WO2018185577A1 - 制御装置、制御方法及びブレーキシステム - Google Patents

制御装置、制御方法及びブレーキシステム Download PDF

Info

Publication number
WO2018185577A1
WO2018185577A1 PCT/IB2018/051640 IB2018051640W WO2018185577A1 WO 2018185577 A1 WO2018185577 A1 WO 2018185577A1 IB 2018051640 W IB2018051640 W IB 2018051640W WO 2018185577 A1 WO2018185577 A1 WO 2018185577A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
notification
automatic emergency
deceleration operation
motor cycle
Prior art date
Application number
PCT/IB2018/051640
Other languages
English (en)
French (fr)
Inventor
裕樹 押田
Original Assignee
ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング filed Critical ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング
Priority to CN201880022429.7A priority Critical patent/CN110446635A/zh
Priority to JP2019510489A priority patent/JP6817417B2/ja
Priority to EP18717692.0A priority patent/EP3608181B1/en
Publication of WO2018185577A1 publication Critical patent/WO2018185577A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17558Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for collision avoidance or collision mitigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1701Braking or traction control means specially adapted for particular types of vehicles
    • B60T8/1706Braking or traction control means specially adapted for particular types of vehicles for single-track vehicles, e.g. motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2230/00Monitoring, detecting special vehicle behaviour; Counteracting thereof
    • B60T2230/03Overturn, rollover

