WO2018186400A1 - 含塩素オレフィンの製造方法 - Google Patents

含塩素オレフィンの製造方法 Download PDF

Info

Publication number
WO2018186400A1
WO2018186400A1 PCT/JP2018/014274 JP2018014274W WO2018186400A1 WO 2018186400 A1 WO2018186400 A1 WO 2018186400A1 JP 2018014274 W JP2018014274 W JP 2018014274W WO 2018186400 A1 WO2018186400 A1 WO 2018186400A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
carbon atoms
reaction
olefin
Prior art date
Application number
PCT/JP2018/014274
Other languages
English (en)
French (fr)
Inventor
祐介 ▲高▼平
森澤 義富
高木 洋一
岡本 秀一
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2018186400A1 publication Critical patent/WO2018186400A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a novel method for producing a chlorine-containing olefin by olefin metathesis.
  • Industrially useful compounds are known as compounds in which some or all of the hydrogen atoms in the olefin are substituted with chlorine atoms, that is, chlorine-containing olefins. A method for producing these compounds easily and efficiently Is not established.
  • an olefin metathesis reaction (hereinafter sometimes simply referred to as “olefin metathesis”), which is a double bond recombination reaction using a metal catalyst, is widely used as a method for producing olefins having various substituents.
  • olefin metathesis which is a double bond recombination reaction using a metal catalyst.
  • an electron-deficient olefin having an electron-withdrawing substituent has low reactivity, it is not easy to use it for olefin metathesis.
  • Non-Patent Document 1 the reactivity of olefins having various substituents has been investigated, and it is described that the reactivity of electron-deficient olefins is low.
  • olefins having halogen atoms such as fluorine atoms and chlorine atoms are also electron-deficient olefins
  • olefin metathesis of ruthenium complex and vinylidene fluoride that is, 1,1-difluoroethylene
  • the expected products that is, ethylene and tetrafluoroethylene were not obtained at all. It has been.
  • olefin having a halogen atom for olefin metathesis.
  • trichlorethylene and tetrachlorethylene are industrially easily available and useful compounds from the viewpoint of commercialization, but they are not only olefins that are extremely deficient in electrons but also used for olefin metathesis because of their difficulty in handling. There have been no reports so far.
  • an object of the present invention is to provide a method for easily and efficiently producing another chlorine-containing olefin from a chlorine-containing olefin such as trichlorethylene and tetrachloroethylene, which are industrially easily available, under mild conditions.
  • the present inventors have found that in the presence of a metal catalyst having a metal-carbon double bond, a chlorine-containing olefin such as trichloroethylene or tetrachloroethylene and an olefin substituted with an organic group are mildly conditioned.
  • a chlorine-containing olefin such as trichloroethylene or tetrachloroethylene and an olefin substituted with an organic group are mildly conditioned.
  • another chlorine-containing olefin is provided, and have completed the present invention. That is, the present invention relates to the following ⁇ 1> to ⁇ 9>.
  • the central metal is molybdenum or tungsten, and in the presence of a metal-carbene complex compound having olefin metathesis reaction activity, the olefin compound represented by the following formula 21 and the olefin compound represented by the following formula 31 are reacted.
  • X is a group selected from the group consisting of a hydrogen atom, a chlorine atom, the following group (iv) and the following group (v).
  • a 3 to A 6 are each independently a group selected from the group consisting of a hydrogen atom, a halogen atom, and a monovalent organic group inert to the reaction.
  • a 3 and A 4 may be bonded to each other to form a ring together with the carbon atom to which these groups are bonded.
  • a 5 and A 6 may be bonded to each other to form a ring together with the carbon atom to which these groups are bonded.
  • the other group when one group of A 3 and A 4 is a halogen atom, and the other group when one group of A 5 and A 6 is a halogen atom are each independently , A hydrogen atom, and a group selected from the group consisting of monovalent organic groups inert to the reaction.
  • Group (v) A group in which the group (iv) further includes an atomic group having one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  • X is a group selected from the group consisting of a hydrogen atom, a chlorine atom, the group (iv), and the following group (vi).
  • ⁇ 3> The production method according to ⁇ 1> or ⁇ 2>, wherein the metal-carbene complex compound has an imide ligand and a halogen atom as a ligand.
  • all of A 3 to A 6 are hydrogen atoms, or the A 4 is a group consisting of a halogen atom and a monovalent organic group inert to the reaction.
  • a group selected and A 3 , A 5 and A 6 are hydrogen atoms, or A 3 and A 4 are groups selected from the group consisting of a halogen atom and a monovalent organic group inert to the reaction.
  • the A 5 and A 6 are hydrogen atoms, or the A 4 and A 6 are groups selected from the group consisting of a halogen atom and a monovalent organic group inert to the reaction, and the A 3 and A 5 are The production method according to any one of ⁇ 1> to ⁇ 3>, which is a hydrogen atom.
  • the A 3 is a hydrogen atom or a fluorine atom
  • the A 4 is a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms inert to the reaction, or a halogen atom, an oxygen atom, ⁇ 1> to ⁇ 1> above, which is a monovalent hydrocarbon group having 1 to 20 carbon atoms that is inert to the reaction containing an atomic group having at least one atom selected from the group consisting of a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  • the manufacturing method as described in any one of ⁇ 4>.
  • X is a hydrogen atom, a chlorine atom, an alkyl group having 1 to 12 carbon atoms, or a halogenated alkyl group having 1 to 12 carbon atoms
  • the chlorine-containing olefin is a compound represented by the formula 51
  • the A 3 is a hydrogen atom or a fluorine atom
  • the A 4 is a hydrogen atom or a fluorine-containing methyl group
  • the X The production method according to any one of ⁇ 1> to ⁇ 6>, wherein is a hydrogen atom.
  • another chlorine-containing olefin can be easily and efficiently produced from a chlorine-containing olefin such as trichloroethylene or tetrachloroethylene by olefin metathesis.
  • the present invention relates to olefin metathesis by a metal catalyst, and description of general features common to the prior art may be omitted.
  • the “compound represented by the formula X” may be simply referred to as “compound X”.
  • the alkyl group may be any of an alkyl group composed of a straight chain, a branched chain, a ring, or a combination thereof.
  • An aryl group means a monovalent group corresponding to a residue obtained by removing one hydrogen atom bonded to any one of carbon atoms forming an aromatic ring in an aromatic compound, and a carbocyclic compound And a heteroaryl group derived from a heterocyclic compound.
  • the number of carbon atoms of the hydrocarbon group means the total number of carbon atoms contained in the whole hydrocarbon group, and when the group has no substituent, the number of carbon atoms forming the hydrocarbon group skeleton is When the group has a substituent, the total number is obtained by adding the number of carbon atoms in the substituent to the number of carbon atoms forming the hydrocarbon group skeleton.
  • Olefin metathesis is reversible. That is, in the following scheme (a), there is a reverse reaction (reaction represented by an arrow in the reverse direction). However, the details of this point will not be described. In addition, geometric isomers may exist for the olefin to be produced. However, the details of this point are strongly dependent on the individual reactions, and will not be described.
  • the present invention is a method for producing a chlorine-containing olefin of, for example, compound 51 to compound 54 by reacting compound 21 and compound 31 in the presence of compound 11, for example.
  • the right side of the double bond in Formula 21 (the part represented by CClX) and the right side of the double bond in Formula 51 and Formula 53 are the same
  • the left side of the double bond in Formula 31 (The part represented by CA 3 A 4 ) and the left part of the double bond in Formula 51 and Formula 52 are the same
  • the right side of the double bond in Formula 31 (the part represented by CA 5 A 6 ) and the formula 53 and the left part of the double bond in Formula 54 are the same.
  • the compound 11 is also collectively referred to as a molybdenum-carbene complex compound or a tungsten-carbene complex compound (hereinafter referred to as “metal-carbene complex compound”, “metal-carbene complex”, or “metal catalyst”). )) As a representative example.
  • the metal-carbene complex may be Compound 12, Compound 13, Compound 14, or Compound 15, and the same applies to the metal-carbene complex below.
  • [L] is a ligand.
  • M is molybdenum or tungsten.
  • X is a group selected from the group consisting of a hydrogen atom, a chlorine atom, the following group (iv) and the following group (v).
