WO2018190093A1 - インバータ電源装置 - Google Patents

インバータ電源装置 Download PDF

Info

Publication number
WO2018190093A1
WO2018190093A1 PCT/JP2018/011252 JP2018011252W WO2018190093A1 WO 2018190093 A1 WO2018190093 A1 WO 2018190093A1 JP 2018011252 W JP2018011252 W JP 2018011252W WO 2018190093 A1 WO2018190093 A1 WO 2018190093A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
inverter unit
inverter
power conversion
conversion transformer
Prior art date
Application number
PCT/JP2018/011252
Other languages
English (en)
French (fr)
Inventor
司 三澤
善行 濱野
徹也 森川
芳行 田畑
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019512400A priority Critical patent/JP7113182B2/ja
Priority to CN201880023690.9A priority patent/CN110495088B/zh
Publication of WO2018190093A1 publication Critical patent/WO2018190093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved

Definitions

  • the present disclosure relates to an inverter power supply device for an arc welding machine having an inverter circuit in which inverter units are connected in parallel.
  • an imbalance may occur in the current flowing through each inverter circuit due to a deviation in the switching timing of the inverter circuits connected in parallel.
  • This timing shift is caused by, for example, variations in characteristics of elements in the drive circuit for driving the inverter circuit or wiring inductance.
  • the conventional technology requires an output voltage detection sensor and a control circuit for calculating an output in order to balance the current flowing through each inverter circuit. Therefore, the prior art has the problems of increased cost and complicated circuit configuration.
  • the present disclosure provides an inverter power supply device that enables circuit simplification and cost reduction.
  • An inverter power supply apparatus includes first and second inverter units connected in parallel, and the first and second inverter units are connected in series to a first switching element and a first switching element, respectively.
  • An inverter circuit comprising: a first set having two switching elements; a third switching element connected in series; and a second set having a fourth switching element and connected in parallel with the first set;
  • a drive signal is input to each switching element in one inverter unit to drive the first inverter unit for switching operation, and drive to each switching element in the second inverter unit
  • the low potential side terminal of the first switching element in the first inverter unit is connected to the high potential side terminal of the fourth switching element in the second inverter unit via the primary side of the first power conversion transformer.
  • the high potential side terminal of the fourth switching element in the first inverter unit is connected to the first switching element in the second inverter unit via the primary side of the second power conversion transformer. Connected to the low potential side terminal.
  • the inverter power supply device improves the unbalanced state of the current flowing through each inverter unit connected in parallel to a balance by devising the wiring method. Thereby, it is possible to suppress the bias of heat generation to each switching element, each transformer, and the like. As a result, the life of the inverter power supply device can be increased and the reliability can be improved. Furthermore, a control circuit for balancing that balances the current flowing through each inverter unit based on detection of the output voltage on the secondary side of each transformer is not required. Therefore, the circuit of the inverter power supply device can be simplified and the cost can be reduced.
  • FIG. 1 shows a part of an inverter power supply device in an arc welding machine according to an embodiment of the present disclosure.
  • the inverter power supply apparatus includes first and second inverter units IU1 and IU2, first and second drive circuits Dr1 and Dr2 for driving the first and second inverter units IU1 and IU2, respectively, an arc First and second power conversion transformers MTr1, MTr2 that perform power conversion to obtain a current and voltage suitable for welding are provided.
  • the first inverter unit IU1 includes a first set having a first switching element Q1 and a second switching element Q2 connected in series, a third switching element Q3 and a fourth switching element Q4 connected in series. And a second set connected in parallel with the first set.
  • the second inverter unit IU2 includes a first set having a first switching element Q21 and a second switching element Q22 connected in series, a third switching element Q23 and a fourth switching element Q24 connected in series. And a second set connected in parallel with the first set.
  • the first and second inverter units are connected in parallel.
  • the first and second inverter units IU 1 and IU 2 constitute an inverter circuit 3.
  • Each switching element Q1 to Q4, Q21 to Q24 has three electrodes: a base B as a control terminal, a collector C as a high potential side terminal, and an emitter E as a low potential side terminal.
  • the switching element may be an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the IGBT has three electrodes: a gate, a collector, and an emitter.
  • the gate, collector and emitter of the IGBT correspond to the base B, collector C and emitter E of the switching element, respectively.
  • the MOSFET has three electrodes: a gate, a source, and a drain.
  • the gate, source, and drain of the MOSFET correspond to the base B, collector C, and emitter E of the switching element, respectively.
  • the inverter power supply apparatus balances the inverter currents flowing in the first and second inverter units IU1 and IU2, respectively, so that the first inverter unit IU1 and the second inverter unit IU2 are as shown in FIG. It is characterized by being connected to.
  • the first inverter unit IU1 includes a first set including a first switching element Q1 and a second switching element Q2 connected in series, a third switching element Q3 connected in series, and a first switching element Q3. And a second set having four switching elements Q4. By connecting the first set and the second set in parallel, the first to fourth switching elements Q1 to Q4 are bridge-connected.
  • the second inverter unit IU2 includes a first set including a first switching element Q21 and a second switching element Q22 connected in series, a third switching element Q23 connected in series and a fourth switching element. And a second set having element Q24. By connecting the first set and the second set in parallel, the first to fourth switching elements Q21 to Q24 are bridge-connected.
  • the first inverter unit IU1 and the second inverter unit IU2 are connected in parallel.
  • the inverter power supply apparatus includes a first drive circuit Dr1 that inputs a drive signal to the first to fourth switching elements Q1 to Q4 in the first inverter unit IU1 to switch the first inverter unit IU1. Prepare.
  • the inverter power supply apparatus inputs a drive signal to the first to fourth switching elements Q21 to Q24 in the second inverter unit IU2, and causes the second inverter unit IU2 to perform a switching operation. Is provided.
  • the inverter power supply device further includes a first power conversion transformer MTr1 and a second power conversion transformer MTr2.
  • the emitter E side of the first switching element Q1 in the first inverter unit IU1 is connected to the collector of the fourth switching element Q24 in the second inverter unit IU2 via the primary side of the first power conversion transformer MTr1. Connected to the C side by wiring (H1, H2). At the same time, the collector C side of the fourth switching element Q4 in the first inverter unit IU1 is connected to the first inverter in the second inverter unit IU2 via the primary side of the second power conversion transformer MTr2.
  • the switching element Q21 is connected to the emitter E side by wiring (H3, H4).
  • the wiring lengths of the wiring H1, the wiring H2, the wiring H3, and the wiring H4 are equal.
  • the wiring H1 is a wiring connected from the emitter E side of the first switching element Q1 to one end side of the primary side (primary winding) of the first power conversion transformer MTr1.
  • the wiring H2 is a wiring connected from the other end side of the primary side (primary winding) of the first power conversion transformer MTr1 to the collector C side of the fourth switching element Q24.
  • the wiring H3 is a wiring connected from the emitter E side of the first switching element Q21 to one end side of the primary side (primary winding) of the second power conversion transformer MTr2.
  • the wiring H4 is a wiring connected from the other end side of the primary side (primary winding) of the second power conversion transformer MTr2 to the collector C side of the fourth switching element Q4.
  • the first inverter unit IU1 and the second inverter unit IU2 operate by PWM (Pulse Width Modulation) drive.
  • the first and second drive circuits Dr1 and Dr2 each generate a drive signal.
  • Each drive signal has a first command value signal (signal 1) and a second command value signal (signal 2).
  • the first command value signal (signal 1) and the second command value signal (signal 2) have a relationship in which the ON and OFF operation timings are reversed.
  • the first command value signal (signal 1) from the first drive circuit Dr1 is ideally the same as the first command value signal (signal 1) from the second drive circuit Dr2. However, as will be described later, these may actually have a slight timing shift.
  • a drive signal is input. Further, from the second drive circuit Dr2, at least one of the first switching element Q21, the second switching element Q22, the third switching element Q23, and the fourth switching element Q24 in the second inverter unit IU2. A drive signal is input to the other.
  • a first command value signal (signal 1) is input to each of the first switching element Q1, the fourth switching element Q4, the first switching element Q21, and the fourth switching element Q24.
  • a second command value signal (signal 2) is input to each of the second switching element Q2, the third switching element Q3, the second switching element Q22, and the third switching element Q23.
  • the first switching element Q1 and the fourth switching element Q4 in the first inverter unit IU1, and the first switching element Q21 and the fourth switching element Q24 in the second inverter unit IU2. Each receives a signal of a first command value (signal 1). Further, the second switching element Q2 and the third switching element Q3 in the first inverter unit IU1, and the second switching element Q22 and the third switching element Q23 in the second inverter unit IU2 The signal of the second command value (signal 2) in which the operation timing of ON and OFF is inverted from the timing of the signal of 1 command value (signal 1).
  • the emitter E side of the first switching element Q1 of the first inverter unit IU1 is connected to the fourth side of the second inverter unit IU2 via the primary side of the first power conversion transformer MTr1.
  • Switching element Q24 is connected to the collector C side.
  • the collector C side of the fourth switching element Q4 of the first inverter unit IU1 is connected to the second inverter unit IU2 via the primary side of the second power conversion transformer MTr2 by the wiring (H3, H4).
  • the first switching element Q21 is connected to the emitter E side. It is necessary to make the directions of the polarities of the windings of the first power conversion transformer MTr1 and the second power conversion transformer MTr2 equal to each other.
  • the inverter power supply apparatus is wired so that the polarities of the windings of the first power conversion transformer MTr1 and the second power conversion transformer MTr2 are equal to each other.
  • FIG. 2 shows the operation status in each of the switching elements Q1 to Q4, Q21 to Q24 and the conduction operation status of the inverter circuit 3 including the first inverter unit IU1 and the second inverter unit IU2, from the period T1 to the period T8. It is represented by.
  • the period T1 and the period T5 indicate a period of a timing shift between the switching elements Q1 to Q4 in the first inverter unit IU1 and the switching elements Q21 to Q24 in the second inverter unit IU2.
  • This shift is a shift unintended by the designer caused by variations in the characteristics of elements in the first and second drive circuits Dr1 and Dr2, parasitic inductance of wiring, and the like.
  • the period T1 includes a timing at which the first switching element Q1 and the fourth switching element Q4 in the first inverter unit IU1 are turned on by the drive signal (signal 1) of the first drive circuit Dr1. This is a deviation from the timing when the first switching element Q21 and the fourth switching element Q24 in the second inverter unit IU2 are turned ON by the drive signal (signal 1) of the second drive circuit Dr2.
  • the second switching element Q2 and the third switching element Q3 in the first inverter unit IU1 are turned on by the drive signal (signal 2) of the first drive circuit Dr1, and the second This is a deviation from the timing when the second switching element Q22 and the third switching element Q23 in the second inverter unit IU2 are turned ON by the drive signal (signal 2) of the drive circuit Dr2.
  • the period T2 and the period T6 indicate conduction periods in which the inverter circuit 3 is turned on when both the first inverter unit IU1 and the second inverter unit IU2 are turned on, and the inverter circuit 3 outputs power.
  • a period T3 and a period T7 indicate a period in which the switching elements Q1 to Q4 in the first inverter unit IU1 and the switching elements Q21 to Q24 in the second inverter unit IU2 are turned off.
  • T5 a period of deviation not intended by the designer is shown. This deviation occurs due to variations in the characteristics of elements in the first and second drive circuits Dr1, Dr2, parasitic inductance of wiring, and the like.
  • the period T4 and the period T8 indicate dead time periods in which all the switching elements in the inverter circuit 3 including the first inverter unit IU1 and the second inverter unit IU2 are OFF.
  • the first switching element Q1 and the fourth switching element Q4 start to be turned on, and after the period T1, the first switching element Q21 and the fourth switching element Q24 are turned on.
  • the order of the timing of turning on may be reversed.
  • the first switching element Q1, the fourth switching element Q4, the first switching element Q21, and the fourth switching element Q24 operate, and the second switching element Q2 and the third switching element Q3, the second switching element Q22, and the third switching element Q23 are always in the OFF state.
  • the first switching element Q1 and the fourth switching element Q4 are turned on in advance, and the first switching element Q21 and the fourth switching element Q24 remain in the OFF state. Since the second inverter unit IU2 is OFF, the inverter circuit 3 does not conduct and does not output power.
  • the first switching element Q1, the fourth switching element Q4, the first switching element Q21, and the fourth switching element Q24 are all turned on. That is, both the first inverter unit IU1 and the second inverter unit IU2 are turned on. Thereby, the current path 1 shown in FIG. 3 is formed.
  • the inverter current i1 and the inverter current i2 flow through the current path 1, power is supplied to the first power conversion transformer MTr1 and the second power conversion transformer MTr2.
  • the inverter current i1 passes through the first switching element Q1 in the first inverter unit IU1 and passes through the primary side of the first power conversion transformer MTr1 to the second current in the second inverter unit IU2. 4 switching element Q24.
  • the inverter current i2 passes through the first switching element Q21 in the second inverter unit IU2, passes through the primary side of the second power conversion transformer MTr2, and the fourth switching element Q4 in the first inverter unit IU1. Pass through.
  • the first switching element Q1 and the fourth switching element Q4 in the first inverter unit IU1 are turned on by the drive signal (signal 1) from the first drive circuit Dr1.
  • the first switching element Q21 and the fourth switching element Q24 in the second inverter unit IU2 are turned on by a drive signal (signal 1) from the second drive circuit Dr2.
  • the first inverter current i1 input to the first inverter unit IU1 passes through the first switching element Q1 in the first inverter unit IU1 and passes through the primary side of the first power conversion transformer MTr1. It passes through the fourth switching element Q24 in the second inverter unit IU2.
  • the second inverter current i2 input to the second inverter unit IU2 passes through the first switching element Q21 in the second inverter unit IU2, and is on the primary side of the second power conversion transformer MTr2. Through the fourth switching element Q4 in the first inverter unit IU1.
  • the first switching element Q1 and the fourth switching element Q4 are turned off in advance, and the first switching element Q21 and the fourth switching element Q24 remain in the ON state. Since the first inverter unit IU1 is OFF, the inverter circuit 3 does not conduct and does not output power.
  • the period T4 is a dead time set by the designer, and is a period for preventing a short-circuit current passing through the bridge from flowing in the first inverter unit IU1 and the second inverter unit IU2. By providing the dead time, each switching element can be prevented from being destroyed.
  • the second switching element Q2, the third switching element Q3, the second switching element Q22, and the third switching element Q23 operate, and the first switching element Q1 and the fourth switching element Q4, the first switching element Q21 and the fourth switching element Q24 are always in the OFF state.
  • the second switching element Q2 and the third switching element Q3 are turned on in advance, and the second switching element Q22 and the third switching element Q23 remain in the OFF state. Since the second inverter unit IU2 is OFF, the inverter circuit 3 does not conduct and does not output power.
  • the second switching element Q2, the third switching element Q3, the second switching element Q22, and the third switching element Q23 are all turned on. That is, both the first inverter unit IU1 and the second inverter unit IU2 are turned on. As a result, the current path 2 shown in FIG. 4 is formed.
  • the inverter current i3 and the inverter current i4 flow through the current path 2, electric power is supplied to the first power conversion transformer MTr1 and the second power conversion transformer MTr2.
  • the inverter current i3 passes through the third switching element Q3 in the first inverter unit IU1, passes through the primary side of the second power conversion transformer MTr2, and the second switching element Q22 in the second inverter unit IU2. Pass through.
  • the inverter current i4 passes through the third switching element Q23 in the second inverter unit IU2, passes through the primary side of the first power conversion transformer MTr1, and the second switching element Q2 in the first inverter unit IU1. Pass through.
  • the second switching element Q2 and the third switching element Q3 in the first inverter unit IU1 are turned on by the drive signal (signal 2) from the first drive circuit Dr1.
  • the second switching element Q22 and the third switching element Q23 in the second inverter unit IU2 are turned on by a drive signal (signal 2) from the second drive circuit Dr2.
  • the third inverter current i3 input to the first inverter unit IU1 passes through the third switching element Q3 in the first inverter unit IU1 and passes through the primary side of the second power conversion transformer MTr2. It passes through the second switching element Q22 in the second inverter unit IU2.
  • the fourth inverter current i4 input to the second inverter unit IU2 passes through the third switching element Q23 in the second inverter unit IU2, and passes through the primary side of the first power conversion transformer MTr1. Through the second switching element Q2 in the first inverter unit IU1.
  • the second switching element Q2 and the third switching element Q3 are turned off in advance, and the second switching element Q22 and the third switching element Q23 remain in the ON state. Since the first inverter unit IU1 is OFF, the inverter circuit 3 does not conduct and does not output power.
  • the period T8 is a dead time set by the designer like the period T4, and is a period for preventing a short-circuit current passing through the bridge from flowing in the first inverter unit IU1 and the second inverter unit IU2. It is. By providing the dead time, each switching element can be prevented from being destroyed.
  • the current paths 1 and 2 described with reference to FIGS. 2 and 3 alternately incorporate different switching elements of the drive circuit.
  • the two switching elements forming the path through which the inverter current flows are driven by drive signals from different drive circuits.
  • the flow path of the inverter current i1 is formed by the first switching element Q1 and the fourth switching element Q24.
  • the first switching element Q1 is driven by a drive signal (signal 1) from the first drive circuit Dr1.
  • the fourth switching element Q24 is driven by a drive signal (signal 1) from the second drive circuit Dr2.
  • the period during which each inverter unit IU1, IU2 performs power conversion Are equal. Further, even if there is an arbitrary switching element that is turned ON in advance, the inverter circuit 3 does not conduct because the paired switching elements are not turned ON. This is because the wiring method takes into consideration that the characteristics of the first and second drive circuits Dr1, Dr2 are deviated from each other.
  • the emitter E side of the first switching element Q1 in the first inverter unit IU1 is connected to the second side via the primary side of the first power conversion transformer MTr1.
  • the fourth switching element Q24 in the inverter unit IU2 is connected to the collector C side.
  • the collector C side of the fourth switching element Q4 in the first inverter unit IU1 is connected to the first switching element Q21 in the second inverter unit IU2 via the primary side of the second power conversion transformer MTr2. Connected to the emitter E side.
  • a drive signal is supplied from the first and second drive circuits (Dr1, Dr2) to the first and second inverter units (IU1, IU2), respectively.
  • Each drive signal includes a signal (signal 1 and signal 2) in which the operation timing of switching ON and OFF is inverted.
  • signal 1 and signal 2 the operation timing of switching ON and OFF is inverted.
  • unintended ON timing shift, OFF timing shift, or both ON timing and OFF timing between the drive signal from the first drive circuit Dr1 and the drive signal from the second drive circuit Dr2. Deviation may occur. Even in such a case, when both the drive signals from the first drive circuit Dr1 and the second drive circuit Dr2 indicate ON, the first inverter unit IU1 and the second inverter unit IU2 respectively Electric power is simultaneously output to the first power conversion transformer MTr1 and the second power conversion transformer MTr2.
  • the inverter circuit 3 composed of the first inverter unit IU1 and the second inverter unit IU2 can conduct and output electric power.
  • the inverter circuit 3 does not conduct and does not output power.
  • the conduction period of the first inverter unit IU1 and the second inverter unit IU2 in other words, the conduction timing is equalized, and resistance components such as inductance are averaged to eliminate the unbalance. Therefore, the inverter currents i1 to i4 flowing through the first inverter unit IU1 and the second inverter unit IU2 are balanced and flow evenly.
  • the technology of the present disclosure is industrially useful as a simple and inexpensive method for maintaining current balance in inverters connected in parallel.

Abstract

第1から第4のスイッチング素子(Q1~Q4,Q21~Q24)をそれぞれ有する第1と第2のインバータユニット(IU1,IU2)とが並列接続される。この第1のインバータユニットの第1のスイッチング素子(Q1)のエミッタ側は、第1の電力変換トランス(MTr1)の1次側を介して第2のインバータユニットの第4のスイッチング素子(Q24)のコレクタ側へ接続される。第1のインバータユニットの第4のスイッチング素子(Q4)のコレクタ側は、第2の電力変換トランス(MTr2)の1次側を介して第2のインバータユニットの第1のスイッチング素子(Q21)のエミッタ側へ接続される。

Description

インバータ電源装置
 本開示は、インバータユニットが並列接続されたインバータ回路を有するアーク溶接機のインバータ電源装置に関する。
 近年、半導体素子の発展に伴い、高電流出力を可能とするアーク溶接機の需要が高まっている。あるアーク溶接機では、複数のインバータ回路を並列に接続することで、さらなる高電流出力を実現している。
 しかしながら、並列接続された各インバータ回路のスイッチングのタイミングにずれが生じることで、各インバータ回路に流れる電流に不平衡が生じることがある。このタイミングのずれは、例えば、インバータ回路を駆動させるためのドライブ回路内における各素子の特性のばらつきや配線インダクタンスによって生じる。
 ある従来技術では、不平衡を解消するため、各インバータ回路の後段に接続された主変圧器の2次側の出力電圧を検出し、検出された各出力電圧から各インバータ回路の平均出力電圧を求める。そして、平均電圧と各出力電圧が同一となるように、それぞれのインバータ回路を制御するパルス幅変調信号のパルス幅を補正する。これにより、各インバータ回路のON期間のばらつきが抑制され、並列に接続された各インバータ回路の出力電流が平衡となる(例えば特許文献1)。
特開2009-189174号公報
 従来技術は、それぞれのインバータ回路に流れる電流を平衡にするため、出力電圧検知センサと出力を演算する制御回路を要する。従って、従来技術は、コストの増加、回路構成の複雑化という課題を有していた。
 本開示は、回路の簡易化および低コスト化を可能とするインバータ電源装置を提供する。
 本開示の一態様に係るインバータ電源装置は、並列接続された第1および第2のインバータユニットを含み、第1および第2のインバータユニットが、それぞれ、直列接続された第1のスイッチング素子と第2のスイッチング素子とを有する第1組と、直列接続された第3のスイッチング素子と第4のスイッチング素子を有し第1組と並列接続された第2組とを含む、インバータ回路と、第1のインバータユニット内のそれぞれのスイッチング素子に対してドライブ信号を入力し、第1のインバータユニットをスイッチング動作させる第1のドライブ回路と、第2のインバータユニット内のそれぞれのスイッチング素子に対してドライブ信号を入力し、第2のインバータユニットをスイッチング動作させる第2のドライブ回路と、第1の電力変換トランスと、第2の電力変換トランスと、を備える。
 第1のインバータユニット内の第1のスイッチング素子の低電位側端子は、第1の電力変換トランスの1次側を介して第2のインバータユニット内の第4のスイッチング素子の高電位側端子に接続され、かつ、第1のインバータユニット内の第4のスイッチング素子の高電位側端子は、第2の電力変換トランスの1次側を介して第2のインバータユニット内の第1のスイッチング素子の低電位側端子に接続される。
 本開示の一態様に係るインバータ電源装置は、配線方式の工夫によって、並列接続された各インバータユニットに流れる電流の不平衡状態を平衡へと改善する。これにより各スイッチング素子や各トランス等への発熱の偏りを抑えることが可能である。そのため、インバータ電源装置の高寿命化、信頼性向上へ寄与できる。さらには、各トランスの2次側の出力電圧の検知に基づいて各インバータユニットに流れる電流を平衡化するバランス用の制御回路を要しない。そのため、インバータ電源装置の回路の簡易化かつ低コスト化が可能である。
本開示の実施の形態におけるインバータ電源装置の回路構成を示す図 本開示の実施の形態における各スイッチング素子の動作状況を示す図 本開示の実施の形態における電流経路1を示す図 本開示の実施の形態における電流経路2を示す図
 本開示の実施の形態による一例を図1から図4に基づいて説明する。
 図1は本開示の実施の形態によるアーク溶接機におけるインバータ電源装置の一部を示している。このインバータ電源装置は、第1および第2のインバータユニットIU1,IU2と、第1および第2のインバータユニットIU1,IU2をそれぞれ駆動させるための第1および第2のドライブ回路Dr1,Dr2と、アーク溶接に適した電流と電圧を得るために電力変換を行う第1および第2の電力変換トランスMTr1,MTr2とを備える。
 第1のインバータユニットIU1は、直列接続された第1のスイッチング素子Q1と第2のスイッチング素子Q2とを有する第1組と、直列接続された第3のスイッチング素子Q3と第4のスイッチング素子Q4とを有し第1組と並列接続された第2組とを含む。第2のインバータユニットIU2は、直列接続された第1のスイッチング素子Q21と第2のスイッチング素子Q22とを有する第1組と、直列接続された第3のスイッチング素子Q23と第4のスイッチング素子Q24とを有し第1組と並列接続された第2組とを含む。第1および第2のインバータユニットは並列に接続される。第1および第2のインバータユニットIU1,IU2がインバータ回路3を構成する。
 各スイッチング素子Q1~Q4,Q21~Q24は、制御端子としてのベースB、高電位側端子としてのコレクタC、低電位側端子としてのエミッタEの3つの電極を有する。スイッチング素子はIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等であってもよい。IGBTは、ゲート、コレクタ、エミッタの3つの電極を有する。IGBTのゲート、コレクタおよびエミッタは、それぞれ、スイッチング素子のベースB、コレクタCおよびエミッタEに対応する。MOSFETは、ゲート、ソース、ドレインの3つの電極を有する。MOSFETのゲート、ソースおよびドレインは、それぞれ、スイッチング素子のベースB、コレクタCおよびエミッタEに対応する。
 本実施の形態のインバータ電源装置は、第1および第2のインバータユニットIU1,IU2にそれぞれ流れるインバータ電流を平衡にするため、第1のインバータユニットIU1と第2のインバータユニットIU2を図1のように接続させることを特徴とするものである。
 具体的には、第1のインバータユニットIU1は、直列接続された第1のスイッチング素子Q1と第2のスイッチング素子Q2とを有する第1組と、直列接続された第3のスイッチング素子Q3と第4のスイッチング素子Q4とを有する第2組とを含む。第1組と第2組が並列接続されることにより、第1~第4のスイッチング素子Q1~Q4がブリッジ接続される。
 また、第2のインバータユニットIU2は、直列接続された第1のスイッチング素子Q21と第2のスイッチング素子Q22とを有する第1組と、直列接続された第3のスイッチング素子Q23と第4のスイッチング素子Q24とを有する第2組とを含む。第1組と第2組が並列接続されることにより、第1~第4のスイッチング素子Q21~Q24がブリッジ接続される。
 そして、第1のインバータユニットIU1と第2のインバータユニットIU2とが並列接続されている。
 さらに、インバータ電源装置は、第1のインバータユニットIU1内の第1~第4のスイッチング素子Q1~Q4にドライブ信号を入力し、第1のインバータユニットIU1をスイッチング動作させる第1のドライブ回路Dr1を備える。加えて、インバータ電源装置は、第2のインバータユニットIU2内の第1~第4のスイッチング素子Q21~Q24にドライブ信号を入力し、第2のインバータユニットIU2をスイッチング動作させる第2のドライブ回路Dr2を備える。
 インバータ電源装置は、さらに、第1の電力変換トランスMTr1と第2の電力変換トランスMTr2を備える。
 第1のインバータユニットIU1内の第1のスイッチング素子Q1のエミッタE側は、第1の電力変換トランスMTr1の1次側を介して第2のインバータユニットIU2内の第4のスイッチング素子Q24のコレクタC側へ配線(H1、H2)にて接続される。また、これと共に、第1のインバータユニットIU1内の第4のスイッチング素子Q4のコレクタC側は、第2の電力変換トランスMTr2の1次側を介して第2のインバータユニットIU2内の第1のスイッチング素子Q21のエミッタE側へ配線(H3、H4)にて接続される。
 なお、第1および第2の各インバータユニットIU1,IU2に流れるインバータ電流を平衡にするため、配線H1と、配線H2と、配線H3と、配線H4の各配線長が等しいことが好ましい。
 配線H1は、第1のスイッチング素子Q1のエミッタE側から第1の電力変換トランスMTr1の1次側(1次巻線)の一端側へ接続される配線である。
 配線H2は、第1の電力変換トランスMTr1の1次側(1次巻線)の他端側から第4のスイッチング素子Q24のコレクタC側へ接続される配線である。
 配線H3は、第1のスイッチング素子Q21のエミッタE側から第2の電力変換トランスMTr2の1次側(1次巻線)の一端側へ接続される配線である。
 配線H4は、第2の電力変換トランスMTr2の1次側(1次巻線)の他端側から第4のスイッチング素子Q4のコレクタC側へ接続される配線である。
 第1のインバータユニットIU1と第2のインバータユニットIU2はPWM(Pulse Width Modulation)駆動によって動作する。第1および第2のドライブ回路Dr1,Dr2は、それぞれドライブ信号を生成する。各ドライブ信号は、第1の指令値の信号(信号1)および第2の指令値の信号(信号2)を有する。第1の指令値の信号(信号1)と第2の指令値の信号(信号2)は互いにONとOFFの動作タイミングが反転した関係を持つ。第1のドライブ回路Dr1からの第1の指令値の信号(信号1)は、理想的には第2のドライブ回路Dr2からの第1の指令値の信号(信号1)と同じである。ただし、後述の通り、これらは現実的には多少のタイミングのずれを有し得る。第1のドライブ回路Dr1からの第2の指令値の信号(信号2)と第2のドライブ回路Dr2からの第2の指令値の信号(信号2)についても、同様である。
 第1のドライブ回路Dr1から、第1のインバータユニットIU1における、第1のスイッチング素子Q1、第2のスイッチング素子Q2、第3のスイッチング素子Q3、および、第4のスイッチング素子Q4の少なくとも1つへドライブ信号が入力される。また、第2のドライブ回路Dr2から、第2のインバータユニットIU2における、第1のスイッチング素子Q21、第2のスイッチング素子Q22、第3のスイッチング素子Q23、および、第4のスイッチング素子Q24の少なくとも1つへドライブ信号が入力される。
 第1のスイッチング素子Q1と第4のスイッチング素子Q4と第1のスイッチング素子Q21と第4のスイッチング素子Q24には、それぞれ、第1の指令値の信号(信号1)が入力される。第2のスイッチング素子Q2と第3のスイッチング素子Q3と第2のスイッチング素子Q22と第3のスイッチング素子Q23には、それぞれ、第2の指令値の信号(信号2)が入力される。
 このように、第1のインバータユニットIU1内の第1のスイッチング素子Q1と第4のスイッチング素子Q4と、第2のインバータユニットIU2内の第1のスイッチング素子Q21と第4のスイッチング素子Q24とにはそれぞれ第1の指令値(信号1)の信号が入力される。また、第1のインバータユニットIU1内の第2のスイッチング素子Q2と第3のスイッチング素子Q3と、第2のインバータユニットIU2内の第2のスイッチング素子Q22と第3のスイッチング素子Q23とには第1の指令値の信号(信号1)のタイミングとはONおよびOFFの動作タイミングが反転した第2の指令値の信号(信号2)が入力される。
 配線(H1、H2)により、第1のインバータユニットIU1の第1のスイッチング素子Q1のエミッタE側は、第1の電力変換トランスMTr1の一次側を介して、第2のインバータユニットIU2の第4のスイッチング素子Q24のコレクタC側へ接続される。また、配線(H3、H4)により、第1のインバータユニットIU1の第4のスイッチング素子Q4のコレクタC側は、第2の電力変換トランスMTr2の一次側を介して、第2のインバータユニットIU2の第1のスイッチング素子Q21のエミッタE側へ接続される。第1の電力変換トランスMTr1と第2の電力変換トランスMTr2の巻線の巻方向による極性の向きを互いに等しくする必要がある。
 本実施の形態のインバータ電源装置は、第1の電力変換トランスMTr1と第2の電力変換トランスMTr2の巻線の巻方向による極性の向きが互いに等しくなるよう配線されている。
 次に図2を用いて回路動作を説明する。
 図2に示すのは、各スイッチング素子Q1~Q4,Q21~Q24における動作状況と、第1のインバータユニットIU1と第2のインバータユニットIU2からなるインバータ回路3の導通動作状況を期間T1から期間T8によって表したものである。
 ここで、期間T1、期間T5は第1のインバータユニットIU1内のスイッチング素子Q1~Q4と第2のインバータユニットIU2内のスイッチング素子Q21~Q24とのONするタイミングのずれの期間を示す。このずれは、第1および第2のドライブ回路Dr1,Dr2内の素子の特性のばらつきや、配線の寄生インダクタンス等によって発生する、設計者の意図しないずれである。
 具体的には、期間T1は、第1のドライブ回路Dr1のドライブ信号(信号1)により、第1のインバータユニットIU1内の第1のスイッチング素子Q1および第4のスイッチング素子Q4がONするタイミングと、第2のドライブ回路Dr2のドライブ信号(信号1)により、第2のインバータユニットIU2内の第1のスイッチング素子Q21および第4のスイッチング素子Q24がONするタイミングとのずれである。
 また、期間T5は、第1のドライブ回路Dr1のドライブ信号(信号2)により、第1のインバータユニットIU1内の第2のスイッチング素子Q2および第3のスイッチング素子Q3がONするタイミングと、第2のドライブ回路Dr2のドライブ信号(信号2)により、第2のインバータユニットIU2内の第2のスイッチング素子Q22および第3のスイッチング素子Q23がONするタイミングとのずれである。
 期間T2、期間T6は、第1のインバータユニットIU1と第2のインバータユニットIU2が共にONすることによりインバータ回路3が導通して、このインバータ回路3が電力を出力する導通期間を示す。
 期間T3、期間T7は、第1のインバータユニットIU1内のスイッチング素子Q1~Q4と第2のインバータユニットIU2内のスイッチング素子Q21~Q24とのOFFするタイミングのずれの期間を示し、期間T1、期間T5と同様に設計者の意図しないずれの期間を示す。このずれは、第1および第2のドライブ回路Dr1,Dr2内の素子の特性のばらつきや、配線の寄生インダクタンス等によって発生する。
 期間T4、期間T8は第1のインバータユニットIU1と第2のインバータユニットIU2とからなるインバータ回路3内の全てのスイッチング素子がOFFであるデッドタイムの期間を示している。
 なお図2に示す例では、第1のスイッチング素子Q1と第4のスイッチング素子Q4からONし始め、期間T1を経てから、第1のスイッチング素子Q21と第4のスイッチング素子Q24がONしているが、ONするタイミングの順番は逆であってもよい。第2のスイッチング素子Q2と第3のスイッチング素子Q3と第2のスイッチング素子Q22と第3のスイッチング素子Q23についても同様である。
 期間T1から期間T4では、第1のスイッチング素子Q1と第4のスイッチング素子Q4と第1のスイッチング素子Q21と第4のスイッチング素子Q24が動作し、第2のスイッチング素子Q2と第3のスイッチング素子Q3と第2のスイッチング素子Q22と第3のスイッチング素子Q23は常にOFF状態となる。
 期間T1では第1のスイッチング素子Q1と第4のスイッチング素子Q4が先行してON状態となり、第1のスイッチング素子Q21と第4のスイッチング素子Q24がOFF状態のままである。第2のインバータユニットIU2がOFFであるため、インバータ回路3は導通せず、電力を出力しない。
 期間T2では第1のスイッチング素子Q1と第4のスイッチング素子Q4と第1のスイッチング素子Q21と第4のスイッチング素子Q24が共にON状態となる。すなわち、第1のインバータユニットIU1と第2のインバータユニットIU2が共にONとなる。これにより、図3に示した電流経路1が形成される。インバータ電流i1とインバータ電流i2が電流経路1を流れることで、第1の電力変換トランスMTr1と第2の電力変換トランスMTr2へと電力が供給される。
 具体的には、インバータ電流i1は第1のインバータユニットIU1内の第1のスイッチング素子Q1を通り、第1の電力変換トランスMTr1の1次側を介して、第2のインバータユニットIU2内の第4のスイッチング素子Q24を通る。インバータ電流i2は第2のインバータユニットIU2内の第1のスイッチング素子Q21を通り、第2の電力変換トランスMTr2の1次側を介して、第1のインバータユニットIU1内の第4のスイッチング素子Q4を通る。
 このように、第1のインバータユニットIU1内の第1のスイッチング素子Q1と第4のスイッチング素子Q4は第1のドライブ回路Dr1からのドライブ信号(信号1)によりONする。第2のインバータユニットIU2内の第1のスイッチング素子Q21と第4のスイッチング素子Q24は第2のドライブ回路Dr2からのドライブ信号(信号1)によりONする。
 また、第1のインバータユニットIU1に入力される第1のインバータ電流i1は第1のインバータユニットIU1内の第1のスイッチング素子Q1を通り、第1の電力変換トランスMTr1の1次側を介して第2のインバータユニットIU2内の第4のスイッチング素子Q24を通る。
 また、これと共に、第2のインバータユニットIU2に入力される第2のインバータ電流i2は第2のインバータユニットIU2内の第1のスイッチング素子Q21を通り、第2の電力変換トランスMTr2の1次側を介して、第1のインバータユニットIU1内の第4のスイッチング素子Q4を通る。
 第1のドライブ回路Dr1と第2のドライブ回路Dr2からの各ドライブ信号(信号1)が共にONを示す場合に、第1のインバータユニットIU1と第2のインバータユニットIU2からそれぞれ第1の電力変換トランスMTr1と第2の電力変換トランスMTr2へ電力が同時に出力される。
 期間T3では第1のスイッチング素子Q1と第4のスイッチング素子Q4が先行してOFF状態となり、第1のスイッチング素子Q21と第4のスイッチング素子Q24がON状態のままである。第1のインバータユニットIU1がOFFであるため、インバータ回路3は導通せず電力を出力しない。
 期間T4では第1のスイッチング素子Q1と第4のスイッチング素子Q4と第1のスイッチング素子Q21と第4のスイッチング素子Q24が共にOFF状態である。期間T4は、設計者によって設定されたデッドタイムであり、第1のインバータユニットIU1と第2のインバータユニットIU2内でブリッジを貫通する短絡電流が流れることを防止するための期間である。デッドタイムが設けられていることにより、各スイッチング素子が破壊することを防止できる。
 期間T5から期間T8は、第2のスイッチング素子Q2と第3のスイッチング素子Q3と第2のスイッチング素子Q22と第3のスイッチング素子Q23が動作し、第1のスイッチング素子Q1と第4のスイッチング素子Q4と第1のスイッチング素子Q21と第4のスイッチング素子Q24は常にOFF状態となる。
 期間T5では第2のスイッチング素子Q2と第3のスイッチング素子Q3が先行してON状態となり、第2のスイッチング素子Q22と第3のスイッチング素子Q23がOFF状態のままである。第2のインバータユニットIU2がOFFであるため、インバータ回路3は導通せず電力を出力しない。
 期間T6では第2のスイッチング素子Q2と第3のスイッチング素子Q3と第2のスイッチング素子Q22と第3のスイッチング素子Q23が共にON状態となる。すなわち、第1のインバータユニットIU1と第2のインバータユニットIU2とが共にONとなる。これにより、図4に示した電流経路2が形成される。インバータ電流i3とインバータ電流i4が電流経路2を流れることで、第1の電力変換トランスMTr1と第2の電力変換トランスMTr2へと電力が供給される。
 インバータ電流i3は第1のインバータユニットIU1内の第3のスイッチング素子Q3を通り、第2の電力変換トランスMTr2の1次側を介して、第2のインバータユニットIU2内の第2のスイッチング素子Q22を通る。インバータ電流i4は第2のインバータユニットIU2内の第3のスイッチング素子Q23を通り、第1の電力変換トランスMTr1の1次側を介して、第1のインバータユニットIU1内の第2のスイッチング素子Q2を通る。
 このように、第1のインバータユニットIU1内の第2のスイッチング素子Q2と第3のスイッチング素子Q3は第1のドライブ回路Dr1からのドライブ信号(信号2)によりONする。第2のインバータユニットIU2内の第2のスイッチング素子Q22と第3のスイッチング素子Q23は第2のドライブ回路Dr2からのドライブ信号(信号2)によりONする。
 また、第1のインバータユニットIU1に入力される第3のインバータ電流i3は第1のインバータユニットIU1内の第3のスイッチング素子Q3を通り、第2の電力変換トランスMTr2の1次側を介して第2のインバータユニットIU2内の第2のスイッチング素子Q22を通る。
 また、これと共に第2のインバータユニットIU2に入力される第4のインバータ電流i4は第2のインバータユニットIU2内の第3のスイッチング素子Q23を通り、第1の電力変換トランスMTr1の1次側を介して、第1のインバータユニットIU1内の第2のスイッチング素子Q2を通る。
 第1のドライブ回路Dr1と第2のドライブ回路Dr2からのドライブ信号(信号2)が共にONを示す場合に、第1のインバータユニットIU1と第2のインバータユニットIU2からそれぞれ第1の電力変換トランスMTr1と第2の電力変換トランスMTr2へ電力が同時に出力される。
 期間T7では第2のスイッチング素子Q2と第3のスイッチング素子Q3が先行してOFF状態となり、第2のスイッチング素子Q22と第3のスイッチング素子Q23がON状態のままである。第1のインバータユニットIU1がOFFであるため、インバータ回路3は導通せず電力を出力しない。
 期間T8では第2のスイッチング素子Q2と第3のスイッチング素子Q3と第2のスイッチング素子Q22と第3のスイッチング素子Q23が共にOFF状態である。期間T8は、期間T4と同様、設計者によって設定されたデッドタイムであり、第1のインバータユニットIU1と第2のインバータユニットIU2内でブリッジを貫通する短絡電流が流れることを防止するための期間である。デッドタイムが設けられていることにより、各スイッチング素子が破壊することを防止できる。
 以上のように、図2および図3を用いて説明した上記の電流経路1,2は、ドライブ回路の異なるスイッチング素子を交互に取り入れる。言い換えると、インバータ電流が流れる経路を形成する2つのスイッチング素子は、異なるドライブ回路からのドライブ信号により駆動される。例えば、インバータ電流i1の流路は、第1のスイッチング素子Q1と第4のスイッチング素子Q24とで形成される。第1のスイッチング素子Q1は、第1のドライブ回路Dr1からのドライブ信号(信号1)により駆動される。第4のスイッチング素子Q24は、第2のドライブ回路Dr2からのドライブ信号(信号1)により駆動される。これにより、第1および第2のドライブ回路Dr1,Dr2内の素子の特性のばらつきにより、意図しないONまたはOFFのタイミングのずれが生じたとしても、各インバータユニットIU1,IU2が電力変換を行う期間は等しくなる。また、先行でON状態となる任意のスイッチング素子が存在したとしても、対となるスイッチング素子がON状態とならないためインバータ回路3が導通しない。これは第1および第2のドライブ回路Dr1,Dr2同士の特性がずれたことを考慮した配線方式であるためである。
 また、第1および第2のドライブ回路Dr1,Dr2からのドライブ信号に意図しないONタイミングのずれが生じた場合、またはOFFタイミングのずれが生じた場合、またはONタイミングとOFFタイミング両方のずれが生じた場合においても、第1のインバータユニットIU1と第2のインバータユニットIU2の導通期間は等しくなり、各インバータ電流i1~i4は均等に流れる。
 このように、本実施の形態のインバータ電源装置では、第1のインバータユニットIU1内の第1のスイッチング素子Q1のエミッタE側が、第1の電力変換トランスMTr1の1次側を介して第2のインバータユニットIU2内の第4のスイッチング素子Q24のコレクタC側へ接続される。また、第1のインバータユニットIU1内の第4のスイッチング素子Q4のコレクタC側は、第2の電力変換トランスMTr2の1次側を介して第2のインバータユニットIU2内の第1のスイッチング素子Q21のエミッタE側へ接続される。
 第1、第2のインバータユニット(IU1、IU2)に対して、それぞれ第1、第2のドライブ回路(Dr1、Dr2)からドライブ信号が供給される。各ドライブ信号は、スイッチングのONおよびOFFの動作タイミングが反転した信号(信号1,信号2)を含む。上述の通り、第1のドライブ回路Dr1からのドライブ信号と第2のドライブ回路Dr2からのドライブ信号との間で、意図しないONタイミングのずれ、またはOFFタイミングのずれ、またはONタイミングとOFFタイミング両方のずれが生じる場合がある。このような場合であっても、第1のドライブ回路Dr1と第2のドライブ回路Dr2からのドライブ信号が共にONを示す場合に、第1のインバータユニットIU1と第2のインバータユニットIU2からそれぞれ第1の電力変換トランスMTr1と第2の電力変換トランスMTr2へ電力が同時に出力される。すなわち、第1のインバータユニットIU1と第2のインバータユニットIU2とから成るインバータ回路3は、導通して電力を出力することが出来る。一方、第1のドライブ回路Dr1からのドライブ信号と第2のドライブ回路Dr2からのドライブ信号のいずれかがOFFを示す場合、インバータ回路3は導通せず、電力を出力しない。
 したがって、第1のインバータユニットIU1と第2のインバータユニットIU2の導通期間、言い換えると導通タイミングは等しくなり、インダクタンス等の抵抗成分が平均化されて不平衡が解消される。そのため、第1のインバータユニットIU1と第2のインバータユニットIU2を流れる各インバータ電流i1~i4は、平衡化され均等に流れることになる。
 本開示の技術は、並列接続されたインバータにおいて電流バランスを保つ簡易かつ安価な方法として産業上有用である。
 Q1、Q21  第1のスイッチング素子
 Q2、Q22  第2のスイッチング素子
 Q3、Q23  第3のスイッチング素子
 Q4、Q24  第4のスイッチング素子
 IU1  第1のインバータユニット
 IU2  第2のインバータユニット
 MTr1  第1の電力変換トランス
 MTr2  第2の電力変換トランス
 Dr1  第1のドライブ回路
 Dr2  第2のドライブ回路
 H1、H2、H3、H4  配線
 i1、i2、i3、i4  インバータ電流
 3  インバータ回路

Claims (5)

  1.  並列接続された第1および第2のインバータユニットを含み、前記第1および第2のインバータユニットが、それぞれ、直列接続された第1のスイッチング素子と第2のスイッチング素子とを有する第1組と、直列接続された第3のスイッチング素子と第4のスイッチング素子を有し前記第1組と並列接続された第2組とを含む、インバータ回路と、
     前記第1のインバータユニット内のそれぞれのスイッチング素子に対してドライブ信号を入力し、前記第1のインバータユニットをスイッチング動作させる第1のドライブ回路と、
     前記第2のインバータユニット内のそれぞれのスイッチング素子に対してドライブ信号を入力し、前記第2のインバータユニットをスイッチング動作させる第2のドライブ回路と、
     第1の電力変換トランスと、
     第2の電力変換トランスと、を備え、
     前記第1のインバータユニット内の前記第1のスイッチング素子の低電位側端子は、前記第1の電力変換トランスの1次側を介して前記第2のインバータユニット内の前記第4のスイッチング素子の高電位側端子に接続され、かつ、前記第1のインバータユニット内の前記第4のスイッチング素子の高電位側端子は、前記第2の電力変換トランスの1次側を介して前記第2のインバータユニット内の前記第1のスイッチング素子の低電位側端子に接続されるインバータ電源装置。
  2.  前記第1のインバータユニット内の前記第1のスイッチング素子と前記第4のスイッチング素子は前記第1のドライブ回路からの前記ドライブ信号によりONし、前記第2のインバータユニット内の前記第1のスイッチング素子と前記第4のスイッチング素子は前記第2のドライブ回路からの前記ドライブ信号によりONし、
     前記第1のインバータユニットに入力される第1のインバータ電流は前記第1のインバータユニット内の前記第1のスイッチング素子を通り、前記第1の電力変換トランスの1次側を介して前記第2のインバータユニット内の前記第4のスイッチング素子を通り、かつ前記第2のインバータユニットに入力される第2のインバータ電流は前記第2のインバータユニット内の前記第1のスイッチング素子から前記第2の電力変換トランスの1次側を介して、前記第1のインバータユニット内の前記第4のスイッチング素子を通り、前記第1のドライブ回路と前記第2のドライブ回路からの前記ドライブ信号が共にONを示す場合に、前記第1のインバータユニットと前記第2のインバータユニットからそれぞれ前記第1の電力変換トランスと前記第2の電力変換トランスへ電力が同時に出力される請求項1記載のインバータ電源装置。
  3.  前記第1のインバータユニット内の前記第2のスイッチング素子と前記第3のスイッチング素子は前記第1のドライブ回路からの前記ドライブ信号によりONし、前記第2のインバータユニット内の前記第2のスイッチング素子と前記第3のスイッチング素子は前記第2のドライブ回路からの前記ドライブ信号によりONし、
     前記第1のインバータユニットに入力される第3のインバータ電流は前記第1のインバータユニット内の前記第3のスイッチング素子を通り、第2の電力変換トランスの1次側を介して前記第2のインバータユニット内の前記第2のスイッチング素子を通り、かつ前記第2のインバータユニットに入力される第4のインバータ電流は前記第2のインバータユニット内の前記第3のスイッチング素子から前記第1の電力変換トランスの1次側を介して、前記第1のインバータユニット内の前記第2のスイッチング素子を通り、前記第1のドライブ回路と前記第2のドライブ回路からの前記ドライブ信号が共にONを示す場合に、前記第1のインバータユニットと前記第2のインバータユニットからそれぞれ前記第1の電力変換トランスと前記第2の電力変換トランスへ電力が同時に出力される請求項1記載のインバータ電源装置。
  4.  前記第1および第2のドライブ回路からの各ドライブ信号は、第1の指令値の信号と、前記第1の指令値の信号のタイミングとはONおよびOFFの動作タイミングが反転した第2の指令値の信号とを含み、
     前記第1のインバータユニット内の前記第1のスイッチング素子と前記第4のスイッチング素子と、前記第2のインバータユニット内の前記第1のスイッチング素子と前記第4のスイッチング素子とには前記第1の指令値の信号が入力され、前記第1のインバータユニット内の前記第2のスイッチング素子と前記第3のスイッチング素子と、前記第2のインバータユニット内の前記第2のスイッチング素子と前記第3のスイッチング素子とには前記第2の指令値の信号が入力された請求項2または3に記載のインバータ電源装置。
  5.  前記第1の電力変換トランスと前記第2の電力変換トランスの巻線の巻方向による極性の向きが互いに等しくなるよう配線された請求項4記載のインバータ電源装置。
PCT/JP2018/011252 2017-04-13 2018-03-22 インバータ電源装置 WO2018190093A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019512400A JP7113182B2 (ja) 2017-04-13 2018-03-22 インバータ電源装置
CN201880023690.9A CN110495088B (zh) 2017-04-13 2018-03-22 逆变器电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-079335 2017-04-13
JP2017079335 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018190093A1 true WO2018190093A1 (ja) 2018-10-18

Family

ID=63792486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011252 WO2018190093A1 (ja) 2017-04-13 2018-03-22 インバータ電源装置

Country Status (3)

Country Link
JP (1) JP7113182B2 (ja)
CN (1) CN110495088B (ja)
WO (1) WO2018190093A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189079A (ja) * 1989-12-18 1991-08-19 Honda Motor Co Ltd 直流抵抗溶接装置
US5408404A (en) * 1993-03-25 1995-04-18 Rockwell International Corp. High frequency interleaved DC-to-AC power converter apparatus
US20070135037A1 (en) * 2003-11-03 2007-06-14 Barragan Perez Luis A Method for operating a frequency converter circuit
JP2008079487A (ja) * 2006-09-25 2008-04-03 Nippon Reliance Kk 交流電源装置
JP2013529457A (ja) * 2011-10-17 2013-07-18 ▲ホア▼▲ウェイ▼技術有限公司 インバータトポロジ回路、逆変換方法、およびインバータ
US20160156291A1 (en) * 2014-12-02 2016-06-02 Princeton Power Systems, Inc. Bidirectional High Frequency Variable Speed Drive for CHP (Combined Heating and Power) and Flywheel Applications

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506590B2 (ja) * 2010-08-03 2014-05-28 株式会社ダイヘン アーク溶接機
CN102857134B (zh) * 2012-10-09 2014-11-26 中国科学院电工研究所 无线电能传输装置的高频逆变电源及其倍频控制方法
CN104638969A (zh) * 2013-11-15 2015-05-20 通用电气公司 半桥逆变器、使用该半桥逆变器的电子镇流器和灯具
CN104124882A (zh) * 2014-06-10 2014-10-29 周细文 一种可变频变压的多电平大功率电压源
JP6442275B2 (ja) * 2014-12-25 2018-12-19 日立オートモティブシステムズ株式会社 電力変換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03189079A (ja) * 1989-12-18 1991-08-19 Honda Motor Co Ltd 直流抵抗溶接装置
US5408404A (en) * 1993-03-25 1995-04-18 Rockwell International Corp. High frequency interleaved DC-to-AC power converter apparatus
US20070135037A1 (en) * 2003-11-03 2007-06-14 Barragan Perez Luis A Method for operating a frequency converter circuit
JP2008079487A (ja) * 2006-09-25 2008-04-03 Nippon Reliance Kk 交流電源装置
JP2013529457A (ja) * 2011-10-17 2013-07-18 ▲ホア▼▲ウェイ▼技術有限公司 インバータトポロジ回路、逆変換方法、およびインバータ
US20160156291A1 (en) * 2014-12-02 2016-06-02 Princeton Power Systems, Inc. Bidirectional High Frequency Variable Speed Drive for CHP (Combined Heating and Power) and Flywheel Applications

Also Published As

Publication number Publication date
JPWO2018190093A1 (ja) 2020-02-27
CN110495088B (zh) 2021-04-06
JP7113182B2 (ja) 2022-08-05
CN110495088A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
JP2004072997A (ja) 駆動装置の異常を検出する方法
WO2010137414A1 (ja) インバータ駆動用電源回路
JP2009027818A (ja) 3レベルインバータの制御方式
Borecki et al. Novel, multilevel converter topology for fault-tolerant operation of switched reluctance machines
US9780675B2 (en) System and method for controlling current in a power converter
WO2018190093A1 (ja) インバータ電源装置
US10554120B2 (en) Power conversion device
JP2022520864A (ja) ブリッジ回路のパワー半導体スイッチをオフにする方法、ブリッジ回路、およびブリッジ回路を含むインバータ
WO2018087891A1 (ja) 電力変換装置
JPH0767320A (ja) 電力素子の駆動回路
JP2006296110A (ja) ユニットインバータ装置
US10587181B2 (en) Power semiconductor device with built-in resistor between control electrode and control terminal, and power semiconductor drive system
JP4631409B2 (ja) 半導体スイッチ回路
JP4715346B2 (ja) 直列接続された電圧駆動型半導体素子の駆動装置
JP7145435B2 (ja) 遮断回路診断装置、モータ制御装置及び遮断回路診断方法
JP4665561B2 (ja) 電圧駆動型半導体素子の直列接続方式
JP2022521802A (ja) マルチレベルインバータの交流出力に過渡電圧変動が発生した場合の電流制限のための方法及びマルチレベルインバータ
JP4765539B2 (ja) 電圧駆動型半導体素子のゲート駆動回路及びこれを用いた電力変換装置
JP2020177875A (ja) 直流遮断装置
WO2012098610A1 (ja) アーク加工電源装置
JP6430345B2 (ja) 半導体電力変換装置
JP5789493B2 (ja) 電力変換装置
JP6881399B2 (ja) 電力用半導体装置及び電力変換装置
JP2005176447A (ja) 半導体スイッチの駆動回路
KR102195774B1 (ko) 스위칭 소자 구동회로 및 스위칭 소자 구동장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512400

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18783905

Country of ref document: EP

Kind code of ref document: A1