Definitions

  • the present disclosure relates to a control device and a control method capable of improving safety by an automatic emergency deceleration operation while suppressing the fall of a motor cycle, and a brake system including such a control device. .
  • Patent Document 1 it is determined that a motor cycle is improperly approaching an obstacle based on information detected by a sensor device that detects an obstacle in the traveling direction or substantially in the traveling direction.
  • a driver assistance system that warns the driver is disclosed.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2 0 0 9-1 1 6 8 8 2
  • the motor cycle performs an automatic emergency deceleration operation, which is an operation that stops before the obstacle ahead of the driver, without any operation by the driver. It is conceivable that technology that avoids the kind collision with things is used.
  • the motor cycle tends to be unstable in posture as compared with, for example, a vehicle having four vehicles. Therefore, there is a problem that the motor cycle may fall due to the deceleration occurring in the motor cycle due to the automatic emergency deceleration operation. [0 0 0 6 J
  • the present invention has been made against the background of the above-described problems, and provides a control device and a control method capable of improving safety by an automatic rapid deceleration operation while suppressing the fall of a motor cycle. .
  • the present invention also provides a brake system including such a control device.
  • a control device is a control device that controls the behavior of a motor cycle, an acquisition unit that acquires trigger information generated according to an ambient environment of the motor cycle, and an automatic motor cycle. And an execution unit that starts an emergency deceleration operation in response to the trigger information.
  • a driver is provided before the automatic emergency deceleration operation is executed in the control mode.
  • the first notification and the second notification for informing that the automatic emergency deceleration operation is executed are started in order, and in the first notification, the driver is not subjected to the external force and the automatic emergency deceleration operation is performed to the driver.
  • an external force is applied to the driver, thereby notifying the driver that the automatic emergency deceleration operation is to be executed.
  • a control method is a control method for controlling the behavior of a motor cycle, wherein an acquisition step for acquiring trigger information generated according to an ambient environment of the motor cycle is performed, and the motor cycle is automatically performed.
  • An execution step of starting an emergency deceleration operation in response to the trigger information, and before the automatic emergency deceleration operation is executed in the control mode An execution step of starting an emergency deceleration operation in response to the trigger information, and before the automatic emergency deceleration operation is executed in the control mode,
  • the first notification and the second notification for informing that the automatic emergency deceleration operation is executed are started in order, and in the first notification, the driver is not subjected to the external emergency force, and the driver performs the automatic emergency deceleration operation.
  • the second notification an external force is applied to the driver, and the driver is notified that the automatic emergency deceleration operation is to be performed. .
  • the brake system includes an ambient environment sensor that detects an ambient environment of a motor cycle, and the ambient environment sensor.
  • a brake system comprising: a control device that controls the behavior of the motor cycle based on an environment, wherein the control device includes an acquisition unit that acquires trigger information generated according to the surrounding environment; A control mode for executing an automatic emergency deceleration operation in the motor cycle in response to the trigger information, and the automatic emergency deceleration operation is executed in the control mode.
  • the first notification and the second notification that notify the driver that the automatic emergency deceleration operation is executed are started in order, and in the first notification, an external force is not applied to the driver.
  • the driver is informed that the automatic emergency deceleration operation is to be performed, and the automatic emergency deceleration operation is performed to the driver by applying an external force to the driver in the second notification. There is notified.
  • the control mode for causing the motor cycle to execute the automatic emergency deceleration operation is in accordance with the trigger information generated according to the ambient environment of the motor cycle. Be started. Further, in the control mode, before the automatic emergency deceleration operation is executed, the first notification and the second notification that notify the driver that the automatic emergency deceleration operation is executed are started in order. In the first notification, the driver is informed that the automatic emergency deceleration operation is executed without applying external force to the driver. In the second notification, the driver is notified by applying external force to the driver. It is notified that the automatic emergency deceleration operation is executed.
  • the automatic emergency deceleration operation before the automatic emergency deceleration operation is executed, it is possible to effectively promote the avoidance operation, which is an operation for avoiding a collision with an obstacle ahead by the driver's operation. Therefore, it is possible to avoid a collision with an obstacle ahead while reducing the frequency with which the automatic emergency deceleration operation is performed. Therefore, the safety can be improved by the automatic emergency deceleration operation while suppressing the fall of the motor cycle.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of a motor cycle on which a brake system according to an embodiment of the present invention is mounted.
  • FIG. 2 is a schematic diagram showing an example of a schematic configuration of a brake system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating an example of a functional configuration of the control device according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram for explaining a lean angle.
  • FIG. 5 is a flowchart showing an example of a flow of processing performed by the control device according to the embodiment of the present invention.
  • the motor cycle is a motorcycle
  • the motor cycle may be another motor cycle such as a motorcycle.
  • at least one of the front wheel braking mechanism and the rear wheel braking mechanism may be plural.
  • control device the control method, and the brake system according to the present invention are not limited to such configuration and operation.
  • FIG. 1 is a schematic diagram showing an example of a schematic configuration of a motor cycle 100 on which a brake system 10 according to an embodiment of the present invention is mounted.
  • FIG. 2 is a schematic diagram showing an example of a schematic configuration of the brake system 10 according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing an example of a functional configuration of the control device 60 according to the embodiment of the present invention.
  • FIG. 4 is an explanatory diagram for explaining the lean angle.
  • Motor Sai Kuru 1 0 0 is a fuselage 1, a wing 2 that is pivotably held by the fuselage 1, a front vehicle 3 that is swivelable together with the wing 2 in the fuselage 1, and the moon 1 And a rear vehicle 4 that is pivotably maintained.
  • the brake system 10 includes, for example, a first brake operation unit 11, a front wheel braking mechanism 12 2 that brakes the front wheel 3 in cooperation with at least the first brake operation unit 11, and a second brake system.
  • a brake operating unit 13 and a rear wheel braking mechanism 14 for braking the rear wheel 4 in conjunction with at least the second brake operating unit 13 are provided.
  • the first brake operation unit 11 is provided in the octre 2 and is operated by the driver's hand.
  • the first brake operation unit 11 is, for example, a brake lever.
  • the second brake operation unit 13 is provided at the lower part of the monthly body 1 and is operated by the driver's feet.
  • the second brake operation unit 13 is, for example, a brake pedal.
  • Each of the front wheel braking mechanism 1 2 and the rear wheel braking mechanism 1 4 includes a master cylinder 21 having a piston (not shown), a reservoir 2 2 attached to the master cylinder 21, A brake cylinder 23 held by the same body 1 and having a brake pad (not shown), a wheel cylinder 24 provided on the brake cylinder 23, and a brake of the master cylinder 21 Main flow path 2 5 for circulating liquid to wheel cylinder 2 4, sub flow path 2 6 for releasing brake fluid of wheel cylinder 2 4, and brake fluid for master cylinder 2 1 to sub flow path 2 Supply channel 2 7 to be supplied to 6.
  • the main flow path 25 is provided with a charge valve (EV) 31.
  • the secondary flow path 26 bypasses the main flow path 25 between the wheel cylinder 24 side and the master cylinder 21 side with respect to the intake valve 31.
  • the sub-flow channel 26 is provided with a relaxation valve (AV) 3 2, an accumulator 3 3, and a pump 3 4 in order from the upstream side.
  • a first valve (USV) 3 5 is provided between the end on the master cylinder 21 side of the main flow path 25 and the location where the downstream end of the sub flow path 26 is connected. ing.
  • the supply channel 27 communicates between the master cylinder 21 and the suction side of the pump 34 in the sub-channel 26.
  • a second valve (HSV) 3 6 is provided in the supply flow path 27. [0 0 2 1 J
  • the intake valve 31 is, for example, an electromagnetic valve that opens in a non-energized state and closes in an energized state.
  • the release valve 32 is, for example, a solenoid valve that closes when not energized and opens when energized.
  • the first valve 35 is, for example, an electromagnetic valve that opens when not energized and closes when energized.
  • the second valve 36 is, for example, an electromagnetic valve that closes when not energized and opens when energized.
  • a hydraulic pressure control unit 50 is configured by the base body 51 in which the flow paths for forming the flow path 26 and the supply flow path 27 are formed, and the control device (ECU) 60. .
  • the hydraulic pressure control unit 50 is used for the brake fluid pressure of the wheel cylinder 24, that is, the braking force applied to the front wheel 3 by the front wheel braking mechanism 12 and the rear wheel braking. This unit bears the function of controlling the braking force applied to the rear wheel 4 by the mechanism 14.
  • Each member may be provided collectively on one base 51, or may be provided separately on a plurality of bases 51.
  • the control device 60 may be one or may be divided into a plurality.
  • the control device 60 may be attached to the base 51 or may be attached to a member other than the base 51.
  • a part or all of the control device 60 may be constituted by, for example, a microcomputer, a microprocessor unit, etc., may be constituted by an updatable device such as firmware, and the CPU. It may be a program module or the like that is executed by a command from the.
  • the control valve 60 opens the intake valve 3 1, closes the release valve 3 2, opens the first valve 3 5, Second valve 3 6 is closed.
  • the piston (not shown) of the master cylinder 2 1 is pushed in the front wheel braking mechanism 12 and the brake fluid of the wheel cylinder 24 is pushed.
  • the brake caliper 2 3 brake pad (not shown) is pressed against the front wheel 3 port 3 a to apply braking force to the front wheel 3. Is done.
  • the piston (not shown) of the master cylinder 2 1 is pushed in the rear wheel braking mechanism 14 and the brake fluid of the wheel cylinder 24 is reduced.
  • the hydraulic pressure is increased, and the brake pad (not shown) of the brake caliper 23 is pressed against the rear wheel 4 port 4a, so that the braking force is applied to the rear wheel 4.
  • the brake system 10 includes, for example, a master cylinder pressure sensor 41, a wheel cylinder pressure sensor 42, a front wheel rotational speed sensor 43, and a rear wheel rotational speed.
  • a sensor 44, a lean angle sensor 45, an ambient environment sensor 46, a steering angle sensor 47, a display device 71, and a sound output device 72 are provided.
  • Each sensor, the display device 71, and the sound output device 72 can communicate with the control device 60.
  • the master cylinder pressure sensor 41 detects the hydraulic pressure of the brake fluid in the master cylinder 21 and outputs the detection result.
  • the master cylinder pressure sensor 41 may detect another physical quantity that can be substantially converted into the brake fluid pressure of the master cylinder 21.
  • the master cylinder pressure sensor 41 is provided in each of the front wheel braking mechanism 12 and the rear wheel braking mechanism 14.
  • the wheel cylinder pressure sensor 42 detects the brake fluid pressure of the wheel cylinder 24 and outputs the detection result.
  • the wheel cylinder pressure sensor 42 may detect another physical quantity that can be substantially converted into the brake fluid pressure of the wheel cylinder 24.
  • the wheel cylinder pressure sensor 42 is provided in each of the front wheel braking mechanism 12 and the rear wheel braking mechanism 14.
  • the front wheel rotation speed sensor 4 3 detects the rotation speed of the front wheel 3 and outputs a detection result.
  • the front wheel rotational speed sensor 4 3 may detect another physical quantity that can be substantially converted into the rotational speed of the front wheel 3.
  • the rear wheel rotational speed sensor 44 detects the rotational speed of the rear wheel 4 and outputs a detection result.
  • the rear wheel rotational speed sensor 44 may detect another physical quantity that can be substantially converted into the rotational speed of the rear wheel 4.
  • the front wheel rotational speed sensor 4 3 and the rear wheel rotational speed sensor 4 4 are provided on the front wheel 3 and the rear wheel 4, respectively. [0 0 2 9 J
  • the lean angle sensor 45 detects the lean angle and the angular velocity of the motor cycle 100 and outputs the detection result.
  • the lean angle corresponds to, for example, the angle ⁇ of the tilt in the mouth direction with respect to the vertically upward direction of the motor cycle 100 shown in FIG. Note that the inclination of the mouth direction with respect to the vertical upward direction of the motor cycle 100 occurs during turning.
  • an inertial measurement device (IMU) having a three-axis gyro sensor and a three-direction acceleration sensor is used as the lean angle sensor 45.
  • the lean angle sensor 45 may detect the physical angle of the motor cycle 100 and other physical quantities substantially convertible to the angular velocity of the lean angle.
  • the lean angle sensor 45 is provided on the body 1.
  • the ambient environment sensor 46 detects the ambient environment of the motor cycle 100. For example, the ambient environment sensor 46 detects the distance from the motor cycle 100 to an obstacle ahead (for example, a preceding vehicle) as the ambient environment. The ambient environment sensor 46 may detect another physical quantity that can be substantially converted into a distance to an obstacle ahead. As the ambient environment sensor 46, specifically, a force sensor for imaging the front of the motor cycle 100 or a distance measuring sensor capable of detecting a distance to an obstacle ahead is used. The ambient environment sensor 46 is provided at the front of the body 1.
  • the ambient environment sensor 46 generates trigger information used for determining the start of the control mode, which will be described later, according to the ambient environment, and outputs the trigger information. For example, the ambient environment sensor 46 calculates the vehicle speed of the motor cycle 100 based on the rotational speeds of the front wheels 3 and the rear wheels 4, and based on the distance to the obstacle ahead and the vehicle speed. Estimate the time it takes for Tacycle 100 to reach the obstacle ahead. The ambient environment sensor 46 generates trigger information when the arrival time falls below the first reference time.
  • an automatic emergency deceleration operation which is an operation of stopping before the obstacle ahead of the driver, is executed without being operated by the driver.
  • the first notification and the first notification that notify the driver that the automatic emergency deceleration operation is executed are performed. 2 Notification is started in order.
  • the first notification is started, for example, when the arrival time is less than the first reference time (for example, when trigger information is generated).
  • the second notification is started, for example, when the arrival time is less than the second reference time.
  • the automatic emergency deceleration operation is executed, for example, when the arrival time falls below the third reference time.
  • the third reference time is the interval between the temples and the temples that are estimated as the time required for the motor cycle 100 to stop when the automatic emergency deceleration operation is executed in the motor cycle 100.
  • the second reference time is set to a time longer than the third reference time by a time at which the avoidance action by the driver can be promoted by the second notification. Is done.
  • the first reference time is set to a time longer than the second reference time by a time at which the avoidance operation by the driver can have the effect promoted by the first notification. .
  • the ambient environment sensor 46 calculates the target deceleration that is the target value of the automatic emergency deceleration that is the deceleration that occurs in the motor cycle 100 due to the automatic emergency deceleration operation as the trigger information is generated. Output the result.
  • the target deceleration is a deceleration that can achieve stopping the motor cycle 100 before the obstacle ahead by automatic emergency deceleration operation.For example, the target deceleration from the motor cycle 100 0 to the obstacle ahead It is calculated based on the distance to the vehicle and the vehicle speed.
  • the steering angle sensor 47 detects the steering angle of the motor cycle 100 and the angular velocity of the steering angle, and outputs the detection result.
  • the steering angle sensor 47 may detect other physical quantities that can be substantially converted into the steering angle of the motor cycle 100 and the angular velocity of the steering angle.
  • the steering angle sensor 47 is provided on the octal 2.
  • the display device 71 is a device for visually displaying information. Specifically, a display or a lamp is used as the display device 71.
  • the sound output device ⁇ 2 is a device that outputs information acoustically as sound. Specifically, as the sound output device 72, a speed is used.
  • the control device 60 controls the behavior of the motor cycle 100.
  • the control device 60 includes, for example, an acquisition unit 6 1 and an execution unit 62.
  • the acquisition unit 61 acquires information output from each sensor and outputs the information to the execution unit 62.
  • the execution unit 62 includes, for example, a deceleration control unit 63, a notification control unit 64, a trigger determination unit 65, an avoidance intention determination unit 66, and an arrival time determination unit 67.
  • Each decision unit executes each half 1J fixed process using the information output from each sensor.
  • the execution unit 62 starts a control mode that causes the motor cycle 100 to execute the automatic emergency deceleration operation according to the half 1J fixed result by the trigger half 1J fixed unit 65.
  • the deceleration control unit 6 3 responds to the half 1J fixed result of each half 1J fixed unit according to the result of the semi-1J constant valve, the relief valve 3 2, the pump 3 4, the first valve 3 5 and the second valve.
  • the motor cycle 1100 is caused to execute an automatic emergency deceleration operation.
  • the notification control unit 6 4 outputs an instruction for controlling the operation of each device according to the semi-1J fixed result by each semi-1J fixed unit, so that the automatic emergency deceleration operation is executed to the driver. Notify that.
  • the control device 60 includes a storage element, and information such as each reference value used in each process performed by the control device 60 may be stored in the storage element in advance.
  • FIG. 5 is a flowchart showing an example of the flow of processing performed by the control device 60 according to the embodiment of the present invention.
  • the control opening shown in FIG. 5 is repeated during the start-up of the brake system 10 (in other words, during operation of the motor cycle 100).
  • Step S 1 1 0 and step S 1 90 in FIG. 5 correspond to the start and end of the control flow, respectively.
  • step S 110 the control flow is started in a state where the control mode has not been started.
  • step S 1 1 1 the acquiring unit 61 acquires trigger information.
  • the trigger information is generated by the ambient environment sensor 46, but the trigger information may be generated by the control device 60.
  • the detection result about the distance from the motor cycle 100 to the front obstacle is output from the surrounding environment sensor 46 to the control device 60, and the control device 60 has the distance and motor to the front obstacle.
  • -Trigger information may be generated based on the vehicle speed of the tacycle 100. Thereby, the acquisition unit 61 can acquire the trigger information.
  • step S 1 1 3 the trigger determination unit 65 determines whether trigger information has been acquired. If it is determined that the trigger information has been acquired (step S 1 1 3 / Y e s), the process proceeds to step S 1 15. On the other hand, if it is determined that the trigger information has not been acquired (step S 1 1 3 / N 0), the process returns to step S 1 1 1.
  • step S 1 1 5 the execution unit 6 2 starts a control mode in which an automatic emergency deceleration operation is executed in the motor cycle 1 0 0.
  • step S 1 17 the notification control unit 64 starts the first notification that notifies the driver that the automatic emergency deceleration operation is performed.
  • the notification control unit 6 4 notifies the driver's execution of the automatic emergency deceleration operation by causing the sound output device 72 to output a sound.
  • the notification control unit 64 may output a sound indicating that the automatic emergency deceleration operation is executed in the first notification.
  • the notification control unit 6 4 may notify that the automatic emergency deceleration operation is executed by outputting an electronic sound such as a beep sound in the first notification.
  • the notification control unit 64 controls the display by the display device 71 in the first notification. Inform the driver that the automatic emergency deceleration operation will be executed. Specifically, when a display is used as the display device 71, the notification control unit 64 may display an image indicating that the automatic emergency deceleration operation is performed in the first notification. In addition, the notification control unit 64 may notify that the automatic emergency deceleration operation is executed by lighting or blinking the lamp in the first notification when the lamp is used as the display device 71. Good.
  • the notification control unit 64 notifies the driver that the automatic emergency deceleration operation is executed in the first notification by a method in which no external force is applied to the driver.
  • the notification control unit 64 causes the sound output device 72 to output sound and controls the display by the display device 71 to automatically You may alert
  • step S 1 19 the avoidance intention determination unit 66 determines whether or not the driver has an avoidance intention that is an intention to avoid an obstacle ahead. If it is determined that the driver has an intention to avoid (step S 1 19 / Y e s), the process proceeds to step S 1 3 3. On the other hand, if it is determined that the driver does not intend to avoid (step S 1 19 / N 0), the process proceeds to step S 1 2 1.
  • the avoidance intention determination unit 66 determines that the driver has an intention of avoidance when the rate of change of the state quantity related to the posture during cornering in the motor cycle 100 exceeds the change rate reference value.
  • the state quantity related to the posture during the cornering of the motor cycle 100 includes, for example, the lean angle, the angular velocity of the lean angle, the steering angle, or the angular velocity of the steering angle.
  • the rate of change reference value is set directly so that it can be realized whether or not the driver's possibility of having an intention to avoid is relatively high.
  • the avoidance intention half 1J fixing unit 66 determines that the driver has intention to avoid when the operation amount for the operation of the motorcycle 100 by the driver exceeds the operation amount reference value.
  • the operation of the motorcycle 100 by the driver includes, for example, an accelerator operation, a brake operation, and a clutch operation.
  • the operation amount reference value is It is set to a value that can be used to determine the motor cycle 1 0 0 by a half of 1J. [0 0 5 1 J
  • step S 1 2 arrival time determination unit 67 determines whether or not the arrival time required for motor cycle 100 to reach the front obstacle is less than the second reference time. If it is determined that the arrival time is less than the second reference time (step S 1 2 1 / Y e s), the process proceeds to step S 1 2 3. On the other hand, if it is determined that the arrival time does not fall below the second reference time (step S 1 2 1 / No), the process returns to step S 1 19.
  • a prediction result regarding the arrival time is output from the ambient environment sensor 46 to the control device 60, and the control device 60 can perform a comparison between the arrival time and the second reference time based on the obtained prediction result.
  • the arrival time may be predicted by the control device 60.
  • the detection result about the distance from the motor cycle 100 to the obstacle ahead is output from the ambient environment sensor 46 to the controller 60, and the controller 60 knows the distance and motor to the obstacle ahead. -It is good to predict the arrival time based on the body speed of the bicycle 100.
  • step S 1 2 3 the notification controller 6 4 starts a second notification that notifies the driver that an automatic emergency deceleration operation is to be performed.
  • the notification control unit 64 notifies the driver that an automatic emergency deceleration operation is performed by applying an external force to the driver.
  • the notification control unit 64 applies an inertial force acting on the driver as an external force to the driver due to a deceleration occurring in the motor cycle 100.
  • the notification control unit 64 controls the braking force applied to the wheels of the motor cycle 100, thereby causing deceleration in the motor cycle 100.
  • the notification control unit 6 4 is configured to open the first valve 3 1, close the release valve 3 2, and close the first valve 3 for at least one of the front wheel braking mechanism 12 and the rear wheel braking mechanism 14.
  • Drive pump 3 4 with 5 closed and 2nd valve 3 6 open By doing so, a braking force applied to the wheel can be generated.
  • a deceleration occurs in the motor cycle 100, and an inertial force corresponding to the deceleration acts on the driver.
  • the notification control unit 64 controls the engine output of the motor cycle 100 in the second notification, thereby causing deceleration in the motor cycle 100.
  • the notification control unit 64 can cause the motor cycle 100 to decelerate using the action of the engine brake generated by lowering the engine output. As described above, when the deceleration occurs in the motor cycle 100, an inertial force corresponding to the deceleration acts on the driver.
  • the notification control unit 64 repeatedly generates a relatively small deceleration at every set time within the range of deceleration that can apply an inertial force that can be sensed by the driver. Accordingly, it is possible to more effectively promote the avoidance operation by the driver while suppressing an increase in the deceleration that occurs in the motor cycle 100 in the second notification.
  • the notification control unit 64 may cause deceleration in the motor cycle 100 by controlling both the braking force applied to the wheels and the engine output in the second notification.
  • the external force applied to the driver may not be an inertial force that acts on the driver due to the deceleration occurring in the motor cycle 100.
  • the notification control unit 64 uses the vibration generated by the vibration device as an external force by driving the vibration device in the second notification. Hey may be given.
  • avoidance intention determination unit 6 6 determines whether or not the driver has an intention to avoid. If it is determined that the driver has intention to avoid (step S 1 2 5 / Y es), the process proceeds to step S 1 3 3. On the other hand, if it is determined that the driver does not intend to avoid (step S 1 2 5 / N 0), the process proceeds to step S 1 2 7. [0 0 6 0]
  • step S 1 2 arrival time determination unit 6 7 determines whether the arrival time is less than the third reference time. If it is determined that the arrival time is less than the third reference time (step S 1 2 7 / Y e s), the process proceeds to step S 1 2 9. On the other hand, when it is determined that the arrival time does not fall below the third reference time (step S 1 2 7 / N 0), the process returns to step S 1 25.
  • a prediction result regarding the arrival time is output from the ambient environment sensor 46 to the control device 60, and the control device 60 can perform a comparison between the arrival time and the third reference time based on the obtained prediction result.
  • the arrival time may be predicted by the control device 60.
  • step S 1 2 9 the notification controller 6 4 ends the second notification.
  • step S 1 3 the deceleration control unit 6 3 permits automatic emergency deceleration operation.
  • the deceleration control unit 63 When the automatic emergency deceleration operation is permitted, the deceleration control unit 63 generates an automatic emergency deceleration that is a deceleration that is not operated by the driver, and causes the motor cycle 1 0 0 to execute the automatic emergency deceleration operation. .
  • the automatic emergency deceleration operation is executed after the first notification and the second notification are started in order. In other words, in the control mode, the first notification and the second notification are started in order before the automatic emergency deceleration operation is executed.
  • the deceleration control unit 63 generates an automatic emergency deceleration by generating a braking force applied to the wheel by at least one of the front wheel braking mechanism 12 and the rear wheel braking mechanism 14. Specifically, the deceleration control unit 63 is in a state where the filling valve 31 is opened, the release valve 32 is closed, the first valve 35 is closed, and the second valve 36 is opened. By driving the pump 3 4, a braking force applied to the wheels is generated.
  • the deceleration control unit 63 controls the braking force applied to the wheels by controlling the rotational speed of the pump 34. Specifically, the deceleration control unit 63 is based on the target deceleration output from the ambient environment sensor 46. Determine the target hydraulic pressure that is the target value of the brake fluid pressure in the reel cylinder 24. Then, the deceleration control unit 63 controls the rotation speed of the pump 34 so that the hydraulic pressure of the brake fluid in the wheel cylinder 24 matches the target hydraulic pressure. As a result, the automatic emergency deceleration is controlled to coincide with the target deceleration.
  • the deceleration control unit 63 controls the automatic emergency deceleration by controlling the braking force applied to the wheels.
  • the deceleration control unit 63 has a motor cycle of 100 cycles.
  • Automatic emergency deceleration may be controlled by controlling the engine output.
  • the deceleration control unit 63 may control the automatic emergency deceleration using the action of the engine brake generated by reducing the engine output.
  • the deceleration control unit 63 may control the automatic emergency deceleration by controlling both the braking force applied to the wheels and the engine output.
  • the target deceleration is calculated by the ambient environment sensor 46.
  • the target deceleration may be calculated by the control device 60.
  • the detection result about the distance from the motor cycle 100 to the front obstacle is output from the ambient environment sensor 46 to the control device 60, and the control device 60 determines the distance to the front obstacle and the vehicle body.
  • the target deceleration may be calculated based on the speed.
  • step S 1 3 3 the notification controller 6 4 prohibits notification. For example, if the determination result in step S 1 25 after the second notification is started in step S 1 2 3 is Yes, in step S 1 3 3, the notification control unit 6 4 The notification is terminated.
  • step S 1 3 4 the deceleration control unit 6 3 prohibits the automatic emergency deceleration operation.
  • the deceleration control unit 63 sets the motor cycle 100 to a normal state in which a deceleration is generated according to the operation by the driver.
  • the deceleration control unit 6 3 includes the motor cycle 100, the valve 3 1 is opened, the release valve 3 2 is closed, the first valve 3 5 is opened, and the second valve 3 6 Is closed and pump 3 4 is prohibited from driving. [0 0 7 0]
  • step S 1 3 1 or step S 1 3 4 the acquisition unit 6 1 acquires trigger information.
  • step S 1 37 the trigger determination unit 65 determines whether trigger information has been acquired. If it is determined that the trigger information has been acquired (step S 1 3 7 / Y e s), the process returns to step S 1 3 5. On the other hand, if it is determined that the trigger information has not been acquired (step S 1 37 / N 0), the process proceeds to step S 1 39.
  • step S 1 3 9 the notification controller 6 4 ends the first notification.
  • the notification controller 6 4 may continue to execute the first notification after the automatic emergency deceleration operation is started.
  • the notification control unit 64 may end the first notification at another timing.
  • the notification control unit 64 may end the first notification when the second notification is started.
  • step S 1 3 9 may be performed in parallel with step S 1 2 3.
  • the notification control unit 64 may end the first notification when the automatic emergency deceleration operation is started.
  • step S 1 3 9 may be performed in parallel with step S 1 2 9 or step S 1 3 1.
  • the notification control unit 64 may end the first notification when it is determined that the driver 'has intention to avoid.
  • step S 1 41 the execution unit 6 2 ends the control mode.
  • the notification control unit 64 continues to execute the second notification after the automatic emergency deceleration operation is started, for example, even if the second notification is ended when the control mode ends. Good. [0 0 7 5 J
  • the control mode for executing the automatic emergency deceleration operation in the motor cycle 100 is started in response to the trigger information generated according to the surrounding environment of the motor cycle 100.
  • the In the control mode before the automatic emergency deceleration operation is executed, the driver is notified that the automatic emergency deceleration operation is executed.
  • First notification and second notification are started in order. Further, in the first notification, the driver is notified that the automatic emergency deceleration operation is executed without applying an external force to the driver, and in the second notification, the external force is applied to the driver ' The driver is notified that the automatic emergency deceleration operation is to be executed. In this way, the first notification and the second notification are started in stages, and even if the driver does not perform the avoidance operation only by starting the first notification, the second notification is performed. It is possible to promote that the avoidance operation is performed by the driver by starting. Therefore, it is possible to avoid collisions with obstacles ahead while reducing the frequency with which the automatic emergency deceleration operation is performed.
  • the safety can be improved by the automatic emergency deceleration operation while suppressing the fall of the motor cycle 100.
  • the first notification executed prior to the second notification is a method in which no external force is applied to the driver, the external force is frequently applied to the driver by the second notification, which causes discomfort. It is suppressed. Therefore, it is possible to promote that the avoidance operation is performed by the driver before the automatic emergency deceleration operation is performed while suppressing the discomfort given to the driver.
  • the automatic emergency deceleration operation is started after the second notification is finished.
  • the external force applied to the driver in the second notification is an inertial force that acts on the driver when deceleration occurs in the motor cycle 100.
  • the motor cycle 1 100 is set by the automatic emergency deceleration operation. The resulting automatic emergency deceleration can be reduced. Therefore, the fall of the motor cycle 100 can be more effectively suppressed.
  • the second notification when it is determined in the control mode that the driver has intention to avoid before the second notification is started or during the execution of the second notification, the second notification is performed. Notification and automatic emergency deceleration are prohibited.
  • the second notification can be prohibited when the possibility of the avoidance operation being performed by the driver 'is relatively high, so that it is possible to suppress the notification that is contrary to the driver's intention.
  • automatic emergency deceleration operation can be prohibited when the possibility of avoidance operation by the driver is relatively high, so that automatic emergency deceleration operation against the driver's intention is suppressed. can do. Therefore, the frequency at which the automatic emergency deceleration operation is performed can be appropriately reduced.
  • the driver in the control mode, avoids when the rate of change of the state quantity related to the posture during turning in the motor cycle 100 exceeds the change rate reference value. Determined to have intention. Accordingly, it is possible to appropriately determine whether or not the driver intends to avoid the vehicle according to the rate of change of the state quantity related to the posture during the cornering of the motor cycle 100.
  • the driver in the control mode, has an intention to avoid the operation amount for the operation of the motor cycle 100 by the driver exceeds the operation amount reference value. Then it is determined to be half 1J. As a result, the driver's intention to avoid the motor can be appropriately determined by 1J according to the operation amount of the motor cycle 100 0 operation by the driver.
  • a sound is output to notify the driver that the automatic emergency deceleration operation is performed.
  • the driver for example, even when the visibility of the driver is not good, it is possible to appropriately promote the avoidance operation by the driver by starting the first notification.
  • the brake system 10 informs the driver that the automatic emergency deceleration operation is to be performed by controlling the display in the first notification.
  • the brake system 10 informs the driver that the automatic emergency deceleration operation is to be performed by controlling the display in the first notification.
  • the present invention is not limited to the description of each embodiment. For example, all or a part of each embodiment may be combined, or only a part of each embodiment may be implemented. Further, for example, the order of each step may be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本発明は、モータサイクルの転倒を抑制しつつ、自動緊急減速動作により安全性を向上させることが できる制御装置及び制御方法を得るものである。また、本発明は、そのような制御装置を備えているブレ ーキシステムを得るものである。 本発明に係る制御装置、制御方法及びブレーキシステムでは、モータサイクルに自動緊急減速動作を 実行させる制御モードが、モータサイクルの周囲環境に応じて生成されるトリガ情報に応じて開始され、自 動緊急減速動作が実行される前に、ドライバへ自動緊急減速動作が実行される旨を報知する第1報 知及び第2報知が順に開始される。また、第1報知において、ドライバへ外力が付与されずに、ドライバへ 自動緊急減速動作が実行される旨が報知され、第2報知において、ドライバへ外力が付与されることに よって、ドライバへ自動緊急減速動作が実行される旨が報知される。

Description

【書類名】明細書
【発明の名称】制御装置、制御方法及びブレ-キシステム
【技術分野】
【0 0 0 1 J
この開示は、モ―タサイクルの転倒を抑制しつつ、 自動緊急減速動作により安全性を向上させることが できる制御装置及び制御方法と、そのような制御装置を備えているブレ—キシステムと、に関する。
【背景技術】
【0 0 0 2 J
従来のモ―タサイクルに関する技術として、 ドライバの安全性を向上させるためのものがある。
【0 0 0 3】
例えば、特許文献 1では、走行方向又は実質的に走行方向にある障害物を検出するセンサ装置に より検出された情報に基づいて、不適切に障害物に接近していることをモ―タサイクルのドライバへ警告す る運転者支援システムが開示されている。
【先行技術文献】
【特許文献】
【0 0 0 4】
【特許文献 1】特開 2 0 0 9— 1 1 6 8 8 2号公報
【発明の概要】
【発明が解決しょうとする課題】
【0 0 0 5 J
ところで、 ドライバの安全性をより向上させるために、 ドライバによる操作によらずに前方の障害物より手 前で停止する動作である自動緊急減速動作をモ―タサイクルに実行させることによって、前方の障害物と の種 Ϊ突を回避する技術が利用されることが考えられる。ここで、モ―タサイクルは、例えば 4車侖を有する車 両と比較して姿勢が不安定になりやすい。ゆえに、 自動緊急減速動作によってモ-タサイクルに減速度が 生じることに起因して、モ―タサイクルが転倒するおそれがあるという問題がある。 【0 0 0 6 J
本発明は、上述の課題を背景としてなされたものであり、モ―タサイクルの転倒を抑制しつつ、 自動緊 急減速動作により安全性を向上させることができる制御装置及び制御方法を得るものである。また、本 発明は、そのような制御装置を備えているブレーキシステムを得るものである。
【課題を解決するための手段】
【0 0 0 7 J
本発明に係る制御装置は、モ-タサイクルの挙動を制御する制御装置であって、前記モ-タサイクルの 周囲環境に応じて生成されるトリガ情報を取得する取得部と、前記モ-タサイクルに自動緊急減速動 作を実行させる制御モ-ドを、前記トリガ情報に応じて開始する実行部と、を備えており、前記制御モ-ド において、前記自動緊急減速動作が実行される前に、 ドライバへ前記自動緊急減速動作が実行される 旨を報知する第 1報知及び第 2報知が順に開始され、前記第 1報知において、前記ドライバへ外力が 付与されずに、前記ドライバへ前記自動緊急減速動作が実行される旨が報知され、前記第 2報知にお いて、前記ドライバへ外力が付与されることによって、前記ドライバへ前記自動緊急減速動作が実行され る旨が報知される。
【0 0 0 8】
本発明に係る制御方法は、モ-タサイクルの挙動を制御する制御方法であって、前記モ-タサイクルの 周囲環境に応じて生成されるトリガ情報を取得する取得ステップと、前記モ-タサイクルに自動緊急減速 動作を実行させる制御モードを、前記トリガ情報に応じて開始する実行ステップと、を備えており、前記制 御モ-ドにおいて、前記自動緊急減速動作が実行される前に、 ドライバへ前記自動緊急減速動作が実 行される旨を報知する第 1報知及び第 2報知が順に開始され、前記第 1報知において、前記ドライバ へ外力が付与されずに、前記ドライバへ前記自動緊急減速動作が実行される旨が報知され、前記第 2 報知において、前記ドライバへ外力が付与されることによって、前記ドライバへ前記自動緊急減速動作が 実行される旨が報知される。
【0 0 0 9 J
本発明に係るブレ-キシステムは、モ-タサイクルの周囲環境を検出する周囲環境センサと、前記周囲 環境に基づいて前記モ―タサイクルの挙動を制御する制御装置と、を備えるブレ—キシステムであって、前 記制御装置は、前記周囲環境に応じて生成されるトリガ情報を取得する取得部と、前記モ-タサイクル に自動緊急減速動作を実行させる制御モ一ドを、前記トリガ情報に応じて開始する実行部と、を備えて おり、前記制御モ-ドにおいて、前記自動緊急減速動作が実行される前に、 ドライバへ前記自動緊急減 速動作が実行される旨を報知する第 1報知及び第 2報知が順に開始され、前記第 1報知において、 前記ドライバへ外力が付与されずに、前記ドライバへ前記自動緊急減速動作が実行される旨が報知さ れ、前記第 2報知において、前記ドライバへ外力が付与されることによって、前記ドライバへ前記自動緊 急減速動作が実行される旨が報知される。
【発明の効果】
【0 0 1 0】
本発明に係る制御装置、制御方法及びブレ-キシステムでは、モ-タサイクルに自動緊急減速動作を 実行させる制御モ―ドが、モ―タサイクルの周囲環境に応じて生成されるトリガ情報に応じて開始される。 また、制御モ-ドにおいて、 自動緊急減速動作が実行される前に、 ドライバへ自動緊急減速動作が実行 される旨を報知する第 1報知及び第 2報知が順に開始される。また、第 1報知において、 ドライバへ外 力が付与されずに、 ドライバへ自動緊急減速動作が実行される旨が報知され、第 2報知において、 ドライ バへ外力が付与されることによって、 ドライバへ自動緊急減速動作が実行される旨が報知される。それに より、 自動緊急減速動作が実行される前に、 ドライバの操作により前方の障害物との衝突を回避する動 作である回避動作が行われることを効果的に促進させることができる。ゆえに、 自動緊急減速動作が実 行される頻度を低下させつつ、前方の障害物との衝突を回避することができる。よって、モ―タサイクルの転 倒を抑制しつつ、 自動緊急減速動作により安全性を向上させることができる。
【図面の簡単な説明】
【0 0 1 1】
【図 1】本発明の実施形態に係るブレ-キシステムが搭載されるモ-タサイクルの概略構成の一例を 示、す模式図である。
【図 2】本発明の実施形態に係るブレ-キシステムの概略構成の一例を示す模式図である。 【図 3】本発明の実施形態に係る制御装置の機能構成の一例を示すブロック図である。
【図 4】リ―ン角について説明するための説明図である。
【図 5】本発明の実施形態に係る制御装置が行う処理の流れの一例を示すフ口-チヤ-トである。 【発明を実施するための形態】
【0 0 1 2 J
以下に、本発明に係る制御装置、制御方法及びブレ-キシステムについて、図面を用いて説明する。 なお、以下では、モ―タサイクルが自動二輪車である場合を説明しているが、モ―タサイクルは自動三輪車 等の他のモ-タサイクルであってもよい。また、前輪制動機構及び後輪制動機構が、それぞれ 1つずつで ある場合を説明しているが、前輪制動機構及び後輪制動機構の少なくとも一方が複数であってもよい。
【0 0 1 3】
また、以下で説明する構成及び動作等は一例であり、本発明に係る制御装置、制御方法及びブレ- キシステムは、そのような構成及び動作等である場合に限定されない。
【0 0 1 4】
また、以下では、同一の又は類似する説明を適宜簡略化又は省略している。また、各図において、同 一の又は類似する部材又は部分については、符号を付すことを省略しているか、又は同一の符号を付し ている。また、細かい構造については、適宜図示を簡略化又は省略している。
【0 0 1 5 J
くブレ—キシステムの構成 >
本発明の実施形態に係るブレ-キシステム 1 0の構成について説明する。図 1は、本発明の実施形 態に係るブレ—キシステム 1 0が搭載されるモ―タサイクル 1 0 0の概略構成の一例を示す模式図である。 図 2は、本発明の実施形態に係るブレ-キシステム 1 0の概略構成の一例を示す模式図である。図 3 は、本発明の実施形態に係る制御装置 6 0の機能構成の一例を示すブロック図である。図 4は、リ- ン角について説明するための説明図である。
【0 0 1 6 J
図 1及び図 2に示されるように、ブレ—キシステム 1 0は、モ―タサイクル 1 0 0に搭載される。モ―タサイ クル 1 0 0は、胴体 1と、胴体 1に旋回自在に保持されている八ンドル 2と、胴体 1に八ンドル 2と共に 旋回自在に保 ί寺されている前車侖 3と、月同体 1に回動自在に保 ί寺されている後車侖 4とを備える。
【0 0 1 7 J
ブレ一キシステム 1 0は、例えば、第 1ブレ一キ操作部 1 1と、少なくとも第 1ブレ一キ操作部 1 1に連 動して前輪 3を制動する前輪制動機構 1 2と、第 2ブレ一キ操作部 1 3と、少なくとも第 2ブレ一キ操 作部 1 3に連動して後輪 4を制動する後輪制動機構 1 4とを備える。
【0 0 1 8】
第 1ブレ一キ操作部 1 1は、八ンドル 2に設けられており、 ドライバの手によって操作される。第 1ブレ一 キ操作部 1 1は、例えば、ブレ一キレバ一である。第 2ブレ一キ操作部 1 3は、月同体 1の下部に設けられて おり、 ドライバの足によって操作される。第 2ブレ—キ操作部 1 3は、例えば、ブレ—キペダルである。
【0 0 1 9 J
前輪制動機構 1 2及び後輪制動機構 1 4のそれぞれは、ピストン (図示省略) を内蔵しているマ スタシリンダ 2 1と、マスタシリンダ 2 1に付設されているリザ—バ 2 2と、月同体 1に保持され、ブレ—キパッ ド (図示省略) を有しているブレ—キキヤリバ 2 3と、ブレ—キキヤリバ 2 3に設けられているホイ—ルシリン ダ 2 4と、マスタシリンダ 2 1のブレーキ液をホイ—ルシリンダ 2 4に流通させる主流路 2 5と、ホイ—ルシリ ンダ 2 4のブレ—キ液を逃がす副流路 2 6と、マスタシリンダ 2 1のブレ—キ液を副流路 2 6に供給する 供給流路 2 7とを備える。
【0 0 2 0】
主流路 2 5には、込め弁 ( E V ) 3 1が設けられている。副流路 2 6は、主流路 2 5のうちの、込 め弁 3 1に対するホイ—ルシリンダ 2 4側とマスタシリンダ 2 1側との間をバイパスする。副流路 2 6には、 上流側から順に、弛め弁 ( A V ) 3 2と、アキュムレ—タ 3 3と、ポンプ 3 4とが設けられている。主流路 2 5のうちの、マスタシリンダ 2 1側の端部と、副流路 2 6の下流側端部が接続される箇所との間には、 第 1弁 (U S V ) 3 5が設けられている。供給流路 2 7は、マスタシリンダ 2 1と、副流路 2 6のうち のポンプ 3 4の吸込側との間を連通させる。供給流路 2 7には、第 2弁 (H S V ) 3 6が設けられて いる。 【0 0 2 1 J
込め弁 3 1は、例えば、非通電状態で開き、通電状態で閉じる電磁弁である。弛め弁 3 2は、例え ば、非通電状態で閉じ、通電状態で開く電磁弁である。第 1弁 3 5は、例えば、非通電状態で開き、 通電状態で閉じる電磁弁である。第 2弁 3 6は、例えば、非通電状態で閉じ、通電状態で開く電磁 弁である。
【0 0 2 2 J
込め弁 3 1、弛め弁 3 2、アキュムレ—タ 3 3、ポンプ 3 4、第 1弁 3 5及び第 2弁 3 6等の部材 と、それらの部材が設けられ、主流路 2 5、副流路 2 6及び供給流路 2 7を構成するための流路が内 部に形成されている基体 5 1と、制御装置 ( E C U ) 6 0とによって、液圧制御ユニット 5 0が構成 される。液圧制御ユニット 5 0は、ブレ—キシステム 1 0において、ホイ—ルシリンダ 2 4のブレ—キ液の液圧、 つまり、前輪制動機構 1 2によって前輪 3に付与される制動力及び後輪制動機構 1 4によって後輪 4に付与される制動力を制御する機能を担うユニットである。
【0 0 2 3】
各部材が、 1つの基体 5 1に纏めて設けられていてもよく、また、複数の基体 5 1に分かれて設けられ ていてもよい。また、制御装置 6 0は、 1つであってもよく、また、複数に分かれていてもよい。また、制御装 置 6 0は、基体 5 1に取り付けられていてもよく、また、基体 5 1以外の他の部材に取り付けられていて もよい。また、制御装置 6 0の一部又は全ては、例えば、マイコン、マイクロプロセッサユニット等で構成さ れてもよく、また、ファ—ムウエア等の更新可能なもので構成されてもよく、また、 C P U等からの指令によつ て実行されるプログラムモジュ—ル等であってもよい。
【0 0 2 4】
通常状態、つまり、後述される自動緊急減速動作が実行されない状態では、制御装置 6 0によって、 込め弁 3 1が開放され、弛め弁 3 2が閉鎖され、第 1弁 3 5が開放され、第 2弁 3 6が閉鎖される。 その状態で、第 1ブレ—キ操作部 1 1が操作されると、前輪制動機構 1 2において、マスタシリンダ 2 1 のピストン (図示省略) が押し込まれてホイ—ルシリンダ 2 4のブレ—キ液の液圧が增カ卩し、ブレ—キキャリ パ 2 3のブレ-キパッド (図示省略) が前輪 3の口-タ 3 aに押し付けられて、前輪 3に制動力が付与 される。また、第 2ブレ一キ操作部 1 3が操作されると、後輪制動機構 1 4において、マスタシリンダ 2 1 のピストン (図示省略) が押し込まれてホイ—ルシリンダ 2 4のブレ—キ液の液圧が增カ卩し、ブレ—キキャリ パ 2 3のブレ—キパッド (図示省略) が後輪 4の口—タ 4 aに押し付けられて、後輪 4に制動力が付与 される。
【0 0 2 5 J
図 2及び図 3に示されるように、ブレ—キシステム 1 0は、例えば、マスタシリンダ圧センサ 4 1と、ホイ— ルシリンダ圧センサ 4 2と、前輪回転速度センサ 4 3と、後輪回転速度センサ 4 4と、リ-ン角センサ 4 5と、周囲環境センサ 4 6と、操舵角センサ 4 7と、表示装置 7 1と、音出力装置 7 2とを備える。 各センサ、表示装置 7 1及び音出力装置 7 2は、制御装置 6 0と通信可能になっている。
【0 0 2 6 J
マスタシリンダ圧センサ 4 1は、マスタシリンダ 2 1のブレーキ液の液圧を検出し、検出結果を出力する。 マスタシリンダ圧センサ 4 1が、マスタシリンダ 2 1のブレ-キ液の液圧に実質的に換算可能な他の物理 量を検出するものであってもよい。マスタシリンダ圧センサ 4 1は、前輪制動機構 1 2及び後輪制動機 構 1 4のそれぞれに設けられている。
【0 0 2 7 J
ホイ—ルシリンダ圧センサ 4 2は、ホイ—ルシリンダ 2 4のブレ—キ液の液圧を検出し、検出結果を出力 する。ホイ-ルシリンダ圧センサ 4 2が、ホイ-ルシリンダ 2 4のブレ-キ液の液圧に実質的に換算可能な 他の物理量を検出するものであってもよい。ホイ—ルシリンダ圧センサ 4 2は、前輪制動機構 1 2及び後 輪制動機構 1 4のそれぞれに設けられている。
【0 0 2 8】
前輪回転速度センサ 4 3は、前輪 3の回転速度を検出し、検出結果を出力する。前輪回転速度 センサ 4 3が、前輪 3の回転速度に実質的に換算可能な他の物理量を検出するものであってもよい。 後輪回転速度センサ 4 4は、後輪 4の回転速度を検出し、検出結果を出力する。後輪回転速度セン サ 4 4が、後輪 4の回転速度に実質的に換算可能な他の物理量を検出するものであってもよい。前輪 回転速度センサ 4 3及び後輪回転速度センサ 4 4は、前輪 3及び後輪 4にそれぞれ設けられている。 【0 0 2 9 J
リ―ン角センサ 4 5は、モ―タサイクル 1 0 0のリ―ン角及びリ―ン角の角速度を検出し、検出結果を 出力する。リ—ン角は、例えば、図 4に示されるモ―タサイクル 1 0 0の鉛直上方向に対する口—ル方向の 傾きの角度 Θに相当する。なお、モ-タサイクル 1 0 0の鉛直上方向に対する口-ル方向の傾きは、旋回 走行中に生じる。リ―ン角センサ 4 5として、具体的には、 3軸のジャイロセンサ及び 3方向の加速度セ ンサを備える慣性計測装置 ( I M U ) が用いられる。リ―ン角センサ 4 5が、モ―タサイクル 1 0 0のリ- ン角及びリ-ン角の角速度に実質的に換算可能な他の物理量を検出するものであってもよい。リ-ン角 センサ 4 5は、胴体 1に設けられている。
【0 0 3 0】
周囲環境センサ 4 6は、モ-タサイクル 1 0 0の周囲環境を検出する。例えば、周囲環境センサ 4 6 は、周囲環境としてモ-タサイクル 1 0 0から前方の障害物 (例えば、先行車両) までの距離を検出す る。周囲環境センサ 4 6が、前方の障害物までの距離に実質的に換算可能な他の物理量を検出する ものであってもよい。周囲環境センサ 4 6として、具体的には、モ―タサイクル 1 0 0の前方を撮像する力 メラ又は前方の障害物までの距離を検出可能な測距センサが用いられる。周囲環境センサ 4 6は、胴 体 1の前部に設けられている。
【0 0 3 1】
また、周囲環境センサ 4 6は、後述される制御モ-ドの開始の判定に利用されるトリガ情報を周囲環 境に応じて生成し、 トリガ情報を出力する。例えば、周囲環境センサ 4 6は、前輪 3及び後輪 4の回 転速度に基づいてモ-タサイクル 1 0 0の車体速度を算出し、前方の障害物までの距離及び車体速度 に基づいてモ-タサイクル 1 0 0が前方の障害物に到達するまでにかかる到達時間を予測する。周囲環 境センサ 4 6は、到達時間が第 1基準時間を下回る場合にトリガ情報を生成する。
【0 0 3 2】
ここで、制御モ―ドにおいて、 ドライバによる操作によらずに前方の障害物より手前で停止する動作であ る自動緊急減速動作が実行される。具体的には、制御モ-ドにおいて、後述されるように、 自動緊急減 速動作が実行される前に、 ドライバへ自動緊急減速動作が実行される旨を報知する第 1報知及び第 2報知が順に開始される。第 1報知は、例えば、到達時間が第 1基準時間を下回る場合 (例えば、 トリガ情報が生成された場合) に開始される。第 2報知は、例えば、到達時間が第 2基準時間を下 回る場合に開始される。 自動緊急減速動作は、例えば、到達時間が第 3基準時間を下回る場合に 実行される。
【0 0 3 3】
第 3基準時間は、具体的には、モ-タサイクル 1 0 0に自動緊急減速動作を実行させた場合にモ- タサイクル 1 0 0が停止するまでにかかる日寺間として見積もられる日寺間に応じて設定される。第 2基準時 間は、具体的には、第 3基準時間と比較して、 ドライバにより回避動作が行われることが第 2報知によつ て促進される効果を奏し得る時間だけ長い時間に設定される。第 1基準時間は、具体的には、第 2基 準時間と比較して、 ドライバにより回避動作が行われることが第 1報知によって促進される効果を奏し得 る時間だけ長い時間に設定される。
【0 0 3 4】
また、周囲環境センサ 4 6は、 トリガ情報の生成に伴い、 自動緊急減速動作によってモ―タサイクル 1 0 0に生じる減速度である自動緊急減速度の目標値である目標減速度を算出し、算出結果を出力 する。 目標減速度は、 自動緊急減速動作によってモ-タサイクル 1 0 0を前方の障害物より手前で停 止させることを実現し得る減速度であり、例えば、モ―タサイクル 1 0 0から前方の障害物までの距離及 び車体速度に基づいて算出される。
【0 0 3 5】
操舵角センサ 4 7は、モ-タサイクル 1 0 0の操舵角及び操舵角の角速度を検出し、検出結果を出 力する。操舵角センサ 4 7が、モ-タサイクル 1 0 0の操舵角及び操舵角の角速度に実質的に換算可 能な他の物理量を検出するものであってもよい。操蛇角センサ 4 7は、八ンドル 2に設けられている。
【0 0 3 6】
表示装置 7 1は、情報を視覚的に表示する装置である。表示装置 7 1として、具体的には、デイス プレイ又はランプが用いられる
【0 0 3 7】 音出力装置 Ί 2は、情報を聴覚的に音として出力する装置である。音出力装置 7 2として、具体 的には、スピ—力が用いられる
【0 0 3 8】
制御装置 6 0は、モ-タサイクル 1 0 0の挙動を制御する。制御装置 6 0は、例えば、取得部 6 1 と、実行部 6 2とを備える。取得部 6 1は、各センサから出力される情報を取得し、実行部 6 2へ出 力する。実行部 6 2は、例えば、減速制御部 6 3と、報知制御部 6 4と、 トリガ判定部 6 5と、回避 意図判定部 6 6と、到達時間判定部 6 7とを備える。各判定部は、各センサから出力される情報を 用いて各半 1J定処理を実行する。実行部 6 2は、 トリガ半 1J定部 6 5による半 1J定結果に応じて、モ一タサイ クル 1 0 0に自動緊急減速動作を実行させる制御モ-ドを開始する。また、減速制御部 6 3は、制御 モードにおいて、各半 1J定部による半 1J定結果に応じて、込め弁 3 1、她め弁 3 2、ポンプ 3 4、第 1弁 3 5及び第 2弁 3 6等の動作を司る指令を出力することにより、モ―タサイクル 1 0 0に自動緊急減速 動作を実行させる。また、報知制御部 6 4は、制御モードにおいて、各半 1J定部による半 1J定結果に応じて、 各装置の動作を司る指令を出力することにより、 ドライバへ自動緊急減速動作が実行される旨を報知す る。
【0 0 3 9】
制御装置 6 0は、記憶素子を備えており、制御装置 6 0が行う各処理において用いられる各基準 値等の情報は、予め記憶素子に記憶されてもよい。
【0 0 4 0】
くブレ—キシステムの動作 >
本発明の実施形態に係るブレ-キシステム 1 0の動作について説明する。図 5は、本発明の実施形 態に係る制御装置 6 0が行う処理の流れの一例を示すフロ—チヤ—トである。図 5に示される制御フ口— は、ブレ—キシステム 1 0の起動中 (換言すると、モ―タサイクル 1 0 0の運転中) において繰り返される。 図 5におけるステップ S 1 1 0及びステップ S 1 9 0は、制御フロ—の開始及び終了にそれぞれ対応する。 なお、ステップ S 1 1 0において、制御モ―ドが開始されていない状態で制御フロ—が開始される。
【0 0 4 1】 ステップ S 1 1 1において、取得部 6 1は、 トリガ情報を取得する。なお、上記では、 トリガ情報が周 囲環境センサ 4 6によって生成される場合を説明したが、 トリガ情報は制御装置 6 0によって生成されて もよい。例えば、モ-タサイクル 1 0 0から前方の障害物までの距離についての検出結果が周囲環境セン サ 4 6から制御装置 6 0へ出力され、制御装置 6 0が前方の障害物までの距離及びモ-タサイクル 1 0 0の車体速度に基づいてトリガ情報を生成してもよい。それにより、取得部 6 1はトリガ情報を取得し 得る。
【0 0 4 2】
次に、ステップ S 1 1 3において、 トリガ判定部 6 5は、 トリガ情報が取得されたか否かを判定する。 ト リガ情報が取得されたと判定された場合 (ステップ S 1 1 3 / Y e s ) 、ステップ S 1 1 5へ進む。一 方、 トリガ情報が取得されなかったと判定された場合 (ステップ S 1 1 3 / N 0 ) 、ステップ S 1 1 1へ 戻る。
【0 0 4 3】
ステップ S 1 1 5において、実行部 6 2は、モ―タサイクル 1 0 0に自動緊急減速動作を実行させる 制御モードを開始する。
【0 0 4 4】
次に、ステップ S 1 1 7において、報知制御部 6 4は、 ドライバへ自動緊急減速動作が実行される旨 を報知する第 1報知を開始する。
【0 0 4 5】
例えば、報知制御部 6 4は、第 1報知において、音を音出力装置 7 2に出力させることによって、 ド ライパ'へ自動緊急減速動作が実行される旨を報知する。具体的には、報知制御部 6 4は、第 1報知 において、 自動緊急減速動作が実行される旨を示す音声を出力させてもよい。また、報知制御部 6 4 は、第 1報知において、ビ―プ音等の電子音を出力させることによって、 自動緊急減速動作が実行される 旨を報知してもよい。
【0 0 4 6】
また、例えば、報知制御部 6 4は、第 1報知において、表示装置 7 1による表示を制御することによ つて、 ドライバへ自動緊急減速動作が実行される旨を報知する。具体的には、報知制御部 6 4は、表 示装置 7 1としてディスプレイが用いられる場合、第 1報知において、 自動緊急減速動作が実行される 旨を示す画像を表示させてもよい。また、報知制御部 6 4は、表示装置 7 1としてランプが用いられる ±昜合、第 1報知において、ランプを点灯又は点滅させることによって、 自動緊急減速動作が実行される 旨を報知してもよい。
【0 0 4 7】
つまり、報知制御部 6 4は、第 1報知において、 ドライバへ外力が付与されない方法により、 ドライバへ 自動緊急減速動作が実行される旨を報知する。なお、報知制御部 6 4は、第 1報知において、音を 音出力装置 7 2に出力させること及び表示装置 7 1による表示を制御することの双方を行うことによつ て、 ドライバへ自動緊急減速動作が実行される旨を報知してもよい。
【0 0 4 8】
次に、ステップ S 1 1 9において、回避意図判定部 6 6は、 ドライバが前方の障害物を回避する意図 である回避意図を有するか否かを半 1J定する。ドライバが回避意図を有すると判定された場合 (ステップ S 1 1 9 / Y e s ) 、ステップ S 1 3 3へ進む。一方、 ドライバが回避意図を有しないと判定された場合 (ステップ S 1 1 9 / N 0 ) 、ステップ S 1 2 1へ進む。
【0 0 4 9】
例えば、回避意図判定部 6 6は、モ-タサイクル 1 0 0の旋回走行中の姿勢に関連する状態量の 変化率が変化率基準値を超える場合に、 ドライバが回避意図を有すると判定する。モ-タサイクル 1 0 0の旋回走行中の姿勢に関連する状態量は、例えば、 リ-ン角、 リ-ン角の角速度、操舵角又は操舵 角の角速度を含む。変化率基準値は、 ドライバ'が回避意図を有する可能性が比較的高いか否かを判 定することを実現し得るィ直に設定される。
【0 0 5 0】
また、例えば、回避意図半 1J定部 6 6は、 ドライバによるモータサイクル 1 0 0の操作についての操作量 が操作量基準値を超える場合に、 ドライバが回避意図を有すると半 1J定する。 ドライバによるモータサイクル 1 0 0の操作は、例えば、アクセル操作、ブレ-キ操作及びクラッチ操作を含む。操作量基準値は、 ドラ ィバによるモ―タサイクル 1 0 0の操作が行われたか否かを半 1J定することを実現し得る値に設定される。 【0 0 5 1 J
ステップ S 1 2 1において、到達時間判定部 6 7は、モ―タサイクル 1 0 0が前方の障害物に到達す るまでにかかる到達時間が第 2基準時間を下回るか否かを判定する。到達時間が第 2基準時間を下 回ると判定された場合 (ステップ S 1 2 1 / Y e s ) 、ステップ S 1 2 3へ進む。一方、到達時間が 第 2基準時間を下回らないと判定された場合 (ステップ S 1 2 1 / N o ) 、ステップ S 1 1 9へ戻る。
【0 0 5 2 J
例えば、到達時間についての予測結果が周囲環境センサ 4 6から制御装置 6 0へ出力され、制御 装置 6 0は、取得した予測結果に基づいて到達時間と第 2基準時間との比較を実行し得る。なお、 到達時間の予測は、制御装置 6 0によって行われてもよい。例えば、モ-タサイクル 1 0 0から前方の障 害物までの距離についての検出結果が周囲環境センサ 4 6から制御装置 6 0へ出力され、制御装置 6 0が前方の障害物までの距離及びモ-タサイクル 1 0 0の車体速度に基づいて到達時間を予測して ¾よい。
【0 0 5 3】
ステップ S 1 2 3において、報知制御部 6 4は、 ドライバへ自動緊急減速動作が実行される旨を報 知する第 2報知を開始する。報知制御部 6 4は、第 2報知において、 ドライバへ外力を付与することに よって、 ドライバへ自動緊急減速動作が実行される旨を報知する。
【0 0 5 4】
具体的には、報知制御部 6 4は、第 2報知において、モ一タサイクル 1 0 0に減速度が生じることに よりドライバへ作用する慣性力を外力としてドライバへ付与する。
【0 0 5 5 J
例えば、報知制御部 6 4は、第 2報知において、モ―タサイクル 1 0 0の車輪に付与される制動力を 制御することによって、モ一タサイクル 1 0 0に減速度を生じさせる。具体的には、報知制御部 6 4は、 前輪制動機構 1 2及び後輪制動機構 1 4の少なくとも一方について、込め弁 3 1が開放され、弛め 弁 3 2が閉鎖され、第 1弁 3 5が閉鎖され、第 2弁 3 6が開放されている状態で、ポンプ 3 4を駆動 することによって、車輪に付与される制動力を生じさせ得る。それにより、モ一タサイクル 1 0 0に減速度が 生じることによって、 ドライバへ減速度に応じた慣性力が作用する。
【0 0 5 6 J
また、例えば、報知制御部 6 4は、第 2報知において、モ―タサイクル 1 0 0のエンジンの出力を制御 することによって、モ一タサイクル 1 0 0に減速度を生じさせる。具体的には、報知制御部 6 4は、ェンジ ンの出力を低下させることにより生じるエンジンブレ—キの作用を利用してモ―タサイクル 1 0 0に減速度を 生じさせ得る。このように、モ一タサイクル 1 0 0に減速度が生じることによって、 ドライバへ減速度に応じた 慣性力が作用する。
【0 0 5 7 J
より具体的には、報知制御部 6 4は、第 2報知において、 ドライバにより感知可能な慣性力を作用さ せ得る減速度の範囲内において比較的小さい減速度を設定時間おきに繰り返し生じさせる。それにより、 第 2報知においてモ―タサイクル 1 0 0に生じる減速度の増大を抑制しつつ、 ドライバにより回避動作が 行われることをより効果的に促進させることができる。
【0 0 5 8】
なお、報知制御部 6 4は、第 2報知において、車輪に付与される制動力及びエンジンの出力の双方 を制卸することによって、モ一タサイクル 1 0 0に減速度を生じさせてもよい。また、第 2幸艮知において、 ドラ ィバへ付与される外力は、モ―タサイクル 1 0 0に減速度が生じることによりドライバへ作用する慣性力で なくともよい。例えば、振動を発生する振動装置がモ-タサイクル 1 0 0に設けられる場合、報知制御部 6 4は、第 2報知において、振動装置を,駆動することによって、振動装置により生じる振動を外力として ドライバヘイ寸与してもよい。
【0 0 5 9 J
次に、ステップ S 1 2 5において、回避意図判定部 6 6は、 ドライバが回避意図を有するか否かを判 定する。 ドライバが回避意図を有すると判定された場合 (ステップ S 1 2 5 / Y e s ) 、ステップ S 1 3 3へ進む。一方、 ドライバが回避意図を有しないと判定された場合 (ステップ S 1 2 5 / N 0 ) 、ス テツプ S 1 2 7へ進む。 【0 0 6 0】
ステップ S 1 2 7において、到達時間判定部 6 7は、到達時間が第 3基準時間を下回るか否かを 判定する。到達時間が第 3基準時間を下回ると判定された場合 (ステップ S 1 2 7 / Y e s ) 、ス テツプ S 1 2 9へ進む。一方、到達時間が第 3基準時間を下回らないと判定された場合 (ステップ S 1 2 7 / N 0 ) 、ステップ S 1 2 5へ戻る。
【0 0 6 1 J
例えば、到達時間についての予測結果が周囲環境センサ 4 6から制御装置 6 0へ出力され、制御 装置 6 0は、取得した予測結果に基づいて到達時間と第 3基準時間との比較を実行し得る。なお、 到達時間の予測は、制御装置 6 0によって行われてもよい。
【0 0 6 2 J
ステップ S 1 2 9において、報知制御部 6 4は、第 2報知を終了する。
【0 0 6 3】
次に、ステップ S 1 3 1において、減速制御部 6 3は、 自動緊急減速動作を許可する。 自動緊急 減速動作が許可されると、減速制御部 6 3は、 ドライバによる操作によらない減速度である自動緊急 減速度を生じさせて、モ一タサイクル 1 0 0に自動緊急減速動作を実行させる。このように、制御モ一ドに おいて、第 1報知及び第 2報知が順に開始された後に、 自動緊急減速動作が実行される。換言すると、 制御モ-ドにおいて、 自動緊急減速動作が実行される前に、第 1報知及び第 2報知が順に開始される。
【0 0 6 4】
例えば、減速制御部 6 3は、前輪制動機構 1 2及び後輪制動機構 1 4の少なくとも一方によって 車輪に付与される制動力を生じさせることによって、 自動緊急減速度を生じさせる。具体的には、減速 制御部 6 3は、込め弁 3 1が開放され、弛め弁 3 2が閉鎖され、第 1弁 3 5が閉鎖され、第 2弁 3 6が開放されている状態で、ポンプ 3 4を駆動することで、車輪に付与される制動力を生じさせる。
【0 0 6 5 J
減速制御部 6 3は、ポンプ 3 4の回転数を制御することによって、車輪に付与される制動力を制御 する。具体的には、減速制御部 6 3は、周囲環境センサ 4 6から出力される目標減速度に基づいてホ ィ-ルシリンダ 2 4のブレ-キ液の液圧の目標値である目標液圧を決定する。そして、減速制御部 6 3は、 ホイ-ルシリンダ 2 4のブレ-キ液の液圧が目標液圧と一致するようにポンプ 3 4の回転数を制御する。 それにより、 自動緊急減速度が目標減速度と一致するように制御される。
【0 0 6 6 J
なお、上記では、減速制御部 6 3が車輪に付与される制動力を制御することによって、 自動緊急減 速度を制御する場合を説明したが、減速制御部 6 3はモ-タサイクル 1 0 0のエンジンの出力を制御す ることによって、 自動緊急減速度を制御してもよい。具体的には、減速制御部 6 3は、エンジンの出力を 低下させることにより生じるエンジンブレーキの作用を利用して自動緊急減速度を制御してもよい。また、 減速制御部 6 3は、車輪に付与される制動力及びエンジンの出力の双方を制御することによって、 自動 緊急減速度を制御してもよい。
【0 0 6 7 J
また、上記では、 目標減速度が周囲環境センサ 4 6によって算出される場合を説明したが、 目標減 速度は制御装置 6 0によって算出されてもよい。例えば、モ―タサイクル 1 0 0から前方の障害物までの 距離についての検出結果が周囲環境センサ 4 6から制御装置 6 0へ出力され、制御装置 6 0が前 方の障害物までの距離及び車体速度に基づいて目標減速度を算出してもよい。
【0 0 6 8】
ステップ S 1 3 3において、報知制御部 6 4は、報知を禁止する。例えば、ステップ S 1 2 3において 第 2報知が開始された後のステップ S 1 2 5の判定結果が Y e sである場合、ステップ S 1 3 3にお いて、報知制御部 6 4は、第 2報知を終了する。
【0 0 6 9 J
次に、ステップ S 1 3 4において、減速制御部 6 3は、 自動緊急減速動作を禁止する。 自動緊急 減速動作が禁止されると、減速制御部 6 3は、モ一タサイクル 1 0 0をドライバによる操作に応じて減速 度が生じる通常状態にする。具体的には、減速制御部 6 3は、モ-タサイクル 1 0 0を込め弁 3 1が 開放され、弛め弁 3 2が閉鎖され、第 1弁 3 5が開放され、第 2弁 3 6が閉鎖されている状態にし、 ポンプ 3 4の駆動を禁止する。 【0 0 7 0】
ステップ S 1 3 1又はステップ S 1 3 4の次に、ステップ S 1 3 5において、取得部 6 1は、 トリガ情 報を取得する。
【0 0 7 1 J
次に、ステップ S 1 3 7において、 トリガ判定部 6 5は、 トリガ情報が取得されたか否かを判定する。 ト リガ情報が取得されたと判定された場合 (ステップ S 1 3 7 / Y e s ) 、ステップ S 1 3 5へ戻る。一 方、 トリガ情報が取得されなかったと判定された場合 (ステップ S 1 3 7 / N 0 ) 、ステップ S 1 3 9へ 進む。
【0 0 7 2 J
ステップ S 1 3 9において、報知制御部 6 4は、第 1報知を終了する。このように、報知制御部 6 4 は、 自動緊急減速動作が開始された後において、第 1報知を継続して実行してもよい。なお、報知制 御部 6 4は、他のタイミングで第 1報知を終了してもよい。例えば、報知制御部 6 4は、第 2報知が開 始される際に第 1報知を終了してもよい。その場合、ステップ S 1 3 9は、ステップ S 1 2 3と並歹 IJして 実行され得る。また、例えば、報知制御部 6 4は、 自動緊急減速動作が開始される際に第 1報知を 終了してもよい。その場合、ステップ S 1 3 9は、ステップ S 1 2 9又はステップ S 1 3 1と並歹 IJして実 行され得る。また、例えば、報知制御部 6 4は、 ドライバ'が回避意図を有すると判定された場合に第 1 報知を終了してもよい。
【0 0 7 3】
次に、ステップ S 1 4 1において、実行部 6 2は、制御モ一ドを終了する。
【0 0 7 4】
なお、上記では、第 2報知が終了した後に自動緊急減速動作が開始される場合を説明したが、第 2報知においてドライバへ付与される外力がモ―タサイクル 1 0 0に生じる減速度によりドライバへ作用す る慣性力でない場合、第 2報知の実行中に自動緊急減速動作が開始されてもよい。その場合、報知 制御部 6 4は、 自動緊急減速動作が開始された後において第 2報知を継続して実行し、例えば、制 御モ―ドが終了する際に第 2報知を終了してもよい。 【0 0 7 5 J
<ブレ—キシステムの効果 >
本発明の実施形態に係るブレーキシステム 1 0の効果について説明する。
【0 0 7 6 J
ブレ—キシステム 1 0では、モ―タサイクル 1 0 0に自動緊急減速動作を実行させる制御モ―ドが、モ— タサイクル 1 0 0の周囲環境に応じて生成されるトリガ情報に応じて開始される。また、制御モ―ドにおい て、 自動緊急減速動作が実行される前に、 ドライバへ自動緊急減速動作が実行される旨を報知する第
1報知及び第 2報知が順に開始される。また、第 1報知において、 ドライバへ外力が付与されずに、 ドラ ィパ'へ自動緊急減速動作が実行される旨が報知され、第 2報知において、 ドライバ'へ外力が付与される ことによって、 ドライバへ自動緊急減速動作が実行される旨が報知される。このように段階的に第 1報知 及び第 2報知が順に開始されることによって、仮に第 1報知が開始されることのみによってはドライバが回 避動作を行わない場合であっても、第 2報知が開始されることによってドライバにより回避動作が行われる ことを促進させることができる。ゆえに、 自動緊急減速動作が実行される頻度を低下させつつ、前方の障 害物との衝突を回避することができる。よって、モ―タサイクル 1 0 0の転倒を抑制しつつ、 自動緊急減速 動作により安全性を向上させることができる。また、第 2報知に先行して実行される第 1報知が、 ドライ バへ外力が付与されない方法であることで、第 2報知によってドライバに頻繁に外力が付与されて、不快 感を与えてしまうことが抑制される。そのため、 自動緊急減速動作が実行される前に、 ドライバにより回避 動作が行われることを、 ドライバに与える不快感を抑制しつつ促進させることができる。
【0 0 7 7 J
好ましくは、ブレ-キシステム 1 0では、 自動緊急減速動作は、第 2報知が終了した後に開始される。 また、第 2報知においてドライバへ付与される外力は、モ―タサイクル 1 0 0に減速度が生じることによりド ライバへ作用する慣性力である。それにより、 自動緊急減速動作が実行される前において、モ-タサイクル 1 0 0を減速させつつドライバへ自動緊急減速動作が実行される旨を報知することができる。ゆえに、前 方の障害物との衝突をより効果的に回避することができる。また、 自動緊急減速動作が実行される前に おいてモ―タサイクル 1 0 0を減速させることによって、 自動緊急減速動作によってモ―タサイクル 1 0 0に 生じる自動緊急減速度を減少させることができる。ゆえに、モ―タサイクル 1 0 0の転倒をより効果的に 抑制することができる。
【0 0 7 8】
好ましくは、ブレ—キシステム 1 0では、制御モ―ドにおいて、第 2報知が開始される前、又は第 2報知 の実行中に、 ドライバが回避意図を有すると判定された場合に、第 2報知及び自動緊急減速動作が 禁止される。それにより、 ドライバ'により回避動作が行われる可能性が比較的高い場合に、第 2報知を 禁止することができるので、 ドライバの意図に反する報知が実行されることを抑制することができる。また、 ド ライパ'により回避動作が行われる可能性が比較的高い場合に、 自動緊急減速動作を禁止することがで きるので、 ドライバの意図に反して自動緊急減速動作が実行されることを抑制することができる。ゆえに、 自動緊急減速動作が実行される頻度を適切に低下させることができる。
【0 0 7 9 J
好ましくは、ブレ—キシステム 1 0では、制御モ―ドにおいて、モ―タサイクル 1 0 0の旋回走行中の姿勢 に関連する状態量の変化率が変化率基準値を超える場合に、 ドライバが回避意図を有すると判定され る。それにより、 ドライバの回避意図の有無をモ-タサイクル 1 0 0の旋回走行中の姿勢に関連する状態 量の変化率に応じて適切に判定することができる。
【0 0 8 0】
好ましくは、ブレ—キシステム 1 0では、制 ί卸モ―ドにおいて、 ドライバによるモ―タサイクル 1 0 0の操作に ついての操作量が操作量基準値を超える場合に、 ドライバが回避意図を有すると半 1J定される。それにより、 ドライバの回避意図の有無をドライバによるモ―タサイクル 1 0 0の操作についての操作量に応じて適切に 半 1J定することができる。
【0 0 8 1】
好ましくは、ブレ—キシステム 1 0では、第 1報知において、音が出力されることによって、 ドライバへ自動 緊急減速動作が実行される旨が報知される。それにより、例えばドライバの視界が良好でない場合であつ ても、第 1報知が開始されることによってドライバにより回避動作が行われることを適切に促進させることが できる。 【0 0 8 2】
好ましくは、ブレ—キシステム 1 0では、第 1報知において、表示が制御されることによって、 ドライバへ自 動緊急減速動作が実行される旨が報知される。それにより、例えば仮にドライバの周囲で騒音が生じて いる場合であっても、第 1報知が開始されることによってドライバにより回避動作が行われることを適切に 促進させることができる。
【0 0 8 3】
本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全て又は一部が組み合わ されてもよく、また、各実施の形態の一部のみが実施されてもよい。また、例えば、各ステップの順序が入 れ替えられてもよい。
【符号の説明】
【0 0 8 4】
1 胴体、 2 八ンドル、 3 前輪、 3 a 口—タ、 4 後輪、 4 a 口—タ、 1 0 ブレ—キシステム、 1 1 第 1ブレ-キ操作部、 1 2 前輪制動機構、 1 3 第 2ブレ-キ操作部、 1 4 後輪制動 機構、 2 1 マスタシリンダ、 2 2 リザ—バ、 2 3 ブレーキキヤリバ、 2 4 ホイ—ルシリンダ、 2 5 主流路、 2 6 副流路、 2 7 供給流路、 3 1 込め弁、 3 2 弛め弁、 3 3 アキュムレ-タ、 3 4 ポンプ、 3 5 第 1弁、 3 6 第 2弁、 4 1 マスタシリンダ圧センサ、 4 2 ホイ—ルシリンダ圧 センサ、 4 3 前輪回転速度センサ、 4 4 後輪回転速度センサ、 4 5 リ-ン角センサ、 4 6 周 囲環境センサ、 4 7 操舵角センサ、 5 0 液圧制御ユニット、 5 1 基体、 6 0 制御装置、 6 1 取得部、 6 2 実行部、 6 3 減速制御部、 6 4 報知制御部、 6 5 トリガ判定部、 6 6 回避意図判定部、 6 7 到達時間判定部、 7 1 表示装置、 7 2 音出力装置、 1 0 0 モ- タサイクル。

Claims

【書類名】請求の範囲
【請求項 1】
モ―タサイクル (1 0 0) の挙動を制御する制御装置 (6 0) であって、
前記モ-タサイクル (1 0 0) の周囲環境に応じて生成されるトリガ情報を取得する取得部 (6 1) と、
前記モ-タサイクル (1 0 0) に自動緊急減速動作を実行させる制御モ-ドを、前記トリガ情報に応 じて開始する実行部 (62) と、
を備えており、
前記制御モ-ドにおいて、前記自動緊急減速動作が実行される前に、 ドライバへ前記自動緊急減速 動作が実行される旨を報知する第 1報知及び第 2報知が順に開始され、
前記第 1報知において、前記ドライバへ外力が付与されずに、前記ドライバへ前記自動緊急減速動 作が実行される旨が報知され、
前記第 2報知において、前記ドライバへ外力が付与されることによって、前記ドライバへ前記自動緊急 減速動作が実行される旨が報知される、
制御装置。
【請求項 2】
前記自動緊急減速動作は、前記第 2報知が終了した後に開始され、
前記外力は、前記モ―タサイクル (1 0 0) に減速度が生じることにより前記ドライバへ作用する慣 性力である、
請求項 1に記載の制御装置。
【請求項 3】
前記第 2報知において、前記減速度は、前記モ-タサイクル (1 0 0) の車輪 (3, 4) に付与 される制動力が制御されることによって生じる、
請求項 2に記載の制御装置。
【請求項 4】 前記第 2報知において、前記減速度は、前記モ-タサイクル ( 1 0 0 ) のエンジンの出力が制御され ることによって生じる、
請求項 2又は 3に記載の制御装置。
【請求項 5】
前記制御モ-ドにおいて、前記第 2報知が開始される前、又は前記第 2報知の実行中に、前記ドラ ィバが回避意図を有すると判定された場合に、前記第 2報知及び前記自動緊急減速動作が禁止さ れる、
請求項 1〜 4のいずれか一項に記載の制御装置。
【請求項 6】
前記制御モ-ドにおいて、前記モ-タサイクル ( 1 0 0 ) の旋回走行中の姿勢に関連する状態量の 変化率が変化率基準値を超える場合に、前記ドライバが回避意図を有すると判定される、
請求項 5に記載の制御装置。
【請求項 7】
前記状態量は、前記モ-タサイクル (1 0 0 ) のリ-ン角又はリ-ン角の角速度を含む、 請求項 6に記載の制御装置。
【請求項 8】
前記状態量は、前記モ-タサイクル (1 0 0 ) の操舵角又は操舵角の角速度を含む、 請求項 6又は 7に記載の制御装置。
【請求項 9】
前記制御モ―ドにおいて、前記ドライバによる前記モ―タサイクル ( 1 0 0 ) の操作についての操作量 が操作量基準値を超える場合に、前記ドライバが回避意図を有すると判定される、
請求項 5〜 8のいずれか一項に記載の制御装置。
【請求項 1 0】
前記第 1報知において、音が出力されることによって、前記ドライバへ前記自動緊急減速動作が実 行される旨が報知される、 請求項 1〜 9のいずれか一項に記載の制御装置。
【請求項 1 1】
前記第 1報知において、表示が制御されることによって、前記ドライバへ前記自動緊急減速動作が 実行される旨が報知される、
請求項 1〜 1 0のいずれか一項に記載の制御装置。
【請求項 1 2】
モ―タサイクル (1 0 0) の挙動を制御する制御方法であって、
前記モ-タサイクル (1 0 0) の周囲環境に応じて生成されるトリガ情報を取得する取得ステップ (S 1 1 1 ) と、
前記モ-タサイクル (1 0 0) に自動緊急減速動作を実行させる制御モ-ドを、前記トリガ情報に応 じて開始する実行ステップ (S 1 1 5) と、
を備えており、
前記制御モ-ドにおいて、前記自動緊急減速動作が実行される前に、 ドライバへ前記自動緊急減速 動作が実行される旨を報知する第 1報知及び第 2報知が順に開始され、
前記第 1報知において、前記ドライバへ外力が付与されずに、前記ドライバへ前記自動緊急減速動 作が実行される旨が報知され、
前記第 2報知において、前記ドライバへ外力が付与されることによって、前記ドライバへ前記自動緊急 減速動作が実行される旨が報知される、
制御方法。
【請求項 1 3】
モ―タサイクル (1 0 0) の周囲環境を検出する周囲環境センサ (4 6) と、
前記周囲環境に基づいて前記モ-タサイクル (1 0 0) の挙動を制御する制御装置 (6 0) と、 を備えるブレーキシステム (1 0) であって、
前記制御装置 (6 0) は、
前記周囲環境に応じて生成されるトリガ情報を取得する取得部 (6 1) と、 前記モ―タサイクル ( 1 0 0 ) に自動緊急減速動作を実行させる制御モ―ドを、前記トリガ情報に応 じて開始する実行部 (6 2 ) と、
を備えており、
前記制御モ-ドにおいて、前記自動緊急減速動作が実行される前に、 ドライバへ前記自動緊急減速 動作が実行される旨を報知する第 1報知及び第 2報知が順に開始され、
前記第 1報知において、前記ドライバへ外力が付与されずに、前記ドライバへ前記自動緊急減速動 作が実行される旨が報知され、
前記第 2報知において、前記ドライバへ外力が付与されることによって、前記ドライバへ前記自動緊急 減速動作が実行される旨が報知される、
ブレーキシステム。
PCT/IB2018/051640 2017-04-06 2018-03-13 制御装置、制御方法及びブレーキシステム WO2018185577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880022429.7A CN110446635A (zh) 2017-04-06 2018-03-13 控制装置、控制方法及制动系统
JP2019510489A JP6817417B2 (ja) 2017-04-06 2018-03-13 制御装置、制御方法及びブレーキシステム
EP18717692.0A EP3608181B1 (en) 2017-04-06 2018-03-13 Control device, control method, and brake system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017075773A JP2018176861A (ja) 2017-04-06 2017-04-06 制御装置、制御方法及びブレーキシステム
JP2017-075773 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018185577A1 true WO2018185577A1 (ja) 2018-10-11

Family

ID=61972170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/051640 WO2018185577A1 (ja) 2017-04-06 2018-03-13 制御装置、制御方法及びブレーキシステム

Country Status (4)

Country Link
EP (1) EP3608181B1 (ja)
JP (2) JP2018176861A (ja)
CN (1) CN110446635A (ja)
WO (1) WO2018185577A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020119976A1 (de) * 2018-12-13 2020-06-18 Robert Bosch Gmbh Verfahren und vorrichtung zur durchführung einer autonomen bremsung bei einem einspurigen kraftfahrzeug
EP3730391A1 (en) * 2019-04-25 2020-10-28 Robert Bosch GmbH Method for warning a driver of a motorcycle as well as ride assistant controller and motorcycle implementing such method
WO2020254898A1 (ja) * 2019-06-19 2020-12-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 制御装置及び制御方法
WO2021161135A1 (ja) * 2020-02-14 2021-08-19 ロベルト•ボッシュ•ゲゼルシャフト•ミト•ベシュレンクテル•ハフツング 鞍乗型車両に搭載されるライダー支援システムの制御装置及び制御方法
EP4014779A1 (en) 2020-12-21 2022-06-22 Robert Bosch GmbH Helmet, rider support system, and control method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019209864A1 (de) * 2019-07-04 2021-01-07 Robert Bosch Gmbh Verfahren und Vorrichtung zur Durchführung einer autonomen Bremsung bei einem einspurigen Kraftfahrzeug
US11912263B2 (en) * 2020-01-14 2024-02-27 Delphi Technologies Ip Limited System and method for vehicle coast control
JP2021127069A (ja) * 2020-02-17 2021-09-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 制御装置及び制御方法
WO2024100705A1 (ja) * 2022-11-07 2024-05-16 日立Astemo株式会社 車両制御システム
DE102022211740A1 (de) 2022-11-08 2024-05-08 Zf Friedrichshafen Ag Helm für einen Fahrer eines ein- oder mehrspurigen Fahrzeugs sowie System

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118707A1 (de) * 2001-04-12 2002-10-17 Bosch Gmbh Robert Verfahren zur Kollisionsverhinderung bei Kraftfahrzeugen
DE102013200044A1 (de) * 2013-01-03 2014-07-03 Robert Bosch Gmbh Verfahren zum Durchführen eines Notbremsvorgangs in einem Zweirad
DE102015104547A1 (de) * 2015-03-26 2016-09-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur Auslösung eines selbsttätigen Notbremsvorgangs mit variabler Warnzeitdauer
EP3124370A2 (en) * 2015-07-27 2017-02-01 Honda Motor Co., Ltd. Automatic brake device for saddle riding type vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749950B2 (ja) * 2006-06-27 2011-08-17 本田技研工業株式会社 車両用ブレーキ装置
JP2008114764A (ja) * 2006-11-07 2008-05-22 Mazda Motor Corp 車両の障害物検知装置
JP2013099978A (ja) * 2011-11-07 2013-05-23 Denso Corp 車両減速度制御装置
JP2014008814A (ja) * 2012-06-28 2014-01-20 Mitsubishi Motors Corp 衝突回避装置
DE102015220901A1 (de) * 2015-10-27 2017-04-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur fahrerunabhängigen Beeinflussung eines Lenkungselementes eines einspurigen Kraftfahrzeugs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118707A1 (de) * 2001-04-12 2002-10-17 Bosch Gmbh Robert Verfahren zur Kollisionsverhinderung bei Kraftfahrzeugen
DE102013200044A1 (de) * 2013-01-03 2014-07-03 Robert Bosch Gmbh Verfahren zum Durchführen eines Notbremsvorgangs in einem Zweirad
DE102015104547A1 (de) * 2015-03-26 2016-09-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Verfahren zur Auslösung eines selbsttätigen Notbremsvorgangs mit variabler Warnzeitdauer
EP3124370A2 (en) * 2015-07-27 2017-02-01 Honda Motor Co., Ltd. Automatic brake device for saddle riding type vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020119976A1 (de) * 2018-12-13 2020-06-18 Robert Bosch Gmbh Verfahren und vorrichtung zur durchführung einer autonomen bremsung bei einem einspurigen kraftfahrzeug
EP3730391A1 (en) * 2019-04-25 2020-10-28 Robert Bosch GmbH Method for warning a driver of a motorcycle as well as ride assistant controller and motorcycle implementing such method
EP3730392A1 (en) * 2019-04-25 2020-10-28 Robert Bosch GmbH Method for warning a driver of a motorcycle as well as ride assistant controller and motorcycle implementing such method
CN111846045A (zh) * 2019-04-25 2020-10-30 罗伯特·博世有限公司 用于警告摩托车驾驶员的方法以及实现这种方法的骑乘辅助控制器和摩托车
US11358609B2 (en) 2019-04-25 2022-06-14 Robert Bosch Gmbh Method for warning a driver of a motorcycle as well as ride assistant controller and motorcycle implementing such method
CN111846045B (zh) * 2019-04-25 2023-09-22 罗伯特·博世有限公司 用于警告摩托车驾驶员的方法以及实现这种方法的骑乘辅助控制器和摩托车
WO2020254898A1 (ja) * 2019-06-19 2020-12-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 制御装置及び制御方法
EP4137372A1 (en) * 2019-06-19 2023-02-22 Robert Bosch GmbH Controller and control method
US11780412B2 (en) 2019-06-19 2023-10-10 Robert Bosch Gmbh Controller and control method
WO2021161135A1 (ja) * 2020-02-14 2021-08-19 ロベルト•ボッシュ•ゲゼルシャフト•ミト•ベシュレンクテル•ハフツング 鞍乗型車両に搭載されるライダー支援システムの制御装置及び制御方法
EP4014779A1 (en) 2020-12-21 2022-06-22 Robert Bosch GmbH Helmet, rider support system, and control method

Also Published As

Publication number Publication date
JPWO2018185577A1 (ja) 2019-12-12
EP3608181B1 (en) 2022-05-11
CN110446635A (zh) 2019-11-12
EP3608181A1 (en) 2020-02-12
JP6817417B2 (ja) 2021-01-20
JP2018176861A (ja) 2018-11-15

Similar Documents

Publication Publication Date Title
WO2018185577A1 (ja) 制御装置、制御方法及びブレーキシステム
US11001241B2 (en) Controller, control method, and brake system
WO2018185578A1 (ja) 制御装置、制御方法及びブレーキシステム
JPWO2019025886A1 (ja) 制御装置、車体挙動制御システム、モータサイクル、及び、制御方法
CN110891834B (zh) 控制装置、车体行为控制系统、摩托车以及控制方法
WO2018172870A1 (ja) 制御装置及び制御方法
US11508242B2 (en) Controller, control method, and brake system
WO2018197965A1 (ja) 制御装置、制御方法及びブレーキシステム
WO2018172871A1 (ja) 制御装置及び制御方法
JP7113898B2 (ja) 制御装置及び制御方法
JP7179849B2 (ja) モータサイクルに用いられる運転支援システムの制御装置及び制御方法、及び、モータサイクルに用いられる運転支援システム
EP3815994B1 (en) Control device and control method for controlling behavior of motorcycle
JP2022062851A (ja) 制御装置及び制御方法
JP2010105519A (ja) 車体速度演算装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18717692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018717692

Country of ref document: EP

Effective date: 20191106