  • a 1 to A 6 are each independently a group selected from the group consisting of a hydrogen atom, a halogen atom, and a monovalent organic group inert to the reaction.
  • a 1 and A 2 may be bonded to each other to form a ring together with the carbon atom to which these groups are bonded.
  • a 3 and A 4 may be bonded to each other to form a ring together with the carbon atom to which these groups are bonded.
  • a 5 and A 6 may be bonded to each other to form a ring together with the carbon atom to which these groups are bonded.
  • the other group when one group of A 3 and A 4 is a halogen atom, and the other group when one group of A 5 and A 6 is a halogen atom are each independently , A hydrogen atom, and a group selected from the group consisting of monovalent organic groups inert to the reaction.
  • active to the reaction means having no activity for the olefin metathesis reaction, specifically, having a reactive carbon-carbon double bond and carbon-carbon triple bond. Means not.
  • group (iv) and group (v) mean the following, respectively.
  • Group (v) A group in which the group (iv) further includes an atomic group having one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  • the group (v) is preferably a group further containing one or more oxygen atoms in the group (iv), and the oxygen atoms are more preferably ethereal oxygen atoms. That is, the group (v) is preferably the following group (vi).
  • the ring a ring consisting of only carbon atoms is preferable. Examples of the ring size include a 3-membered ring to a 10-membered ring. Examples of the ring partial structure include the following structures.
  • the reaction is performed in the presence of a metal-carbene complex compound having olefin metathesis reaction activity.
  • a metal-carbene complex compound having olefin metathesis reaction activity As the metal catalyst, it is preferable to use at least one compound selected from the group consisting of Compound 11, Compound 12, Compound 13, Compound 14, and Compound 15.
  • Compound 11 is preferred at the start of the reaction from the viewpoint of availability and reaction efficiency.
  • the metal catalyst such as compound 11 plays a role as a catalyst in the production method according to the present invention, and means both an agent introduced as a reagent and one generated during the reaction (catalytically active species).
  • the compound 11 is known to exhibit catalytic activity by dissociating some of the ligands under the reaction conditions, and to exhibit catalytic activity without dissociation of the ligand, In the present invention, any may be sufficient, and it is not limited.
  • [L] does not specify the number or type of ligands.
  • a 1 and A 2 in Compound 11 are as defined above.
  • the halogen atom a fluorine atom and a chlorine atom are preferable from the viewpoint of availability.
  • the monovalent organic group inert to the reaction is preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 5 to 20 carbon atoms, and the alkyl group may be linear, branched or cyclic.
  • the alkyl group or aryl group may further include an atomic group having one or more atoms selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom.
  • a halogen atom may be bonded to at least a part of carbon atoms. That is, for example, it may be a fluoroalkyl group or a fluoroalkoxy group. Moreover, these preferable groups may have an etheric oxygen atom between carbon atoms. These preferred groups may have a substituent containing an atomic group having one or more atoms selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom. .
  • substituents examples include hydroxyl group, amino group, imino group, nitrile group, amide group (carbonylamino group), carbamate group (oxycarbonylamino group), nitro group, carboxyl group, ester group (acyloxy group or alkoxycarbonyl group). ), A thioether group, a silyl group, and the like. These groups may be further substituted with an alkyl group or an aryl group.
  • the amino group (—NH 2 ) may be a monoalkylamino group (—NHR), a monoarylamino group (—NHAr), a dialkylamino group (—NR 2 ), or a diarylamino group (—NAr 2 ).
  • R is an alkyl group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms having an etheric oxygen atom between carbon atoms
  • Ar is an aryl group having 5 to 12 carbon atoms. .
  • Preferred examples of the compound 11 having a combination of A 1 and A 2 include compounds represented by the following formula from the viewpoint of availability.
  • Compound 11 can be represented, for example, by the following formula (11-B) or formula (11-C). Further, as the compound 11, a coordinating solvent (tetrahydrofuran, ethylene glycol dimethyl ether, acetonitrile, etc.) may be further coordinated.
  • a coordinating solvent tetrahydrofuran, ethylene glycol dimethyl ether, acetonitrile, etc.
  • the ligand of the metal catalyst preferably has an imide ligand (R 1 —N ⁇ M) and a halogen atom.
  • R 1 include an alkyl group and an aryl group.
  • the ligand [L] in Formula 11 is represented by ⁇ NR 1 , —R 4 , and —R 5 in Formula (11-B).
  • R 4 and R 5 include halogen atoms, alkyl groups, aryl groups, alkoxy groups, aryloxy groups, sulfonate groups, amino groups (alkylamino groups, ⁇ 1 -pyrrolide, ⁇ 5 -pyrrolide, etc.) and the like.
  • R 4 and R 5 may be linked to form a bidentate ligand.
  • an olefin [C 2 (R 6 ) 4 ] is cycloadded to the metal-carbon double bond portion of the compound represented by the formula (11-B) ([2 + 2] cycloaddition). )
  • R 6 are monovalent groups which may be the same or different from each other, and examples thereof include a hydrogen atom, a halogen atom, an aryl group, an alkoxy group, an aryloxy group and an amino group.
  • the compound represented by the formula (11-C) is considered to be equivalent to the compound represented by the formula (11-B).
  • the above catalyst is generally referred to as “molybdenum-carbene complex” or “tungsten-carbene complex”.
  • molybdenum-carbene complex or “tungsten-carbene complex”.
  • the literature [Grela, K. et al. (Ed) Olefin Metathesis: Theory and Practice, Wiley, 2014.
  • the molybdenum-carbene complex or tungsten-carbene complex described in the above can be used.
  • a molybdenum-carbene complex or a tungsten-carbene complex commercially available from Aldrich, Strem, or XiMo can be used.
  • the molybdenum-carbene complex or tungsten-carbene complex described in the above can be used.
  • the molybdenum-carbene complex or the tungsten-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina or polymer.
  • compound (11-B) Specific examples of compound (11-B) are shown below.
  • Me represents a methyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tertiary butyl group
  • Ph represents a phenyl group.
  • Specific examples of the compound (11-C) include the following compounds.
  • the compounds 12 to 15 play a role as a catalyst in the production method according to the present invention as in the case of the compound 11 described above, but mean both those charged as a reagent and those generated during the reaction (catalytically active species).
  • Compound 12 and Compound 13 are metal catalysts having a carbene moiety derived from Compound 21, and
  • Compound 14 and Compound 15 are metal catalysts having a carbene moiety derived from Compound 31.
  • Compound 21 is a reaction substrate in the present invention.
  • X in compound 21 is as defined above.
  • X is preferably a hydrogen atom, a chlorine atom, an alkyl group having 1 to 12 carbon atoms, or a halogenated alkyl group having 1 to 12 carbon atoms, and is preferably a hydrogen atom, a chlorine atom, a methyl group, or a halogenated methyl group. More preferred. More specific examples of the compound 21 include olefin compounds shown below.
  • the compound 21 include trichloroethylene and tetrachloroethylene.
  • Compound 31 is a reaction substrate in the present invention.
  • a 3 to A 6 in the compound 31 are as defined above.
  • Compound 31 is an olefin compound, but does not include 1,1-dihalogenoolefin.
  • a 3 to A 6 each independently represents a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms inert to the reaction, or a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, phosphorus
  • a monovalent hydrocarbon group having 1 to 20 carbon atoms that is inert to a reaction containing an atom and an atomic group having at least one atom selected from the group consisting of silicon atoms is preferable, and each independently represents a hydrogen atom, a chlorine atom, Fluorine atom, alkyl group having 1 to 20 carbon atoms, aryl group having 5 to 20 carbon atoms, halogenated alkyl group having 1 to 20 carbon atoms, halogenated aryl group having 5 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms Selected from the group consisting of a group, an aryloxy group having 5 to 20 carbon atoms, a halogen
  • a 3 to A 6 are each independently a hydrogen atom, chlorine atom, fluorine atom, phenyl group, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, tert-butoxy group, (2-ethyl) Hexyloxy group, dodecyloxy group, acetyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, pentafluoroethyl group, heptafluoropropyl group, perfluorobutyl group, perfluorohexyl group, or perfluorooctyl group It is preferable from the viewpoint of availability.
  • both terminal and internal olefins can be used.
  • the number of substituents on the double bond is not particularly limited, but ethylene (when A 3 to A 6 are all hydrogen atoms), mono-substituted olefin (A 3 , A 5 , and A 6 are hydrogen atoms) 1), 1,1-disubstituted olefin (when A 5 and A 6 are hydrogen atoms), or 1,2-disubstituted olefin (when A 3 and A 5 are hydrogen atoms), high reactivity It is preferable at the point which has.
  • all of the A 3 to A 6 are hydrogen atoms, or the A 4 is a group selected from the group consisting of a halogen atom and a monovalent organic group inert to the reaction.
  • a 5 and A 6 are hydrogen atoms, or A 3 and A 4 are groups selected from the group consisting of a halogen atom and a monovalent organic group inert to the reaction, and A 5 and A 6 are It is preferable that they are hydrogen atoms, or that A 4 and A 6 are groups selected from the group consisting of halogen atoms and monovalent organic groups inert to the reaction, and A 3 and A 5 are hydrogen atoms.
  • the geometric isomerism on the double bond is not particularly limited.
  • a 3 is a hydrogen atom or a fluorine atom
  • a 4 is a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms inert to the reaction, or A monovalent hydrocarbon group having 1 to 20 carbon atoms that is inert to a reaction containing an atomic group having at least one atom selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom Combinations are mentioned.
  • a 5 is a hydrogen atom or a fluorine atom
  • a 6 is a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms inert to the reaction, or A monovalent hydrocarbon group having 1 to 20 carbon atoms that is inert to a reaction containing an atomic group having at least one atom selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, and a silicon atom Combinations are mentioned.
  • the compound 31, A 3 is a hydrogen atom or a fluorine atom
  • a A 4 is a hydrogen atom or a fluorine-containing methyl group
  • Compound A 5 and A 6 is hydrogen atom are preferred. More specific examples of the compound 31 include olefin compounds shown below.
  • compound 51 or compound 52 is produced as a chlorine-containing olefin.
  • X, A 3 and A 4 in Compound 51 and Compound 52 are as defined above, including preferred embodiments.
  • compound 51 a compound in which A 3 is a hydrogen atom or a fluorine atom, and A 4 is a hydrogen atom or a fluorine-containing methyl group is preferable.
  • X is preferably a hydrogen atom.
  • Specific examples of the chlorine-containing olefin include the following compounds.
  • a wavy line means that it is any one or a mixture of both among the isomers of E / Z.
  • particularly preferred specific examples include the following compounds wherein X is a hydrogen atom.
  • the chlorine-containing olefin produced in the present invention has a chlorine atom bonded to a carbon atom constituting a double bond. For this reason, it is easy to utilize for the reaction which selectively substitutes this chlorine atom, and a coupling reaction. Therefore, compound 51 and compound 52 obtained by the present invention are useful compounds as intermediates. In addition, monochlorofluoropropenes obtained by the present invention are useful as a solvent or a foaming agent as a next-generation alternative chlorofluorocarbon.
  • the present invention relates to a method for producing chlorine-containing olefins by olefin metathesis, and typically performs olefin metathesis by contacting two different olefins with a metal-carbene complex to obtain olefins different from the raw materials. It is.
  • both terminal and internal olefins should be used as olefins [above-mentioned compound 31] that are not olefins in which two chlorine atoms are bonded to one of the carbon atoms constituting the double bond.
  • the number of substituents on the double bond is not particularly limited, but ethylene, monosubstituted olefins, 1,1-disubstituted olefins, and 1,2-disubstituted olefins are preferable from the viewpoint of high reactivity.
  • the geometric isomerism on the double bond is not particularly limited.
  • deaerated and dehydrated olefin as a raw material.
  • deaeration operation freeze deaeration and the like may be performed.
  • dehydration operation Usually, it is made to contact with a molecular sieve etc.
  • the degassing and dehydration operations are usually performed before contacting with the metal-carbene complex.
  • the olefin as a raw material may contain a trace amount of impurities (for example, peroxide), it may be purified from the viewpoint of improving the target product yield.
  • impurities for example, peroxide
  • the purification method There is no particular limitation on the purification method.
  • the literature [Armarego, W. et al. L. F. et al. , Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier].
  • a terminal olefin is used.
  • a degassed and dehydrated chlorinated olefin is used as a raw material.
  • deaeration operation There is no particular limitation on the deaeration operation, but freeze deaeration and the like may be performed.
  • dehydration operation Usually, it is made to contact with a molecular sieve etc.
  • the chlorine-containing olefin used as a raw material is usually subjected to the degassing and dehydration operations before contacting with the metal-carbene complex.
  • the chlorine-containing olefin as a raw material may contain a trace amount of impurities (for example, hydrogen chloride), it may be purified in terms of improving the yield of the target product.
  • impurities for example, hydrogen chloride
  • the purification method There is no particular limitation on the purification method.
  • the literature [Armarego, W. et al. L. F. et al. , Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier].
  • the raw material olefins (hereinafter referred to as the two types of olefins, Compound 21 and Compound 31) may be added after being mixed in the reaction vessel in advance or separately.
  • the second olefin is contacted with a mixture obtained by contacting the first olefin with the metal-carbene complex.
  • the other olefin is used in an amount of about 0.01 to 100 mol, preferably about 0.1 to 10 mol, with respect to 1 mol of the normal olefin. .
  • the metal-carbene complex [Compound 11, Compound 12, Compound 13, Compound 14, and Compound 15] may be added as a reagent or generated in the system.
  • a commercially available metal-carbene complex may be used as it is, or a commercially available metal-carbene complex synthesized from a commercially available reagent by a known method may be used.
  • a metal-carbene complex prepared from a metal complex as a precursor by a known method can be used in the present invention.
  • the amount of the metal-carbene complex to be used is not particularly limited, but usually about 0.0001 to 1 mol, preferably 0.001 to 0, is used with respect to 1 mol of the standard olefin among the olefins used as a raw material. About 2 moles are used.
  • the metal-carbene complex to be used is usually charged into the reaction vessel as a solid, but may be charged after being dissolved or suspended in a solvent.
  • a solvent used at this time in the range which does not exert a bad influence on reaction
  • An organic solvent, a fluorine-containing organic solvent, an ionic liquid, water etc. can be used individually or in mixture.
  • some or all of the hydrogen atoms may be substituted with deuterium atoms.
  • the metal catalyst is preferably dissolved in the compound 21 and / or the compound 31.
  • organic solvent examples include aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; dichloromethane, chloroform, 1, 2 -Halogen solvents such as dichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, diethyl ether, glyme and diglyme can be used.
  • aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene
  • aliphatic hydrocarbon solvents such as hexane and cyclohexane
  • dichloromethane, chloroform, 1, 2 -Halogen solvents such as dichloroethane, chlorobenzene and o-
  • fluorine-containing organic solvent examples include hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, dichloropentafluoropropane, and the like.
  • hexafluorobenzene examples include hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, dichloropentafluoropropane, and the like.
  • ionic liquid for example, various pyridinium salts, various imidazolium salts and the like can be used.
  • THF hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, ⁇ , ⁇ , ⁇ -trifluoromethylbenzene, and the like, and mixtures thereof are preferred.
  • a degassed and dehydrated solvent for improving the yield of the target product.
  • the deaeration operation freeze deaeration and the like may be performed.
  • dehydration operation Usually, it is made to contact with a molecular sieve etc.
  • the degassing and dehydration operations are usually performed before contacting with the metal-carbene complex.
  • the atmosphere in which the raw material olefin and the metal-carbene complex are brought into contact with each other is not particularly limited, but is preferably an inert gas atmosphere from the viewpoint of extending the life of the catalyst, and particularly preferably a nitrogen or argon atmosphere.
  • an inert gas atmosphere from the viewpoint of extending the life of the catalyst, and particularly preferably a nitrogen or argon atmosphere.
  • the olefin which becomes gas in reaction conditions as a raw material it can carry out in these gas atmosphere.
  • a liquid phase is usually used in terms of reaction rate.
  • the olefin as a raw material is a gas under the reaction conditions, it is difficult to carry out in the liquid phase, so it can also be carried out in the gas-liquid two phase.
