WO2018186594A1 - 전극 리드간 연결 구조를 개선한 배터리 모듈 및 그 제조방법 - Google Patents
전극 리드간 연결 구조를 개선한 배터리 모듈 및 그 제조방법 Download PDFInfo
- Publication number
- WO2018186594A1 WO2018186594A1 PCT/KR2018/002590 KR2018002590W WO2018186594A1 WO 2018186594 A1 WO2018186594 A1 WO 2018186594A1 KR 2018002590 W KR2018002590 W KR 2018002590W WO 2018186594 A1 WO2018186594 A1 WO 2018186594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bolt
- washer
- bent
- battery module
- elastic body
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- 238000000034 method Methods 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 5
- 229920001971 elastomer Polymers 0.000 claims description 2
- 239000000806 elastomer Substances 0.000 claims 1
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000003466 welding Methods 0.000 description 11
- 230000008901 benefit Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910001152 Bi alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000743 fusible alloy Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910000634 wood's metal Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B35/00—Screw-bolts; Stay-bolts; Screw-threaded studs; Screws; Set screws
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/505—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/502—Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
- H01M50/514—Methods for interconnecting adjacent batteries or cells
- H01M50/517—Methods for interconnecting adjacent batteries or cells by fixing means, e.g. screws, rivets or bolts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/209—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/534—Electrode connections inside a battery casing characterised by the material of the leads or tabs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/536—Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/548—Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a battery module and a method of manufacturing the same, and more particularly, to a battery module and a method of manufacturing the same, which improves the connection structure between electrode leads when the battery module is configured by connecting the electrode leads of the secondary battery.
- a secondary battery When a secondary battery is used for an electric vehicle, a battery module in which a large number of secondary batteries are connected in series and / or in parallel in order to increase capacity and output is manufactured as a battery pack. At this time, the pouch type secondary battery is widely used in the medium-large sized device due to the advantage of easy lamination.
- Electrodes stacked adjacent to each other in the battery module or the battery pack may have electrode leads electrically connected to each other.
- electrode leads of neighboring secondary batteries may be electrically connected by a bus bar, and generally, laser welding is used to electrically connect the secondary batteries.
- FIG. 1 is a perspective view schematically showing a laser welding process of a conventional electrode lead.
- FIG. 2 is a schematic cross-sectional view illustrating a laser welding configuration of an electrode lead and a bus bar in the structure of FIG. 1.
- stacked secondary batteries 10 are alternately stacked such that electrode leads 20 of a positive electrode and a negative electrode protrude from both ends thereof, and these electrode leads 20 are alternately polarized to each other.
- the inner electrode leads 20 except for the electrode leads 20 positioned at the outermost side of the stacked secondary batteries 10 are bent to overlap each other, and then the portions of the bent electrode leads 20 are laser generators S.
- Weld and weld with laser (L) output from On the other side of the stacked secondary batteries 10 all of the electrode leads 20 are bent and overlapped with each other to weld the portions of the electrode leads 20 overlapped with each other by using a laser beam L output from the laser generator S to complete electrical connection. .
- the electrode lead 20 protrudes from the secondary battery 10, and is bent in an end bent to the left or the right to provide a flat vertical contact surface.
- Adjacent secondary batteries 10 allow the bent portions of the electrode leads 20 having different polarities to overlap each other, and the bus bar 30 is brought into contact with the vertical contact surfaces where the bent portions of the electrode leads 20 overlap with each other so that the laser L is applied. Allow welding through.
- Automotive parts have a high level of demand for safety customers because the defects caused by accidents or malfunctions are directly related to the lives of people in the cars. Accordingly, the inspection of the stability items of battery packs for electric vehicles is being strengthened.
- One such item the solution to the ignition phenomenon during overcharging, is particularly important.
- the welding structure between the electrode leads 20 and the welding structure between the electrode leads 20 and the busbars 30 as described with reference to FIGS. 1 and 2 there is no function to prevent ignition during overcharging.
- the present invention has been made to solve the above problems, the problem to be solved by the present invention is to change the connection structure between the electrode leads, it is possible to prevent the ignition phenomenon during overcharge, and the connection and disconnection between secondary batteries It is to provide an easy battery module and a method of manufacturing the same.
- the battery module according to the present invention for solving the above problems includes a secondary battery stack configured in the form of a plurality of secondary batteries having electrode leads stacked, the electrode leads protrude from the secondary battery, the end Is formed in a bent portion bent to the left or right, the neighboring secondary batteries between the bent portions of the electrode lead of different polarity between the bends are laminated via an elastic body, the elastic body is compressed to the laminated portion The washer-insulated bolt is fastened.
- the bus bar may be positioned below the bent portion stacked parts and fastened together with the bolt.
- a bolt hole is formed in the bent portions and the bus bar, and the bolt may be coupled to a nut under the bus bar through the washer and the bolt hole.
- bolt holes may be formed in the bent portions, and bolt tabs may be formed in the bus bars, and the bolts may be coupled to the bolt tabs through the washers and the bolt holes.
- the bolt hole may be formed in two or more places.
- the washer is preferably a PVC washer or a low temperature lead washer.
- the elastic body may be positioned around the bolt in a ring shape or symmetrically positioned at both sides of the bolt.
- the washer melts due to a change in the battery module environment and the electrical connection is released due to the gap between the portions where the bent portions are stacked due to the repulsive force caused by the release of the compressed elastic body.
- the some secondary battery provided with the electrode lead in which the bolt hole is formed is prepared. End portions of the electrode leads are bent to form left or right bent portions. Adjacent secondary batteries stack the bent portions such that the bolt holes are aligned through an elastic body between the bent portions of electrode leads having different polarities. Then, the insulating bolt including the washer is passed through the bolt hole and the elastic body is compressed to fasten the laminated portion to the insulating bolt including the washer.
- One or more battery modules according to the present invention may be manufactured as a battery pack. Such a battery pack may be applied to an automobile or the like.
- a bolt fastening is applied to the electrical connection between the electrode leads of the lithium ion battery module for automobiles or the electrical connection between the positive lead-the negative lead-the busbar. Since the connection between the secondary batteries is bolted, the connection / disassembly of the secondary batteries is easy and reuse of the disassembled secondary batteries is also possible.
- an insulating bolt and a washer are connected to the busbar through an elastic body between the electrode lead bent portions.
- the washer melts, and the gap between the electrode leads is widened by the elastic body between the electrode leads, thereby disconnecting the electrical connection.
- it is possible to cut off the electrical connection between the electrode leads during heat generation can block the occurrence of a chain problem, there is an effect to effectively prevent the ignition phenomenon during overcharge.
- FIG. 1 is a perspective view schematically showing a laser welding process of a conventional electrode lead.
- FIG. 2 is a schematic cross-sectional view illustrating a laser welding configuration of an electrode lead and a bus bar in the structure of FIG. 1.
- FIG 3 is a perspective view of a secondary battery included in a battery module according to an embodiment of the present invention.
- FIG. 4 is a layout view of the secondary battery illustrated in FIG. 3.
- FIG. 5 is a side view illustrating a connection structure of the rechargeable batteries of FIG. 4.
- FIG. 6 is an enlarged view of a portion A of FIG. 5 and illustrates the connection between electrode leads according to the first embodiment.
- FIG. 7 is an enlarged view of a portion A of FIG. 5 and illustrates a connection between a positive lead, a negative lead, and a bus bar according to a second embodiment.
- FIG. 8 is an enlarged view of a portion A of FIG. 5 and illustrates a connection between a positive lead, a negative lead, and a bus bar according to a third embodiment.
- FIG. 9 illustrates an exploded configuration of the components of the FIG. 8 embodiment.
- FIG 10 shows various examples of washers included in the battery module according to the present invention.
- FIG. 11 illustrates various examples of an elastic body included in a battery module according to the present invention.
- FIG. 12 is a view for explaining a principle that the electrical connection is released when the secondary battery heats in the battery module according to the present invention.
- FIG. 13 is a flow chart of a battery module manufacturing method according to the present invention.
- FIG 3 is a perspective view of a secondary battery included in a battery module according to an embodiment of the present invention.
- the secondary battery 110 has a flat positive electrode lead 111 and a negative electrode lead 112, and these electrode leads 111 and 112 protrude in opposite directions from the secondary battery 110.
- the electrode leads 111 and 112 have bent portions 114, each end of which is bent to the left or the right, to be bent into an L shape, for example, to provide a flat vertical contact surface.
