WO2018186723A1 - 평면 광도파로 및 광 모듈 - Google Patents

평면 광도파로 및 광 모듈 Download PDF

Info

Publication number
WO2018186723A1
WO2018186723A1 PCT/KR2018/004157 KR2018004157W WO2018186723A1 WO 2018186723 A1 WO2018186723 A1 WO 2018186723A1 KR 2018004157 W KR2018004157 W KR 2018004157W WO 2018186723 A1 WO2018186723 A1 WO 2018186723A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
core
optical waveguide
layer
angle
Prior art date
Application number
PCT/KR2018/004157
Other languages
English (en)
French (fr)
Inventor
차상준
김성덕
정은일
Original Assignee
(주)파이버프로
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파이버프로 filed Critical (주)파이버프로
Priority to US16/603,099 priority Critical patent/US10955627B2/en
Priority to CN201880022931.8A priority patent/CN110476096B/zh
Publication of WO2018186723A1 publication Critical patent/WO2018186723A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02319Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by core or core-cladding interface features
    • G02B6/02333Core having higher refractive index than cladding, e.g. solid core, effective index guiding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12197Grinding; Polishing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features

Definitions

  • the present invention relates to a planar optical waveguide and an optical module including a lens function for focusing the waveguide light.
  • a light source such as a laser diode (LD) or a photodiode (PD) according to the related art emits light in an elongated elliptical beam shape in the vertical direction or the vertical direction when it emits light due to its structural characteristics.
  • LD laser diode
  • PD photodiode
  • the conventional planar optical waveguide separately requires an optical waveguide lens for focusing the waveguide light emitted from the light source to reduce the light coupling loss.
  • Patent Literature 1 discloses light coupling between a light source and an optical fiber using at least one lens.
  • Patent Document 1 KR10-2014-0011521 A
  • An object of the present invention is to provide a planar optical waveguide and an optical module capable of reducing optical coupling loss without providing a separate optical waveguide lens.
  • a planar optical waveguide according to an embodiment of the present invention is a planar optical waveguide having a core and a cladding provided at upper and lower portions of the core, and the upper cladding at the light source side ends refracts light emitted to the upper portion of the core. And a first refracting surface that is formed by grinding to be inclined at a first angle so as to guide the core.
  • the lower cladding at the end of the light source side has a trench having a second refracting surface which is formed to be inclined at a second angle so as to refract the light radiated to the lower part of the core to guide the core.
  • the first angle of the first refractive surface and the second angle of the second refractive surface are set according to the refractive index of the clad material and the radiation characteristics of the light source.
  • the lower cladding at the end of the light source side may further include an adhesive surface bonded to the side of the substrate on which the light source is mounted so that the light source maintains a constant distance from the core of the optical waveguide.
  • the adhesive surface of the lower clad may be formed so that the exit surface of the light source and the core are separated by a predetermined interval.
  • the first refractive surface and the second refractive surface may be applied with a polymeric material or silicone adhesive having a higher refractive index than the clad material to minimize the rough surface on the refractive surface formed by polishing or processing.
  • a method of manufacturing a planar optical waveguide comprising: forming a lower clad layer as a flat substrate; Forming a core layer on the lower clad layer; Forming an upper clad layer on the core layer; And forming a first refracting surface inclined at a first angle on the light source side longitudinal section of the upper clad layer so that the light radiated to the upper part of the core layer can be refracted to guide the core layer.
  • the method for manufacturing a planar optical waveguide according to the present invention includes a second inclined angle at a second angle so that the light emitted to the lower part of the core layer is refracted to the light source side longitudinal section of the lower clad layer to guide the core layer. And forming a trench having a refractive surface.
  • the manufacturing method of the planar optical waveguide according to the present invention is bonded to the side of the substrate on which the light source is mounted so that the light source is kept at a constant distance from the core layer of the optical waveguide at the lower part of the trench in the light source side longitudinal section of the lower clad layer.
  • the method may further include forming an adhesive surface.
  • the adhesive surface in the step of forming the adhesive surface, may be polished to have a polishing depth set for the core layer.
  • the optical module including a light source, a substrate on which the light source is mounted, and a planar optical waveguide, wherein in the planar optical waveguide, the upper cladding at the light source side end is And a first refracting surface that is formed to be inclined at a first angle so as to refract the light radiated upwardly to guide the core.
  • the lower cladding at the end of the light source side has a trench having a second refracting surface which is formed to be inclined at a second angle so as to refract the light radiated to the lower part of the core to guide the core.
  • the lower cladding at the light source side end is adhered to the side of the substrate on which the light source is mounted so that the light source maintains a constant distance from the core of the optical waveguide.
  • the present invention can reduce the optical coupling loss without providing a separate optical waveguide lens by forming refractive surfaces on the upper clad and the lower clad, respectively, in consideration of the beam characteristics of the light source.
  • 1 is a conceptual diagram illustrating beam characteristics of a laser diode.
  • FIG. 2 is a side view showing the structure of a planar optical waveguide according to an embodiment of the present invention.
  • FIG. 3 is a diagram for describing a light coupling phenomenon of the planar optical waveguide of FIG. 2.
  • FIG. 4 is an exemplary diagram for describing various inclination angles of the first refractive surface and the second refractive surface of FIG. 2.
  • FIG. 5 is an exemplary diagram for describing various depths of the trench of FIG. 2.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a planar optical waveguide according to an embodiment of the present invention.
  • FIG. 7 is a side view showing the structure of an optical module according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram for explaining the beam characteristics of a laser diode
  • Figure 1 (a) is a conceptual diagram showing the beam emission of the laser diode from the side
  • Figure 1 (b) when the beam emission of the laser diode when viewed from the front
  • It is a conceptual diagram which shows the beam shape of a.
  • the beam L at the emitting side of the laser diode is formed by the active layer, as shown in Fig. 1 (b). It has a shape.
  • the divergence of the beam of the single mode laser diode may vary depending on the type of laser diode, and the divergence angle may also vary in the same type.
  • the divergence angle of the laser diode is about 15 degrees to 40 degrees in the fast axis, and is about 6 degrees to 12 degrees in the slow axis.
  • the beam When the beam is emitted from the laser diode, the beam has a long, elliptical shape in the vertical direction or the vertical direction because the beam diverges in the high axial direction.
  • the laser diode is used as the light source, but a photodiode may be used as the light source.
  • the light coupling when light coupling is performed at a predetermined interval between the light source and the optical waveguide, the light coupling should be able to be efficiently performed with respect to light emitted to the upper and lower portions of the core of the optical waveguide due to the beam characteristics of the light source.
  • the light from the light source is collected using a single lens, a double lens, a cylindrical lens or a GRIN lens, and the collected light is coupled to the optical waveguide.
  • the optical link between the light source and the optical waveguide is possible, but there is a problem that the connection between the elements is structurally difficult to maintain a constant distance between the light source and the optical waveguide.
  • the present invention is a method of optically coupling between a light source and a planar optical waveguide, and by processing the light source side longitudinal section of the optical waveguide and using the surface as a lens, the optical coupling loss is reduced even without a separate lens.
  • FIGS. 2 and 3 is a side view illustrating a structure of a planar optical waveguide according to an exemplary embodiment of the present invention
  • FIG. 3 is a view for explaining a light coupling phenomenon of the planar optical waveguide of FIG. 2.
  • the planar optical waveguide 100 may be largely divided into the core 20 and the clads 10 and 30, and the light may pass through the core 20. Specifically, the planar optical waveguide 100 first forms a core 20 through which light is guided on the lower clad 10 as a planar (or flat plate) substrate, and then again the upper clad 30 on the core 20. Is formed.
  • the upper cladding 30 at the end of the light source side is a first refractive surface 31 which is formed to be inclined at a first angle so as to be refracted by the light emitted to the upper portion of the core 20 to guide the core 20. It is provided.
  • the first refracting surface 31 may be polished and formed to have a first angle from the core 20 layer using, for example, polishing and grinding equipment.
  • the first angle may be set within an angle range of 10 degrees or more and less than 90 degrees, and may be set according to the refractive index of the clad material and the radiation characteristic of the light source.
  • the material of the core and the clad may be a polymer, silica, metal oxide or the like. Therefore, it is possible to adjust the first angle of the first refracting surface 31 during polishing and grinding according to the refractive index of the clad material used and the radiation characteristics of the light source (for example, the divergence angle in the vertical direction from the light source).
  • the refractive index of the clad material has a refractive index of approximately 1.45 to 2.0.
  • the light L emitted from the light source and radiated to the upper portion of the core 20 may be refracted by the first refraction surface 31 and guided to the core 20 layer. That is, the first refractive surface 31 acts as an optical waveguide lens.
  • the lower clad 10 at the end of the light source side is second refracted surface 11 which is formed to be inclined at a second angle so as to be refracted to the lower portion of the core 20 to be guided to the core 20. It has a trench 15 having a.