  • a solvent can be used.
  • the same solvents as those used for dissolving or suspending the metal-carbene complex can be used.
  • at least one of the raw olefins is a liquid under the reaction conditions, it may be carried out without a solvent.
  • the container in which the olefin as the raw material is brought into contact with the metal-carbene complex there are no particular limitations on the container in which the olefin as the raw material is brought into contact with the metal-carbene complex, as long as the reaction is not adversely affected.
  • a metal container or a glass container can be used.
  • the olefin metathesis concerning this invention may handle the olefin in a gaseous state on reaction conditions, the pressure-resistant container which can be airtight is preferable.
  • the temperature at which the olefin as a raw material is brought into contact with the metal-carbene complex is not particularly limited, but it can be usually in the range of ⁇ 100 to 200 ° C., and preferably 0 to 150 ° C. from the viewpoint of the reaction rate. Note that the reaction does not start at low temperatures, and the complex may be rapidly decomposed at high temperatures. Therefore, it is necessary to appropriately set the lower limit and the upper limit of the temperature. Usually, it is carried out at a temperature below the boiling point of the solvent used.
  • the time for contacting the raw material olefin with the metal-carbene complex is not particularly limited, but is usually in the range of 1 minute to 48 hours.
  • the pressure at which the raw material olefin and the metal-carbene complex are brought into contact with each other is not particularly limited, but may be under pressure, under normal pressure, or under reduced pressure. Usually, it is about 0.001 to 10 MPa, preferably about 0.01 to 1 MPa.
  • an inorganic salt, an organic compound, a metal complex, or the like may coexist within a range that does not adversely affect the reaction.
  • the mixture of the raw material olefin and metal-carbene complex may be stirred as long as the reaction is not adversely affected.
  • a mechanical stirrer, a magnetic stirrer, or the like can be used as a stirring method.
  • the target olefin is usually obtained as a mixture of a plurality of olefins after contacting the raw material olefin with the metal-carbene complex, it may be isolated by a known method. Examples of the isolation method include distillation, column chromatography, recycle preparative HPLC and the like, and these can be used alone or in combination as necessary.
  • the target product obtained in this reaction can be identified by a known method similar to that for ordinary organic compounds.
  • 1 H-, 19 F-, 13 C-NMR, GC-MS and the like can be mentioned, and these can be used alone or in combination.
  • Example 1 Metathesis of trichlorethylene and 3,3,3-trifluoro-1-propene using molybdenum catalyst Under nitrogen atmosphere, molybdenum catalyst A (1 mol%), trichlorethylene, 3,3,3-trifluoro-1-propene, and p -Benzene-d 6 in which bis (trifluoromethyl) benzene (internal standard, 0.02 mmol) is dissolved is weighed into an NMR measuring tube. After reacting at room temperature for 10 hours, NMR and GC-MS of the contents are measured to confirm the formation of 1-chloro-3,3,3-trifluoro-1-propene. A series of these reactions and the structure of the catalyst A are shown below.
  • Example 2 Metathesis of tetrachloroethylene and 3,3,3-trifluoro-1-propene using a molybdenum catalyst The reaction was conducted in the same manner as in Example 1 except that trichloroethylene was changed to tetrachloroethylene, and 1,1-dichloro-3,3,3- Confirm the formation of trifluoro-1-propene.
  • Example 3 Metathesis of trichlorethylene and 2,3,3,3-tetrafluoro-1-propene using molybdenum catalyst 3,3,3-trifluoro-1-propene is converted to 2,3,3,3-tetrafluoro-1-propene The reaction is conducted in the same manner as in Example 1 except that the production of 1-chloro-2,3,3,3-tetrafluoro-1-propene is confirmed.
  • Example 4 Metathesis of tetrachloroethylene and 2,3,3,3-tetrafluoro-1-propene using molybdenum catalyst Trichloroethylene to tetrachloroethylene and 3,3,3-trifluoro-1-propene to 2,3,3,3 The reaction is carried out in the same manner as in Example 1 except that each is changed to -tetrafluoro-1-propene, and the production of 1,1-dichloro-2,3,3,3-tetrafluoro-1-propene is confirmed.
  • another chlorine-containing olefin can be easily and efficiently produced from a chlorine-containing olefin such as trichloroethylene or tetrachloroethylene, which is a commercially available chlorine-containing olefin, by olefin metathesis.
  • a chlorine-containing olefin such as trichloroethylene or tetrachloroethylene, which is a commercially available chlorine-containing olefin, by olefin metathesis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、工業的に入手容易なトリクロロエチレンやテトラクロロエチレン等の含塩素オレフィンから別の含塩素オレフィンを温和な条件下で、簡便かつ効率的に製造する方法を提供することを目的とする。本発明は中心金属がモリブデン又はタングステンであり、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物の存在下、下記オレフィン化合物21と下記オレフィン化合物31を反応させる、下記含塩素オレフィン51又は52の製造方法に関する。ただし、式中の各符号は明細書中に定義されている。

Description

含塩素オレフィンの製造方法
 本発明は、オレフィンメタセシスにより含塩素オレフィンを製造する新規な方法に関する。
 オレフィン中の水素原子の一部又は全てが塩素原子で置換された化合物、すなわち含塩素オレフィンには、産業上有用な化合物が知られているが、これらの化合物を簡便かつ効率的に製造する方法は確立されていない。
 そのため、工業的に入手容易なトリクロロエチレンやテトラクロロエチレン(すなわち、パークロロエチレン)等の含塩素オレフィンから別の含塩素オレフィンが温和な条件下で簡便かつ効率的に製造できれば、既存手法と比較して極めて有用な合成手法となり得る。
 一方、金属触媒による二重結合組み換え反応であるオレフィンメタセシス反応(以下、単に、「オレフィンメタセシス」ということもある。)は多彩な置換基を有するオレフィンの製造方法として広く利用されている。しかし、電子求引性置換基を有する電子不足オレフィンは反応性が低いため、オレフィンメタセシスに利用することは容易ではない。
 例えば、非特許文献1では、種々の置換基を有するオレフィンの反応性が調べられており、電子不足オレフィンの反応性が低いと記載されている。実際、フッ素原子や塩素原子等、ハロゲン原子を有するオレフィンも電子不足オレフィンであるため、オレフィンメタセシスに用いた報告はほとんどない。また、非特許文献2において、ルテニウム錯体とフッ化ビニリデン(すなわち、1,1-ジフルオロエチレン)のオレフィンメタセシスが検討されたが、期待した生成物すなわちエチレン及びテトラフルオロエチレンは全く得られなかったと述べられている。
Chatterjee,A.K.et al.,J.Am.Chem.Soc.,2003,125,11360-11370. Trnka,T.et al.,Angew.Chem.Int.Ed.,2001,40,3441-3444.
 このように、ハロゲン原子を有するオレフィンをオレフィンメタセシスに利用することは実用的ではない。中でも、トリクロロエチレンやテトラクロロエチレンは、工業的に入手容易で事業化の観点から有用な化合物であるが、極めて電子不足なオレフィンであるだけでなく、その取扱いの難しさ等のため、オレフィンメタセシスに利用した報告はこれまでなかった。
 そこで本発明では、工業的に入手容易なトリクロロエチレンやテトラクロロエチレン等の含塩素オレフィンから別の含塩素オレフィンを温和な条件下で、簡便かつ効率的に製造する方法を提供することを課題とする。
 本発明者らは、鋭意研鑽を積んだ結果、金属-炭素二重結合を有する金属触媒の存在下、トリクロロエチレン又はテトラクロロエチレン等の含塩素オレフィンと有機基で置換されたオレフィンとが温和な条件下で別の含塩素オレフィンを与えることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記<1>~<9>に関するものである。
<1>中心金属がモリブデン又はタングステンであり、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物の存在下、下記式21で表されるオレフィン化合物と下記式31で表されるオレフィン化合物を反応させる、下記式51又は下記式52で表される含塩素オレフィンの製造方法。
Figure JPOXMLDOC01-appb-C000002
 ただし、式中の記号は以下の意味を表す。
 Xは、水素原子、塩素原子、下記基(iv)及び下記基(v)からなる群から選ばれる基である。
 A~Aは、それぞれ独立して、水素原子、ハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基である。また、A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。ただし、A及びAのうち一方の基がハロゲン原子である場合の他方の基、並びに、A及びAのうち一方の基がハロゲン原子である場合の他方の基は、それぞれ独立に、水素原子、及び反応に不活性な一価有機基からなる群から選ばれる基である。
 基(iv):炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基、炭素数1~12のハロゲン化アルキル基、炭素数1~12のハロゲン化アルコキシ基、炭素数5~20のハロゲン化アリール基、及び炭素数5~20のハロゲン化アリールオキシ基からなる群から選ばれる基。
 基(v):前記基(iv)中に、さらに、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含ませた基。
<2>前記Xが、水素原子、塩素原子、前記基(iv)及び下記基(vi)からなる群から選ばれる基である、前記<1>に記載の製造方法。
 基(vi):前記基(iv)の炭素原子と炭素原子の間にさらにエーテル性酸素原子を有する基。
<3>前記金属-カルベン錯体化合物が、配位子としてイミド配位子及びハロゲン原子を有する、前記<1>又は<2>に記載の製造方法。
<4>前記式31で表されるオレフィン化合物において、前記A~Aの全てが水素原子であるか、前記Aがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A、A及びAが水素原子であるか、前記A及びAがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A及びAが水素原子であるか、又は前記A及びAがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A及びAが水素原子である、前記<1>~<3>のいずれか1つに記載の製造方法。
<5>前記Aが水素原子又はフッ素原子であり、前記Aが水素原子、ハロゲン原子、反応に不活性な炭素数1~20の一価炭化水素基、又は、ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含む反応に不活性な炭素数1~20の一価炭化水素基である、前記<1>~<4>のいずれか1つに記載の製造方法。
<6>前記Xが、水素原子、塩素原子、炭素数1~12のアルキル基、又は炭素数1~12のハロゲン化アルキル基である、前記<1>~<5>のいずれか1つに記載の製造方法。
<7>前記含塩素オレフィンが、前記式51で表される化合物であり、かつ、前記Aが水素原子又はフッ素原子であり、前記Aが水素原子又は含フッ素メチル基であり、前記Xが水素原子である、前記<1>~<6>のいずれか1つに記載の製造方法。
<8>反応温度が0~150℃である、前記<1>~<7>のいずれか1つに記載の製造方法。
<9>反応を、溶媒を用いずに行う、前記<1>~<8>のいずれか1つに記載の製造方法。
 本発明に係る含塩素オレフィンの製造方法によれば、オレフィンメタセシスによってトリクロロエチレン又はテトラクロロエチレン等の含塩素オレフィンから簡便かつ効率的に別の含塩素オレフィンを製造することができる。
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。また、本発明は金属触媒によるオレフィンメタセシスに関するものであり、従来技術と共通する一般的特徴については記載を省略することがある。
 なお、本明細書において、「式Xで表される化合物」のことを、単に「化合物X」と称する場合がある。
 アルキル基は、直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなるアルキル基のいずれであってもよい。
 アリール基とは、芳香族化合物において芳香環を形成する炭素原子の内いずれか1つの炭素原子に結合した1つの水素原子を取り去った残基に相当する一価の基を意味し、炭素環化合物から誘導されるホモアリール基と、ヘテロ環化合物から誘導されるヘテロアリール基とを合わせた総称で用いる。
 炭化水素基の炭素数とは、ある炭化水素基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は炭化水素基骨格を形成する炭素原子の数を、該基が置換基を有する場合は炭化水素基骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
 オレフィンメタセシスは反応が可逆である。すなわち下記スキーム(a)において逆向きの反応(逆向きの方向の矢印で表される反応)が存在する。しかし、この点についての詳細は説明を省略する。
 また、生成するオレフィンについては幾何異性体が存在する可能性がある。しかし、この点の詳細については、個々の反応に強く依存するので、説明を省略する。
 本発明は、下記スキーム(a)に表すように、例えば化合物11の存在下、化合物21と化合物31を反応させ、例えば化合物51~化合物54の含塩素オレフィンを製造する方法である。
 オレフィンメタセシス反応においては、式21における二重結合の右側(CClXで表される部分)と式51及び式53の二重結合の右側の部分とは同一となり、式31における二重結合の左側(CAで表される部分)と式51及び式52の二重結合の左側の部分とは同一となり、式31における二重結合の右側(CAで表される部分)と式53及び式54の二重結合の左側の部分とは同一となる。
 なお、下記スキーム(a)において、化合物11は、モリブデン-カルベン錯体化合物、又はタングステン-カルベン錯体化合物(以下、「金属-カルベン錯体化合物」、「金属-カルベン錯体」又は「金属触媒」とも総称する。)の代表例として記載する。金属-カルベン錯体としては、化合物12、化合物13、化合物14、又は化合物15であってもよく、以下金属-カルベン錯体については同様である。
Figure JPOXMLDOC01-appb-C000003
 本明細書において、式中の記号は以下の意味を表す。
 [L]は、配位子である。
 Mは、モリブデン又はタングステンである。
 Xは、水素原子、塩素原子、下記基(iv)及び下記基(v)からなる群から選ばれる基である。
 A~Aは、それぞれ独立して、水素原子、ハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基である。
 A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。
 ただし、A及びAのうち一方の基がハロゲン原子である場合の他方の基、並びに、A及びAのうち一方の基がハロゲン原子である場合の他方の基は、それぞれ独立に、水素原子、及び反応に不活性な一価有機基からなる群から選ばれる基である。
 なお、「反応に不活性な」とは、オレフィンメタセシス反応に対して活性を有していないことを意味し、具体的には反応性の炭素-炭素二重結合及び炭素-炭素三重結合を有していないことを意味する。
 ただし、基(iv)及び基(v)は、それぞれ下記を意味する。
 基(iv):炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基、炭素数1~12のハロゲン化アルキル基、炭素数1~12のハロゲン化アルコキシ基、炭素数5~20のハロゲン化アリール基、及び炭素数5~20のハロゲン化アリールオキシ基からなる群から選ばれる基。
 基(v):前記基(iv)中に、さらに、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含ませた基。
 また、基(v)としては、基(iv)中に、さらに、酸素原子を1以上含ませた基が好ましく、該酸素原子はエーテル性酸素原子であることがより好ましい。
 つまり、基(v)としては、下記基(vi)であることが好ましい。
 基(vi):前記基(iv)の炭素原子と炭素原子の間にさらにエーテル性酸素原子を有する基。
 環としては、炭素原子のみからなる環が好ましい。環の大きさは3員環~10員環が例示できる。環の部分構造としては、下式の構造が例示できる。
Figure JPOXMLDOC01-appb-C000004
 本発明においては、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物の存在下に反応を行う。金属触媒としては、化合物11、化合物12、化合物13、化合物14、及び化合物15からなる群から選ばれる少なくとも1種の化合物を用いることが好ましい。金属触媒としては、入手容易性及び反応効率の観点から反応開始時には化合物11が好ましい。
 化合物11等の金属触媒は、本発明に係る製造方法において触媒としての役割を果たすが、試薬として投入するもの及び反応中で生成するもの(触媒活性種)の両方を意味する。ここで、化合物11は反応条件下、配位子のいくつかが解離することで触媒活性を示すようになるものと、配位子の解離なしで触媒活性を示すものが知られているが、本発明ではいずれでもよく、限定されない。また、一般に、オレフィンメタセシスは触媒へのオレフィンの配位と解離を繰り返しながら進行するため、反応中、触媒上にオレフィン以外の配位子がいくつ配位しているかは必ずしも明確でない。したがって、本明細書中、[L]は配位子の数や種類を特定するものではない。
 化合物11におけるA及びAは前記定義の通りである。
 ハロゲン原子としては、フッ素原子、塩素原子が入手容易性の点から好ましい。
 反応に不活性な一価有機基としては、炭素数1~20のアルキル基、炭素数5~20のアリール基が好ましく、該アルキル基は直鎖状、分岐状、又は環状でもよい。該アルキル基又はアリール基は、さらにハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含んでもよい。
 これらの好ましい基は、少なくとも一部の炭素原子にハロゲン原子が結合していてもよい。すなわち、例えば、フルオロアルキル基、フルオロアルコキシ基であってもよい。また、これらの好ましい基は、炭素原子と炭素原子の間にエーテル性酸素原子を有していてもよい。また、これらの好ましい基は、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含む置換基を有していてもよい。
 該置換基としては、ヒドロキシル基、アミノ基、イミノ基、ニトリル基、アミド基(カルボニルアミノ基)、カルバメート基(オキシカルボニルアミノ基)、ニトロ基、カルボキシル基、エステル基(アシルオキシ基又はアルコキシカルボニル基)、チオエーテル基、及びシリル基等が例示できる。これらの基は、更にアルキル基又はアリール基で置換されていてもよい。例えば、アミノ基(-NH)はモノアルキルアミノ基(-NHR)、モノアリールアミノ基(-NHAr)、ジアルキルアミノ基(-NR)、又はジアリールアミノ基(-NAr)であってもよい。ただし、Rは炭素数1~12のアルキル基又は炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数1~12のアルキル基であり、Arは炭素数5~12のアリール基である。
 これらのA及びAの組み合わせを有する化合物11としては、入手容易性の点で、下記式に示すものが好ましく例示できる。
Figure JPOXMLDOC01-appb-C000005
 化合物11は例えば、下記式(11-B)又は式(11-C)で表すことができる。また、化合物11としては、これらにさらに配位性溶媒(テトラヒドロフラン、エチレングリコールジメチルエーテル、アセトニトリル等)が配位していてもよい。
 本発明においては、金属触媒の配位子としては、イミド配位子(R-N=M)及びハロゲン原子を有することが好ましい。ただし、Rとしては、アルキル基、アリール基等が例示できる。
Figure JPOXMLDOC01-appb-C000006
 式11における配位子[L]は、式(11-B)において、=NR、-R、-Rで表される。=NR、-R、-Rの位置に限定はなく、式(11-B)において互いに入れ替わっていてもよい。
 R、Rとしては、ハロゲン原子、アルキル基、アリール基、アルコキシ基、アリールオキシ基、スルホネート基、アミノ基(アルキルアミノ基、η-ピロリド、η-ピロリド等)等が例示できる。RとRは連結して二座配位子となっていてもよい。
 また、式(11-C)は、式(11-B)で表される化合物の金属-炭素二重結合部分に、オレフィン[C(R]が環化付加([2+2] cycloaddition)して、メタラシクロブタン環を形成した化合物である。ただし、4個のRは、互いに同じでも異なっていてもよい一価の基であり、水素原子、ハロゲン原子、アリール基、アルコキシ基、アリールオキシ基、アミノ基等が例示できる。式(11-C)で表される化合物は、式(11-B)で表される化合物と等価と考える。
 上記触媒は、一般的に「モリブデン-カルベン錯体」又は「タングステン-カルベン錯体」と称されるものであり、例えば、文献[Grela,K.(Ed)Olefin Metathesis:Theory and Practice,Wiley,2014.]に記載されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。また、例えばAldrich社やStrem社、XiMo社から市販されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。
 また、文献[J.K.Lam,et al.J.Am.Chem.Soc.2016,138,15774.]や文献[M.J.Koh,et al.Nature 2017,542,80.]に記載のモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。
 なお、上記モリブデン-カルベン錯体又はタングステン-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
 化合物(11-B)の具体例を下記に示す。なお、Meとはメチル基を、i-Prとはイソプロピル基を、t-Buとはターシャリーブチル基を、Phとはフェニル基を、それぞれ意味する。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 化合物(11-C)の具体例としては、下記化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 化合物12~15は、上記化合物11と同様に本発明に係る製造方法において触媒としての役割を果たすが、試薬として投入するもの及び反応中で生成するもの(触媒活性種)の両方を意味する。化合物12及び化合物13は、化合物21由来のカルベン部分を有する金属触媒であり、化合物14及び化合物15は、化合物31由来のカルベン部分を有する金属触媒である。
 化合物21は本発明において、反応基質である。化合物21におけるXは、前記定義と同様である。Xとしては、水素原子、塩素原子、炭素数1~12のアルキル基、又は、炭素数1~12のハロゲン化アルキル基が好ましく、水素原子、塩素原子、メチル基、又は、ハロゲン化メチル基がより好ましい。
 化合物21の具体例としては、より好ましくは、下記に示すオレフィン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 これらのうち化合物21として、特に好ましい具体例としては、トリクロロエチレン又はテトラクロロエチレンが挙げられる。
 化合物31は本発明において、反応基質である。化合物31におけるA~Aは、前記定義と同様である。ただし、化合物31はオレフィン化合物であるが、1,1-ジハロゲノオレフィンは含まれない。
 A~Aは、それぞれ独立して、水素原子、ハロゲン原子、反応に不活性な炭素数1~20の一価炭化水素基、又は、ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含む反応に不活性な炭素数1~20の一価炭化水素基が好ましく、それぞれ独立して、水素原子、塩素原子、フッ素原子、炭素数1~20のアルキル基、炭素数5~20のアリール基、炭素数1~20のハロゲン化アルキル基、炭素数5~20のハロゲン化アリール基、炭素数1~20のアルコキシ基、炭素数5~20のアリールオキシ基、炭素数1~20のハロゲン化アルコキシ基、炭素数5~20のハロゲン化アリールオキシ基、及び、炭素数1~20のアシル基からなる群から選ばれる基がより好ましい。
 A~Aは、それぞれ独立して、水素原子、塩素原子、フッ素原子、フェニル基、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、tert-ブトキシ基、(2-エチル)ヘキシルオキシ基、ドデシルオキシ基、アセチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ペルフルオロブチル基、ペルフルオロヘキシル基、又はペルフルオロオクチル基であることが入手容易性の点から好ましい。
 化合物31としては、末端及び内部オレフィンのどちらも利用することができる。二重結合上の置換基の数に特に限定はないが、エチレン(A~Aがいずれも水素原子である場合)、一置換オレフィン(A、A、及びAが水素原子である場合)、1,1-二置換オレフィン(A及びAが水素原子である場合)、又は1,2-二置換オレフィン(A及びAが水素原子である場合)が高い反応性を有する点で好ましい。すなわち、化合物31としては、前記A~Aの全てが水素原子であるか、前記Aがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A、A及びAが水素原子であるか、前記A及びAがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A及びAが水素原子であるか、又は前記A及びAがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A及びAが水素原子であることが好ましい。また、二重結合上の幾何異性も特に限定はない。
 A及びAの好ましい組合せとしては、Aが水素原子又はフッ素原子であり、Aが水素原子、ハロゲン原子、反応に不活性な炭素数1~20の一価炭化水素基、又は、ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含む反応に不活性な炭素数1~20の一価炭化水素基である組合せが挙げられる。
 A及びAの好ましい組合せとしては、Aが水素原子又はフッ素原子であり、Aが水素原子、ハロゲン原子、反応に不活性な炭素数1~20の一価炭化水素基、又は、ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含む反応に不活性な炭素数1~20の一価炭化水素基である組合せが挙げられる。
 また、化合物31としては、Aが水素原子又はフッ素原子であり、Aが水素原子又は含フッ素メチル基であり、かつA及びAが水素原子である化合物が好ましい。化合物31の具体例としては、より好ましくは、下記に示すオレフィン化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 本発明では、含塩素オレフィンとして化合物51又は化合物52を製造する。化合物51及び化合物52におけるX、A及びAは、好ましい態様も含めて前記定義と同様である。特に化合物51において、Aが水素原子又はフッ素原子であり、かつAが水素原子又は含フッ素メチル基である化合物が好ましい。Xは水素原子が好ましい。
 当該含塩素オレフィンの具体例としては、下記化合物が挙げられる。なお、波線はE/Zの異性体のうち、いずれか一方又は両方の混合物であることを意味する。
 これらのうち、特に好ましい具体例としては、Xが水素原子である下記に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 本発明で製造される含塩素オレフィンは、二重結合を構成する炭素原子に塩素原子が結合している。このため、この塩素原子を選択的に置換する反応や、カップリング反応に利用することが容易である。したがって、本発明で得られる化合物51や化合物52は中間体として有用な化合物である。また、本発明で得られるモノクロロフルオロプロペン類は、次世代代替フロンとして、溶媒や発泡剤として有用である。
<製造方法>
 本発明はオレフィンメタセシスによる含塩素オレフィンの製造方法に関するものであり、典型的には、異なる2種類のオレフィンと金属-カルベン錯体を接触させることによってオレフィンメタセシスを行い、原料とは異なるオレフィンを得るものである。
 原料となるオレフィンのうち、二重結合を構成する炭素原子の一方に2個塩素原子が結合しているオレフィンではないオレフィン[上述の化合物31]としては、末端及び内部オレフィンのどちらも利用することができる。二重結合上の置換基の数に特に限定はないが、エチレン、一置換オレフィン、1,1-二置換オレフィン、1,2-二置換オレフィンが高い反応性を有する点で好ましい。また、二重結合上の幾何異性も特に限定はない。目的物収率向上の点で、原料となるオレフィンは脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。原料となるオレフィンについて、前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
 また、原料となるオレフィンは微量の不純物(例えば、過酸化物等)を含むことがあるので、目的物収率向上の点で精製してもよい。精製方法については特に制限はない。例えば、文献[Armarego,W.L.F.et al.,Purification of Laboratory Chemicals(Sixth Edition),2009,Elsevier]に記載の方法に従って行うことができる。
 原料となる含塩素オレフィンのうち、化合物21としては、末端オレフィンを用いる。目的物収率向上の点で、原料となる含塩素オレフィンは脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。原料となる含塩素オレフィンについて、前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
 また、原料となる含塩素オレフィンは微量の不純物(例えば塩化水素等)を含むことがあるので、目的物収率向上の点で精製してもよい。精製方法については特に制限はない。例えば、文献[Armarego,W.L.F.et al.,Purification of Laboratory Chemicals(Sixth Edition),2009,Elsevier]に記載の方法に従って行うことができる。
 原料となるオレフィン(以下、前記化合物21及び化合物31の2種類のオレフィンを総称していう)は、反応容器にあらかじめ混合してから投入しても、別々に投入しても構わない。第一のオレフィンを金属-カルベン錯体と接触させて得られた混合物に、第二のオレフィンを接触させる場合もある。
 原料となる両オレフィンのモル比に特に限定はないが、通常基準となるオレフィン1モルに対して、もう一方のオレフィンを0.01~100モル程度用い、好ましくは0.1~10モル程度用いる。
 金属-カルベン錯体[上記化合物11、化合物12、化合物13、化合物14及び化合物15]は試薬として投入しても、系内で発生させてもよい。
 試薬として投入する場合、市販の金属-カルベン錯体をそのまま用いてもよく、あるいは、市販試薬から公知の方法で合成した市販されていない金属-カルベン錯体を用いてもよい。
 系内で発生させる場合、公知の方法で前駆体となる金属錯体から調製した金属-カルベン錯体を本発明に用いることができる。
 用いる金属-カルベン錯体の量としては、特に制限はないが、原料となるオレフィンの内、基準となるオレフィン1モルに対して、通常0.0001~1モル程度用い、好ましくは0.001~0.2モル程度用いる。
 用いる金属-カルベン錯体は、通常固体のまま反応容器に投入するが、溶媒に溶解又は懸濁させて投入してもよい。このとき用いる溶媒としては、反応に悪影響を及ぼさない範囲で特に制限はなく、有機溶媒、含フッ素有機溶媒、イオン液体、水等を単独又は混合して用いることができる。なお、これらの溶媒分子中、一部又はすべての水素原子が重水素原子で置換されていてもよい。
 また、化合物21及び/又は化合物31が液体である場合(加熱又は加圧して液化する場合も含む)は、溶媒を用いないことが好ましい。この場合、化合物21及び/又は化合物31に金属触媒が溶解することが好ましい。
 有機溶媒としては、例えば、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン等の芳香族炭化水素系溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン系溶媒;テトラヒドロフラン、ジオキサン、ジエチルエーテル、グライム、ジグライム等のエーテル系溶媒等を使用することができる。
 含フッ素有機溶媒としては、例えば、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン、ジクロロペンタフルオロプロパン等を使用することができる。
 イオン液体としては、例えば、各種ピリジニウム塩、各種イミダゾリウム塩等を用いることができる。
 上記溶媒の中でも、金属-カルベン錯体の溶解性等の点で、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン、ジクロロメタン、クロロホルム、クロロベンゼン、o-ジクロロベンゼン、ジエチルエーテル、ジオキサン、テトラヒドロフラン(THF)、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン等、及びこれらの混合物が好ましい。
 なお、目的物収率向上の点で、前記溶媒は脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
 原料となるオレフィンと金属-カルベン錯体を接触させる雰囲気としては、特に限定はないが、触媒の長寿命化の点で、不活性気体雰囲気下が好ましく、中でも窒素又はアルゴン雰囲気下が好ましい。ただし、反応条件において気体となるオレフィンを原料として用いる場合、これらの気体雰囲気下で行うことができる。
 原料となるオレフィンと金属-カルベン錯体を接触させる相としては、特に制限はないが、反応速度の点で、通常は液相が用いられる。原料となるオレフィンが反応条件下で気体の場合、液相で実施するのが難しいため、気-液二相で実施することもできる。なお、液相で実施する場合には溶媒を用いることができる。このとき用いる溶媒としては、上記、金属-カルベン錯体の溶解又は懸濁に用いた溶媒と同様のものを利用することができる。なお、原料となるオレフィンのうち少なくとも一方が反応条件下で液体の場合、無溶媒で実施できることがある。
 原料となるオレフィンと金属-カルベン錯体を接触させる容器としては、反応に悪影響を与えない範囲で特に制限はなく、例えば、金属製容器又はガラス製容器等を用いることができる。なお、本発明にかかるオレフィンメタセシスは反応条件下、気体状態のオレフィンを扱うことがあるので、気密が可能な耐圧容器が好ましい。
 原料となるオレフィンと金属-カルベン錯体を接触させる温度としては、特に制限はないが、通常-100~200℃の範囲で実施することができ、反応速度の点で、0~150℃が好ましい。なお、低温では反応が開始せず、高温では錯体の速やかな分解が生じることがあるので適宜温度の下限と上限を設定する必要がある。通常、用いる溶媒の沸点以下の温度で実施される。
 原料となるオレフィンと金属-カルベン錯体を接触させる時間としては、特に制限はないが、通常1分~48時間の範囲で実施される。
 原料となるオレフィンと金属-カルベン錯体を接触させる圧力としては、特に制限はないが、加圧下でも常圧下でもよいし、減圧下でもよい。通常0.001~10MPa程度、好ましくは0.01~1MPa程度である。
 原料となるオレフィンと金属-カルベン錯体を接触させる際に、反応に悪影響を及ぼさない範囲で、無機塩や有機化合物、金属錯体等を共存させてもよい。また、反応に悪影響を及ぼさない範囲で、原料となるオレフィンと金属-カルベン錯体の混合物を攪拌してもよい。このとき、攪拌の方法としては、メカニカルスターラーやマグネティックスターラー等を用いることができる。
 原料となるオレフィンと金属-カルベン錯体を接触させた後、目的物は通常複数のオレフィンの混合物として得られるため、公知の方法で単離してもよい。単離方法としては、例えば蒸留、カラムクロマトグラフィー、リサイクル分取HPLC等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。
 本反応で得られた目的物は通常の有機化合物と同様の公知の方法で同定することができる。例えば、H-,19F-,13C-NMRやGC-MS等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
<市販試薬>
 本実施例において、触媒は、特に記載しない場合においては、市販品をそのまま反応に用いた。溶媒(ベンゼン-d)及び内部標準物質[p-ビス(トリフルオロメチル)ベンゼン]は、市販品をあらかじめ凍結脱気したあと、モレキュラーシーブ4Aで乾燥してから反応に用いた。
<評価方法>
 本実施例において、合成した化合物の構造は日本電子株式会社製の核磁気共鳴装置(JNM-AL300)によりH-NMR、19F-NMR測定を行うことで同定した。また、分子量は株式会社島津製作所製のガスクロマトグラフ質量分析計(GCMS-QP2010Ultra)を用いて、電子イオン化法(EI)により求めた。
<実施例1>
モリブデン触媒を用いたトリクロロエチレンと3,3,3-トリフルオロ-1-プロペンのメタセシス
 窒素雰囲気下、モリブデン触媒A(1mol%)、トリクロロエチレン、3,3,3-トリフルオロ-1-プロペン、及びp-ビス(トリフルオロメチル)ベンゼン(内部標準物質、0.02mmol)を溶かしたベンゼン-dをNMR測定管に量り入れる。
 室温で10時間反応させた後、内容液のNMR及びGC-MSを測定して、1-クロロ-3,3,3-トリフルオロ-1-プロペンの生成を確認する。
 これら一連の反応及び触媒Aの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000015
<実施例2>
モリブデン触媒を用いたテトラクロロエチレンと3,3,3-トリフルオロ-1-プロペンのメタセシス
 トリクロロエチレンをテトラクロロエチレンに変更する以外は実施例1と同様に反応させ、1,1-ジクロロ-3,3,3-トリフルオロ-1-プロペンの生成を確認する。
<実施例3>
モリブデン触媒を用いたトリクロロエチレンと2,3,3,3-テトラフルオロ-1-プロペンのメタセシス
 3,3,3-トリフルオロ-1-プロペンを2,3,3,3-テトラフルオロ-1-プロペンに変更する以外は実施例1と同様に反応させ、1-クロロ-2,3,3,3-テトラフルオロ-1-プロペンの生成を確認する。
<実施例4>
モリブデン触媒を用いたテトラクロロエチレンと2,3,3,3-テトラフルオロ-1-プロペンのメタセシス
 トリクロロエチレンをテトラクロロエチレンに、また、3,3,3-トリフルオロ-1-プロペンを2,3,3,3-テトラフルオロ-1-プロペンにそれぞれ変更する以外は実施例1と同様に反応させ、1,1-ジクロロ-2,3,3,3-テトラフルオロ-1-プロペンの生成を確認する。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年4月6日出願の日本特許出願(特願2017-076122)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、オレフィンメタセシスによって工業的に入手容易な含塩素オレフィンであるトリクロロエチレン又はテトラクロロエチレン等の含塩素オレフィンから簡便かつ効率的に別の含塩素オレフィンを製造することができる。

Claims (9)

  1.  中心金属がモリブデン又はタングステンであり、オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物の存在下、下記式21で表されるオレフィン化合物と下記式31で表されるオレフィン化合物を反応させる、下記式51又は下記式52で表される含塩素オレフィンの製造方法。
    Figure JPOXMLDOC01-appb-C000001

     ただし、式中の記号は以下の意味を表す。
     Xは、水素原子、塩素原子、下記基(iv)及び下記基(v)からなる群から選ばれる基である。
     A~Aは、それぞれ独立して、水素原子、ハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基である。また、A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。A及びAは、互いに結合して、これらの基が結合する炭素原子とともに環を形成してもよい。ただし、A及びAのうち一方の基がハロゲン原子である場合の他方の基、並びに、A及びAのうち一方の基がハロゲン原子である場合の他方の基は、それぞれ独立に、水素原子、及び反応に不活性な一価有機基からなる群から選ばれる基である。
     基(iv):炭素数1~12のアルキル基、炭素数1~12のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基、炭素数1~12のハロゲン化アルキル基、炭素数1~12のハロゲン化アルコキシ基、炭素数5~20のハロゲン化アリール基、及び炭素数5~20のハロゲン化アリールオキシ基からなる群から選ばれる基。
     基(v):前記基(iv)中に、さらに、酸素原子、窒素原子、イオウ原子、リン原子、及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含ませた基。
  2.  前記Xが、水素原子、塩素原子、前記基(iv)及び下記基(vi)からなる群から選ばれる基である、請求項1に記載の製造方法。
     基(vi):前記基(iv)の炭素原子と炭素原子の間にさらにエーテル性酸素原子を有する基。
  3.  前記金属-カルベン錯体化合物が、配位子としてイミド配位子及びハロゲン原子を有する、請求項1又は2に記載の製造方法。
  4.  前記式31で表されるオレフィン化合物において、前記A~Aの全てが水素原子であるか、前記Aがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A、A及びAが水素原子であるか、前記A及びAがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A及びAが水素原子であるか、又は前記A及びAがハロゲン原子、及び反応に不活性な一価有機基からなる群から選ばれる基であり前記A及びAが水素原子である、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記Aが水素原子又はフッ素原子であり、前記Aが水素原子、ハロゲン原子、反応に不活性な炭素数1~20の一価炭化水素基、又は、ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子及びケイ素原子からなる群から選ばれる原子を1以上有する原子団を含む反応に不活性な炭素数1~20の一価炭化水素基である、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記Xが、水素原子、塩素原子、炭素数1~12のアルキル基、又は炭素数1~12のハロゲン化アルキル基である、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記含塩素オレフィンが、前記式51で表される化合物であり、かつ、前記Aが水素原子又はフッ素原子であり、前記Aが水素原子又は含フッ素メチル基であり、前記Xが水素原子である、請求項1~6のいずれか一項に記載の製造方法。
  8.  反応温度が0~150℃である、請求項1~7のいずれか一項に記載の製造方法。
  9.  反応を、溶媒を用いずに行う、請求項1~8のいずれか一項に記載の製造方法。
PCT/JP2018/014274 2017-04-06 2018-04-03 含塩素オレフィンの製造方法 WO2018186400A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076122 2017-04-06
JP2017076122 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186400A1 true WO2018186400A1 (ja) 2018-10-11

Family

ID=63712284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014274 WO2018186400A1 (ja) 2017-04-06 2018-04-03 含塩素オレフィンの製造方法

Country Status (1)

Country Link
WO (1) WO2018186400A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033927A1 (ja) * 2013-09-06 2015-03-12 旭硝子株式会社 含フッ素オレフィンの製造方法
WO2016104523A1 (ja) * 2014-12-26 2016-06-30 旭硝子株式会社 含塩素含フッ素オレフィンの製造方法
JP2016160233A (ja) * 2015-03-03 2016-09-05 旭硝子株式会社 クロロトリフルオロプロペンの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033927A1 (ja) * 2013-09-06 2015-03-12 旭硝子株式会社 含フッ素オレフィンの製造方法
WO2016104523A1 (ja) * 2014-12-26 2016-06-30 旭硝子株式会社 含塩素含フッ素オレフィンの製造方法
JP2016160233A (ja) * 2015-03-03 2016-09-05 旭硝子株式会社 クロロトリフルオロプロペンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOH, M. J. ET AL.: "Molybdenum chloride catalysts for Z-selective olefin methathesis reactions", NATURE, vol. 542, no. 7639, 23 January 2017 (2017-01-23), pages 80 - 86, XP055559421, ISSN: 1476-4687 *

Similar Documents

Publication Publication Date Title
JP6278043B2 (ja) 含フッ素オレフィンの製造方法
JP2016160233A (ja) クロロトリフルオロプロペンの製造方法
JP6583289B2 (ja) 含塩素含フッ素オレフィンの製造方法
JP6696435B2 (ja) オレフィンの製造方法
JP7331992B2 (ja) 含フッ素シラン化合物
WO2018186400A1 (ja) 含塩素オレフィンの製造方法
JP6384363B2 (ja) 含フッ素オレフィンの製造方法
JP6607200B2 (ja) 含フッ素ジエンの製造方法
JP6572966B2 (ja) 含フッ素オレフィン化合物の製造方法
JP2016160230A (ja) 含フッ素オレフィンの製造方法
JP2018024600A (ja) 含フッ素オレフィンの製造方法
JP6413848B2 (ja) 含フッ素対称オレフィンの製造方法
JP6759760B2 (ja) 含フッ素オレフィンの製造方法
JP2016160231A (ja) 含フッ素オレフィンの製造方法
JP2016160229A (ja) テトラフルオロプロペンの製造方法
WO2016129600A1 (ja) 含フッ素重合体の製造方法
JP2016145174A (ja) 含フッ素ジエンの製造方法
WO2016129607A1 (ja) 含フッ素シクロオレフィンの製造方法
JP2016160235A (ja) オクタフルオロペンテンの製造方法
JP2016160234A (ja) ヘキサフルオロブテンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP