(a)又は(b)からなる遺伝子が挙げられる。
 
(a)配列番号39で表される塩基配列からなるDNA。
(b)前記DNA(a)の塩基配列と同一性が55%以上の塩基配列からなり、かつNRT活性を有するタンパク質をコードするDNA。
 
 配列番号39の塩基配列は、NoNRTをコードする遺伝子の塩基配列である。
 前記DNA(b)において、NRT活性の点から、前記DNA(a)の塩基配列との同一性は60%以上がより好ましく、65%以上が好ましく、70%以上がより好ましく、75%以上がより好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がより好ましく、95%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。また前記DNA(b)として、前記DNA(a)の塩基配列において1又は複数個(例えば1個以上634個以下、好ましくは1個以上563個以下、より好ましくは1個以上493個以下、より1個以上423個以下、好ましくは1個以上352個以下、より好ましくは1個以上282個以下、より好ましくは1個以上212個以下、より好ましくは1個以上141個以下、より好ましくは1個以上113個以下、より好ましくは1個以上71個以下、より好ましくは1個以上29個以下、より好ましくは1個以上15個以下)の塩基が欠失、置換、挿入、又は付加されており、かつNRT活性を有する前記タンパク質(A)又は(B)をコードするDNAも好ましい。さらに前記DNA(b)として、前記DNA(a)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつNRT活性を有する前記タンパク質(A)又は(B)をコードするDNAも好ましい。
 NRT遺伝子は、通常の遺伝子工学的手法により得ることができる。例えば、配列番号41に示すアミノ酸配列又は配列番号39に示す塩基配列に基づいて、NRT遺伝子を人工的に合成できる。NRT遺伝子の合成は、例えば、インビトロジェン社等のサービスを利用することができる。また、ナンノクロロプシス・オキュラータからクローニングによって取得することもできる。例えば、Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press (2001) ] 記載の方法等により行うことができる。また、実施例で用いたナンノクロロプシス・オキュラータNIES-2145は、国立環境研究所(NIES)より入手することができる。
 本発明の第2の実施態様は、前述のNRT遺伝子に加えて、NR遺伝子についても欠失又は発現を抑制させる。これらの遺伝子を欠失又は発現を抑制することで硝酸の基質アナログに対する耐性がより向上する。そのため、硝酸の基質アナログ、好ましくは塩素酸、をより高い濃度で含有する条件下であっても、得られる形質転換体は生育が可能である。よって、本発明の形質転換体は、向上した硝酸の基質アナログに対する耐性(好ましくは塩素酸耐性)を指標に選抜することができる。ここで、本明細書における「NR」とは、硝酸イオンを還元して亜硝酸イオンを生じる酵素である。また、硝酸イオンの基質アナログとして塩素酸イオンを還元し、亜塩素酸イオンの生成も行う。
 なお、本明細書において「NR遺伝子」とは、NRをコードする領域の塩基配列からなるDNAの他、NRの発現を調節する領域の塩基配列からなるDNAや、NRをコードする領域とNRの発現を調節する領域の塩基配列からなるDNAも包含する。
 なお本明細書において、NRT遺伝子及びNR遺伝子を「欠失又は発現を抑制する」とは、下記(I)、(II)、(III)又は(IV)に示す遺伝子操作を意味する。
(I)NRT遺伝子及びNR遺伝子をそれぞれ欠失する。
(II)NRT遺伝子及びNR遺伝子の発現をそれぞれ抑制する。
(III)NRT遺伝子を欠失し、NR遺伝子の発現を抑制する。
(IV)NRT遺伝子の発現を抑制し、NR遺伝子を欠失する。
 本明細書におけるNRは、前記タンパク質(C)又は(D)を指す。配列番号42のアミノ酸配列からなるタンパク質は、ナンノクロロプシス属に属する微細藻類であるナンノクロロプシス・オキュラータNIES-2145株由来のNR(以下、「NoNR」ともいう)である。
 前記タンパク質(C)及び(D)はいずれも、NR活性を有する。本明細書において「NR活性」とは、硝酸イオンを還元して亜硝酸イオンを生成する反応を触媒する活性、又は塩素酸イオンを還元して亜塩素酸イオンを生成する反応を触媒する活性を意味する。
 タンパク質(D)は、前記タンパク質(C)のアミノ酸配列との同一性が70%以上のアミノ酸配列からなり、かつNR活性を有する。
 一般に、酵素タンパク質をコードしているアミノ酸配列は、必ずしも全領域の配列が保存されていなければ酵素活性を示さないというものではなく、アミノ酸配列が変化しても酵素活性に影響を与えない領域も存在することが知られている。このような酵素活性に必須でない領域においては、アミノ酸の欠失、置換、挿入又は付加といった変異が導入されても酵素本来の活性を維持することができる。本発明においても、このようにNR活性が保持され、かつアミノ酸配列が一部変異したタンパク質を用いることができる。
 前記タンパク質(D)において、NR活性の点から、前記タンパク質(C)のアミノ酸配列との同一性は75%以上が好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がより好ましく、95%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。また、前記タンパク質(D)として、前記タンパク質(C)のアミノ酸配列に、1又は複数個(例えば1個以上255個以下、好ましくは1個以上212個以下、より好ましくは1個以上170個以下、より好ましくは1個以上128個以下、より好ましくは1個以上85個以下、より好ましくは1個以上68個以下、より好ましくは1個以上43個以下、より好ましくは1個以上17個以下、より好ましくは1個以上9個以下)のアミノ酸を欠失、置換、挿入又は付加したタンパク質が挙げられる。
 なお、ナンノクロロプシス・オキュラータ等の藻類は、私的又は公的な研究所等の保存機関より入手することができる。例えば、ナンノクロロプシス・オキュラータNIES-2145株は、国立環境研究所(NIES)から入手することができる。
 前記NR、好ましくはタンパク質(C)又は(D)、をコードする遺伝子として、下記DNA(c)又は(d)からなる遺伝子が挙げられる。
 
(c)配列番号40で表される塩基配列からなるDNA。
(d)前記DNA(c)の塩基配列と同一性が70%以上の塩基配列からなり、かつNR活性を有するタンパク質をコードするDNA。
 
 配列番号40の塩基配列は、NoNRをコードする遺伝子の塩基配列である。
 前記DNA(d)において、NR活性の点から、前記DNA(c)の塩基配列との同一性は75%以上が好ましく、80%以上がより好ましく、85%以上がより好ましく、90%以上がより好ましく、92%以上がより好ましく、95%以上がより好ましく、98%以上がより好ましく、99%以上がさらに好ましい。また前記DNA(d)として、配列番号40で表される塩基配列において1又は複数個(例えば1個以上764個以下、好ましくは1個以上636個以下、より好ましくは1個以上509個以下、好ましくは1個以上382個以下、より好ましくは1個以上255個以下、より好ましくは1個以上204個以下、より好ましくは1個以上128個以下、より好ましくは1個以上51個以下、より好ましくは1個以上26個以下)の塩基が欠失、置換、挿入、又は付加されており、かつNR活性を有する前記タンパク質(C)又は(D)をコードするDNAも好ましい。さらに前記DNA(d)として、前記DNA(c)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつNR活性を有する前記タンパク質(C)又は(D)をコードするDNAも好ましい。
 NR遺伝子は、通常の遺伝子工学的手法により得ることができる。例えば、配列番号42に示すアミノ酸配列又は配列番号40に示す塩基配列に基づいて、NR遺伝子を人工的に合成できる。NR遺伝子の合成は、例えば、インビトロジェン社等のサービスを利用することができる。また、ナンノクロロプシス・オキュラータからクローニングによって取得することもできる。例えば、Molecular Cloning-A LABORATORY MANUAL THIRD EDITION [Joseph Sambrook, David W. Russell, Cold Spring Harbor Laboratory Press (2001) ] 記載の方法等により行うことができる。また、実施例で用いたナンノクロロプシス・オキュラータNIES-2145は、国立環境研究所(NIES)より入手することができる。
 本発明において、ゲノム上のNRT遺伝子やNR遺伝子の欠失又は発現を抑制する方法としては特に制限はなく、常法より適宜選択することができる。NRT遺伝子やNR遺伝子が欠失又はこれらの発現が抑制されていることは、形質転換体のゲノム配列の解析や、NRT活性、NR活性を常法に測定することで確認できる。
 例えば、ゲノム上のNRT遺伝子やNR遺伝子を破壊することで、NRT遺伝子やNR遺伝子を欠失させることができる。具体的には、NRT遺伝子やNR遺伝子の一部を含む適当なDNA断片を微細藻類の細胞内に取り込ませ、NRT遺伝子やNR遺伝子の一部領域に於ける相同組換えによってゲノム上のNRT遺伝子やNR遺伝子の全部又は一部を他の任意のDNA断片(例えば、任意の選択マーカー)で置換し、又は任意のDNA断片(例えば、任意の選択マーカー)を挿入してNRT遺伝子やNR遺伝子を分断し、NRT遺伝子やNR遺伝子を欠失することが可能である。
 また、ランダムな遺伝子の発現の抑制方法として、N-メチル-N’-ニトロ-N-ニトロソグアニジンなどの変異誘発剤の使用、紫外線やガンマ線等の照射によりNRT遺伝子やNR遺伝子の突然変異を誘発する方法、NRT遺伝子やNR遺伝子中(例えば、活性部位、基質結合部位、並びに転写若しくは翻訳開始領域)に部位特異的点突然変異(例えば、フレームシフト突然変異、インフレーム突然変異、終止コドンの挿入など)を誘発する方法、アンチセンス法、RNA干渉法、プロモーター競合等が挙げられる。
 本発明において、ゲノム上のNRT遺伝子やNR遺伝子を破壊し、これら遺伝子を欠失させることが好ましい。
 NRT遺伝子やNR遺伝子の破壊に用いる相同組換え用DNAカセットのサイズは、微細藻類への導入効率や、相同組換え効率、前記各種遺伝子のサイズなどを考慮し、適宜設定することができる。例えば、400bp以上が好ましく、500bp以上がより好ましい。またその上限値は、2.0kbpが好ましく、2.5kbpがより好ましい。
 また、相同組換えにより欠損させるゲノムの長さは、15kbp以下が好ましく、10kbp以下がより好ましい。さらに、導入する各種遺伝子の長さは、10kbp以下が好ましく、8kbp以下がより好ましい。
 前記相同組換え用DNAカセットを微細藻類に導入する形質転換方法は、微細藻類の種類に応じて常法より適宜選択することができる。
 例えば、カルシウムイオンを用いる形質転換方法、一般的なコンピテントセル形質転換方法、プロトプラスト形質転換法、エレクトロポレーション法、LP形質転換方法、アグロバクテリウムを用いた方法、パーティクルガン法等が挙げられる。また、本発明では、Nature Communications, DOI:10.1038/ncomms1688, 2012等に記載のエレクトロポレーション法を用いて形質転換を行うこともできる。
 本発明で用いる微細藻類は、遺伝子改変技術が確立している観点から、真正眼点藻綱の微細藻類が好ましく、ユースチグマトス目(Eustigmatales)の微細藻類がより好ましく、ナンノクロロプシス属の微細藻類がより好ましい。ナンノクロロプシス属の微細藻類の具体例としては、ナンノクロロプシス・オキュラータ、ナンノクロロプシス・オセアニカ(Nannochloropsis oceanica)、ナンノクロロプシス・ガディタナ(Nannochloropsis gaditana)、ナンノクロロプシス・サリナ(Nannochloropsis salina)、ナンノクロロプシス・アトムス(Nannochloropsis atomus)、ナンノクロロプシス・マキュラタ(Nannochloropsis maculata)、ナンノクロロプシス・グラニュラータ(Nannochloropsis granulata)、ナンノクロロプシス・エスピー(Nannochloropsis sp. )等が挙げられる。このうち、ナンノクロロプシス・オキュラータ、ナンノクロロプシス・オセアニカ又はオキュラータ、ナンノクロロプシス・ガディタナが好ましく、ナンノクロロプシス・オキュラータがより好ましい。
 NRT遺伝子やNR遺伝子が欠失又はそれらの発現が抑制された形質転換体の選択は、常法により行えるが、硝酸の基質アナログに対する耐性を指標として行うことが好ましく、塩素酸耐性を指標として行うことがより好ましい。
 具体的には、宿主の種類に応じて、培地に含まれる硝酸の基質アナログ(好ましくは塩素酸)又はその塩の濃度と、形質転換体の培養期間を適宜選択し、硝酸の基質アナログ(好ましくは塩素酸)の存在下で培養したとき生育可能な株を、硝酸の基質アナログ(好ましくは塩素酸)耐性を獲得した形質転換体として選抜する。
 培地に含まれる塩素酸又はその塩の濃度は、3mM以上が好ましく、5mM以上がより好ましい。また培養期間は、1週間以上が好ましく、2週間以上がより好ましく、8週間以下が好ましい。
 NRT遺伝子やNR遺伝子を欠失又はそれらの発現を抑制した形質転換体では、硝酸資化性が低下している場合がある。その場合、尿素、アンモニア、亜硝酸などを窒素源として含有する培地で形質転換体を培養することが好ましい。
 培地に含まれる前記窒素源の濃度は適宜設定することができる。具体的には、前記窒素源の濃度は、窒素原子等量で、1mg/L以上が好ましく、5mg/L以上がより好ましく、10mg/L以上がより好ましい。またその上限値は、2,000mg/Lが好ましく、1,000mg/Lがより好ましく、500mg/Lがより好ましく、200mg/Lがより好ましい。
 上述した実施形態に関し、本発明はさらに以下の微細藻類における硝酸の基質アナログに対する耐性を向上させる方法、形質転換体、を開示する。
<1>微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子を欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法。
(A)配列番号41で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、より好ましくは95%以上、より好ましくは98%以上、より好ましくは99%以上、のアミノ酸配列からなり、かつNRT活性を有するタンパク質。
<2>微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子、並びに下記タンパク質(C)若しくは(D)をコードする遺伝子を、欠失又は発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法。
(A)配列番号41で表されるアミノ酸配列からなるタンパク質。
(B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、より好ましくは95%以上、より好ましくは98%以上、より好ましくは99%以上、のアミノ酸配列からなり、かつNRT活性を有するタンパク質。
(C)配列番号42で表されるアミノ酸配列からなるタンパク質。
(D)前記タンパク質(C)のアミノ酸配列と同一性が70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、より好ましくは95%以上、より好ましくは98%以上、より好ましくは99%以上、のアミノ酸配列からなり、かつNR活性を有するタンパク質。
<3>ゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子が欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現が抑制されている、硝酸の基質アナログに対する耐性を有する、微細藻類の形質転換体。
<4>ゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子、並びに前記タンパク質(C)若しくは(D)をコードする遺伝子が、欠失又は発現が抑制されている、硝酸の基質アナログに対する耐性を有する、微細藻類の形質転換体。
<5>微細藻類のゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子を欠失、又は前記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、硝酸の基質アナログに対する耐性を指標として形質転換体を取得する、硝酸の基質アナログに対する耐性を有する形質転換体の作製方法。
<6>微細藻類のゲノム上の前記タンパク質(A)若しくは(B)をコードする遺伝子、並びに前記タンパク質(C)若しくは(D)をコードする遺伝子を、欠失又は発現を抑制し、硝酸の基質アナログに対する耐性を指標として形質転換体を取得する、硝酸の基質アナログに対する耐性を有する形質転換体の作製方法。
<7>前記の、硝酸の基質アナログが、塩素酸である、前記<1>~<6>のいずれか1項記載の方法、又は形質転換体。
<8>前記形質転換体が、塩素酸又はその塩を3mM以上、好ましくは5mM以上で含有する培地で、1週間以上、好ましくは2週間以上、8週間以下、を培養したとき、生育可能である、前記<1>~<7>のいずれか1項記載の方法、又は形質転換体。
<9>前記形質転換体を、尿素、アンモニア、及び亜硝酸からなる群より選ばれる少なくとも1種を窒素源として含有する培地で培養する、前記<1>~<8>のいずれか1項記載の方法、又は形質転換体。
<10>培地に含まれる前記窒素源の濃度が、窒素原子等量で、1mg/L以上、好ましくは5mg/L以上、より好ましくは10mg/L以上、であり、2,000mg/L以下、好ましくは1,000mg/L以下、より好ましくは500mg/L以下、より好ましくは200mg/L以下、である、前記<9>項記載の方法、又は形質転換体。
<11>前記タンパク質(B)が、前記タンパク質(A)のアミノ酸配列に、1又は複数個、好ましくは1個以上141個以下、より好ましくは1個以上117個以下、より好ましくは1個以上94個以下、より好ましくは1個以上71個以下、より好ましくは1個以上47個以下、より好ましくは1個以上38個以下、より好ましくは1個以上24個以下、より好ましくは1個以上10個以下、より好ましくは1個以上5個以下、のアミノ酸を欠失、置換、挿入又は付加されたタンパク質である、前記<1>~<10>のいずれか1項記載の方法、又は形質転換体。
<12>前記タンパク質(A)又は(B)をコードする遺伝子が、下記DNA(a)又は(b)からなる遺伝子である、前記<1>~<11>のいずれか1項記載の方法、又は形質転換体。
(a)配列番号39で表される塩基配列からなるDNA。
(b)前記DNA(a)の塩基配列と同一性が55%以上、好ましくは60%以上、より好ましくは65%以上、より好ましくは70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、より好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上、の塩基配列からなり、かつNRT活性を有するタンパク質をコードするDNA。
<13>前記DNA(b)が、前記DNA(a)の塩基配列に、1又は複数個、好ましくは1個以上634個以下、より好ましくは1個以上563個以下、より好ましくは1個以上493個以下、より好ましくは1個以上423個以下、より好ましくは1個以上352個以下、より好ましくは1個以上282個以下、より好ましくは1個以上212個以下、より好ましくは1個以上141個以下、より好ましくは1個以上113個以下、より好ましくは1個以上71個以下、より好ましくは1個以上29個以下、より好ましくは1個以上15個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつNRT活性を有するタンパク質をコードするDNA、又は前記DNA(a)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつNRT活性を有するタンパク質をコードするDNAである、前記<12>項記載の方法、又は形質転換体。
<14>前記タンパク質(D)が、前記タンパク質(C)のアミノ酸配列に、1又は複数個、好ましくは1個以上523個以下、より好ましくは1個以上457個以下、より好ましくは1個以上392個以下、より好ましくは1個以上327個以下、より好ましくは1個以上261個以下、より好ましくは1個以上196個以下、より好ましくは1個以上130個以下、より好ましくは1個以上104個以下、より好ましくは1個以上65個以下、より好ましくは1個以上26個以下、さらに好ましくは1個以上13個以下、のアミノ酸が欠失、置換、挿入又は付加されたタンパク質である、前記<2>、<4>、及び<6>~<13>のいずれか1項記載の方法、又は形質転換体。
<15>前記タンパク質(C)又は(D)をコードする遺伝子が、下記DNA(c)又は(d)からなる遺伝子である、前記前記<2>、<4>、及び<6>~<14>のいずれか1項記載の方法、又は形質転換体。
(c)配列番号40で表される塩基配列からなるDNA。
(d)前記DNA(c)の塩基配列と同一性が70%以上、好ましくは75%以上、より好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは92%以上、より好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上、の塩基配列からなり、かつNR活性を有するタンパク質をコードするDNA。
<16>前記DNA(d)が、前記DNA(c)の塩基配列に、1又は複数個、好ましく1個以上764個以下、より好ましくは1個以上636個以下、より好ましくは1個以上509個以下、好ましくは1個以上382個以下、より好ましくは1個以上255個以下、より好ましくは1個以上204個以下、より好ましくは1個以上128個以下、より好ましくは1個以上51個以下、より好ましくは1個以上26個以下、の塩基が欠失、置換、挿入、若しくは付加された塩基配列からなり、かつNR活性を有するタンパク質をコードするDNA、又は前記DNA(c)と相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつNR活性を有するタンパク質をコードするDNAである、前記<15>項記載の方法、又は形質転換体。
<17>前記微細藻類が、真正眼点藻綱、好ましくはユースチグマトス目の微細藻類、より好ましくはナンノクロロプシス属の微細藻類、である、前記<1>~<16>のいずれか1項に記載の方法、又は形質転換体。
<18>前記微細藻類が、ナンノクロロプシス・オキュラータ、ナンノクロロプシス・オセアニカ、ナンノクロロプシス・ガディタナ、ナンノクロロプシス・サリナ、ナンノクロロプシス・アトムス、ナンノクロロプシス・マキュラタ、ナンノクロロプシス・グラニュラータ、及びナンノクロロプシス・エスピーからなる群より選ばれる、好ましくはナンノクロロプシス・オキュラータ、ナンノクロロプシス・オセアニカ、及びナンノクロロプシス・ガディタナからなる群より選ばれる、より好ましくはナンノクロロプシス・オキュラータ、である、前記<1>~<17>のいずれか1項に記載の方法、又は形質転換体。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。ここで、本実施例で用いるプライマーの塩基配列を表1に示す。
Figure JPOXMLDOC01-appb-I000001
実施例1 ナンノクロロプシス・オキュラータへの塩素酸耐性の付与
(1)ゼオシン耐性遺伝子発現用プラスミドの構築
 ゼオシン耐性遺伝子(配列番号1)を人工合成し、これを鋳型として表1に示すプライマー番号2及びプライマー番号3のプライマー対を用いてPCRを行い、ゼオシン耐性遺伝子を増幅した。
 また、ナンノクロロプシス・オキュラータNIES-2145株(独立行政法人国立環境研究所(NIES)より入手)のゲノムを鋳型として、表1に示すプライマー番号4及びプライマー番号5のプライマー対、並びにプライマー番号6及びプライマー番号7のプライマー対をそれぞれ用いてPCRを行い、VCP1プロモーター配列(配列番号8)及びVCP1ターミネーター配列(配列番号9)を増幅した。
 さらに、プラスミドベクターpUC118(タカラバイオ社製)を鋳型として、表1に示すプライマー番号10及びプライマー番号11のプライマー対を用いてPCRを行い、プラスミドベクターpUC118を増幅した。
 得られた4つの断片をIn-Fusion HD Cloning Kit(Clontech社製)を用いて融合し、ゼオシン耐性遺伝子発現用プラスミドを構築した。
(2)ナンノクロロプシス内在性NRT遺伝子及びNR遺伝子の相同組換え用プラスミドの構築
 ナンノクロロプシス・オキュラータNIES-2145株より抽出したゲノムを鋳型として、表1に示すプライマー番号12及びプライマー番号13のプライマー対、プライマー番号14及びプライマー番号15のプライマー対、プライマー番号16及びプライマー番号17のプライマー対、並びにプライマー番号18及びプライマー番号19のプライマー対をそれぞれ用いてPCRを行い、図2に示すNRT遺伝子及びNR遺伝子(以下、「NRT-NR遺伝子」ともいう)周辺のゲノム配列(配列番号20)の部分配列(ゲノム配列(W)(配列番号20の2254~3849位(配列番号21))、ゲノム配列(X)(配列番号20の5969~7479位(配列番号22))、ゲノム配列(Y)(配列番号20の6816~8286位(配列番号23))、ゲノム配列(Z)(配列番号20の8516~10053位(配列番号24))を増幅した。
 また、前述のゼオシン耐性遺伝子発現用プラスミドを鋳型に、表1に示すプライマー番号25及びプライマー番号26のプライマー対を用いてPCRを行い、ゼオシン耐性遺伝子発現用カセットPvcp1-ble-Tvcp1を取得した。
 その後、得られたゲノム配列(W)断片、ゲノム配列(X)断片、ゼオシン耐性遺伝子発現用カセット、及び前述のプラスミドベクターpUC118をIn-Fusion HD Cloning Kit(Clontech社製)を用いて融合し、NRT遺伝子相同組換え用プラスミド(以下、「NRT遺伝子KO用プラスミド」ともいう)を構築した。
 同様に、ゲノム配列(Y)断片、ゲノム配列(Z)断片、ゼオシン耐性遺伝子発現用カセット断片、及びプラスミドベクターpUC118を融合し、NR遺伝子相同組換え用プラスミド(以下、「NR遺伝子KO用プラスミド」ともいう)を構築した。
 さらに、ゲノム配列(W)断片、ゲノム配列(Z)断片、ゼオシン耐性遺伝子発現用カセット断片、及びプラスミドベクターpUC118を融合し、NRT-NR遺伝子相同組換え用プラスミド(1)(以下、「NRT-NR遺伝子KO用プラスミド(1)」ともいう)を構築した。
 なおこれらのプラスミドは、配列番号20の上流ゲノム配列(ゲノム配列(W)断片又はゲノム配列(Y)断片)、VCP1プロモーター配列、ゼオシン耐性遺伝子、VCP1ターミネーター配列、及び配列番号20の下流ゲノム配列(ゲノム配列(X)断片又はゲノ配列(Z)断片)の順に連結したインサート配列と、pUC118ベクター配列からなる(図3(a)~(c)参照)。
(3)相同組換え用プラスミドのナンノクロロプシス・オキュラータへの導入
 前記NRT遺伝子相同組換え用プラスミドを鋳型として、表1に示すプライマー番号27及びプライマー番号28のプライマー対を用いてPCRを行い、NRT遺伝子相同組換え用カセット(図3(a)に示すプラスミドのインサート配列)を増幅した。
 同様に、前記NR遺伝子相同組換え用プラスミドを鋳型として、表1に示すプライマー番号29及びプライマー番号30のプライマー対を用いてPCRを行い、NR遺伝子相同組換え用カセット(図3(b)に示すプラスミドのインサート配列)を増幅した。
 さらに、前記NRT-NR遺伝子相同組換え用プラスミド(1)を鋳型として、表1に示すプライマー番号27及びプライマー番号30のプライマー対を用いてPCRを行い、NRT-NR遺伝子相同組換え用カセット(1)(図3(c)に示すプラスミドのインサート配列)を増幅した。
 増幅した各DNA断片を、High Pure PCR Product Purification Kit(Roche Applied Science社製)を用いて精製した。
 培養したナンノクロロプシス・オキュラータNIES-2145株を遠心回収し、384mMのソルビトール溶液で洗浄し、ソルビトールで懸濁した細胞液を宿主として用いた。
 上記で増幅した3種の相同組換え用カセット約500ngをそれぞれ宿主細胞と混和し、50μF、500Ω、2,200v/2mmの条件でエレクトロポレーションを行った。
 尿素液体培地(尿素400mg、NaH2PO4・2H2O 30mg、ビタミンB12 0.5μg、ビオチン0.5μg、チアミン100μg、Na2SiO3・9H2O 10mg、Na2EDTA・2H2O 4.4mg、FeCl3・6H2O 3.16mg、CoCl2・6H2O 12μg、ZnSO4・7H2O 21μg、MnCl2・4H2O 180μg、CuSO4・5H2O 7μg、Na2MoO4・2H2O 7μg/人工海水1L)(以下、「尿素培地」という)にて24時間回復培養を行った。その後、2μg/mLのゼオシンを含有する尿素寒天培地に塗布し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて2~3週間培養した。
(4)NR遺伝子破壊株、NRT遺伝子破壊株、並びにNRT遺伝子及びNR遺伝子破壊株の選抜
 ゼオシン耐性を指標に得られたコロニーの中から、相同組換え用カセットによってナンノクロロプシス・オキュラータのNR遺伝子、NRT遺伝子、又はNRT-NR遺伝子が破壊された株をそれぞれPCRにより選抜した。
 NR遺伝子破壊株(以下、「ΔNR株」ともいう)は、図4(a)に示すように、野生(WT)株のゲノムDNAと前記NR遺伝子相同組換え用カセット(NR-KO断片)の相同配列を利用した組換えにより、ゲノム上にコードされたNR遺伝子を破壊することで取得できる。
 ΔNR株の選抜は、表1に示すプライマー番号31及びプライマー番号32のプライマー対を用いてPCRを行い、増幅される断片の長さの違いを指標として行った(図4(b)及び(c)参照)。
 図4(c)に示すように、WT株では、約3.4kbpの遺伝子断片の増幅が確認された。これに対して、ΔNR株では、約5.0kbpの遺伝子断片の増幅が確認された。
 NRT遺伝子破壊株(以下、「ΔNRT株」ともいう)は、図5(a)に示すように、WT株のゲノムDNAと前記NRT遺伝子相同組換え用カセット(NRT-KO断片)の相同配列を利用した組換えにより、ゲノム上にコードされたNRT遺伝子を破壊することで取得できる。
 ΔNRT株の選抜は、表1に示すプライマー番号33及びプライマー番号34のプライマー対を用いてPCRを行い、断片増幅の有無を指標として行った(図5(b)及び(c)参照)。
 図5(c)に示すように、WT株では、遺伝子断片の増幅は行われない。これに対して、ΔNR株では、約3.3kbpの遺伝子断片の増幅が確認された。
 NRT-NR遺伝子の破壊株(以下、「ΔNRTΔNR株」ともいう)は、図6(a)に示すように、WT株のゲノムDNAと前記NRT-NR遺伝子相同組換え用カセット(1)(NRT-NR-KO断片(1))の相同配列を利用した組換えにより、ゲノム上にコードされたNRT遺伝子及びNR遺伝子を破壊することで取得できる。
 ΔNRTΔNR株の選抜は、表1に示すプライマー番号35及びプライマー番号36のプライマー対を用いてPCRを行い、増幅される断片の長さの違いを指標として行った(図6(b)及び(c)参照)。
 図6(c)に示すように、WT株では、約6.9kbpの遺伝子断片の増幅が確認された。これに対して、ΔNRTΔNR株では、約4.1kbpの遺伝子断片の増幅が確認された。
(5)ΔNR株、ΔNRT株、ΔNRTΔNR株の塩素酸耐性評価
 ΔNR株、ΔNRT株、及びΔNRTΔNR株をそれぞれ、尿素寒天培地、尿素寒天培地の窒素源である尿素を硝酸に置き換えた硝酸寒天培地(硝酸1.1g、NaH2PO4・2H2O 30mg、ビタミンB12 0.5μg、ビオチン 0.5μg、チアミン 100μg、Na2SiO3・9H2O 10mg、Na2EDTA・2H2O 4.4mg、FeCl3・6H2O 3.16mg、CoCl2・6H2O 12μg、ZnSO4・7H2O 21μg、MnCl2・4H2O 180μg、CuSO4・5H2O 7μg、Na2MoO4・2H2O 7μg/人工海水1L)、及び5mM塩素酸カリウム(KClO3)を含有する尿素寒天培地の3種の寒天培地それぞれに播種し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて2~3週間培養した。
 対照としてWT株についても同様の検討を行った。
 培養後の寒天培地の様子を図7に示す。
 図7に示すように、硝酸寒天培地を用いた場合、WT株についてのみ生育は可能であったが、ΔNR株、ΔNRT株、及びΔNRTΔNR株では生育は確認できなかった。一方で、WT株、ΔNR株、ΔNRT株、及びΔNRTΔNR株はいずれも、尿素寒天培地での生育は可能であった。これら結果から、ナンノクロロプシス属に属する藻類においてNRT遺伝子やNR遺伝子が破壊されると、硝酸の資化性が喪失する。また、ナンノクロロプシスは硝酸の代わりに尿素を窒素源とすることも可能であることを示している。
 また、前述の通り、塩素酸はNRにより変換されることで細胞毒性を示すことが、一般に知られている。そこで、ナンノクロロプシスの塩素酸に対する感受性について、WT株、ΔNR株、ΔNRT株、及びΔNRTΔNR株の塩素酸含有寒天培地上での生育を比較することで評価した。
 その結果、図7の下段に示すように、WT株は塩素酸暴露によって死滅した。また、一般に言われているようにNR遺伝子の発現を抑制した株(ΔNR株)でも生育性を評価したが、5mMの塩素酸条件下において生育は確認されず、NR遺伝子の破壊だけでは塩素酸耐性を向上させることはできなかった。これに対して、ΔNRT株では塩素酸暴露条件下においても生育が確認され、NRT活性の抑制により、WT株に比べ塩素酸耐性が向上することを確認した。更に、ΔNRTΔNR株では、ΔNRT株と比較しても良好な生育が見られ、NRTとNRの活性が共に抑制されることで塩素酸耐性が飛躍的に向上することが示された。
 さらに、尿素寒天培地に添加する塩素酸カリウム濃度を変えて、前述と同様の方法により、WT株、ΔNR株、ΔNRT株、及びΔNRTΔNR株の生育性を評価した(spot後3週間)。なお、生育性の評価は、下記の評価基準により行った。
(評価基準)
  -:生育せず
  +:生育抑制、(若干の)色素退色
 ++:生育抑制
+++:十分に生育
 その結果を表2に示す。
Figure JPOXMLDOC01-appb-I000002
 表2に示すように、ΔNRT株では塩素酸の濃度が5mMの条件下においても生育が確認され、NRT活性の抑制によりWT株やΔNR株に比べ塩素酸耐性が向上することを確認した。更に、ΔNRTΔNR株では塩素酸耐性が飛躍的に向上し、塩素酸の濃度が30mMの条件下においても生育が可能であった。
 以上のように、真正眼点藻綱において、NRT遺伝子を欠失又は発現を抑制することで、塩素酸などの硝酸の基質アナログに対する耐性を向上させることができる。
 さらに、NRT遺伝子に加えて、NR遺伝子も欠失又は発現を抑制することで、硝酸の基質アナログに対する耐性が顕著に向上し、高濃度の塩素酸存在下でも生育が可能な形質転換体を作製することができる。
実施例2 ナンノクロロプシス・オキュラータの塩素酸耐性を指標としたΔNRTΔNR株の取得
(1)ナンノクロロプシス内在性NRT-NR遺伝子の相同組換え用プラスミドの構築
 実施例1で作製したNRT-NR遺伝子KO用プラスミド(1)(図3(c)参照)を鋳型として、表1に示すプライマー番号37及びプライマー番号38のプライマー対を用いてPCRを行い、図2に示すNRT-NR遺伝子周辺のゲノム配列(配列番号20)の部分配列(ゲノム配列(W)(配列番号21)、ゲノム配列(Z)(配列番号24))がpUC118ベクター配列によって連結された断片を増幅した。
 この増幅断片を実施例1と同様の方法にて融合し、薬剤耐性遺伝子(ble)発現用カセットを含まないNRT-NR遺伝子相同組換え用プラスミド(2)(以下、「NRT-NR遺伝子KO用プラスミド(2)」ともいう)を構築した。
 なお、本発現プラスミドは、図2に示すナンノクロロプシス・オキュラータNIES-2145株のゲノム配列(W)とゲノム配列(Z)を順に連結したインサート配列と、pUC118ベクター配列からなる(図8(a)参照)。
(2)相同組換え用プラスミドのナンノクロロプシス・オキュラータへの導入
 前記NRT-NR遺伝子相同組換え用プラスミド(2)を鋳型として、表1に示すプライマー番号27及びプライマー番号30のプライマー対を用いてPCRを行い、NRT-NR遺伝子相同組換え用カセット(2)(図8(a)に示すプラスミドのインサート配列)を増幅した。
 増幅したDNA断片を用いて、実施例1と同様の方法でナンノクロロプシス・オキュラータへ導入し、回復培養を行った。回復培養後、20mM塩素酸カリウム(KClO3)含有尿素寒天培地に塗布し、25℃、0.3%CO雰囲気下、12h/12h明暗条件にて2~3週間培養し、塩素酸耐性を指標としてコロニーを取得した。
(3)塩素酸耐性株のNRT-NR周辺ゲノムの解析
 塩素酸耐性を指標に取得された形質転換体について、NRT-NR遺伝子周辺のゲノムを確認した。
 表1に示すプライマー番号35及びプライマー番号36のプライマー対を用いてPCRを行い、NRT-NR遺伝子周辺ゲノムを増幅した。その結果、塩素酸耐性を指標として取得した株では全て約2.2kbpの断片が増幅された。
 図8(b)に示すとおり、WT株のゲノムDNAと、前記NRT-NR遺伝子相同組換え用カセット(2)(NRT-NR-KO断片(2))の相同配列箇所において相同組換えが生じると、ΔNRTΔNR株が取得される。よって、上記条件でのPCRにより増幅される断片は、WT株で約6.9kbp、ΔNRTΔNR株で約2.2kbpの断片が増幅される(図8(c)及び(d)参照)。
 以上の結果より、塩素酸耐性を指標に取得された株は全てΔNRTΔNR株であることが明らかとなった。このことから、塩素酸耐性を指標とした形質転換体の取得も可能であることが示された。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年4月12日に日本国で特許出願された特願2017-078886に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (25)

  1.  微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子を欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法。
    (A)配列番号41で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
  2.  微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子、並びに下記タンパク質(C)若しくは(D)をコードする遺伝子を、欠失又は発現を抑制し、微細藻類における硝酸の基質アナログに対する耐性を向上させる方法。
    (A)配列番号41で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
    (C)配列番号42で表されるアミノ酸配列からなるタンパク質。
    (D)前記タンパク質(C)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性を有するタンパク質。
  3.  前記タンパク質(B)が、下記タンパク質(B-1)である、請求項1に記載の方法。
    (B-1)前記タンパク質(A)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
  4.  前記タンパク質(B)及び(D)が、下記タンパク質(B-1)及び(D-1)である、請求項2に記載の方法。
    (B-1)前記タンパク質(A)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
    (D-1)前記タンパク質(C)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性を有するタンパク質。
  5.  前記の、硝酸の基質アナログが、塩素酸である、請求項1~4のいずれか1項記載の方法。
  6.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項1~5のいずれか1項記載の方法。
  7.  前記ナンノクロロプシス(Nannochloropsis)属に属する藻類が、ナンノクロロプシス・オキュラータ(Nannochloropsis oculata)、ナンノクロロプシス・オセアニカ(Nannochloropsis oceanica)、及びナンノクロロプシス・ガディタナ(Nannochloropsis gaditana)からなる群より選ばれる藻類である、請求項6に記載の方法。
  8.  ゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子が欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現が抑制されている、硝酸の基質アナログに対する耐性を有する、微細藻類の形質転換体。
    (A)配列番号41で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
  9.  ゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子、並びに下記タンパク質(C)若しくは(D)をコードする遺伝子が、欠失又は発現が抑制されている、硝酸の基質アナログに対する耐性を有する、微細藻類の形質転換体。
    (A)配列番号41で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
    (C)配列番号42で表されるアミノ酸配列からなるタンパク質。
    (D)前記タンパク質(C)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性を有するタンパク質。
  10.  前記タンパク質(B)が、下記タンパク質(B-1)である、請求項8に記載の形質転換体。
    (B-1)前記タンパク質(A)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
  11.  前記タンパク質(B)及び(D)が、下記タンパク質(B-1)及び(D-1)である、請求項9に記載の形質転換体。
    (B-1)前記タンパク質(A)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
    (D-1)前記タンパク質(C)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性を有するタンパク質。
  12.  前記の、硝酸の基質アナログが、塩素酸である、請求項8~11のいずれか1項記載の形質転換体。
  13.  前記形質転換体が、塩素酸又はその塩を3mM以上含有する培地で、1週間以上、8週間以下培養したとき、生育可能である、請求項8~12のいずれか1項記載の形質転換体。
  14.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項8~13のいずれか1項記載の形質転換体。
  15.  前記ナンノクロロプシス(Nannochloropsis)属に属する藻類が、ナンノクロロプシス・オキュラータ(Nannochloropsis oculata)、ナンノクロロプシス・オセアニカ(Nannochloropsis oceanica)、及びナンノクロロプシス・ガディタナ(Nannochloropsis gaditana)からなる群より選ばれる藻類である、請求項14に記載の形質転換体。
  16.  微細藻類のゲノム上の下記タンパク質(A)又は(B)をコードする遺伝子を欠失、又は下記タンパク質(A)若しくは(B)をコードする遺伝子の発現を抑制し、硝酸の基質アナログに対する耐性を指標として形質転換体を取得する、硝酸の基質アナログに対する耐性を有する形質転換体の作製方法。
    (A)配列番号41で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
  17.  微細藻類のゲノム上の下記タンパク質(A)若しくは(B)をコードする遺伝子、並びに下記タンパク質(C)若しくは(D)をコードする遺伝子を、欠失又は発現を抑制し、硝酸の基質アナログに対する耐性を指標として形質転換体を取得する、硝酸の基質アナログに対する耐性を有する形質転換体の作製方法。
    (A)配列番号41で表されるアミノ酸配列からなるタンパク質。
    (B)前記タンパク質(A)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
    (C)配列番号42で表されるアミノ酸配列からなるタンパク質。
    (D)前記タンパク質(C)のアミノ酸配列と同一性が70%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性を有するタンパク質。
  18.  前記タンパク質(B)が、下記タンパク質(B-1)である、請求項16に記載の方法。
    (B-1)前記タンパク質(A)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
  19.  前記タンパク質(B)及び(D)が、下記タンパク質(B-1)及び(D-1)である、請求項17に記載の方法。
    (B-1)前記タンパク質(A)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸トランスポーター活性を有するタンパク質。
    (D-1)前記タンパク質(C)のアミノ酸配列と同一性が90%以上のアミノ酸配列からなり、かつ硝酸還元酵素活性を有するタンパク質。
  20.  前記の、硝酸の基質アナログが、塩素酸である、請求項16~19のいずれか1項記載の方法。
  21.   前記形質転換体が、塩素酸又はその塩を3mM以上含有する培地で、1週間以上、8週間以下培養したときに生育可能である、請求項16~20のいずれか1項記載の方法。
  22.  前記形質転換体を、尿素、アンモニア、及び亜硝酸からなる群より選ばれる少なくとも1種を窒素源として含有する培地で培養する、請求項16~21のいずれか1項記載の方法。
  23.  培地に含まれる前記窒素源の濃度が、窒素原子等量で、1mg/L以上であり、2,000mg/L以下である、請求項22に記載の方法。
  24.  前記微細藻類がナンノクロロプシス(Nannochloropsis)属に属する藻類である、請求項16~23のいずれか1項記載の方法。
  25.  前記ナンノクロロプシス(Nannochloropsis)属に属する藻類が、ナンノクロロプシス・オキュラータ(Nannochloropsis oculata)、ナンノクロロプシス・オセアニカ(Nannochloropsis oceanica)、及びナンノクロロプシス・ガディタナ(Nannochloropsis gaditana)からなる群より選ばれる藻類である、請求項24に記載の方法。
PCT/JP2018/014097 2017-04-12 2018-04-02 微細藻類における硝酸の基質アナログに対する耐性を向上させる方法 WO2018190170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880024485.4A CN110536961B (zh) 2017-04-12 2018-04-02 提高微细藻类对于硝酸的底物类似物的耐性的方法
US16/499,945 US20210102161A1 (en) 2017-04-12 2018-04-02 Method of Improving Resistance to Substrate Analog of Nitric Acid in Microalga
AU2018252745A AU2018252745B2 (en) 2017-04-12 2018-04-02 Method of improving resistance to substrate analog of nitric acid in microalga

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017078886A JP6893820B2 (ja) 2017-04-12 2017-04-12 微細藻類における硝酸の基質アナログに対する耐性を向上させる方法
JP2017-078886 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018190170A1 true WO2018190170A1 (ja) 2018-10-18

Family

ID=63793281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014097 WO2018190170A1 (ja) 2017-04-12 2018-04-02 微細藻類における硝酸の基質アナログに対する耐性を向上させる方法

Country Status (5)

Country Link
US (1) US20210102161A1 (ja)
JP (1) JP6893820B2 (ja)
CN (1) CN110536961B (ja)
AU (1) AU2018252745B2 (ja)
WO (1) WO2018190170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349350A (zh) * 2020-11-09 2021-02-09 山西大学 基于一种杜氏藻核心基因组序列进行品系鉴定的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009142A2 (en) * 2007-07-10 2009-01-15 Monsanto Technology, Llc Transgenic plants with enhanced agronomic traits
WO2009095455A1 (en) * 2008-01-31 2009-08-06 Basf Plant Science Gmbh Plants having increased yield-related traits and a method for making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009009142A2 (en) * 2007-07-10 2009-01-15 Monsanto Technology, Llc Transgenic plants with enhanced agronomic traits
WO2009095455A1 (en) * 2008-01-31 2009-08-06 Basf Plant Science Gmbh Plants having increased yield-related traits and a method for making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KILIAN, 0. ET AL.: "High-efficiency homologous recombination in theoil-producing alga Nannochloropsis sp.", PROC. NATL. ACAD. SCI. USA., vol. 108, no. 52, 27 December 2011 (2011-12-27), pages 21265 - 21269, XP002693207, Retrieved from the Internet <URL:https://doi.org/10.1073/pnas.1105861108> *
NELSON, JA ET AL.: "Targeted Disruption of the NITS Gene in Chlamydomonas reinhardtii", CELL . BIOL., vol. 15, no. 10, October 1995 (1995-10-01), pages 5762 - 5769, XP055558557, Retrieved from the Internet <URL:DOI: 10.1128/MCB.15.10.5762> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112349350A (zh) * 2020-11-09 2021-02-09 山西大学 基于一种杜氏藻核心基因组序列进行品系鉴定的方法
CN112349350B (zh) * 2020-11-09 2022-07-19 山西大学 基于一种杜氏藻核心基因组序列进行品系鉴定的方法

Also Published As

Publication number Publication date
JP6893820B2 (ja) 2021-06-23
CN110536961B (zh) 2024-02-23
AU2018252745B2 (en) 2024-07-11
JP2018174793A (ja) 2018-11-15
CN110536961A (zh) 2019-12-03
AU2018252745A1 (en) 2019-10-31
US20210102161A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
Taga et al. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host
US20110045593A1 (en) Transgenically mitigating the establishment and spread of transgenic algae in natural ecosystems by suppressing the activity of carbonic anhydrase
Turrion-Gomez et al. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea
Sharma et al. Simultaneous knockout of multiple LHCF genes using single sgRNAs and engineering of a high‐fidelity Cas9 for precise genome editing in marine algae
CN106995817B (zh) 一种编码叶绿体碳酸酐酶基因在构建耐高浓度co2且快速生长的工业工程微藻中的应用
WO2018190170A1 (ja) 微細藻類における硝酸の基質アナログに対する耐性を向上させる方法
JP6990111B2 (ja) 変異糸状菌の製造方法
US9902963B2 (en) Modified microorganism having enhanced biomass synthesis capacity and a method thereof
Awal et al. Functional expression of foreign magnetosome genes in the alphaproteobacterium Magnetospirillum gryphiswaldense
US20210254086A1 (en) Composition For Editing Flavonoid Biosynthetic Gene By Using CRISPR/CAS9 System, And Use Thereof
Murakami et al. Assessment of horizontal gene transfer-mediated destabilization of Synechococcus elongatus PCC 7942 biocontainment system
TWI643951B (zh) 細長聚球藻pcc 7942之基因編輯系統及其應用
KR102358538B1 (ko) 유전자 총법을 이용한 미세조류의 교정 방법
Chen et al. The essential role of arginine biosynthetic genes in lunate conidia formation, conidiation, mycelial growth, and virulence of nematophagous fungus, Esteya vermicola CBS115803
JP6953127B2 (ja) 相同組換えが生じた形質転換体の取得確率を向上させる方法
JP5995232B2 (ja) 麹菌細胞株の効率的融合方法
WO2022210464A1 (ja) ストレス耐性植物
Jiang et al. Evolutionarily conserved 12-oxophytodienoate reductase trans-lncRNA pair affects disease resistance in tea (Camellia sinensis) via the Jasmonic acid signaling pathway
JP5565992B2 (ja) 酵母キャンディダ・ユティリスの形質転換法
JP5818312B2 (ja) プラスミド除去用組み換えプラスミドおよびその利用
Srivastava et al. Construction of Antisense RNA-mediated Gene Knock-down Strains in the Cyanobacterium Anabaena sp. PCC 7120
TWI629358B (zh) 細長聚球藻pcc 7942之基因表現干擾系統以及抑制細長聚球藻pcc 7942基因表現之方法
Chen et al. Efficient transformation and expression of gfp gene in Valsa mali var. mali
Chunlan et al. Characterization of the DapB mutant of Agrobacterium tumefaciens.
Matagne et al. A mutation in the GTPase domain of the large subunit rRNA is involved in the suppression of a–1T frameshift mutation affecting a mitochondrial gene in Chlamydomonas reinhardtii

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018252745

Country of ref document: AU

Date of ref document: 20180402

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18783624

Country of ref document: EP

Kind code of ref document: A1