  • the trench 15 having the second refracting surface 11 may be formed by, for example, processing the second refracting surface 11 to have a second angle from the core 20 layer by using a dicing blade.
  • the second angle may be set within an angle range of 10 degrees or more and less than 90 degrees, and may be set according to the refractive index of the clad material and the radiation characteristic of the light source.
  • the first angle of the first refracting surface 31 and the second angle of the second refracting surface 11 may be set to be equal to each other or may be different from each other so as to be symmetrical with respect to the layer of the core 20.
  • the light L emitted from the light source and radiated to the lower portion of the core 20 may be refracted by the second refraction surface 11 and guided to the core 20 layer.
  • the second refracting surface 11 also acts as an optical waveguide lens.
  • the refractive surfaces 11 and 31 are formed in the upper cladding 30 and the lower clad 10 of the planar optical waveguide 100 in consideration of the beam characteristics of the light source, so that the optical coupling does not have to provide a separate optical waveguide lens. The loss can be reduced.
  • FIG. 4 is an exemplary diagram for describing various inclination angles of the first refractive surface and the second refractive surface of FIG. 2, and as shown in FIG. 4A, the first angle and the second refractive surface of the first refractive surface 31 ( 11 may be formed to be inclined at approximately 30 degrees with respect to the core 20 layer, or as shown in FIG. 4B, the first angle of the first refractive surface 31 and the second refractive surface ( The second angle of 11 may be inclined at approximately 45 degrees with respect to the core 20 layer, or as shown in FIG. 4C, the first angle of the first refractive surface 31 and the second refractive surface ( The second angle of 11 may be inclined at approximately 60 degrees with respect to the core 20 layer.
  • the lower clad 10 at the light source side end is a substrate on which the light source is mounted (for example, the sub-mount substrate 110 of FIG. 7) so that the light source maintains a constant distance from the core of the optical waveguide 10. It may further include an adhesive surface 17 to be bonded to the side.
  • the lower clad 10 is formed to have a larger thickness than the upper clad 30.
  • the adhesive surface 17 of the lower clad may be formed to be spaced apart from the emission surface of the light source and the core 20 by a predetermined interval.
  • the adhesive surface 17 of the lower clad 10 is formed under the trench 15, and may be polished to form 90 degrees with the core 20 layer by using a polishing equipment after processing the trench 15. .
  • it may be polished by adjusting the polishing depth of the adhesive surface 17 to the core 20.
  • the end surface of the light source side of the core 20 with respect to the adhesive surface 17 may be polished so that the polishing depth of the adhesive surface 17 may be relatively adjusted.
  • the polishing operation for forming the adhesive surface 17 may be omitted.
  • the light source may be bonded to and fixed to the substrate on which the light source is mounted using the adhesive surface 17 of the optical waveguide 100, the light source may be structurally compared with a conventional optical waveguide lens.
  • the spacing between the optical waveguides and the set spacing can be kept constant.
  • the trench 15 having the second refractive surface 11 in the lower clad 10 of the optical waveguide 100 may be processed to various depths.
  • FIG. 5 is an exemplary diagram for describing various depths of the trench of FIG. 2, and as shown in FIGS. 5A, 5B, and 5C, the second angle of the second refractive surface 11 is the core 20.
  • the second angle of the second refractive surface 11 is the core 20.
  • the trench 15 of the present invention may be processed to different depths while maintaining a second angle of the second refractive surface 11 during processing. For this reason, the polishing depth of the adhesion surface 17 can be adjusted easily.
  • the first refractive surface 31 of the upper clad 30 and the second refractive surface 11 of the lower clad 10 minimize the rough surface on the refractive surface formed by polishing by polishing equipment or processing by a dicing blade.
  • a polymer material or a silicone adhesive having a higher refractive index than the cladding material may be applied onto the first refractive surface 31 and the second refractive surface 11.
  • the polymer material or silicone adhesive to be applied uses a material having a refractive index of approximately 0.1 to 1.0% higher than that of the clad material, and preferably has a refractive index approximately the same as that of the core.
  • the reflection or scattering by the rough surfaces of the first refracting surface 31 and the second refracting surface 11 through which light passes By reducing the losses, the optical coupling loss can be minimized.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a planar optical waveguide according to an embodiment of the present invention.
  • a lower clad layer is formed (S10), and a core layer is formed on a lower clad layer (S20).
  • an upper cladding layer is formed on the core layer (S30) to form a planar optical waveguide.
  • the first refracting surface inclined at a first angle using, for example, polishing and grinding equipment to be deflected to be directed to the core layer by refracting light emitted to the upper part of the core layer. It forms (S40).
  • a second refracting surface inclined at a second angle by using a dicing blade is provided on the light source side longitudinal section of the lower clad layer so as to refract light emitted to the lower part of the core layer to the core layer.
  • a trench is formed (S50).
  • forming the first refractive surface and forming the second refractive surface are not limited in order.
  • the first angle and the second angle may be set within an angle range of 10 degrees or more and less than 90 degrees, respectively, and may be set according to the refractive index of the clad material and the radiation characteristics of the light source. Accordingly, by considering the beam characteristics of the light source, the refractive surface is formed in each of the upper cladding layer and the lower cladding layer of the planar optical waveguide, thereby reducing the optical coupling loss without having a separate optical waveguide lens.
  • an adhesive surface that is adhered to the side surface of the substrate on which the light source is mounted is formed under the trench of the light source side longitudinal section of the lower clad layer so that the light source maintains a constant distance from the core layer of the optical waveguide (S60).
  • the adhesive surface may be polished to have a polishing depth set for the core layer. Accordingly, by using the polished adhesive surface of the optical waveguide, since the light source can be bonded and fixed to the substrate on which the light source is mounted, the structure between the light source and the optical waveguide is structurally different from that of using a conventional separate optical waveguide lens. The interval setting and the set interval can be kept constant.
  • the method for manufacturing a planar optical waveguide according to the present invention is characterized in that the cladding material on the first refractive surface and the second refractive surface in order to minimize the rough surface on the refractive surface formed by polishing by polishing equipment or processing by dicing blades.
  • Polymeric materials or silicone adhesives having a high refractive index can be applied. Accordingly, by matching the refractive indices of the rough surfaces formed on the first refractive surface and the second refractive surface, light coupling loss can be minimized by reducing the reflection or scattering loss caused by the rough surfaces of the first and second refractive surfaces through which light passes.
  • FIG. 7 is a side view showing the structure of an optical module according to an embodiment of the present invention.
  • the optical module 200 may be composed of a planar optical waveguide and a light source.
  • the light source may be, for example, a laser diode (LD) or a photodiode (PD).
  • the light source may be formed of the LD chip 120 and the sub-mount substrate 110 on which the LD chip is mounted.
  • the LD chip 120 includes a laser diode LD.
  • the planar optical waveguide consists of a lower clad 10, a core 20, and an upper clad 30. Specifically, the planar optical waveguide 100 first forms a core 20 through which light is guided on the lower clad 10 as a flat substrate, and then forms the upper clad 30 again on the core 20. Is done.
  • the first clad 30 at the end of the light source side is formed by being inclined at a first angle to be inclined at a first angle so as to refract the light emitted to the upper portion of the core 20 to the core 20.
  • the refractive surface 31 is provided.
  • the first refracting surface 31 may be polished and formed to have a first angle from the core 20 layer using, for example, polishing and grinding equipment.
  • the first angle may be set within an angle range of 10 degrees or more and less than 90 degrees, and may be set according to the refractive index of the clad material and the radiation characteristic of the light source. Accordingly, the light emitted from the light source and radiated to the upper portion of the core 20 may be refracted by the first refraction surface 31 to guide the core 20 layer.
  • the lower clad 10 at the end of the light source side has a trench having a second refracting surface that is formed to be inclined at a second angle so as to refract the light radiated to the lower portion of the core 20 and guide the light to the core 20. It is provided.
  • the lower clad 10 at the end of the light source side further includes an adhesive surface adhered to the side surface of the substrate 110 on which the light source is mounted so that the light source maintains a constant distance from the core of the optical waveguide 10.
  • the lower clad 10 at the end of the light source side has a side surface of the substrate 110 on which the light source is mounted so that the light source maintains a predetermined distance GaP from the core 20 of the optical waveguide. Are glued.
  • the adhesive surface of the lower clad 10 may be formed under the trench, and, for example, may be polished to form 90 degrees with the core 20 layer by using a polishing equipment after trench processing. At this time, in order to set the distance between the light source and the optical waveguide, it may be polished by adjusting the polishing depth of the adhesive surface to the core 20. Accordingly, since the light source can be adhered and fixed to the substrate on which the light source is mounted using the adhesive surface of the optical waveguide, the distance setting between the light source and the optical waveguide and the set distance can be easily fixed, thereby reducing the optical coupling loss. .
  • the optical coupling loss can be reduced without providing a separate optical waveguide lens by forming refractive surfaces in the upper cladding and the lower cladding of the planar optical waveguide in consideration of the beam characteristics of the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

본 발명은 평면 광도파로 및 광 모듈에 관한 것으로, 본 발명에 따른 평면 광도파로는, 코어 및 코어의 상부와 하부에 각각 마련되는 클래드를 구비하는 평면 광도파로로서, 광원측 종단의 상부 클래드는 코어의 상부로 방사되는 광을 굴절시켜 코어로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면을 구비한다. 본 발명에 의하면, 광원의 빔 특성을 고려하여 평면 광도파로의 상부 클래드와 하부 클래드에 각각 굴절면을 형성함으로써, 별도의 광도파로 렌즈를 구비하지 않고 광 결합 손실을 줄일 수 있다.

Description

평면 광도파로 및 광 모듈
본 발명은 도파광을 집속시키는 렌즈 기능을 포함하는 평면 광도파로 및 광 모듈에 관한 것이다.
종래의 레이저 다이오드(LD)나 포토다이오드(PD)와 같은 광원은, 그 구조적 특성상 광을 방출할 때, 세로 방향 즉 수직 방향으로 길쭉한 타원형의 빔 형상으로 광을 방출한다.
이로 인해, 종래의 평면 광도파로는 광 결합 손실을 줄이기 위해 광원으로부터 방출되는 도파광을 집속시키기 위한 광도파로 렌즈가 별도로 요구되었다.
일례로, 특허문헌 1에는 광원과 광섬유 사이에 적어도 하나의 렌즈를 이용하여 광 결합하는 내용이 개시되어 있다.
(특허문헌 1) KR10-2014-0011521 A
본 발명은, 별도의 광도파로 렌즈를 구비하지 않고 광 결합 손실을 줄일 수 있는 평면 광도파로 및 광 모듈을 제공하는 데 목적이 있다.
본 발명의 일 실시예에 따른 평면 광도파로는, 코어 및 코어의 상부와 하부에 각각 마련되는 클래드를 구비하는 평면 광도파로로서, 광원측 종단의 상부 클래드는 코어의 상부로 방사되는 광을 굴절시켜 코어로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면을 구비한다.
또한, 광원측 종단의 하부 클래드는 코어의 하부로 방사되는 광을 굴절시켜 코어로 유도할 수 있도록 제2 각도로 기울어지게 가공되어 형성되는 제2 굴절면을 가지는 트렌치를 구비한다.
여기서, 제1 굴절면의 제1 각도 및 제2 굴절면의 제2 각도는 클래드 재료의 굴절률 및 광원의 방사 특성에 따라 설정된다.
또한, 광원측 종단의 하부 클래드는, 광원이 광도파로의 코어와 일정 거리를 유지하도록, 광원이 실장되는 기판의 측면과 접착되는 접착면을 더 구비할 수 있다. 여기서, 하부 클래드의 접착면은 광원의 출사면과 코어 사이가 소정의 간격으로 떨어지도록 형성될 수 있다.
일례로, 제1 굴절면과 제2 굴절면은, 연마 또는 가공에 의해 형성된 굴절면 상의 거친 면을 최소화하기 위해, 클래드 재료보다 높은 굴절률을 가지는 폴리머 재료 또는 실리콘 접착제로 도포될 수 있다.
본 발명의 다른 실시예에 따른 평면 광도파로의 제조 방법은, 평판형 기판으로서 하부 클래드층을 형성하는 단계; 하부 클래드층 상에 코어층을 형성하는 단계; 코어층 상에 상부 클래드층을 형성하는 단계; 및 상부 클래드층의 광원측 종단면에, 코어층의 상부로 방사되는 광을 굴절시켜 코어층으로 유도할 수 있도록, 제1 각도로 기울어진 제1 굴절면을 형성하는 단계를 포함한다.
또한, 본 발명에 따른 평면 광도파로의 제조 방법은, 하부 클래드층의 광원측 종단면에, 코어층의 하부로 방사되는 광을 굴절시켜 코어층으로 유도할 수 있도록, 제2 각도로 기울어진 제2 굴절면을 구비하는 트렌치를 형성하는 단계를 더 포함한다.
게다가, 본 발명에 따른 평면 광도파로의 제조 방법은, 하부 클래드층의 광원측 종단면 중 트렌치 하부에, 광원이 광도파로의 코어층과 일정 거리를 유지하도록, 광원이 실장되는 기판의 측면과 접착되는 접착면을 형성하는 단계를 더 포함할 수 있다.
일례로, 접착면을 형성하는 단계에서, 접착면은 코어층에 대해 설정된 연마 깊이를 갖도록 연마될 수 있다.
한편, 본 발명의 일 실시예에 따른 광 모듈은, 광원과, 상기 광원을 실장하는 기판과, 평면 광도파로를 포함하는 광 모듈로서, 평면 광도파로에 있어서, 광원측 종단의 상부 클래드는 코어의 상부로 방사되는 광을 굴절시켜 코어로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면을 구비한다.
또한, 평면 광도파로에 있어서, 광원측 종단의 하부 클래드는 코어의 하부로 방사되는 광을 굴절시켜 코어로 유도할 수 있도록 제2 각도로 기울어지게 가공되어 형성되는 제2 굴절면을 가지는 트렌치를 구비한다.
광원측 종단의 하부 클래드는, 광원이 광도파로의 코어와 일정 거리를 유지하도록, 광원이 실장되는 기판의 측면과 접착된다.
본 발명은, 광원의 빔 특성을 고려하여 평면 광도파로의 상부 클래드와 하부 클래드에 각각 굴절면을 형성함으로써, 별도의 광도파로 렌즈를 구비하지 않고 광 결합 손실을 줄일 수 있다.
본 발명에 의한 다른 효과는, 이후 실시예에 따라 추가적으로 설명하기로 한다.
도 1은 레이저 다이오드의 빔 특성을 설명하기 위한 개념도이다.
도 2는 본 발명의 일 실시예에 따른 평면 광도파로의 구조를 나타내는 측면도이다.
도 3은 도 2의 평면 광도파로의 광 결합 현상을 설명하기 위한 도이다.
도 4는 도 2의 제1 굴절면과 제2 굴절면의 다양한 경사 각도를 설명하기 위한 예시도이다.
도 5는 도 2의 트렌치의 다양한 깊이를 설명하기 위한 예시도이다.
도 6은 본 발명의 일 실시예에 따른 평면 광도파로의 제조 방법을 나타내는 순서도이다.
도 7은 본 발명의 일 실시예에 따른 광 모듈의 구조를 나타내는 측면도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는바, 특정 실시 예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명에 따른 실시 예들을 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
먼저, 도 1을 이용하여, 광원의 빔 특성을 설명하기로 한다. 도 1은 레이저 다이오드의 빔 특성을 설명하기 위한 개념도로서, 도 1(a)는 측면에서 레이저 다이오드의 빔 방출을 나타내는 개념도이고, 도 1(b)는 레이저 다이오드의 빔 방출을 정면에서 바라볼 때의 빔 형상을 나타내는 개념도이다.
도 1에 도시된 바와 같이, 광원으로서 LD 칩 상의 레이저 다이오드가 작동될 때, 레이저 필드의 일부는 활성층의 한 변을 통해 전달되어서 레이저 빔(L)이 나온다. 레이저 다이오드의 활성층 단면이 직사각형이고 제한된 감금으로 인해 레이저 필드의 일부가 활성층에서 새어 나오기 때문에, 레이저 다이오드의 방출면에서의 빔(L)은 활성층에 의해 형성되며, 도 1(b)에서와 같이 타원 형상을 갖는다. 단일모드 레이저 다이오드의 빔의 발산은 레이저 다이오드 종류에 따라 달라질 수 있으며, 동일한 유형에서도 발산 각도는 달라질 수 있다. 일반적으로 레이저 다이오드의 발산 각도는 고속 축(Fast axis)의 경우 대략 15도 ~ 40도로 형성되며, 저속축(Slow axis)의 경우 대략 6도 ~ 12도로 형성된다. 레이저 다이오드로부터 빔이 방출될 때 고속 축 방향으로 빔의 발산이 크기 때문에 빔은 세로 방향 즉 수직 방향으로 길쭉한 타원 형상을 가지게 된다. 다만, 도 1에서는 광원으로서 레이저 다이오드를 기준으로 설명하였으나, 광원으로서 포토다이오드가 이용될 수 있다.
따라서, 광원과 광도파로 간에 소정 간격을 두고 광 결합이 이루어질 때, 광원의 빔 특성상, 광도파로의 코어의 상부 및 하부로 발산되는 광에 대해 효율적으로 광 결합이 이루어질 수 있어야 한다.
이를 위해, 광원으로부터 나오는 광(또는 빔)을 광도파로 렌즈(이하, 단순히 '렌즈'라고도 한다)를 이용하여 광도파로에 집속되도록 하는 방법이 있다.
예를 들면, 광원으로부터 나오는 광을 싱글 렌즈, 더블 렌즈, 실린드리칼 렌즈 또는 GRIN 렌즈 등을 이용하여 집광시키고, 집광된 광을 광도파로에 결합시킨다.
그런데, 이러한 광도파로 렌즈를 이용하는 경우, 광원과 광도파로 간의 광 링크를 가능하게 하지만, 광원과 광도파로 간의 일정 간격을 유지하기 위해 소자간 연결이 구조적으로 어려운 문제가 있다.
이에 따라, 본 발명은 광원과 평면 광도파로 사이에 광 결합시키는 방법으로서, 광도파로의 광원 측 종단면을 가공하고, 그 면을 렌즈로 이용함으로써, 별도의 렌즈가 없어도 광 결합 손실을 줄이고자 한다.
이어서, 도 2 및 도 3을 이용하여, 본 발명에 따른 광도파로의 구조를 설명하기로 한다. 도 2는 본 발명의 일 실시예에 따른 평면 광도파로의 구조를 나타내는 측면도이며, 도 3은 도 2의 평면 광도파로의 광 결합 현상을 설명하기 위한 도이다.
도 2에 도시된 바와 같이, 본 발명에 따른 평면 광도파로(100)는, 크게 코어(20)와 클래드(10, 30)로 구분될 수 있고, 광은 코어(20)를 통해 지나갈 수 있다. 구체적으로, 평면 광도파로(100)는 먼저 평면형(또는 평판형)의 기판으로서 하부 클래드(10) 상에 광이 도파되는 코어(20)를 형성하고, 코어(20) 상에 다시 상부 클래드(30)를 형성하여 이루어진다.
여기서, 광원측 종단의 상부 클래드(30)는 코어(20)의 상부로 방사되는 광을 굴절시켜 코어(20)로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면(31)을 구비한다.
제1 굴절면(31)은, 예로써, 연마, 연삭 장비를 이용하여 코어(20) 층으로부터 제1 각도를 가지도록 연마되어 형성될 수 있다.
이때, 제1 각도는 10도 이상, 90도 미만의 각도 범위 내에서 설정될 수 있으며, 클래드 재료의 굴절률 및 광원의 방사 특성에 따라 설정될 수 있다. 여기서, 코어와 클래드의 재료는 폴리머, 실리카, 메탈산화물 등을 이용할 수 있다. 따라서, 이용되는 클래드 재료의 굴절률 및 광원의 방사 특성(예로써, 광원으로부터의 상하 방향으로의 발산 각도)에 따라 연마 및 연삭시 제1 굴절면(31)의 제1 각도를 조절할 수 있다. 예로써, 클래드 재료의 굴절률은 대략 1.45 ~ 2.0의 굴절률을 갖는다.
이에 따라, 도 3에서와 같이, 광원으로부터 방출되어 코어(20)의 상부로 방사되는 광(L)을, 제1 굴절면(31)에서 굴절시켜 코어(20) 층으로 유도할 수 있다. 즉, 제1 굴절면(31)은 광도파로 렌즈로서 작용한다.
마찬가지로, 광원측 종단의 하부 클래드(10)는 코어(20)의 하부로 방사되는 광을 굴절시켜 코어(20)로 유도할 수 있도록 제2 각도로 기울어지게 가공되어 형성되는 제2 굴절면(11)을 가지는 트렌치(15)를 구비한다.
제2 굴절면(11)을 가지는 트렌치(15)는, 예로써, 다이싱 블레이드를 이용하여 제2 굴절면(11)이 코어(20) 층으로부터 제2 각도를 가지도록 가공하여 형성될 수 있다.
이때, 제2 각도는 10도 이상, 90도 미만의 각도 범위 내에서 설정될 수 있으며, 클래드 재료의 굴절률 및 광원의 방사 특성에 따라 설정될 수 있다. 일례로, 제1 굴절면(31)의 제1 각도와 제2 굴절면(11)의 제2 각도는 코어(20) 층을 기준으로 대칭되도록 서로 같게 설정될 수도 있고, 서로 다르게 설정될 수도 있다.
이에 따라, 도 3에서와 같이, 광원으로부터 방출되어 코어(20)의 하부로 방사되는 광(L)을, 제2 굴절면(11)에서 굴절시켜 코어(20) 층으로 유도할 수 있다. 즉, 제2 굴절면(11)도 광도파로 렌즈로서 작용한다.
따라서, 광원의 빔 특성을 고려하여 평면 광도파로(100)의 상부 클래드(30)와 하부 클래드(10)에 각각 굴절면(11, 31)을 형성함으로써, 별도의 광도파로 렌즈를 구비하지 않아도 광 결합 손실을 줄일 수 있다.
이어서, 도 4는 도 2의 제1 굴절면과 제2 굴절면의 다양한 경사 각도를 설명하기 위한 예시도로서, 도 4(a)와 같이, 제1 굴절면(31)의 제1 각도와 제2 굴절면(11)의 제2 각도는 코어(20) 층을 기준으로 대략 30도로 기울어지게 형성될 수 있고, 또는, 도 4(b)와 같이, 제1 굴절면(31)의 제1 각도와 제2 굴절면(11)의 제2 각도는 코어(20) 층을 기준으로 대략 45도로 기울어지게 형성될 수 있으며, 또는, 도 4(c)와 같이, 제1 굴절면(31)의 제1 각도와 제2 굴절면(11)의 제2 각도는 코어(20) 층을 기준으로 대략 60도로 기울어지게 형성될 수 있다.
이어서, 광원측 종단의 하부 클래드(10)는, 광원이 광도파로(10)의 코어와 일정 거리를 유지하도록 하기 위해, 광원이 실장되는 기판(예로써, 도 7의 서브 마운트 기판(110))의 측면과 접착되는 접착면(17)을 더 구비할 수 있다. 이를 위해, 하부 클래드(10)는 상부 클래드(30) 보다 큰 두께를 가지도록 형성된다. 일례로, 하부 클래드의 접착면(17)은 광원의 출사면과 코어(20) 사이가 소정의 간격으로 떨어지도록 형성될 수 있다.
하부 클래드(10)의 접착면(17)은 트렌치(15) 하부에 형성되며, 예로써, 트렌치(15) 가공후 연마 장비 등을 이용하여 코어(20) 층과 90도를 이루도록 연마될 수 있다. 이때, 광원과 광도파로 사이의 거리를 설정하기 위해서, 예로써, 코어(20)에 대한 접착면(17)의 연마 깊이를 조절하여 연마될 수 있다. 또는, 반대로 광원과 광도파로 사이의 거리를 설정하기 위해서, 접착면(17)에 대한 코어(20)의 광원측 종단면을 연마하여 접착면(17)의 연마 깊이가 상대적으로 조절되도록 할 수도 있다. 또는, 평면 광도파로 제작시 평면 광도파로의 광원측 종단면이 코어(20) 층과 90도를 이루도록 미리 제작된 경우에는 접착면(17) 형성을 위한 연마 작업은 생략될 수도 있다.
이에 따라, 광도파로(100)의 접착면(17)을 이용하여, 광원이 실장되는 기판과 접착(bonding)되어 고정될 수 있으므로, 기존의 별도의 광도파로 렌즈를 이용하는 것에 비해, 구조적으로 광원과 광도파로 사이의 간격 설정 및 설정된 간격을 일정하게 유지시킬 수 있다.
이어서, 광도파로(100)의 하부 클래드(10)에서 제2 굴절면(11)을 가지는 트렌치(15)는 다양한 깊이로 가공될 수 있다.
도 5는 도 2의 트렌치의 다양한 깊이를 설명하기 위한 예시도로서, 도 5의 (a), (b), (c)와 같이, 제2 굴절면(11)의 제2 각도가 코어(20) 층을 기준으로 대략 45도일 때, 서로 다른 깊이로 가공될 수 있다. 즉, 본 발명의 트렌치(15)는 가공시 제2 굴절면(11)의 제2 각도를 일정하게 유지하면서도 서로 다른 깊이로 가공될 수 있다. 이로 인해, 접착면(17)의 연마 깊이를 용이하게 조절할 수 있다.
이어서, 상부 클래드(30)의 제1 굴절면(31)과 하부 클래드(10)의 제2 굴절면(11)은, 연마 장비에 의한 연마 또는 다이싱 블레이드에 의한 가공에 의해 형성된 굴절면 상의 거친 면을 최소화하기 위해, 제1 굴절면(31)과 제2 굴절면(11) 상에 클래드 재료보다 높은 굴절률을 가지는 폴리머 재료 또는 실리콘 접착제를 도포할 수 있다. 예로써, 도포되는 폴리머 재료 또는 실리콘 접착제는 클래드 재료 보다 굴절률이 대략 0.1~1.0% 높은 재료를 이용하며, 코어와 대략 동일한 굴절률을 갖는 것이 바람직하다.
이에 따라, 제1 굴절면(31)과 제2 굴절면(11)에 형성된 거친 면의 굴절률을 정합시켜서, 광이 지나가는 제1 굴절면(31) 및 제2 굴절면(11)의 거친 면에 의한 반사 또는 산란 손실을 줄여서 광 결합 손실을 최소화할 수 있다.
이어서, 도 6을 이용하여, 본 발명에 따른 평면 광도파로의 제조 방법을 설명하기로 한다. 도 6은 본 발명의 일 실시예에 따른 평면 광도파로의 제조 방법을 나타내는 순서도이다.
도 6에 도시된 바와 같이, 본 발명에 따른 평면 광도파로의 제조 방법은, 먼저, 평판형 기판으로서, 하부 클래드층을 형성하고(S10), 하부 클래드층 상에 코어층을 형성(S20)하며, 다시 코어층 상에 상부 클래드층을 형성하여(S30) 평면 광도파로를 형성한다.
이어서, 상부 클래드층의 광원측 종단면에, 코어층의 상부로 방사되는 광을 굴절시켜 코어층으로 유도할 수 있도록, 예로써, 연마, 연삭 장비를 이용하여 제1 각도로 기울어진 제1 굴절면을 형성한다(S40). 또한, 하부 클래드층의 광원측 종단면에, 코어층의 하부로 방사되는 광을 굴절시켜 코어층으로 유도할 수 있도록, 예로써, 다이싱 블레이드를 이용하여 제2 각도로 기울어진 제2 굴절면을 구비하는 트렌치를 형성한다(S50).
여기서, 제1 굴절면을 형성하는 것과 제2 굴절면을 형성하는 것은 순서상의 제한이 있는 것이 아니다.
일례로, 제1 각도 및 제2 각도는 각각 10도 이상, 90도 미만의 각도 범위 내에서 설정될 수 있으며, 클래드 재료의 굴절률 및 광원의 방사 특성에 따라 설정될 수 있다. 이에 따라, 광원의 빔 특성을 고려하여 평면 광도파로의 상부 클래드층과 하부 클래드층에 각각 굴절면을 형성함으로써, 별도의 광도파로 렌즈를 구비하지 않아도 광 결합 손실을 줄일 수 있다.
이어서, 하부 클래드층의 광원측 종단면 중 트렌치 하부에, 광원이 광도파로의 코어층과 일정 거리를 유지하도록, 광원이 실장되는 기판의 측면과 접착되는 접착면을 형성한다(S60). 일례로, 상기 접착면을 형성하는 단계(S60)에서, 접착면은 코어층에 대해 설정된 연마 깊이를 갖도록 연마될 수 있다. 이에 따라, 광도파로의 연마된 접착면을 이용하여, 광원이 실장되는 기판과 접착(bonding)되어 고정될 수 있으므로, 기존의 별도의 광도파로 렌즈를 이용하는 것에 비해, 구조적으로 광원과 광도파로 사이의 간격 설정 및 설정된 간격을 일정하게 유지시킬 수 있다.
또한, 본 발명에 따른 평면 광도파로의 제조 방법은, 연마 장비에 의한 연마 또는 다이싱 블레이드에 의한 가공에 의해 형성된 굴절면 상의 거친 면을 최소화하기 위해, 제1 굴절면과 제2 굴절면 상에 클래드 재료보다 높은 굴절률을 가지는 폴리머 재료 또는 실리콘 접착제를 도포할 수 있다. 이에 따라, 제1 굴절면과 제2 굴절면에 형성된 거친 면의 굴절률을 정합시켜서, 광이 지나가는 제1 굴절면 및 제2 굴절면의 거친 면에 의한 반사 또는 산란 손실을 줄여서 광 결합 손실을 최소화할 수 있다.
이어서, 도 7을 이용하여, 본 발명에 따른 광 모듈을 설명하기로 한다. 도 7은 본 발명의 일 실시예에 따른 광 모듈의 구조를 나타내는 측면도이다.
도 7에 도시된 바와 같이, 본 발명에 따른 광 모듈(200)은 크게 평면 광도파로와, 광원으로 구성될 수 있다.
광원은 일례로, 레이저 다이오드(LD: Laser Diode) 또는 포토 다이오드(PD: photodiode)일 수 있다. 일례로, 광원은 LD 칩(120)과 LD 칩을 실장하는 서브 마운트 기판(110)으로 형성될 수 있다. LD 칩(120)은 레이저 다이오드(LD)를 포함한다.
한편, 평면 광도파로는 하부 클래드(10), 코어(20) 및 상부 클래드(30)로 이루어진다. 구체적으로, 평면 광도파로(100)는 먼저 평판형의 기판으로서 하부 클래드(10) 상에 광이 도파되는 코어(20)를 형성하고, 코어(20) 상에 다시 상부 클래드(30)를 형성하여 이루어진다.
평면 광도파로에 있어서, 광원측 종단의 상부 클래드(30)는 코어(20)의 상부로 방사되는 광을 굴절시켜 코어(20)로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면(31)을 구비한다.
제1 굴절면(31)은, 예로써, 연마, 연삭 장비를 이용하여 코어(20) 층으로부터 제1 각도를 가지도록 연마되어 형성될 수 있다. 이때, 제1 각도는 10도 이상, 90도 미만의 각도 범위 내에서 설정될 수 있으며, 클래드 재료의 굴절률 및 광원의 방사 특성에 따라 설정될 수 있다. 이에 따라, 광원으로부터 방출되어 코어(20)의 상부로 방사되는 광을, 제1 굴절면(31)에서 굴절시켜 코어(20) 층으로 유도할 수 있다.
마찬가지로, 광원측 종단의 하부 클래드(10)는 코어(20)의 하부로 방사되는 광을 굴절시켜 코어(20)로 유도할 수 있도록 제2 각도로 기울어지게 가공되어 형성되는 제2 굴절면을 가지는 트렌치를 구비한다.
또한, 광원측 종단의 하부 클래드(10)는, 광원이 광도파로(10)의 코어와 일정 거리를 유지하도록 하기 위해, 광원이 실장되는 기판(110)의 측면과 접착되는 접착면을 더 구비한다. 이에 따라, 도 7에서와 같이, 광원측 종단의 하부 클래드(10)는, 광원이 광도파로의 코어(20)와 일정 거리(GaP)를 유지하도록, 광원이 실장되는 기판(110)의 측면과 접착된다.
일례로, 하부 클래드(10)의 접착면은 트렌치 하부에 형성되며, 예로써, 트렌치 가공후 연마 장비 등을 이용하여 코어(20) 층과 90도를 이루도록 연마될 수 있다. 이때, 광원과 광도파로 사이의 거리를 설정하기 위해서, 예로써, 코어(20)에 대한 접착면의 연마 깊이를 조절하여 연마될 수 있다. 이에 따라, 광도파로의 접착면을 이용하여, 광원이 실장되는 기판과 접착되어 고정될 수 있으므로, 광원과 광도파로 사이의 거리 설정 및 설정된 거리를 용이하게 고정시킬 수 있어서 광 결합 손실을 줄일 수 있다.
이와 같이, 본 발명에 의하면 광원의 빔 특성을 고려하여 평면 광도파로의 상부 클래드와 하부 클래드에 각각 굴절면을 형성함으로써, 별도의 광도파로 렌즈를 구비하지 않고 광 결합 손실을 줄일 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
10: 하부 클래드(또는 기판) 11: 제2 굴절면
15: 트렌치 17: 접착면
20: 코어 30: 상부 클래드
31: 제 굴절면 100: 평면 광도파로
110: 서브 마운트 기판 120: 광원
200: 광 모듈

Claims (13)

  1. 코어 및 상기 코어의 상부와 하부에 각각 마련되는 클래드를 구비하는 평면 광도파로에 있어서,
    광원측 종단의 상부 클래드는 상기 코어의 상부로 방사되는 광을 굴절시켜 상기 코어로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면을 구비하는 평면 광도파로.
  2. 청구항 1에 있어서,
    상기 광원측 종단의 하부 클래드는 상기 코어의 하부로 방사되는 광을 굴절시켜 상기 코어로 유도할 수 있도록 제2 각도로 기울어지게 가공되어 형성되는 제2 굴절면을 가지는 트렌치를 구비하는 평면 광도파로.
  3. 청구항 2에 있어서,
    상기 제1 각도 및 제2 각도는 클래드 재료의 굴절률 및 광원의 방사 특성에 따라 설정되는 것인 평면 광도파로.
  4. 청구항 2에 있어서,
    상기 광원측 종단의 하부 클래드는, 상기 광원이 상기 광도파로의 코어와 일정 거리를 유지하도록, 상기 광원이 실장되는 기판의 측면과 접착되는 접착면을 더 가지는 평면 광도파로.
  5. 청구항 2에 있어서,
    상기 제1 굴절면과 제2 굴절면은, 상기 연마 또는 상기 가공시 형성된 굴절면 상의 거친 면을 최소화하기 위해, 클래드 재료보다 높은 굴절률을 가지는 폴리머 재료 또는 실리콘 접착제로 도포되는 것인 평면 광도파로.
  6. 청구항 4에 있어서,
    상기 하부 클래드의 접착면은 상기 광원의 출사면과 상기 코어 사이가 소정의 간격으로 떨어지도록 형성되는 평면 광도파로.
  7. 광원과, 상기 광원을 실장하는 기판과, 평면 광도파로를 포함하는 광 모듈로서,
    상기 평면 광도파로에서,
    상기 광원측 종단의 상부 클래드는 코어의 상부로 방사되는 광을 굴절시켜 상기 코어로 유도할 수 있도록 제1 각도로 기울어지게 연마되어 형성되는 제1 굴절면을 구비하는 광 모듈.
  8. 청구항 7에 있어서,
    상기 광원측 종단의 하부 클래드는 상기 코어의 하부로 방사되는 광을 굴절시켜 상기 코어로 유도할 수 있도록 제2 각도로 기울어지게 가공되어 형성되는 제2 굴절면을 가지는 트렌치를 구비하는 광 모듈.
  9. 청구항 8에 있어서,
    상기 광원측 종단의 하부 클래드는, 상기 광원이 상기 코어와 일정 거리를 유지하도록, 상기 광원이 실장되는 기판의 측면과 접착되는 것인 광 모듈.
  10. 평판형 기판으로서 하부 클래드층을 형성하는 단계;
    하부 클래드층 상에 코어층을 형성하는 단계;
    코어층 상에 상부 클래드층을 형성하는 단계; 및
    상기 상부 클래드층의 광원측 종단면에, 상기 코어층의 상부로 방사되는 광을 굴절시켜 상기 코어층으로 유도할 수 있도록, 제1 각도로 기울어진 제1 굴절면을 형성하는 단계를 포함하는 평면 광도파로의 제조 방법.
  11. 청구항 10에 있어서,
    상기 하부 클래드층의 광원측 종단면에, 상기 코어층의 하부로 방사되는 광을 굴절시켜 상기 코어층으로 유도할 수 있도록, 제2 각도로 기울어진 제2 굴절면을 구비하는 트렌치를 형성하는 단계를 더 포함하는 평면 광도파로의 제조 방법.
  12. 청구항 11에 있어서,
    상기 하부 클래드층의 광원측 종단면 중 상기 트렌치 하부에, 상기 광원이 광도파로의 코어층과 일정 거리를 유지하도록, 상기 광원이 실장되는 기판의 측면과 접착되는 접착면을 형성하는 단계를 더 포함하는 평면 광도파로의 제조 방법.
  13. 청구항 12에 있어서,
    상기 접착면을 형성하는 단계에서, 상기 접착면은 상기 코어층에 대해 설정된 연마 깊이를 갖도록 연마되는 것인 평면 광도파로의 제조 방법.
PCT/KR2018/004157 2017-04-07 2018-04-09 평면 광도파로 및 광 모듈 WO2018186723A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/603,099 US10955627B2 (en) 2017-04-07 2018-04-09 Planar optical waveguide and optical module
CN201880022931.8A CN110476096B (zh) 2017-04-07 2018-04-09 平面光波导及光学模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170045051A KR101899059B1 (ko) 2017-04-07 2017-04-07 평면 광도파로 및 광 모듈
KR10-2017-0045051 2017-04-07

Publications (1)

Publication Number Publication Date
WO2018186723A1 true WO2018186723A1 (ko) 2018-10-11

Family

ID=63713028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004157 WO2018186723A1 (ko) 2017-04-07 2018-04-09 평면 광도파로 및 광 모듈

Country Status (4)

Country Link
US (1) US10955627B2 (ko)
KR (1) KR101899059B1 (ko)
CN (1) CN110476096B (ko)
WO (1) WO2018186723A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11567274B2 (en) * 2020-08-17 2023-01-31 Molex, Llc Optical module
CN113180820A (zh) * 2021-04-30 2021-07-30 广州迪光医学科技有限公司 径向激光消融导管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051127A (ja) * 1999-08-05 2001-02-23 Fujikura Ltd 光ファイバの端面研磨処理方法及び固定治具
JP2003014957A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光ファイバとその加工方法及びそれを用いた光半導体モジュール
JP2011133913A (ja) * 2011-04-01 2011-07-07 Sumitomo Bakelite Co Ltd 光導波路の製造方法
KR101083341B1 (ko) * 2009-04-20 2011-11-14 한국과학기술원 고분자기반 평면 광도파로 제작방법
KR20140011521A (ko) * 2012-06-27 2014-01-29 한국전자통신연구원 다층 박막 필터를 이용한 외부공진 레이저 및 이를 포함한 광 송신기

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6236793B1 (en) * 1998-09-23 2001-05-22 Molecular Optoelectronics Corporation Optical channel waveguide amplifier
US6393185B1 (en) 1999-11-03 2002-05-21 Sparkolor Corporation Differential waveguide pair
US6293688B1 (en) 1999-11-12 2001-09-25 Sparkolor Corporation Tapered optical waveguide coupler
JP3079401U (ja) 2000-12-28 2001-08-17 慶朝 徐 前カゴ取り付け用ひったくり防止器具
WO2003038497A1 (en) * 2001-10-30 2003-05-08 Xponent Photonics, Inc. Optical junction apparatus and methods employing optical power transverse-transfer
JP2004133446A (ja) 2002-09-20 2004-04-30 Nippon Telegr & Teleph Corp <Ntt> 光モジュール及び製造方法
JP2004157530A (ja) 2002-10-17 2004-06-03 Nippon Telegr & Teleph Corp <Ntt> 光モジュール
CN1484348A (zh) * 2003-07-29 2004-03-24 中国科学院上海光学精密机械研究所 双包层光纤激光器侧面耦合泵浦装置
JP2005070573A (ja) 2003-08-27 2005-03-17 Sony Corp 光導波路、光源モジュール、並びに光情報処理装置
KR20060087564A (ko) 2003-09-25 2006-08-02 코닝 인코포레이티드 다중모드 접속용 광섬유로 이루어진 섬유 렌즈
US7653278B2 (en) * 2004-05-21 2010-01-26 Panasonic Corporation Refractive index distribution type optical member, and production method for refractive index distribution type optical member
JP2006047526A (ja) * 2004-08-03 2006-02-16 Pentax Corp 光ファイバの加工方法
DE102005040211B4 (de) 2005-08-16 2010-02-11 Maquet Cardiopulmonary Ag Verwendung von nichtionischen Estern in einer Beschichtung für mit Blut in Kontakt kommende Oberflächen und medizinische Vorrichtung
KR100802199B1 (ko) 2006-05-25 2008-03-17 정경희 광모듈 및 그 제조방법
JP2008040003A (ja) 2006-08-03 2008-02-21 Fuji Xerox Co Ltd フレキシブル光導波路フィルム、光送受信モジュール、マルチチャンネル光送受信モジュール及びフレキシブル光導波路フィルムの製造方法
KR100860676B1 (ko) 2007-01-11 2008-09-26 삼성전자주식회사 광 도파로
JP4301335B2 (ja) 2007-10-23 2009-07-22 オムロン株式会社 光導波路、光伝送モジュール、及び電子機器
JP5063510B2 (ja) * 2008-07-01 2012-10-31 日東電工株式会社 光学式タッチパネルおよびその製造方法
JP2010078882A (ja) * 2008-09-25 2010-04-08 Fuji Xerox Co Ltd 高分子光導波路およびその製造方法
JP2010139562A (ja) * 2008-12-09 2010-06-24 Shinko Electric Ind Co Ltd 光導波路、光導波路搭載基板及び光送受信装置
CN102460254B (zh) 2009-04-29 2015-05-06 Plc诊断股份有限公司 具有扫描光源的基于波导的检测系统
KR101094361B1 (ko) 2009-05-27 2011-12-15 한국전자통신연구원 광도파로 구조체
CN101629700B (zh) * 2009-08-24 2011-09-28 华中科技大学 一种光纤-led同轴连接器
JP2012063969A (ja) * 2010-09-16 2012-03-29 Nitto Denko Corp 光導波路デバイスおよび光学式タッチパネル
US20120287674A1 (en) * 2011-05-13 2012-11-15 Flex Lighting Ii, Llc Illumination device comprising oriented coupling lightguides
CN102255235A (zh) * 2011-05-19 2011-11-23 中国科学院上海光学精密机械研究所 双包层光纤中包层光的滤除方法
JP5690902B1 (ja) 2013-10-15 2015-03-25 株式会社フジクラ 基板型光導波路素子
US9597765B2 (en) * 2014-05-01 2017-03-21 Sparton Deleon Springs, Llc Fiber optic dielectric waveguide structure for modal multiplexed communication and method of manufacture
CN106526761A (zh) * 2015-08-26 2017-03-22 弗莱克斯电子有限责任公司 Led和激光光束耦合装置及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001051127A (ja) * 1999-08-05 2001-02-23 Fujikura Ltd 光ファイバの端面研磨処理方法及び固定治具
JP2003014957A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光ファイバとその加工方法及びそれを用いた光半導体モジュール
KR101083341B1 (ko) * 2009-04-20 2011-11-14 한국과학기술원 고분자기반 평면 광도파로 제작방법
JP2011133913A (ja) * 2011-04-01 2011-07-07 Sumitomo Bakelite Co Ltd 光導波路の製造方法
KR20140011521A (ko) * 2012-06-27 2014-01-29 한국전자통신연구원 다층 박막 필터를 이용한 외부공진 레이저 및 이를 포함한 광 송신기

Also Published As

Publication number Publication date
US20200110230A1 (en) 2020-04-09
CN110476096B (zh) 2022-01-18
KR101899059B1 (ko) 2018-09-17
US10955627B2 (en) 2021-03-23
CN110476096A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
US20200225425A1 (en) Optical fiber connection system including optical fiber alignment device
US9897763B2 (en) Transceiver interface having staggered cleave positions
US5260587A (en) Optical semiconductor device array module with light shielding plate
US9341828B2 (en) Multi-core fiber optical coupling elements
US8989539B2 (en) Fiber optic devices and methods of manufacturing fiber optic devices
US9322987B2 (en) Multicore fiber coupler between multicore fibers and optical waveguides
US9588306B2 (en) Fiber optic module assemblies and connector assemblies using the same
JP2014526719A5 (ko)
US9435965B2 (en) Single mode fiber array connector for opto-electronic transceivers
CN210864119U (zh) 多通道并行光模块
CN1651948A (zh) 波分复用光耦合器
WO2016199985A1 (ko) 다채널 광수신 모듈 및 다채널 광수신 모듈의 광정렬 방법
WO2018186723A1 (ko) 평면 광도파로 및 광 모듈
WO2018117316A1 (ko) 광결합장치 및 그 제조방법
CN212009027U (zh) 一种光纤fa结构及高回损光接收器件
US11086085B2 (en) Optical connector for connecting multicore optical fiber to single core optical fibers using intermediate optical waveguide array
WO2005036212A2 (en) Photodetector/optical fiber apparatus with enhanced optical coupling efficiency and method for forming the same
US11754788B2 (en) Multi-channel mode converters with silicon lenses
CN105005121A (zh) 一种新型注塑结构的光纤阵列耦合组件
US20160131847A1 (en) Optical connector and optical coupling assembly
JPH1138270A (ja) 光導波路ユニット
WO2022019700A1 (ko) 양 방향 통신을 지원하는 광 커넥터
US10302883B2 (en) Optical coupling assemblies
CN116931200B (zh) 一种400g dr4光器件
US20230176286A1 (en) Optical components and optical connectors having a splice-on connection and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780610

Country of ref document: EP

Kind code of ref document: A1