- the secondary battery 110 is preferably a pouch type secondary battery having an advantage of easy lamination so that the secondary battery 110 may be used in a medium-large device.
- the direction in which the secondary battery 110 positive lead 111 and the negative electrode lead 112 extend is called a vertical (up and down) direction, and the bending direction of the end portion thereof is referred to as a left and right direction.
- the leads 112 respectively protrude from the main body of the secondary battery 110 in the up and down directions, and are bent in an L shape so that the ends thereof face in the left and right directions.
- a bolt hole 115 through which an insulating bolt (200 in FIG. 5) to be described later is inserted is formed.
- the bolt holes 115 may be formed in two or more places as shown in FIG. 3. When two or more bolt holes 115 are formed in this way, the bolt holes 115 may be arranged along the length direction (horizontal direction or front and rear direction in the drawing) of the electrode leads 111 and 112.
- FIG. 4 is a layout view of the rechargeable battery illustrated in FIG. 3, and FIG. 5 is a side view illustrating a connection structure of the rechargeable batteries of FIG. 4.
- a plurality of secondary batteries 110 are stacked in arbitrary numbers to form a secondary battery stack.
- Each secondary battery 110 is connected in series to be stacked in order to be integrated to form a battery module 150.
- the positive electrode lead 111 and the negative electrode lead 112 of each secondary battery 110 are each bent in the left and right reverse directions. Between two adjacent secondary batteries 110, one positive electrode lead 111 and the other negative electrode lead 112 are arranged to protrude in the same direction up and down, and the end portions 114 are opposite to each other in a left and right direction. It is arranged to face.
- the bent portions 114 of the electrode leads 111 and 112 having different polarities from neighboring secondary batteries 110 are stacked at the L-shaped bottom portion.
- the elastic body 210 is interposed between the bent portions 114 stacked.
- the laminated portion is pressed by the insulating bolt 200 including the washer 220 so that neighboring secondary batteries 110 are connected in series.
- the insulating bolt 200 compresses the elastic body 210 to electrically connect the electrode leads 111 and 112. Since the insulating bolt 200 itself does not constitute an electrical connection path, there is no electrical short circuit problem due to the bolt 200.
- the electrode leads 111 and 112 usually use metal as an electric conductor.
- the electrode leads 111 and 112 made of metal are elastic to some extent and are not plastic bodies.
- the bolt 200 can be fastened while receiving (severely bending) the partial stress due to the height difference between the portion where the elastic body 210 is interposed and the portion that is not.
- 5 illustrates that the electrode leads 111 and 112 are not bent even when they are pressed, but the present invention is not limited thereto.
- FIG. 6 is an enlarged view of a portion A of FIG. 5 and illustrates the connection between electrode leads according to the first embodiment.
- the bolt holes 115 formed in the bent portions 114 formed in the electrode leads 111 and 112 are aligned in the vertical direction and the front and rear directions, and the elastic bodies are stacked between the bent portions 114. 210 is interposed therebetween, and the insulating bolt 200 is inserted through the washer 220 placed on the bolt hole 115 and then coupled to the nut 230 under the bent portion 114. In this way, the secondary batteries 110 stacked next to each other may have the electrode leads 111 and 112 electrically connected to each other.
- the nut 230 is inserted into each hole because the bolt 200 is inserted in each hole. You may need as many. Instead of a nut structure that only accommodates one bolt, a nut plate structure that accommodates multiple bolts reduces the number of parts. In addition, the pair of electrode leads 111 and 112 may be pressed by rivet without using a nut plate.
- FIG. 7 is an enlarged view of a portion A of FIG. 5 and illustrates a connection between a positive lead, a negative lead, and a bus bar according to a second embodiment.
- the bus bar 240 is positioned under the portion where the bent portions 114 are stacked.
- a bolt hole 115 is also formed in the bus bar 240 so that the bolt hole 115 formed in the bent portions 114 and the bolt hole 115 formed in the bus bar 240 are aligned.
- An elastic body 210 is interposed between the stacked bent portions 114, the insulating bolt 200 is inserted through the washer 220 over the bolt hole 115, and then the bus under the bent portion 114 is disposed. It is coupled with the nut 230 under the bar 240.
- the secondary batteries 110 stacked next to each other may be electrically connected to the bus bars 240 as well as the electrode leads 111 and 112 electrically connected to each other.
- FIG. 8 is an enlarged view of a portion A of FIG. 5 and illustrates a connection between a positive lead, a negative lead, and a bus bar according to a third embodiment. 9 illustrates an exploded configuration of the components of the FIG. 8 embodiment.
- the bus bar 240 is positioned under a portion where the bent portions 114 are stacked. As shown in FIG. 9, a bolt tab 241 is formed on the bus bar 240. Bolt holes 115 formed in the bent portions 114 and bolt tabs 241 formed in the busbars 240 are aligned, and an elastic body 210 is interposed between the stacked bent portions 114. After the insulating bolt 200 is inserted through the washer 220 through the hole 115, the insulating bolt 200 is coupled to the bolt tab 241 in the bus bar 240 under the bent portion 114.
- the secondary batteries 110 stacked next to each other may thus be electrically connected to the bus bars 240 as well as the electrode leads 111 and 112 electrically connected to each other. No parts are required for ease of assembly and parts management. In FIG. 8, the electrode leads 111 and 112 are pressed and bent, and the elastic body 210 is also exaggerated, but is not limited thereto.
- the battery module 150 may be a medium-large battery such as a lithium ion battery module for an electric vehicle.
- a medium-large battery such as a lithium ion battery module for an electric vehicle.
- electrical connection between the electrode leads 111 and 112 of the battery module 150 or between the positive lead 111-the negative lead 112 and the busbar 240 is performed.
- bolt 200 fastening rather than welding. Since the connection between the secondary batteries 110 is fastening the bolts 200, the connection / disassembly of the secondary batteries 110 is easy and reuse of the disassembled secondary batteries 110 is also possible.
- the electrode lead bent portions 114 are connected by using the insulating bolt 200 and the washer 220 through the elastic body 210.
- 10 illustrates various examples of washers 220 included in battery module 150 according to the present invention.
- 10 (a) shows flat washers 220a, (b) lock washers 220b, (c) outer tooth washers 220c, and (d) internal washers 220d.
- the washer refers to the annular part that enters between the nut and bolt and the part to be fixed, and is a part that distributes the fastening pressure.
- the flat washer 220a of (a) is placed under the head of the bolt 200 to distribute the pressure to protect the work surface.
- the lock washer 220b of (b) is a slightly spiral-shaped washer and may serve as a spring to prevent the bolt 200 from loosening.
- the outer washer 220c of (c) is a washer (protrusion) attached to the outside, so that the bolt 200 is securely tightened and not loosened.
- Inner washer (220d) is a washer with a protrusion inside, like the outer washer bolt 200 is securely tightened to prevent loosening. Combination form of the outer tooth washer 220c and the inner tooth washer 220d, that is, a structure in which protrusions are formed both inside and outside may be used.
- the washer 220 included in the battery module 150 in addition to serving as a general washer, between the electrode leads 111 and 112 or between the electrode leads 111 and 112 and the busbar 240 during heating. Necessary parts for disconnecting electrical connections. While the washer 220 maintains a state in which pressure is applied to the elastic body 210 together with the bolt 200 in a normal state, a material that can be melted when the secondary battery 110 is heated, may be completely melted or changed in shape (thickness). Choose from materials. The pressed elastic body 210 attempts to restore the original shape because the pressure state is released when the thickness of the washer 220 changes while the secondary battery 110 is heated.
- the washer 220 is a PVC washer or a low temperature lead washer.
- the maximum operating temperature without deformation of the PVC washer is 60 °C. Therefore, when the secondary battery 110 reaches a temperature of about 60 ° C. due to heat generation, a deformation of the PVC washer occurs and a restoring force of the elastic body 210 is generated.
- the restoring force is used between the electrode leads 111 and 112. Alternatively, the electrical connection between the electrode leads 111 and 112 and the bus bar 240 is released.
- Cold lead washers are also known as wood's metal. It is a bismuth alloy and is one of the most known kind among fusible alloys.
- These cold lead washers can control the melting point by adjusting the composition.
- the low temperature washers of this composition have a melting point of 70 ° C.
- the maximum use temperature of using the low-temperature lead washer without deformation is 70 °C, when the secondary battery 110 heats to reach a temperature of about 70 °C form deformation of the low-temperature lead washer occurs and the restoring force of the elastic body 210 is generated
- the restoring force is used to release the electrical connection between the electrode leads 111 and 112 or between the electrode leads 111 and 112 and the bus bar 240.
- FIG. 11 illustrates various examples of the elastic body 210 included in the battery module 150 according to the present invention.
- (a) is a ring-shaped elastic body 210a and
- (b) is an elastic body 210b in the form of a pair of bands (or a pattern like a dot).
- the ring-shaped elastic body 210a may be positioned between the bent portions 114 such that the inner hole portion is aligned with the bolt hole 115 formed in the bent portions 114.
- the elastic body 210b having a pair of bands (or dots) may be symmetrically positioned at both sides of the bolt 200. Considering the ease of operation and part management, the ring-shaped elastic body 210a is advantageous.
- the elastic body 210 is an object having elasticity that is a property of deformation caused by an external force to return to its original shape when the force is removed. In the pressure state by the bolt 200 and the washer 220, when the washer 220 is deformed, the restoring force acts as it is.
- the elastic body 210 may be a polymer material exhibiting rubber elasticity, an elastic fiber, a foam, or the like, and unlike the washer 220, the elastic body 210 may not be melted even at a high temperature.
- FIG. 12 is a view for explaining the principle that the electrical connection is released when the secondary battery heats in the battery module according to the present invention, in the above-described embodiments, a bolt tab is formed on the busbar to fasten the bolt as an example .
- FIG. 12A is a view in a normal state after assembling the battery module 150 described with reference to FIGS. 5 and 7.
- the electrode leads 111 and 112 and the bus bar 240 are electrically connected by the bolt 200.
- the washer 220 is melted to form a shape washer 220 ′ as in (b).
- the compressed state of the elastic body 210 is partially or completely released, and the interval between the bent portions 114 is stacked by the repulsive force F acting upward by the restoring force of the elastic body 210, thereby spreading the electrode leads 111 and 112.
- the bus bar 240 is completely disconnected.
- the electrode leads 111 and 112 and the bus bar 240 may be electrically disconnected, thereby preventing the occurrence of a chain problem and effectively preventing ignition when overcharged.
- the battery module 150 uses the elastic body 210 between the electrode leads 111 and 112, and the electrode lead 111, through the restoring force of the elastic body 210 when the secondary battery 110 generates heat. To disconnect the electrical connections.
- the battery module 150 may be manufactured by including one or more battery modules 150 as described above.
- the battery pack may further include a case for accommodating the battery module, various devices for controlling charge and discharge of the battery module, such as a BMS, a current sensor, a fuse, and the like, in addition to the battery module.
- the battery module or battery pack according to the present invention can be applied to an automobile such as an electric vehicle or a hybrid vehicle.
- FIG. 13 is a flow chart of a battery module manufacturing method according to the present invention. A description will be given of the method according to the third embodiment described with reference to FIGS. 8 and 9.
- a plurality of secondary batteries 110 including the electrode leads 111 and 112 having the bolt holes 115 are prepared (step S1).
- the secondary battery 110 may be manufactured by preparing an electrode lead component having a bolt hole 115 formed therefrom, or after manufacturing the secondary battery 110 using a common electrode lead component, the electrode lead is drilled to form a bolt hole. 115 may be formed.
- the bent part 114 is formed in the form which the edge part 114 of the electrode leads 111 and 112 bent to the left or the right side (step S2, see FIG. 3).
- bent parts 114 are stacked to align the bolt holes 115 with the neighboring secondary batteries 110 interposed between the bent parts 114 of the electrode leads having different polarities with the elastic body 210 ( Step S3, see FIG. 5).
- the laminated portion is fastened to the bolt 200 by passing the insulating bolt 200 including the washer 220 through the bolt hole 115 and compressing the elastic body 210 (step S4, FIG. 8).
- the bus bar 240 is prepared to include the bolt tab 241 under the bent portions 114 and fastened together with the bolt 200, the battery module 150 as shown in FIG. 8 may be manufactured. .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
전극 리드간 연결 구조를 변경함으로써, 과충전시 발화 현상을 방지할 수 있고, 이차 전지들간의 연결과 분리가 용이한 배터리 모듈 및 그 제조 방법을 제공한다. 본 발명에 따른 배터리 모듈은, 전극 리드를 구비하는 복수의 이차 전지가 적층된 형태로 구성된 이차 전지 적층체를 포함하고, 상기 전극 리드는 이차 전지에서 돌출되되, 단부가 좌측 또는 우측으로 꺾어진 형태로 절곡된 절곡부가 형성되어 있고, 이웃하는 이차 전지끼리 서로 다른 극성의 전극 리드의 절곡부들 사이에 탄성체를 개재하여 절곡부들이 적층되고, 상기 탄성체를 압축하여 당해 적층 부분이 와셔 포함 절연 볼트 체결되어 있는 것을 특징으로 한다.
Description
본 발명은 배터리 모듈 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 이차 전지의 전극 리드들을 연결하여 배터리 모듈 구성시, 전극 리드간 연결 구조를 개선한 배터리 모듈 및 그 제조 방법에 관한 것이다. 본 출원은 2017년 4월 7일자로 출원된 대한민국 특허출원 번호 제10-2017-0045410호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
근래에 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
최근에는 휴대형 전자기기와 같은 소형 장치뿐 아니라, 자동차나 전력저장장치와 같은 중대형 장치에도 이차 전지가 널리 이용되고 있다. 특히, 탄소 에너지가 점차 고갈되고 환경에 대한 관심이 높아지면서, 미국, 유럽, 일본, 한국을 비롯하여 전 세계적으로 하이브리드 자동차와 전기 자동차의 수요가 증가하고 있다. 이러한 하이브리드 자동차나 전기 자동차에 있어서 가장 핵심적 부품은 차량 모터로 구동력을 부여하는 배터리 팩이다. 하이브리드 자동차나 전기 자동차는 배터리 팩의 충방전을 통해 차량의 구동력을 얻을 수 있기 때문에, 엔진만을 이용하는 자동차에 비해 연비가 뛰어나고 공해 물질을 배출하지 않거나 감소시킬 수 있다는 점에서 사용자들이 늘어나고 있는 실정이다.
이차 전지가 전기 자동차용으로 이용되는 경우, 용량 및 출력을 높이기 위해 많은 수의 이차 전지를 직렬 및/또는 병렬로 연결한 배터리 모듈을 구성하여 배터리 팩으로 제조하게 된다. 이 때, 중대형 장치에는 적층이 용이하다는 장점으로 인해 파우치형 이차 전지가 많이 이용된다.
배터리 모듈이나 배터리 팩에서 이웃하여 적층되는 이차 전지들은 전극 리드들이 전기적으로 상호 연결될 수 있다. 이 때, 이웃하는 이차 전지들의 전극 리드들이 버스바에 의하여 전기적으로 연결될 수 있으며, 일반적으로 이차 전지들을 전기적으로 연결시키기 위해 레이저 용접 방식을 채택하고 있다.
도 1은 종래 전극 리드의 레이저 용접 공정을 개략적으로 도시한 사시도이다. 도 2는 도 1의 구조에서 전극 리드와 버스바의 레이저 용접 구성을 설명하기 위한 개략적인 단면도이다.
도 1 및 도 2를 참조하면, 적층된 이차 전지(10)들은 그 양단으로 양극과 음극의 전극 리드(20)가 돌출되어 있고 이들 전극 리드(20)가 서로 반대 극성으로 되도록 교번되게 적층된다. 적층된 이차 전지(10)들의 일측에서 최외각에 위치하는 전극 리드(20)들을 제외한 안쪽의 전극 리드(20)들은 절곡하여 서로 겹치게 한 후 절곡된 전극 리드(20) 부분들을 레이저 발생기(S)에서 출력되는 레이저(L)로 용접, 융착시킨다. 적층된 이차 전지(10)들의 타측에서는 전극 리드(20)들을 모두 절곡하여 서로 겹치게 절곡된 전극 리드(20) 부분들을 레이저 발생기(S)에서 출력되는 레이저(L)로 용접함으로써 전기적 연결을 완료한다.
도 2를 더 상세히 참조하면, 전극 리드(20)는 이차 전지(10)에서 돌출되되, 단부가 좌측 또는 우측으로 꺾어진 형태로 절곡되어 평평한 수직 접촉면을 제공한다. 이웃하는 이차 전지(10)끼리 서로 다른 극성의 전극 리드(20) 절곡부가 겹쳐질 수 있도록 하고 이러한 전극 리드(20)의 절곡부가 겹쳐진 수직 접촉면에 버스바(30)를 접촉시켜 레이저(L)를 통한 용접이 이루어지도록 한다.
자동차용 부품은 사고나 오동작에 의한 결함이 자동차에 타고 있는 사람의 목숨과 직결되기 때문에 안전성에 대한 완성차 고객사들의 요구수준이 매우 높다. 이에 따라 전기 자동차용 배터리 팩 안정성 항목들에 대한 검사가 강화되고 있다. 그러한 항목들 중 하나인 과충전시 발화 현상에 대한 해결책이 특히 중요하다. 그러나 도 1 및 도 2를 참조하여 설명한 것과 같은 전극 리드(20)간 용접, 나아가 전극 리드(20)와 버스바(30)간 용접 구조에서는 과충전시 발화 현상을 방지할 수 있는 기능이 없다.
또한, 도 1 및 도 2와 같은 종래 용접에 의한 연결에서는 하나의 이차 전지(10)에 문제가 생겨 발열시에 전극 리드(20)를 통해 인접하는 다른 이차 전지(10)에까지 영향을 끼치게 되어 있어 연쇄적인 문제를 일으키는 단점이 있다.
뿐만 아니라, 용접에 의한 연결은 한 번 연결이 되면 해체가 불가능한 것이므로, 일부 이차 전지(10)에 문제가 생겨도 비파괴적으로 분리하여 새로운 이차 전지로 교체하는 것이 불가한 한계가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명이 해결하고자 하는 과제는 전극 리드간 연결 구조를 변경함으로써, 과충전시 발화 현상을 방지할 수 있고, 이차 전지들간의 연결과 분리가 용이한 배터리 모듈 및 그 제조 방법을 제공하는 것이다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 청구의 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 과제를 해결하기 위한 본 발명에 따른 배터리 모듈은, 전극 리드를 구비하는 복수의 이차 전지가 적층된 형태로 구성된 이차 전지 적층체를 포함하고, 상기 전극 리드는 이차 전지에서 돌출되되, 단부가 좌측 또는 우측으로 꺾어진 형태로 절곡된 절곡부가 형성되어 있고, 이웃하는 이차 전지끼리 서로 다른 극성의 전극 리드의 절곡부들 사이에 탄성체를 개재하여 절곡부들이 적층되고, 상기 탄성체를 압축하여 당해 적층 부분이 와셔 포함 절연 볼트 체결되어 있는 것을 특징으로 한다.
본 발명에 따른 배터리 모듈에 있어서, 상기 절곡부들이 적층된 부분 아래에 버스바가 위치하여 상기 볼트로 함께 체결된 것일 수 있다. 이 때, 상기 절곡부들 및 버스바에 볼트 구멍이 형성되어 있고, 상기 볼트는 상기 와셔 및 볼트 구멍을 관통해 상기 버스바 아래에서 너트와 결합되는 것일 수 있다. 아니면, 상기 절곡부들에 볼트 구멍이 형성되어 있고, 상기 버스바에 볼트 탭이 형성되어 있어, 상기 볼트는 상기 와셔 및 볼트 구멍을 관통해 상기 볼트 탭에 결합되는 것일 수 있다.
상기 볼트 구멍은 두 군데 이상 형성되어 있는 것일 수 있다. 상기 와셔는 PVC 와셔 또는 저온납 와셔인 것이 바람직하다. 상기 탄성체는 링 형상으로 상기 볼트 둘레에 위치하는 것이거나, 상기 볼트 양측에 대칭적으로 위치하는 것일 수 있다.
상기 배터리 모듈 환경 변화로 상기 와셔가 녹고 상기 탄성체 압축 상태 해제에 의한 반발력으로 상기 절곡부들이 적층된 부분의 간격이 벌어져 전기적 연결이 해제되는 것임이 바람직하다.
본 발명에 따른 배터리 모듈 제조방법에서는, 볼트 구멍이 형성되어 있는 전극 리드를 구비하는 복수의 이차 전지를 준비한다. 상기 전극 리드의 단부가 좌측 또는 우측으로 꺾어진 형태로 절곡부를 형성한다. 이웃하는 이차 전지끼리 서로 다른 극성의 전극 리드의 절곡부들 사이에 탄성체를 개재하여 상기 볼트 구멍이 정렬되도록 상기 절곡부들을 적층한다. 그런 다음, 상기 볼트 구멍에 와셔 포함 절연 볼트를 관통시키고 상기 탄성체를 압축하여 당해 적층 부분을 와셔 포함 절연 볼트 체결한다.
본 발명에 따른 배터리 모듈은 하나 이상 조합되어 배터리 팩으로 제조될 수 있다. 이러한 배터리 팩은 자동차 등에 적용될 수 있다.
본 발명에 의하면, 자동차용 리튬 이온 배터리 모듈의 전극 리드간 전기적 연결 또는 양극 리드 - 음극 리드 - 버스바간 전기적 연결에 용접이 아닌 볼트 체결을 적용한다. 이차 전지간 연결이 볼트 체결이기 때문에 이차 전지의 연결/해체가 용이하여, 해체된 이차 전지의 재사용도 가능하다.
본 발명에서는 전극 리드 절곡부들 사이에 탄성체를 개재하여 절연 볼트 및 와셔를 이용하여 버스바와 연결시킨다. 이차 전지가 발열을 하게 되면 와셔가 녹으면서 전극 리드들 사이의 탄성체에 의해 전극 리드간 간격이 벌어지면서 전기적 연결이 끊어진다. 이와 같이, 발열시 전극 리드간 전기적 연결을 끊어줄 수 있어 연쇄적인 문제 발생을 차단할 수 있고, 과충전시 발화 현상을 효과적으로 방지하는 효과가 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래 전극 리드의 레이저 용접 공정을 개략적으로 도시한 사시도이다.
도 2는 도 1의 구조에서 전극 리드와 버스바의 레이저 용접 구성을 설명하기 위한 개략적인 단면도이다.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈에 포함되는 이차 전지의 사시도이다.
도 4는 도 3에 도시한 이차 전지의 배열도이다.
도 5는 도 4의 이차 전지들의 연결 구조를 보이는 측면도이다.
도 6은 도 5의 A 부분을 확대한 것에 해당하는 도면으로서, 첫 번째 실시예에 의한 전극 리드간 연결을 보여준다.
도 7은 도 5의 A 부분을 확대한 것에 해당하는 도면으로서, 두 번째 실시예에 의한 양극 리드 - 음극 리드 - 버스바간 연결을 보여준다.
도 8은 도 5의 A 부분을 확대한 것에 해당하는 도면으로서, 세 번째 실시예에 의한 양극 리드 - 음극 리드 - 버스바간 연결을 보여준다.
도 9는 도 8 실시예 구성요소의 분해 구성을 도시한다.
도 10은 본 발명에 따른 배터리 모듈에 포함되는 와셔의 다양한 예들을 도시한다.
도 11은 본 발명에 따른 배터리 모듈에 포함되는 탄성체의 다양한 예들을 도시한다.
도 12는 본 발명에 따른 배터리 모듈에서 이차 전지 발열시 전기적 연결이 해제되는 원리를 설명하기 위한 도면이다.
도 13은 본 발명에 따른 배터리 모듈 제조방법의 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 3은 본 발명의 일 실시예에 따른 배터리 모듈에 포함되는 이차 전지의 사시도이다.
도 3에 나타난 바와 같이, 이차 전지(110)는 편평한 양극 리드(111)와 음극 리드(112)를 가지며, 이들 전극 리드(111, 112)는 이차 전지(110)에서 서로 반대 방향으로 돌출되어 있다. 또한 전극 리드(111, 112)는 각 단부가 좌측 또는 우측으로 꺾어진 형태로, 예를 들어 L자형으로 절곡되어 평평한 수직 접촉면을 제공할 수 있는, 절곡부(114)가 형성되어 있다. 이차 전지(110)는 중대형 장치에 이용하기 좋도록, 적층이 용이하다는 장점을 가진 파우치형 이차 전지임이 바람직하다.
구체적으로는 이차 전지(110) 양극 리드(111)와 음극 리드(112)가 연장하는 방향을 연직(상하) 방향이라고 하고, 그 단부의 절곡 방향을 좌우 방향이라고 하면, 양극 리드(111)와 음극 리드(112)는 이차 전지(110) 본체에서 각각 상하 반대 방향으로 돌출되면서, 그 단부가 좌우 반대 방향을 향하도록 L자형으로 절곡되어 있다. 그리고 전극 리드(111, 112)의 절곡부(114), 즉 L자형의 바닥 부분에는 후술하는 절연 볼트(도 5의 200)가 삽입되어 관통되는 볼트 구멍(115)이 형성되어 있다. 볼트 구멍(115)은 도 3에 도시한 바와 같이 두 군데 이상 형성되어 있을 수 있다. 볼트 구멍(115)이 이와 같이 두 군데 이상 형성되는 경우, 볼트 구멍(115)들은 전극 리드(111, 112)의 길이 방향(가로 방향, 혹은 도면에서 전후방향)을 따라 배열될 수 있다.
도 4는 도 3에 도시한 이차 전지의 배열도이고, 도 5는 도 4의 이차 전지들의 연결 구조를 보이는 측면도이다.
도 4 및 도 5를 참조하면, 이차 전지(110)는 임의의 수로 복수개가 적층되어 이차 전지 적층체를 구성한다. 그리고, 각 이차 전지(110)는 적층된 순으로 직렬 접속되어 일체화되어 배터리 모듈(150)을 이룬다. 상술한 것처럼, 각 이차 전지(110)의 양극 리드(111)와 음극 리드(112)는 각각 좌우 역방향으로 절곡되어 있다. 인접하는 두 개의 이차 전지(110)간에서는 한 쪽의 양극 리드(111)와 다른 한쪽의 음극 리드(112) 각각이 상하 같은 방향으로 돌출되도록 배치됨과 동시에, 그 단부(114)가 서로 좌우 반대 방향을 향하도록 배치된다. 그리고 이웃하는 이차 전지(110)끼리 서로 다른 극성의 전극 리드(111, 112)의 절곡부(114)들은 앞서 언급한 바와 같이 상기 L자형 바닥 부분에서 적층되어 있다. 적층되어 있는 절곡부(114)들 사이에는 탄성체(210)가 개재되어 있는 것이 특징이다. 그리고, 그 적층 부분은 와셔(220) 포함 절연 볼트(200)에 의해 압접되어 이웃하는 이차 전지(110)들이 직렬 접속이 된다. 절연 볼트(200)는 탄성체(210)를 압축하여 전극 리드(111, 112)를 전기적 연결한다. 절연 볼트(200)이므로 그 자체는 전기적 연결 경로를 구성하지 않아 볼트(200)로 인한 전기적 단락 문제는 없다.
전극 리드(111, 112)는 전기전도체로서 보통 금속을 이용한다. 금속 재질의 전극 리드(111, 112)는 어느 정도 탄성이 있으며 소성체가 아니다. 따라서, 탄성체(210)가 개재된 부분과 그렇지 않은 부분에서의 높이 차에 의한 부분 응력을 재료 내에 수용하면서(심한 경우 휘어지면서) 볼트(200) 체결될 수 있다. 도 5에는 전극 리드(111, 112)가 압접되어도 휘어짐이 없는 것으로 도시하였지만 여기에 한정되는 것은 아니다.
도 6은 도 5의 A 부분을 확대한 것에 해당하는 도면으로서, 첫 번째 실시예에 의한 전극 리드간 연결을 보여준다.
도 6을 참조하면, 전극 리드(111, 112)에 형성된 각 절곡부(114)들에 형성된 볼트 구멍(115)이 상하 방향 및 전후 방향으로 정렬되고, 적층된 절곡부(114)들 사이에 탄성체(210)가 개재되어 있으며, 볼트 구멍(115) 위에 놓인 와셔(220)를 관통하여 절연 볼트(200)가 삽입된 후, 절곡부(114) 아래에서 너트(230)와 결합된다. 이웃하여 적층되는 이차 전지(110)들은 이와 같이 하여 전극 리드들(111, 112)이 전기적으로 상호 연결될 수 있다.
한 쪽의 양극 리드(111)와 다른 한쪽의 음극 리드(112)에 볼트 구멍(115)이 각각 두 군데 이상 형성되는 경우 각 구멍마다 볼트(200)가 삽입되기 때문에 너트(230)가 그에 해당하는 수만큼 필요할 수 있다. 하나의 볼트만 수용하는 너트 구조 대신에 여러 개의 볼트를 수용하도록 하는 너트 판 구조를 적용하면 부품 개 수를 줄일 수 있다. 덧붙여 너트 판을 이용하지 않고 리벳에 의해 한 쌍의 전극 리드(111, 112)를 압접하도록 해도 상관없다.
도 7은 도 5의 A 부분을 확대한 것에 해당하는 도면으로서, 두 번째 실시예에 의한 양극 리드 - 음극 리드 - 버스바간 연결을 보여준다.
도 7을 참조하면, 절곡부(114)들이 적층된 부분 아래에 버스바(240)가 위치한다. 버스바(240)에도 볼트 구멍(115)이 형성되어 있어, 절곡부(114)들에 형성된 볼트 구멍(115)과 버스바(240)에 형성된 볼트 구멍(115)이 정렬된다. 적층된 절곡부(114)들 사이에 탄성체(210)가 개재되어 있으며, 볼트 구멍(115) 위에 와셔(220)를 관통하여 절연 볼트(200)가 삽입된 후, 절곡부(114) 아래의 버스바(240) 아래에서 너트(230)와 결합된다. 이웃하여 적층되는 이차 전지(110)들은 이와 같이 하여 전극 리드들(111, 112)이 전기적으로 상호 연결될 뿐 아니라 버스바(240)에도 전기적 연결될 수 있다.
도 8은 도 5의 A 부분을 확대한 것에 해당하는 도면으로서, 세 번째 실시예에 의한 양극 리드 - 음극 리드 - 버스바간 연결을 보여준다. 도 9는 도 8 실시예 구성요소의 분해 구성을 도시한다.
도 8을 참조하면, 절곡부(114)들이 적층된 부분 아래에 버스바(240)가 위치한다. 도 9에 도시한 바와 같이 버스바(240)에는 볼트 탭(241)이 형성되어 있다. 절곡부(114)들에 형성된 볼트 구멍(115)과 버스바(240)에 형성된 볼트 탭(241)이 정렬되고, 적층된 절곡부(114)들 사이에 탄성체(210)가 개재되어 있으며, 볼트 구멍(115) 위에 와셔(220)를 관통하여 절연 볼트(200)가 삽입된 후, 절곡부(114) 아래의 버스바(240) 안 볼트 탭(241)에 결합된다. 이웃하여 적층되는 이차 전지(110)들은 이와 같이 하여 전극 리드들(111, 112)이 전기적으로 상호 연결될 뿐 아니라 버스바(240)에도 전기적 연결될 수 있고, 버스바(240) 아래에 너트와 같은 다른 부품이 필요하지 않아 조립 및 부품 관리가 수월하다. 도 8에는 전극 리드(111, 112)가 압접되어 휘어지고 탄성체(210)도 눌려진 정도를 과장하여 도시하였으나 여기에 한정되는 것은 아니다.
본 발명에 따른 배터리 모듈(150)은 전기 자동차용 리튬 이온 배터리 모듈과 같은 중대형 전지일 수 있다. 도 6 내지 도 8을 참조하여 설명한 바와 같이, 배터리 모듈(150)의 전극 리드(111, 112)간 전기적 연결 또는 양극 리드(111) - 음극 리드(112) - 버스바(240)간 전기적 연결을 용접이 아닌 볼트(200) 체결을 적용함에 본 발명의 일차적인 특징이 있다. 이차 전지(110)간 연결이 볼트(200) 체결이기 때문에 이차 전지(110)의 연결/해체가 용이하여, 해체된 이차 전지(110)의 재사용도 가능하다.
그리고, 본 발명에서는 전극 리드 절곡부(114)들 사이에 탄성체(210)를 개재하여 절연 볼트(200) 및 와셔(220)를 이용하여 연결시킨다는 데에 이차적인 특징이 있다.
도 10은 본 발명에 따른 배터리 모듈(150)에 포함되는 와셔(220)의 다양한 예들을 도시한다. 도 10의 (a)는 평와셔(220a), (b)는 잠금와셔(220b), (c)는 외치와셔(220c), (d)는 내치와셔(220d)이다.
일반적으로 와셔는 너트 및 볼트와 고정시킬 부분 사이에 들어가는 고리 모양의 부품을 가리키며, 체결 압력을 분산시키는 역할을 하는 부품이다. (a)의 평와셔(220a)는 볼트(200) 머리 아래에 놓여 압력을 분산시켜 작업 표면을 보호하는 역할을 한다. (b)의 잠금와셔(220b)는 약간 나선 형태의 와셔이고, 볼트(200)가 풀리는 것을 방지하는 스프링 역할을 할 수 있다. (c)의 외치와셔(220c)는 바깥에 이(돌기)가 붙어 있는 와셔로서, 볼트(200)가 안전하게 죄어지고 풀리지 않도록 해 준다. (d)의 내치와셔(220d)는 안쪽에 돌기가 있는 와셔이고, 외치와셔와 마찬가지로 볼트(200)가 안전하게 죄어져 풀리지 않도록 해 준다. 외치와셔(220c)와 내치와셔(220d)의 조합 형태, 즉 안쪽과 바깥에 모두 돌기가 형성되어 있는 구조도 이용할 수 있다.
특히 본 발명에 따른 배터리 모듈(150)에 포함되는 와셔(220)는 일반적인 와셔의 역할을 하는 것 이외에도 발열시 전극 리드(111, 112)간, 또는 전극 리드(111, 112)와 버스바(240)간 전기적 연결을 해제하는 데에 꼭 필요한 부품이다. 와셔(220)는 정상 상태에서는 볼트(200)와 함께 탄성체(210)에 압력을 가하는 상태를 유지하다가, 이차 전지(110) 발열시 녹을 수 있는 재질, 완전히 용융되거나 형태(두께)가 변화할 수 있는 재질로 선택한다. 눌려 있던 탄성체(210)는 이차 전지(110) 발열로 와셔(220)가 녹으면서 그 두께가 변화하면 그만큼의 압력 상태가 해제되므로 원래의 형상을 복원하려고 한다. 이 점을 고려하여, 와셔(220)는 PVC 와셔 또는 저온납 와셔인 것이 바람직하다. PVC 와셔의 변형없이 사용하는 최고 사용온도는 60℃이다. 따라서, 이차 전지(110) 발열로 60℃ 정도의 온도에 이르면 PVC 와셔의 형태 변형이 일어나면서 탄성체(210)의 복원력이 발생하고 본 발명에서는 그 복원력을 이용하여 전극 리드(111, 112)간, 또는 전극 리드(111, 112)와 버스바(240)간 전기적 연결을 해제한다. 저온납 와셔는 우드 메탈(Wood's metal)이라고도 한다. 비스무트 합금이고, 가융(可融) 합금 중에서 가장 많이 알려진 종류의 하나이다. Bi(비스무트) 40 ~ 50%, Pb(납) 25 ~ 30%, Sn(주석) 12.5 ~ 15.5%, Cd(카드뮴) 12.5%를 포함하는 조성이 대표적이고, 표준 조성은 Bi : Pb : Sn : Cd=4 : 2 : 1 : 1이라고 알려져 있다. 이러한 저온납 와셔는 조성을 조절하여 녹는점을 조절할 수 있다. 본 발명에서는 Bi 50%, Pb 24%, Sn 14% 및 Cd 12%를 포함하는 저온납 와셔를 사용하는 것이 바람직하다. 이러한 조성의 저온납 와셔는 녹는점이 70℃이다. 따라서, 이러한 저온납 와셔를 변형없이 사용하는 최고 사용온도는 70℃이고, 이차 전지(110) 발열로 70℃ 정도의 온도에 이르면 저온납 와셔의 형태 변형이 일어나면서 탄성체(210)의 복원력이 발생하고 본 발명에서는 그 복원력을 이용하여 전극 리드(111, 112)간, 또는 전극 리드(111, 112)와 버스바(240)간 전기적 연결을 해제한다.
도 11은 본 발명에 따른 배터리 모듈(150)에 포함되는 탄성체(210)의 다양한 예들을 도시한다. (a)는 링 형상의 탄성체(210a)이고 (b)는 한쌍의 띠 (혹은 점과 같은 패턴이어도 무방) 형태의 탄성체(210b)이다. 링 형상의 탄성체(210a)는 안쪽 구멍 부분이 절곡부(114)들에 형성된 볼트 구멍(115)과 정렬되도록 절곡부(114)들 사이에 위치시킬 수 있다. 한쌍의 띠 (혹은 점) 형태의 탄성체(210b)는 볼트(200) 양측에 대칭적으로 위치하도록 할 수 있다. 작업의 용이성 및 부품 관리를 고려하면 링 형상의 탄성체(210a)가 유리하다.
탄성체(210)는 외부 힘에 의하여 변형을 일으킨 물체가 힘이 제거되었을 때 원래의 모양으로 되돌아가려는 성질인 탄성을 지닌 물체이다. 볼트(200)와 와셔(220)에 의해 압력 상태에 있다가 와셔(220) 변형시에는 원래대로 복원력이 작용하게 된다. 탄성체(210)는 고무 탄성을 나타내는 고분자 물질, 탄성 섬유, 발포체 등일 수 있고 와셔(220)와 달리 고온에서도 녹지 않는 재질임이 바람직하다.
도 12는 본 발명에 따른 배터리 모듈에서 이차 전지 발열시 전기적 연결이 해제되는 원리를 설명하기 위한 도면으로서, 전술한 실시예들 중, 버스바에 볼트 탭을 형성하여 볼트를 체결한 구조를 예로 들고 있다.
도 12의 (a)는 도 5 및 도 7을 참조하여 설명한 배터리 모듈(150) 조립 후 정상 상태의 도면이다. 탄성체(210)가 압축된 상태로, 전극 리드(111, 112)와 버스바(240)가 볼트(200)에 의해 전기적 연결되어 있다. 이차 전지(110) 발열과 같은 이벤트로 인해 배터리 모듈(150) 환경 변화가 일어나면, 와셔(220)가 용융되어, (b)에서와 같이 형태 변형 와셔(220')가 된다. 이 때 탄성체(210) 압축 상태가 일부 혹은 전부 해제되고 탄성체(210)의 복원력에 의한 위로 작용하는 반발력(F)으로 절곡부(114)들이 적층된 부분의 간격이 벌어져, 전극 리드(111, 112)와 버스바(240)간 전기적 연결이 완전 해제된다. 이와 같이, 발열시 전극 리드(111, 112)와 버스바(240) 전기적 연결을 끊어줄 수 있어 연쇄적인 문제 발생을 차단할 수 있고, 과충전시 발화 현상을 효과적으로 방지할 수 있다.
이와 같이, 본 발명에 따른 배터리 모듈(150)은 전극 리드(111, 112) 사이에 탄성체(210)를 이용하여, 이차 전지(110) 발열시 탄성체(210)의 복원력을 통해 전극 리드(111, 112)간 전기적 연결을 해제하는 것이다.
한편, 상술한 배터리 모듈(150)을 하나 이상 포함하여 배터리 팩으로 제조할 수도 있다. 이 때, 배터리 팩에는 배터리 모듈 이외에, 이러한 배터리 모듈을 수납하기 위한 케이스, 배터리 모듈의 충방전을 제어하기 위한 각종 장치, 이를테면 BMS, 전류 센서, 퓨즈 등이 더 포함될 수 있다. 본 발명에 따른 배터리 모듈 또는 배터리 팩은, 전기 자동차나 하이브리드 자동차와 같은 자동차에 적용될 수 있다.
이하에서는, 상술한 본 발명에 따른 배터리 모듈의 제조 방법의 실시예를 개략적으로 설명하도록 한다.
도 13은 본 발명에 따른 배터리 모듈 제조방법의 순서도이다. 도 8 및 도 9 등을 참조하여 설명한 세 번째 실시예에 따른 방법 위주로 설명하기로 한다.
먼저, 볼트 구멍(115)이 형성되어 있는 전극 리드(111, 112)를 구비하는 복수의 이차 전지(110)를 준비한다(단계 S1). 처음부터 볼트 구멍(115)이 형성되어 있는 전극 리드 부품을 준비하여 이차 전지(110)를 제조할 수도 있고, 일반적인 전극 리드 부품을 이용해 이차 전지(110)를 제조한 후 전극 리드를 천공해 볼트 구멍(115)을 형성할 수도 있다.
전극 리드(111, 112)의 단부(114)가 좌측 또는 우측으로 꺾어진 형태로 절곡부(114)를 형성한다(단계 S2, 도 3 참조).
다음으로, 이웃하는 이차 전지(110)끼리 서로 다른 극성의 전극 리드의 절곡부(114)들 사이에 탄성체(210)를 개재하여 볼트 구멍(115)이 정렬되도록 절곡부(114)들을 적층한다(단계 S3, 도 5 참조).
그런 다음, 볼트 구멍(115)에 와셔(220) 포함 절연 볼트(200)를 관통시키고 탄성체(210)를 압축하면서 당해 적층 부분을 볼트(200) 체결한다(단계 S4, 도 8 참조). 이 때, 절곡부(114)들 아래에 버스바(240)를 볼트 탭(241)을 포함하도록 준비하여 볼트(200)로 함께 체결하면 도 8에서와 같은 배터리 모듈(150)을 제조할 수 있다.
한편, 본 명세서에서 상, 하, 좌, 우와 같은 방향을 나타내는 용어가 사용되었으나, 이러한 용어들은 설명의 편의를 위한 것일 뿐, 대상이 되는 사물의 위치나 관측자의 위치 등에 따라 달라질 수 있음은 본 발명의 당업자에게 자명하다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
Claims (14)
- 전극 리드를 구비하는 복수의 이차 전지가 적층된 형태로 구성된 이차 전지 적층체를 포함하고,상기 전극 리드는 이차 전지에서 돌출되되, 단부가 좌측 또는 우측으로 꺾어진 형태로 절곡된 절곡부가 형성되어 있고,이웃하는 이차 전지끼리 서로 다른 극성의 전극 리드의 절곡부들 사이에 탄성체를 개재하여 절곡부들이 적층되고, 상기 탄성체를 압축하여 당해 적층 부분이 와셔 포함 절연 볼트 체결되어 있는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서, 상기 절곡부들이 적층된 부분 아래에 버스바가 위치하여 상기 볼트로 함께 체결된 것을 특징으로 하는 배터리 모듈.
- 제2항에 있어서, 상기 절곡부들 및 버스바에 볼트 구멍이 형성되어 있고, 상기 볼트는 상기 와셔 및 볼트 구멍을 관통해 상기 버스바 아래에서 너트와 결합되는 것을 특징으로 하는 배터리 모듈.
- 제2항에 있어서, 상기 절곡부들에 볼트 구멍이 형성되어 있고, 상기 버스바에 볼트 탭이 형성되어 있어, 상기 볼트는 상기 와셔 및 볼트 구멍을 관통해 상기 볼트 탭에 결합되는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서, 상기 탄성체는 링 형상으로 상기 볼트 둘레에 위치하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서, 상기 탄성체는 상기 볼트 양측에 대칭적으로 위치하는 것을 특징으로 하는 배터리 모듈.
- 제1항에 있어서, 상기 배터리 모듈 환경 변화로 상기 와셔가 녹고 상기 탄성체 압축 상태 해제에 의한 반발력으로 상기 절곡부들이 적층된 부분의 간격이 벌어져 전기적 연결이 해제되는 것을 특징으로 하는 배터리 모듈.
- 볼트 구멍이 형성되어 있는 전극 리드를 구비하는 복수의 이차 전지를 준비하는 단계;상기 전극 리드의 단부가 좌측 또는 우측으로 꺾어진 형태로 절곡부를 형성하는 단계;이웃하는 이차 전지끼리 서로 다른 극성의 전극 리드의 절곡부들 사이에 탄성체를 개재하여 상기 볼트 구멍이 정렬되도록 상기 절곡부들을 적층하는 단계; 및상기 볼트 구멍에 와셔 포함 절연 볼트를 관통시키고 상기 탄성체를 압축하여 당해 적층 부분을 와셔 포함 절연 볼트 체결하는 단계를 포함하는 것을 특징으로 하는 배터리 모듈 제조방법.
- 제8항에 있어서, 상기 절곡부들이 적층된 부분 아래에 버스바를 위치시켜 상기 볼트로 함께 체결하는 것을 특징으로 하는 배터리 모듈 제조방법.
- 제9항에 있어서, 상기 버스바에도 볼트 구멍을 형성하여 상기 볼트가 상기 와셔 및 볼트 구멍을 관통해 상기 버스바 아래에서 너트와 결합되도록 하는 것을 특징으로 하는 배터리 모듈 제조방법.
- 제9항에 있어서, 상기 버스바에 볼트 탭을 형성하여 상기 볼트가 상기 와셔 및 볼트 구멍을 관통해 상기 볼트 탭에 결합되도록 하는 것을 특징으로 하는 배터리 모듈 제조방법.
- 제8항에 있어서, 상기 탄성체는 링 형상으로 상기 볼트 둘레에 위치하도록 하는 것을 특징으로 하는 배터리 모듈 제조방법.
- 제8항에 있어서, 상기 탄성체는 상기 볼트 양측에 대칭적으로 위치하도록 하는 것을 특징으로 하는 배터리 모듈 제조방법.
- 제8항에 있어서, 상기 배터리 모듈 환경 변화로 상기 와셔가 녹고 상기 탄성체 압축 상태 해제에 의한 반발력으로 상기 절곡부들이 적층된 부분의 간격이 벌어져 전기적 연결이 해제되도록 하는 것을 특징으로 하는 배터리 모듈 제조방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019539857A JP7037021B2 (ja) | 2017-04-07 | 2018-03-05 | 電極リード間の連結構造を改善したバッテリーモジュール及びその製造方法 |
US16/476,491 US11245161B2 (en) | 2017-04-07 | 2018-03-05 | Battery module with improved connection structure between electrode leads and method for manufacturing the same |
PL18781340T PL3557652T3 (pl) | 2017-04-07 | 2018-03-05 | Moduł akumulatorowy z ulepszoną konstrukcją połączeniową pomiędzy wyprowadzeniami elektrodowymi oraz sposób jego wytwarzania |
CN201880005995.7A CN110168770B (zh) | 2017-04-07 | 2018-03-05 | 电池模块以及用于制造所述电池模块的方法 |
EP18781340.7A EP3557652B1 (en) | 2017-04-07 | 2018-03-05 | Battery module with improved connection structure between electrode leads and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0045410 | 2017-04-07 | ||
KR1020170045410A KR102158363B1 (ko) | 2017-04-07 | 2017-04-07 | 전극 리드간 연결 구조를 개선한 배터리 모듈 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186594A1 true WO2018186594A1 (ko) | 2018-10-11 |
Family
ID=63712474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/002590 WO2018186594A1 (ko) | 2017-04-07 | 2018-03-05 | 전극 리드간 연결 구조를 개선한 배터리 모듈 및 그 제조방법 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11245161B2 (ko) |
EP (1) | EP3557652B1 (ko) |
JP (1) | JP7037021B2 (ko) |
KR (1) | KR102158363B1 (ko) |
CN (1) | CN110168770B (ko) |
PL (1) | PL3557652T3 (ko) |
WO (1) | WO2018186594A1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019206909A1 (de) * | 2019-05-13 | 2020-11-19 | Volkswagen Aktiengesellschaft | Batterie eines Kraftfahrzeugs und Verfahren zur Herstellung einer Batterie |
KR20210049018A (ko) * | 2019-10-24 | 2021-05-04 | 신흥에스이씨주식회사 | 내진동성이 우수한 배터리팩 |
EP4020696A4 (en) * | 2019-10-08 | 2023-08-30 | Lg Energy Solution, Ltd. | CONNECTING ELEMENT CONNECTED TO AN ELECTRODE WIRE BY PHYSICAL COUPLING, AND STACK OF BATTERY CELLS INCLUDING THE SAME |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220263176A1 (en) * | 2021-02-12 | 2022-08-18 | Schaeffler Technologies AG & Co. KG | Mounting arrangement for battery cells to maintain constant pressure over the duty cycle of a battery |
CN215119169U (zh) * | 2021-05-19 | 2021-12-10 | 上海峰飞航空科技有限公司 | 一种电池极耳连接结构及电池包 |
WO2024038730A1 (ja) * | 2022-08-17 | 2024-02-22 | 株式会社Gsユアサ | 蓄電装置 |
FR3143213A1 (fr) * | 2022-12-07 | 2024-06-14 | Safran Electrical & Power | Ensemble de cellules d’un élément accumulateur d’énergie et procédé d’assemblage dudit ensemble |
KR102562858B1 (ko) * | 2022-12-12 | 2023-08-02 | 주식회사 엠피에스티 | 고전류 충전 및 방전이 가능한 집전 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035520A (ja) * | 2005-07-28 | 2007-02-08 | Sanyo Electric Co Ltd | 車両用の電源装置 |
JP2008021486A (ja) * | 2006-07-12 | 2008-01-31 | Toyota Motor Corp | 燃料電池収納ケース |
KR101449307B1 (ko) * | 2013-06-28 | 2014-10-08 | 현대자동차주식회사 | 배터리 안전장치 |
JP2015185223A (ja) * | 2014-03-20 | 2015-10-22 | 日立マクセル株式会社 | 密閉型電池 |
KR20160129820A (ko) * | 2011-06-23 | 2016-11-09 | 삼성에스디아이 주식회사 | 배터리 팩 |
KR20170045410A (ko) | 2015-10-16 | 2017-04-27 | 대한민국(농촌진흥청장) | 사카로마이세스 세르비지애 y204의 고체종균 제조방법 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201323216Y (zh) * | 2008-12-12 | 2009-10-07 | 比亚迪股份有限公司 | 电池组 |
JP2009187972A (ja) | 2008-02-01 | 2009-08-20 | Fdk Corp | 蓄電モジュール |
KR100993668B1 (ko) | 2008-08-01 | 2010-11-10 | 현대자동차일본기술연구소 | 배터리 셀의 전극 접속 구조 |
JP5505962B2 (ja) | 2009-11-13 | 2014-05-28 | Necエナジーデバイス株式会社 | 組電池及び組電池の接続方法 |
KR101106429B1 (ko) | 2009-12-01 | 2012-01-18 | 삼성에스디아이 주식회사 | 이차 전지 |
KR101299393B1 (ko) | 2011-09-19 | 2013-08-22 | 세방전지(주) | 음각형 케이스로 구성된 단위 전지셀 및 이를 이용한 전지모듈 |
JP2013084368A (ja) | 2011-10-06 | 2013-05-09 | Auto Network Gijutsu Kenkyusho:Kk | 電池モジュール |
KR101294179B1 (ko) | 2011-11-09 | 2013-08-08 | 기아자동차주식회사 | 배터리의 과충전 방지장치 |
JP6026961B2 (ja) * | 2013-06-18 | 2016-11-16 | 豊田合成株式会社 | 電池セル、電池ユニットおよび電池スタック |
KR101715695B1 (ko) | 2013-09-05 | 2017-03-13 | 주식회사 엘지화학 | 배터리 팩 및 이에 적용되는 인터 버스 바 |
CA2927503A1 (en) * | 2013-10-16 | 2015-04-23 | Aleees Eco Ark Co. Ltd. | Positive locking confirmation mechanism for battery contact of electric vehicle and positive locking confirmation device for electrode of battery pack |
CN204155991U (zh) * | 2014-09-28 | 2015-02-11 | 山东神工海特电子科技有限公司 | 免点焊软包锂电池并联模块 |
KR101720931B1 (ko) | 2015-07-01 | 2017-04-10 | (주)청앤생 | 전기 자동차용 회로 차단 장치 |
JP6821309B2 (ja) * | 2016-03-07 | 2021-01-27 | 三洋電機株式会社 | 二次電池および二次電池集合体 |
KR102034206B1 (ko) | 2016-07-26 | 2019-10-18 | 주식회사 엘지화학 | 배터리 모듈 및 이를 포함하는 배터리 팩 |
-
2017
- 2017-04-07 KR KR1020170045410A patent/KR102158363B1/ko active IP Right Grant
-
2018
- 2018-03-05 EP EP18781340.7A patent/EP3557652B1/en active Active
- 2018-03-05 JP JP2019539857A patent/JP7037021B2/ja active Active
- 2018-03-05 PL PL18781340T patent/PL3557652T3/pl unknown
- 2018-03-05 US US16/476,491 patent/US11245161B2/en active Active
- 2018-03-05 WO PCT/KR2018/002590 patent/WO2018186594A1/ko unknown
- 2018-03-05 CN CN201880005995.7A patent/CN110168770B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035520A (ja) * | 2005-07-28 | 2007-02-08 | Sanyo Electric Co Ltd | 車両用の電源装置 |
JP2008021486A (ja) * | 2006-07-12 | 2008-01-31 | Toyota Motor Corp | 燃料電池収納ケース |
KR20160129820A (ko) * | 2011-06-23 | 2016-11-09 | 삼성에스디아이 주식회사 | 배터리 팩 |
KR101449307B1 (ko) * | 2013-06-28 | 2014-10-08 | 현대자동차주식회사 | 배터리 안전장치 |
JP2015185223A (ja) * | 2014-03-20 | 2015-10-22 | 日立マクセル株式会社 | 密閉型電池 |
KR20170045410A (ko) | 2015-10-16 | 2017-04-27 | 대한민국(농촌진흥청장) | 사카로마이세스 세르비지애 y204의 고체종균 제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3557652A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102019206909A1 (de) * | 2019-05-13 | 2020-11-19 | Volkswagen Aktiengesellschaft | Batterie eines Kraftfahrzeugs und Verfahren zur Herstellung einer Batterie |
DE102019206909B4 (de) | 2019-05-13 | 2024-10-24 | Volkswagen Aktiengesellschaft | Batterie eines Kraftfahrzeugs und Verfahren zur Herstellung einer Batterie |
EP4020696A4 (en) * | 2019-10-08 | 2023-08-30 | Lg Energy Solution, Ltd. | CONNECTING ELEMENT CONNECTED TO AN ELECTRODE WIRE BY PHYSICAL COUPLING, AND STACK OF BATTERY CELLS INCLUDING THE SAME |
KR20210049018A (ko) * | 2019-10-24 | 2021-05-04 | 신흥에스이씨주식회사 | 내진동성이 우수한 배터리팩 |
KR102466946B1 (ko) * | 2019-10-24 | 2022-11-14 | 신흥에스이씨주식회사 | 내진동성이 우수한 배터리팩 |
Also Published As
Publication number | Publication date |
---|---|
KR102158363B1 (ko) | 2020-09-21 |
US11245161B2 (en) | 2022-02-08 |
EP3557652A4 (en) | 2020-03-18 |
CN110168770B (zh) | 2021-10-15 |
EP3557652B1 (en) | 2021-10-20 |
EP3557652A1 (en) | 2019-10-23 |
PL3557652T3 (pl) | 2022-01-24 |
US20200303710A1 (en) | 2020-09-24 |
JP2020514992A (ja) | 2020-05-21 |
JP7037021B2 (ja) | 2022-03-16 |
CN110168770A (zh) | 2019-08-23 |
KR20180113813A (ko) | 2018-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018186594A1 (ko) | 전극 리드간 연결 구조를 개선한 배터리 모듈 및 그 제조방법 | |
WO2019203426A1 (ko) | 버스바를 구비한 배터리 모듈 및 배터리 팩 | |
CN109844996B (zh) | 电池模块和包括该电池模块的电池组和车辆 | |
WO2018034471A1 (ko) | 원통 전지용 배터리 팩 구조 | |
WO2013103244A1 (ko) | 배터리 팩 및 이에 적용되는 커넥팅 바 | |
WO2018021680A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 | |
KR101404712B1 (ko) | 안전성이 향상된 전지팩 | |
WO2013081375A1 (ko) | 배터리 모듈 및 배터리 모듈에 적용되는 버스 바 | |
WO2019245126A1 (ko) | 버스바를 구비한 배터리 모듈 및 배터리 팩 | |
WO2015080466A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 | |
WO2009157676A9 (ko) | 안전성이 향상된 중대형 전지팩 | |
WO2019124876A1 (ko) | 버스바 어셈블리를 구비한 배터리 모듈 | |
WO2013015524A1 (ko) | 안전성이 향상된 전지팩 | |
WO2012173451A2 (ko) | 솔더링 커넥터와, 이를 포함하는 배터리 모듈 및 배터리 팩 | |
WO2019245214A1 (ko) | 이차 전지 및 버스바를 포함한 배터리 모듈 | |
WO2014148791A1 (ko) | 전압 검출부재 및 이를 포함하는 전지모듈 | |
WO2021125492A1 (ko) | 배터리 모듈 | |
WO2013129844A1 (ko) | 안전성이 향상된 전지셀 어셈블리 및 이를 포함하는 전지모듈 | |
WO2015190721A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 | |
WO2018216873A1 (ko) | 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈 생산 방법 | |
WO2018217040A1 (ko) | 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 | |
WO2017052104A1 (ko) | 배터리 모듈, 이를 포함하는 배터리 팩 및 배터리 모듈용 케이싱 제조 방법 | |
WO2018186659A1 (ko) | 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 | |
WO2018230907A1 (ko) | 배터리 모듈과 이를 포함하는 배터리 팩 및 자동차 | |
WO2017061707A1 (ko) | 배터리 모듈 및 이를 포함하는 배터리 팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781340 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019539857 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018781340 Country of ref document: EP Effective date: 20190715 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |