WO2018182139A1 - 열전 모듈 - Google Patents

열전 모듈 Download PDF

Info

Publication number
WO2018182139A1
WO2018182139A1 PCT/KR2017/015484 KR2017015484W WO2018182139A1 WO 2018182139 A1 WO2018182139 A1 WO 2018182139A1 KR 2017015484 W KR2017015484 W KR 2017015484W WO 2018182139 A1 WO2018182139 A1 WO 2018182139A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
barrier layer
alloy
bonding
bonding layer
Prior art date
Application number
PCT/KR2017/015484
Other languages
English (en)
French (fr)
Inventor
김수진
이일하
박범석
오형주
김동식
임병규
김기환
박철희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019541454A priority Critical patent/JP6820084B2/ja
Priority to US16/474,266 priority patent/US11309477B2/en
Priority to EP17902881.6A priority patent/EP3553838B1/en
Priority to CN201780083363.8A priority patent/CN110178234B/zh
Publication of WO2018182139A1 publication Critical patent/WO2018182139A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen

Definitions

  • the present invention relates to a thermoelectric module which can prevent thermal diffusion of the bonding layer material, prevent oxidation and deformation under high temperature environment of the thermoelectric element, and exhibit improved driving stability with excellent adhesion to the thermoelectric element.
  • thermoelectric phenomena means the reversible and direct conversion of energy between temperature differences and electrical voltages.
  • thermoelectric power generation which produces electrical energy
  • thermoelectric cooling / heating which causes a temperature difference between both ends by supplying electricity.
  • Thermoelectric materials that exhibit thermoelectric phenomena that is, thermoelectric semiconductors, have been researched because of their environmentally friendly and sustainable advantages in power generation and cooling. Furthermore, industrial waste heat, it is possible to make it directly produce power, etc. automobile waste heat as a useful technology to improve fuel economy and reduce interest in co 2 ', the thermoelectric material is further increased.
  • thermoelectric module a pair of p-n thermoelectric elements including a p-type thermoelectric element (TE) for moving holes and moving thermal energy and an n-type thermoelectric element for moving electrons to transfer thermal energy may be a basic unit.
  • the thermoelectric modules may include electrodes connecting the p-type thermoelectric element and the n-type thermoelectric element.
  • thermoelectric conversion devices using Bi-Te-based thermoelectric materials generally used are roughly It is used in the temperature range of 200 ⁇ 300 ° C, and the thermoelectric conversion element using Co-Sb type thermoelectric material is driven in the temperature range of approximately 500 ⁇ 600 ° C. Since it is used at such a high temperature, there arises a problem of thermal diffusion of the bonding layer material joining the thermoelectric element and the electrode, or oxidation and deformation of the thermoelectric element.
  • thermoelectric element provides excellent thermal and electrical characteristics so that the thermoelectrics can be stably driven even at high temperatures. Development of new materials is needed.
  • the present invention provides thermoelectric models and a method of manufacturing the same, which can prevent thermal diffusion of the bonding layer material, prevent oxidation and deformation under high temperature environment of the thermoelectric element, and exhibit improved driving stability with excellent adhesion to the thermoelectric element. It is to.
  • thermoelectric elements including thermoelectric semiconductors
  • thermoelectric elements An electrode for connecting between the plurality of thermoelectric elements
  • thermoelectric element Located between each thermoelectric element and the electrode, including a bonding layer for bonding the thermoelectric element and the electrode,
  • thermoelectric layer Located between the thermoelectric element and the bonding layer, to provide a thermoelectric layer further comprising a barrier layer comprising a Cu-Mo—Ti alloy.
  • the Cu-Mo-Ti alloy may include 1 to 50 atomic% of Cu in the total content of metal atoms.
  • the Cu-Mo—Ti alloy may include Mo and Ti in an atomic ratio of 1: 9 to 9: 1.
  • the barrier layer may have a thickness of 100 nm to 200 nm.
  • thermoelectric semiconductor may be a Bi-Te based, a skewrudite based, a silicide based, a half whisler based, a Co-Sb based, a PbTe based, a Si based, It may include at least one selected from the group consisting of SiGe-based thermoelectric semiconductor.
  • the bonding layer may include solder.
  • at least one surface of the thermoelectric element each step of forming a barrier layer containing a Cu-Mo-Ti alloy; And placing a metal paste for forming a bonding layer on the barrier layer, respectively, and then bonding the electrode to the electrode.
  • the barrier layer may be formed by sputter deposition, ion plating, plating, or sintering.
  • the bonding may be performed by soldering or sintering.
  • thermoelectric element by including a barrier layer having excellent thermal and electrical properties between the thermoelectric element and the bonding layer, heat diffusion of the bonding layer material is prevented, oxidation and deformation of the thermoelectric element in a high temperature environment are prevented, and the thermoelectric element A thermoelectric module can be provided that can exhibit improved drive stability with good adhesion to it.
  • CTE coefficient of thermal expansion
  • each layer or element is a When referred to as “on” or “on”, it means that each layer or element is formed directly on top of each layer or element, or that another layer or element is to be additionally formed between each layer, object, or substrate. It means you can.
  • thermoelectrics and the method of manufacturing the same according to specific embodiments of the present invention will be described in detail.
  • thermoelectric element between the thermoelectric element and the bonding layer, in order to prevent heat diffusion of the bonding layer material and oxidation and deformation under the high temperature environment of the thermoelectric element.
  • a barrier layer containing a metal such as Ag, Al, Cr, Ni, Mo, Pt, Pd, Ti, Ta, W, Zr, V, Nb or In or an alloy thereof was formed.
  • the conventional barrier layer has a problem in that it is difficult to drive the thermoelectric module stably due to low adhesion to the bonding layer.
  • Cu having a relatively high CTE value is further included in the Mo—Ti alloy having excellent high temperature stability and diffusion preventing properties in consideration of CTE among various factors affecting adhesion to the thermoelectric material.
  • a barrier layer between the thermoelectric element and the bonding layer using a -Mo-Ti alloy it is possible to prevent thermal diffusion of the bonding layer material and to prevent oxidation and deformation under the high temperature environment of the thermoelectric element.
  • By exhibiting excellent adhesion it is possible to improve the driving stability of the thermoelectric models.
  • thermoelectric according to the embodiment of the present invention
  • thermoelectric elements including thermoelectric semiconductors
  • thermoelectric elements An electrode for connecting between the plurality of thermoelectric elements
  • thermoelectric element Located between each thermoelectric element and the electrode, including a bonding layer for bonding the thermoelectric element and the electrode,
  • thermoelectric element Located between the thermoelectric element and the bonding layer, Cu— Mo-Ti alloy It further comprises a barrier layer comprising.
  • the Cu-Mo-Ti alloy in the barrier layer may specifically contain 1 to 50 atomic percent Cu based on the total atomic weight of metal elements in the alloy.
  • the CTE improvement can exhibit excellent adhesion to the thermoelectric device, without fear of deterioration of the barrier layer due to the relative content decrease of the Mo and Ti metals and reduction of durability.
  • Cu may be contained in an amount of 10 to 50 atom%, and more specifically 10 to 25 atom%, or more than 25 atom% to 50 atom% or less.
  • Mo-Ti alloy exhibits excellent high temperature stability and diffusion preventing properties, and specifically, changes in the 3001 ⁇ 100 hours durability test when applied as a barrier layer of a Bi-Te-based thermoelectric material. And no change after 5 (xrc, 72 hours endurance test) even when applied as a barrier layer of Co-Sl ⁇ l thermoelectric material.
  • the Cu-Mo—Ti alloy contains Mo and Ti from 1: 9 to It may be included in an atomic ratio of 9: 1. When Mo and Ti in the alloy are included in the above atomic ratio range, it may exhibit excellent high temperature stability and diffusion preventing properties and durability. 5: 1 to 3: 7, even more specifically may be included in an atomic ratio of 4: 1 to 1: 1.
  • the thickness of the barrier layer including the Cu—Mo—Ti alloy may be 100 nm or more.
  • the thickness of the barrier layer is within the above range, oxidation of the thermoelectric element can be effectively suppressed, and the film stress due to the difference in thermal expansion coefficient between the thermoelectric material and the adhesive layer can be alleviated to prevent membrane separation.
  • the thickness of the barrier layer may be more specifically 150 nm to 500 nm.
  • thermoelectric elements are classified into p-type thermoelectric elements and n-type thermoelectric elements according to their roles, and a pair of p-n thermoelectric elements alternately positioned is a basic unit.
  • the thermoelectric element includes a thermoelectric semiconductor.
  • the type of the thermoelectric semiconductor is not particularly limited, and specifically, the Bi-Te-based, skutterrudite-based, silicide-based, half-whistler-based, Co-Sb-based, PbTe-based, Si-based, or SiGe-based thermoelectrics Semiconductor etc. can be mentioned.
  • the Bi-Te-based thermoelectric semiconductor the difference in CTE with the Cu-Mo-Ti-based alloy is not large, and thus, excellent adhesion characteristics can be exhibited.
  • the electrode is for electrically connecting the thermoelectric elements between the plurality of thermoelectric elements, specifically, the p-type thermoelectric element and the n-type thermoelectric element in series.
  • the conductive material is not particularly limited, and specific examples thereof include copper (Cu), copper-molybdenum (Cu-Mo), silver (Ag), gold (Au), or platinum (Pt). Either one or more combinations may be used.
  • the electrode may include copper having high electrical conductivity and thermal conductivity.
  • thermoelectric modems according to the exemplary embodiment of the present invention, a bonding layer for bonding the thermoelectric element and the electrode is disposed between the thermoelectric elements and the electrode.
  • the bonding layer is composed mainly of solder, specifically lead and tin.
  • Pb (i- a) may contain a solder of Sn a (0 ⁇ a ⁇ 0.4), or may be nickel (Ni), copper (Cu), iron (Fe), silver (Ag) or tin (Sn) Metal powders, or intermetallic compounds thereof.
  • a barrier layer as described above is positioned between the bonding layer and the thermoelectric element.
  • the bonding layer contains a solder component
  • the solder bonding layer is used to improve adhesion between the barrier layer and the bonding layer. This may be further formed.
  • the solder joint layer includes metal powder such as nickel (Ni), copper (Cu), aluminum (A1), crumb (Cr), iron (Fe), silver (Ag), gold (Au) or tin (Sn). can do.
  • the solder bonding layer may have a thickness of 1 to 200 m.
  • the step of forming a barrier layer containing a Cu-Mo-Ti alloy on at least one surface of the thermoelectric element (step 1); After placing the metal layer for forming a bonding layer on the barrier layer, it may be prepared by a manufacturing method comprising the step (step 2) of bonding with the electrode. Accordingly, according to another embodiment of the present invention, there is provided a method of manufacturing the above-described thermal hairs. Specifically, the method for the preparation of the "thermoelectric module 1 is a step of forming the barrier layer to the thermoelectric device.
  • the barrier layer forming step may be a physical vapor vapour deposition method such as sputtering, evaporat ion, or ion plating using Cu, Mo, Ti, or an alloy thereof. depos it ion mode; Plated; Or by forming an alloy layer of Cu-Mo-Ti on one surface or both upper and lower surfaces of the thermoelectric element by sintering or the like.
  • ion plating or sputtering is more preferable because the barrier layer can be closely adhered to the thermoelectric material with high strength, and is carried out in a closed reaction system such as a vacuum chamber, so that the peel strength is not reduced due to oxidation or contamination between layers. can do.
  • Conditions in the barrier layer forming process may be appropriately controlled to satisfy the Cu-Mo-Ti alloy composition and barrier layer thickness conditions as described above.
  • thermoelectric element is the same as described above. However, the thermoelectric element may be pretreated to control the oxide film and impurities formed on the surface of the barrier layer.
  • the pretreatment may be specifically carried out by surface sputtering with argon ions.
  • thermoelectrics according to the present invention further include a solder bonding layer between the barrier layer and the bonding layer
  • the method may further include forming a solder bonding layer on the barrier layer after the barrier layer is formed.
  • the solder bonding layer is ion plated with a metal powder such as nickel (Ni), copper (Cu aluminum (A1), crumb (Cr), iron (Fe), silver (Ag), gold (Au) or tin (Sn).
  • a metal powder such as nickel (Ni), copper (Cu aluminum (A1), crumb (Cr), iron (Fe), silver (Ag), gold (Au) or tin (Sn).
  • the process may be performed continuously with the barrier layer forming process
  • step 2 for manufacturing the thermoelectric elements may be performed using a thermoelectric element having a barrier layer formed thereon. A step of bonding the electrodes through the bonding layer.
  • bonding layer formation for bonding the thermoelectric element and the electrode may be performed by applying a bonding layer forming metal paste on the barrier layer, placing the electrode thereon, and soldering or sintering the electrode.
  • a bonding layer forming metal paste such as Sn-based solder paste or Pb-based solder paste It may be formed by soldering method in which a solder paste is used to melt and bond a metal, and at least one metal powder such as nickel (Ni), copper (Cu), iron (Fe), silver (Ag), or tin (Sn) May be formed by selectively sintering a bonding layer forming metal paste prepared by mixing with a binder, a dispersant, and a solvent between the thermoelectric element and the electrode.
  • thermoelectrics manufactured according to the above-described manufacturing process include a barrier layer having excellent thermal and electrical properties between the thermoelectric element and the bonding layer, thereby preventing thermal diffusion of the bonding layer material, and oxidizing and Deformation is prevented and the excellent adhesion to the thermoelectric element can result in improved driving stability. Accordingly, it can be applied to a thermoelectric cooling system or a thermoelectric power generation system in various fields and applications.
  • the invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
  • a barrier layer of Cu—Mo—Ti alloy was deposited on a thermoelectric element including a Bi ⁇ Ti-based thermoelectric semiconductor by sputtering (barrier layer thickness: 350 nm, Cu-Mo-Ti alloy composition: Cu 12.5 Atomic% , Mo 70 atomic% , Ti 17.5 atomic%).
  • thermoelectric device on which the barrier layer was formed was cut into a size of 3 x 3mm 2 , a die was fabricated, and then thermocouples were prepared by lead bonding to an Au plate Cu substrate.
  • thermoelectric substrate size of the manufactured thermoelectric substrate was 30 * 30mm
  • low temperature substrate size was 30 * 32mm
  • device size was 3 * 3 * 2 ⁇ and 32 pai rs.
  • Example 3 Except for changing the thickness of the barrier layer to 160nm in Example 1 was carried out in the same manner as in Example 1 to prepare a thermoelectric.
  • Example 3 Except for changing the thickness of the barrier layer to 160nm in Example 1 was carried out in the same manner as in Example 1 to prepare a thermoelectric.
  • Example 4 Except for forming a barrier layer using a Cu—Mo—Ti alloy containing 25 atomic% Cu and 32 atomic% Cu in place of Cu—Mo—Ti alloy in Example 2, Thermal hairs were prepared in the same manner as in Example 2.
  • Example 4 Except for forming a barrier layer using a Cu—Mo—Ti alloy containing 25 atomic% Cu and 32 atomic% Cu in place of Cu—Mo—Ti alloy in Example 2, Thermal hairs were prepared in the same manner as in Example 2.
  • Mo—Ti alloy Mo 55 atoms, Ti 45 atoms «except that the alloy is used in the same manner as in Example 1 above Mo- Thermo-electrons having a Ti alloy-containing barrier layer (barrier layer thickness: 160 nm) were prepared.
  • the Bi-Ti-based thermoelectric material in which the barrier layers were formed in Examples 1 and 2 was cut into 3 ⁇ 3 mm 2 sizes to fabricate dies, and lead samples were prepared by lead bonding to Au plate Cu substrates. At this time, the Mo- Ti barrier layer-forming Bi-Ti-based thermoelectric material in Comparative Example 1 was used for comparison.
  • the DSS measurement measured the force pushed by the t ip when it was removed from the board while the t ip was fixed at the position of 100 ⁇ from the board after being fixed to the board holder. The results are shown in Table 1 below.
  • Example 2 As a result of the experiment, Examples 1 and 2 including Cu—Mo—Ti alloy barrier layer containing Cu showed excellent adhesion, and in particular, Example 2, instead of the same thickness or Cu-Mo-Ti alloy, Compared to Comparative Example 1, which includes a barrier layer of Ti alloy, the adhesion was markedly increased. Test Example 2
  • Examples 1, 3, and 4 including a barrier layer further including Cu in a Ti alloy showed higher CTE than Comparative Example 1, and the content of Cu contained in the Mo-Ti alloy was higher. As the increase, CTE tended to increase greatly. From these results, it can be seen that the adhesion of the barrier layer to the thermoelectric element can be further improved by adding Cu and optimizing the content thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명에서는 열전 반도체를 포함하는 복수의 열전 소자, 상기 복수의 열전 소자 사이를 연결하기 위한 전극, 및 상기 각 열전 소자와 전극을 접합하기 위한 접합층을 포함하는 열전 모듈에 있어서, 상기 열전 소자와 접합층 사이에 Cu-Mo-Ti 합금을 포함하는 배리어층을 더 포함함으로써, 접합층 재료의 열 확산이 방지되고, 열전 소자의 고온환경 하에서의 산화 및 변형이 방지되며, 또 열전 소자에 대한 우수한 부착력으로 개선된 구동 안정성을 나타낼 수 있는 열전 모듈이 제공된다.

Description

【발명의 명칭】
열전 모들
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2017년 3월 30일자 한국 특허 출원 제 10-2017— 0040553호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 접합층 재료의 열 확산이 방지되고, 열전 소자의 고온환경 하에서의 산화 및 변형이 방지되며, 또 열전 소자에 대한 우수한 부착력으로 개선된 구동 안정성을 나타낼 수 있는 열전 모듈에 관한 것이다. 【발명의 배경이 되는 기술】
' 고체 상태인 재료의 양단에 온도차가 있으면 열 의존성을 갖는 캐리어 (전자 혹은 홀)의 농도 차이가 발생하고 이것은 열전기력이라는 전기적인 현상, 즉 열전 현상으로 나타난다. 이와 같이 열전 현상은 온도의 차이와 전기 전압 사이의 가역적이고도 직접적인 에너지 변환을 의미한다. 이러한 열전 현상은 전기적 에너지를 생산하는 열전 발전과, 반대로 전기 공급에 의해 양단의 온도차를 유발하는 열전 냉각 /가열로 구분할 수 있다. 열전 현상을 보이는 열전 재료, 즉 열전 반도체는 발전과 냉각 과정에서 친환경적이고 지속가능한 장점이 있어서 많은 연구가 이루어지고 있다. 더욱이, 산업 폐열, 자동차 폐열 등에서 직접 전력을 생산해낼 수 있어 연비 향상이나 co2 감축 등에 유용한 기술로서', 열전 재료에 대한 관심은 더욱 높아지고 있다.
열전 모들은, 홀이 이동하여 열에너지를 이동시키는 p형 열전소자 (thermoelectr ic element : TE)와 전자가 이동하여 열에너지를 이동시키는 n형 열전소자로 이루어진 p-n 열전소자 1쌍이 기본 단위가 될 수 있다. 또한, 이러한 열전 모들은 p형 열전 소자와 n형 열전 소자 사이를 연결하는 전극을 구비할 수 있다.
온도차를 이용하여 전기를 발생하는 열전 변환 소자의 모들은 높은 열전 효율을 얻기 위해 고온부와 저온부의 온도차가 큰 환경에서 사용된다. 일반적으로 사용되는 Bi-Te계 열전 재료를 이용한 열전 변환소자는 대략 200~300°C의 온도 영역에서 사용하며, Co-Sb계 열전 재료를 이용한 열전 변환소자는 대략 500~600°C의 온도 영역에서 구동된다. 이와 같이 높은 온도에서 사용되기 때문에 열전 소자와 전극을 접합하는 접합층 재료의 열 확산이나, 열전 소자의 산화 및 변형의 문제가 발생한다.
이에, 접합층 재료의 열 확산이 방지되고, 열전 소자의 고온환경 하에서의 산화 및 변형이 방지되며, 또 열전 소자에 대한 우수한 부착력으로 고온에서도 열전 모들이 안정적으로 구동될 수 있도록 우수한 열적, 전기적 특성을 갖는 새로운 소재에 대한 개발이 필요하다.
【발명의 내용】
【해결하고자 하는 과제】
본 발명은 접합층 재료의 열 확산이 방지되고, 열전 소자의 고온환경 하에서의 산화 및 변형이 방지되며, 또 열전 소자에 대한 우수한 부착력으로 개선된 구동 안정성을 나타낼 수 있는 열전 모들 및 그 제조방법을 제공하기 위한 것이다.
【과제의 해결 수단】
본 발명의 일 구현예에 따르면,
열전 반도체를 포함하는 복수의 열전 소자;
ᅳ 상기 복수의 열전 소자 사이를 연결하기 위한 전극; 및
상기 각 열전 소자와 전극 사이에 위치하며, 열전 소자와 전극을 접합하기 위한 접합층을 포함하고 ,
상기 열전 소자와 접합층 사이에 위치하며, Cu-Mo— Ti 합금을 포함하는 배리어층을 더 포함하는 열전 모들을 제공한다.
상기 열전모들에 있어서, 상기 Cu-Mo-Ti 합금은 금속원자 총 함량에 Cu를 1 내지 50원자 %로 포함할 수 있다.
또, 상기 Cu-Mo— Ti 합금은 Mo와 Ti를 1 :9 내지 9 : 1의 원자비로 포함할 수 있다.
또, 상기 열전모들에 있어서, 상기 배리어층의 두께는 lOOnm 내지 200 일 수 있다.
또, 상기 열전모들에 있어서, 상기 열전 반도체는 Bi-Te계, 스쿠테루다이트계, 실리사이드계, 하프휘슬러계, Co-Sb계, PbTe계, Si계 및 SiGe계 열전 반도체로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
또, 상기 열전모들에 있어서 , 상기 접합층은 땜납을 포함할 수 있다. 또 본 발명의 다른 일 구현예에 따르면, 열전 소자의 적어도 일면에, Cu-Mo-Ti 합금을 포함하는 배리어층을 각각 형성하는 단계; 및 상기 배리어층 상에 각각 접합층 형성용 금속 페이스트를 위치시킨 후, 전극과 접합하는 단계를 포함하는 열전모들의 제조방법이 제공된다.
상기 제조방법에 있어서, 상기 배리어층 형성은 스퍼터링 증착, 이온플레이팅, 도금, 또는 소결에 의해 수행될 수 있다.
또, 상기 접합은 상기 접합은 솔더링 또는 소결에 의해 수행될 수 있다.
【발명의 효과】
본 발명에 따르면 열전 소자와 접합층 사이에 우수한 열적, 전기적 특성을 갖는 배리어층을 포함함으로써, 접합층 재료의 열 확산이 방지되고, 열전 소자의 고온환경 하에서의 산화 및 변형이 방지되며, 또 열전 소자에 대한 우수한 부착력으로 개선된 구동 안정성을 나타낼 수 있는 열전 모듈이 제공될 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1, 3, 4 및 비교예 1에서의 배리어층에 대한 열팽창 계수 (CTE)를 관찰한 그래프이다.
【발명을 실시하기 위한 구체적인 내용】
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다' 'ᅳ 구비하다'' 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한 본 발명에 있어서, 각 층 또는 요소가 각 층들 또는 요소들의 "상에 " 또는 "위에 " 형성되는 것으로 언급되는 경우에는 각 층 또는 요소가 직접 각 층들 또는 요소들의 위에 형성되는 것을 의미하거나, 다른 층 또는 요소가 각 층 사이, 대상체, 기재 상에 추가적으로 형성될 수 있음을 의미한다 .
발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균둥물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하 발명의 구체적인 구현예에 따른 열전 모들 및 그 제조방법에 관하여 보다 상세하게 설명하기로 한다 .
종래 열전 소자에서는 접합층 재료의 열 확산과 열전 소자의 고온 환경 하에서의 산화 및 변형을 방지하기 위해, 열전 소자와 접합층 사이에
Ag, Al , Cr , Ni , Mo , Pt , Pd, Ti, Ta, W, Zr , V, Nb 또는 In 등과 같은 금속 또는 이들의 합금을 포함하는 배리어층을 형성하였다. 그러나, 종래의 배리어층은 접합층과의 부착력이 낮아 열전 모듈의 안정적 구동이 어려운 문제가 있다.
이에 대해 본 발명에서는 열전 소재와의 부착에 영향을 미치는 여러 요인 중 CTE를 고려하여, 상대적으로 높은 CTE 값을 갖는 Cu를, 고온 안정성 및 확산 방지 특성이 우수한 Mo— Ti 합금에 대해 더 포함시킨 Cu-Mo- Ti 합금을 이용하여 열전 소자와 접합층 사이에 배리어층을 형성함으로써, 접합층 재료의 열 확산을 방지하고 열전 소자의 고온환경 하에서의 산화 및 변형을 방지할 수 있으며, 또 열전 소자에 대해 우수한 부착력을 나타냄으로써, 열전 모들의 구동 안정성을 개선시킬 수 있다.
즉 본 발명의 일 구현예에 따른 열전 모들은,
열전 반도체를 포함하는 복수의 열전 소자;
상기 복수의 열전 소자 사이를 연결하기 위한 전극; 및
상기 각 열전 소자와 전극 사이에 위치하며, 열전 소자와 전극을 접합하기 위한 접합층을 포함하고,
상기 열전 소자와 접합층 사이에 위치하며, Cu— Mo-Ti 합금을 포함하는 배리어층을 더 포함한다.
.상기 배리어층에 있어서의 Cu-Mo-Ti 합금은, 구체적으로, 합금 내 금속원소 총 원자량에 대하여 Cu를 1 내지 50원자 %로 포함할 수 있다. Cu의 함량이 상기한 범위 내일 때, Mo 및 Ti 금속의 상대적인 함량 감소로 인한 배리어층의 확산 방지 특성 및 내구성 저하의 우려없이, CTE 향상으로, 열전 소자에 대해 우수한 부착력을 나타낼 수 있다. 보다 구체적으로는 Cu를 10 내지 50원자 %로, 보다 더 구체적으로는 10 내지 25 원자 %, 혹은 25원자 % 초과 내지 50원자 % 이하의 함량으로 포함할 수 있다.
또, 상기 Cu— Mo-Ti 합금에 있어서, Mo— Ti합금은 우수한 고온안정성 및 확산 방지특성을 나타내는 것으로, 구체적으로 Bi-Te계 열전 소재의 배리어층으로 적용시 3001^ 100시간 내구 실험에서도 변화가 없고, Co- Sl^l 열전소재의 배리어층으로 적용시에도 5(xrc , 72시간 내구 시험 후에도 변화가 없다. 본 발명에 있어서, Cu-Mo— Ti 합금은 Mo와 Ti를 1 : 9 내지 9 : 1의 원자비로 포함할 수 있다. 합금내 Mo와 Ti가 상기한 원자비 범위로 포함될 경우, 우수한 고온 안정성과 함께 확산 방지 특성 및 내구성을 나타낼 수 있다. 보다 구체적으로는 Mo와 Ti를 5 : 1 내지 3 : 7 , 보다 더 구체적으로는 4: 1 내지 1 : 1의 원자비로 포함할 수 있다.
또, 상기한 Cu— Mo-Ti 합금을 포함하는 배리어층의 두께는 lOOnm 내지 일 수 있다. 배리어층의 두께가 상기한 범위 내일 때 열전 소자의 산화를 효과적으로 억제할 수 있고, 또 열전소재와 접착층의 열팽창 계수 차이로 인한 막 응력을 완화하여 막 분리를 방지할 수 있다. 상기와 같은 배리어층내 합금 물질의 사용 및 이와 조합한 두께 제어를 통한 개선 효과의 현저함을 고려할 때 배리어층의 두께는 보다 구체적으로 150nm 내지 100떼 보다 더 구체적으로는 150nm 내지 500nm일 수 있다.
한편, 본 발명의 일 구현예에 따른 열전 모들에 있어서, 열전 소자는 그 역할에 따라 p형 열전 소자와 n형 열전 소자로 구분되며, 교대로 위치하는 p-n 열전 소자 1쌍이 기본 단위가 된다.
상기 열전 소자는 열전 반도체를 포함한다. 상기 열전 반도체의 종류는 특별히 제한되지 않으며, 구체적으로는 Bi-Te계, 스쿠테루다이트계, 실리사이드계, 하프휘슬러계, Co-Sb계, PbTe계, Si계 또는 SiGe계 열전 반도체 등을 들 수 있다. 이중에서도 Bi-Te계 열전 반도체일 경우, 상기한 Cu-Mo-Ti계 합금과의 CTE 차이가 크지 않아서 보다 우수한 접착특성을 나타낼 수 있다.
또, 본 발명의 일 구현예에 따른 열전 모듈에 있어서, 전극은 상기한 복수의 열전 소자 사이, 구체적으로는 p형 열전 소자와 n형 열전 소자 사이를 전기적으로 직렬로 연결하기 위한 것으로, 열전 소자의 상면 및 하면에 각각 위치하며, 전도성 재료를 포함할 수 있다. 상기 전도성 재료는 특별히 제한되지 않으며, 구체적으로는 구리 (Cu), 구리 -몰리브데늄 (Cu-Mo), 은 (Ag), 금 (Au) 또는 백금 (Pt) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 흔합물이 사용될 수 있다. 이중에서도 상기 전극은 전기 전도성 및 열전도성이 높은 구리를 포함할 수 있다.
또, 본 발명의 일 구현예에 따른 열전 모들에 있어서, 상기 각 열전 소자와 전극 사이에는 열전 소자와 전극을 접합하기 위한 접합층이 위치한다.
상기 접합층은 땜납, 구체적으로는 납 및 주석을 주성분으로 하는
Pb(i-a)Sna (0<a≤0.4)의 땜납을 포함할 수도 있고, 또는 니켈 (Ni), 구리 (Cu), 철 (Fe), 은 (Ag) 또는 주석 (Sn) 등의 금속 분말, 또는 이들의 금속간 화합물 (intermetallic compound)을 포함할 수 있다.
상기 접합층 상에는 접합층과 열전 소자사이에는, 앞서 설명한 바와 같은 배리어층이 위치하게 되는데, 상기 접합층이 땜납 성분을 포함하는 경우, 상기 배리어층과 접합층 간의 접착성을 향상시키기 위하여 솔더접합층이 더 형성될 수도 있다. 상기 솔더접합층은 니켈 (Ni), 구리 (Cu), 알루미늄 (A1), 크름 (Cr), 철 (Fe), 은 (Ag), 금 (Au) 또는 주석 (Sn) 등의 금속 분말을 포함할 수 있다. 상기 솔더접합층의 두께는 1 내지 200 m일 수 있다. 상기와 같은 구조를 갖는 본 발명의 일 구현예에 따른 열전 모들은, 열전 소자의 적어도 일면에, Cu-Mo-Ti 합금을 포함하는 배리어층을 형성하는 단계 (단계 1); 상기 배리어층 상에 접합층 형성용 금속 페이스트를 위치시킨 후, 전극과 접합하는 단계 (단계 2)를 포함하는 제조방법에 의해 제조될 수 있다. 이에 따라 본 발명의 또 다른 일 구현예에 따르면 상기한 열전모들의 제조방법이 제공된다. 구체적으로, 상기 '열전모듈의 제조를 위한 단계 1은 열전 소자에 대한 배리어층의 형성 단계이다.
상기 배리어층 형성 단계는 Cu , Mo , Ti 또는 이들의 합금을 이용하여 스퍼터링 (sput ter ing) , 증착 (evaporat ion), 또는 이온플레이팅 ( ion plat ing) 등과 같은 증착 방식인 PVD (phys ical vaper depos i t ion) 방식; 도금; 또는 소결 등의 방식에 의해 열전 소자의 일면 또는 상 /하 양면에 각각 Cu-Mo-Ti의 합금층을 형성함으로써 수행될 수 있다. 이중에서도 높은 강도로 열전 재료에 배리어층을 밀착 형성할 수 있고, 또 진공 챔버와 같은 닫힌 반응계에서 수행되므로 층간의 산화 또는 오염으로 인한 박리강도의 저하의 우려가 없는 이온플레이팅 또는 스퍼터링이 보다 바람직할 수 있다. 또. 상기 배리어층 형성 공정시 조건은 앞서 설명한 바와 같은 Cu- Mo-Ti합금 조성 및 배리어층 두께 조건을 층족하도록 적절히 제어될 수 있다.
상기 열전 소자는 앞서 설명한 바와 동일하다. 다만, 상기 열전 소자는 상기 배리어층 형성에 표면에 형성된 산화막 및 불순물 제어를 위한 전처리가 수행될 수도 있다. 상기 전처리는 구체적으로 아르곤 이온에 의해 표면 스퍼터링함으로써 수행될 수 있다 .
또, 본 발명에 따른 열전모들이 배리어층과 접합층 사이에 솔더접합층을 더 포함하는 경우, 상기 배리어층 형성 후 배리어층 상에 솔더접합층을 형성하는 공정을 더 포함할 수 있다 .
상기 솔더접합층은 니켈 (Ni ) , 구리 (Cu 알루미늄 (A1 ) , 크름 (Cr ) , 철 (Fe) , 은 (Ag) , 금 (Au) 또는 주석 (Sn) 등의 금속 분말을 이온 플레이팅 또는 스퍼터링 함으로써 형성될 수 있다. 이온플레이팅 또는 스퍼터링 공정을 이용할 경우 상기 배리어층 형성 공정과 연속하여 수행할 수 있다. 다음으로, 상기 열전모들의 제조를 위한 단계 2는 배리어층이 형성된 열전 소자와 전극을 접합층올 개재하여 접합시키는 단계이다.
구체적으로 상기 열전 소자와 전극의 접합을 위한 접합층 형성은, 상기 배리어층 상에 접합층 형성용 금속 페이스트를 도포하고, 그 위에 전극을 위치시킨 후 솔더링 (solder ing) 또는 소결함으로써 수행될 수 있다. 보다 구체적으로는 Sn계 솔더 페이스트나 Pb계 솔더 페이스트 등과 같은 솔더 페이스트를 사용하여 금속을 용융시켜 접합하는 솔더링 방식으로 형성될 수도 았고, 니켈 (Ni ) , 구리 (Cu) , 철 (Fe) , 은 (Ag) 또는 주석 (Sn) 등의 1종 이상의 금속 분말을 선택적으로 바인더, 분산제, 및 용제와 흔합하여 제조한 접합층 형성용 금속 페이스트를 열전 소자와 전극 사이에 위치시킨 후 소결시킴으로써 형성될 수도 있다.
상기한 제조공정에 따라 제조된 열전모들은, 열전 소자와 접합층 사이에 우수한 열적, 전기적 특성을 갖는 배리어층을 포함함으로써, 접합층 재료의 열 확산이 방지되고, 열전 소자의 고온환경 하에서의 산화 및 변형이 방지되며, 또 열전 소자에 대한 우수한 부착력으로 개선된 구동 안정성을 나타낼 수 있다. 이에 따라 다양한 분야 및 용도에서, 열전 냉각 시스템 또는 열전 발전 시스템 등으로 적용될 수 있다. 발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
실시예 1
Bi一 Ti계 열전 반도체를 포함하는 열전 소자 위에 스퍼터링 (sput ter ing) 방식을 통해 Cu-Mo— Ti 합금의 배리어층을 증착하였다 (배리어층 두께: 350nm , Cu-Mo-Ti 합금 조성: Cu 12.5원자 %, Mo 70원자 %, Ti 17.5원자%) .
배리어층이 형성된 열전 소자를 3 x 3mm2 크기로 잘라 die를 제작한 후, Au pl ate Cu기판에 Lead 접합하여 열전 모들을 제조하였다.
이때, 제조된 열전 모들의 고온부 기판 크기가 30*30mm , 저온부 기판 크기가 30*32mm , 소자 크기가 3*3*2瞧이었으며, 32 pai rs 였다. 실시예 2
상기 실시예 1에서 배리어층의 두께를 160nm로 변경한 것을 제외하고는 상기 실시예 1서와 동일한 방법으로 수행하여 열전모들을 제조하였다. 실시예 3
상기 실시예 2에서의 Cu— Mo-Ti 합금 대신에 Cu 25원자 Mo 43원자 % 및 Ti 32원자 %로 포함하는 Cu-Mo-Ti 합금을 이용하여 배리어층을 형성하는 것을 제외하고는, 상기 실시예 2에서와 동일한 방법으로 수행하여 열전모들을 제조하였다. 실시예 4
상기 실시예 2에서의 Cu-Mo-Ti 합금 대신에 Cu 50원자 %, Mo
33.3원자 % 및 Ti 16.7원자%로 포함하는 Cu-Mo-Ti 합금을 이용하여 배리어층을 형성하는 것을 제외하고는, 상기 실시예 2에서와 동일한 방법으로 수행하여 열전모들을 제조하였다. ᅳ 비교예 1
상기 실시예 1에서의 Cu-Mo-Ti 합금 대신에 , Mo— Ti 합금 (Mo 55원자 %, Ti 45원자 « 합금을 사용하는 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 수행하여 Mo-Ti 합금 포함 배리어층 (배리어층 두께: 160nm)을 갖는 열전모들을 제조하였다. 시험예 1
부착력 평가를 위해 DSSO e shear strength) 평가를 진행하였다. 상기 실시예 1 및 2에서의 배리어층이 형성된 Bi-Ti계 열전 소재를 3 X 3mm2 크기로 잘라 die를 각각 제작한 후, Au plate Cu기판에 Lead 접합하여 시료를 준비하였다. 이때 비교를 위하여 상기 비교예 1에서의 Mo- Ti 배리어층 형성 Bi-Ti계 열전 소재를 사용하였다.
DSS 측정은 기판 holder에 기판을 고정한 후, 기판으로부터 100卿 위치에 t ip을 고정하고, die를 밀어내면서 기판에서 떨어질 때 t ip이 밀어주는 힘을 측정하였다. 그 결과를 하기 표 1에 나타내었다.
【표 1】
Figure imgf000011_0001
실험결과, Cu가 포함된 Cu— Mo-Ti 합금계 배리어층을 포함하는 실시예 1및 2는 우수한 부착력을 나타내었으며, 특히 실시예 2는, 동일한 두께이나 Cu-Mo-Ti 합금 대신에 Mo-Ti 합금의 배리어층을 포함하는 비교예 1과 비교하여 현저히 증가된 부착력을 나타내었다. 시험예 2
실시예 1, 3, 4, 및 비교예 1를 이용하여 Mo-Ti합금에 포함되는 Cu 함량에 따른 열팽창 계수 (Coef f icient of Thermal Expansion, CTE)의 변화를 관찰하였다. 그 결과를 도 1에 나타내었다.
도 1에 나타난 바와 같이, M으 Ti 합금내 Cu를 더 포함하는 배리어층 포함 실시예 1, 3 및 4는 비교예 1에 비해 높은 CTE를 나타내었으며, Mo-Ti 합금내 포함되는 Cu의 함량이 증가할수록 CTE 가 크게 증가하는 경향을 나타내었다. 이와 같은 결과로부터 Cu의 추가 및 그 함량 최적화를 통해 보다 배리어층의 열전 소자에 대한 부착력을 더욱 향상시킬 수 있음을 알 수 있다.

Claims

【청구범위】
【청구항 1】
열전 반도체를 포함하는 복수의 열전 소자;
상기 복수의 열전 소자 사이를 연결하기 위한 전극; 및
상기 각 열전 소자와 전극 사이에 위치하며, 열전 소자와 전극을 접합하기 위한 접합층을 포함하고,
상기 열전 소자와 접합층 사이에 위치하며, Cu-Mo— Ti 합금을 포함하는 배리어층을 더 포함하는 열전모들.
【청구항 2】
제 1항에 있어서,
상기 Cu-Mo-Ti 합금은 금속원자 총 함량에 대하여 Cu를 1 내지 50원자 %로 포함하는, 열전모들.
[청구항 3】
제 1항에 있어서,
상기 Cu-Mo-Ti 합금은 Mo와 Ti를 1 :9 내지 9 : 1의 원자비로 포함하는, 열전모들.
【청구항 4】
제 1항에 있어서,
상기 배리어층의 두께는 lOOnm 내지 200 인, 열전모들.
【청구항 5】
제 1항에 있어서,
상기 열전 반도체는 Bi-Te계, 스쿠테루다이트계, 실리사이드계, 하프휘슬러계, C으 Sb계, PbTe계, Si계 및 SiGe계 열전 반도체로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는, 열전 모들.
【청구항 6】 제 1항에 있어서,
상기 접합층은 땜납을 포함하는, 열전 모들.
【청구항 7]
열전 소자의 적어도 일면에, Cu-Mo— Ti 합금을 포함하는 배리어층을 형성하는 단계; 및
상기 배리어층 상에 접합층 형성용 금속 페이스트를 위치시킨 후, 전극과 접합하는 단계를 포함하는 열전모들의 제조방법.
【청구항 8]
제 7항에 있어서,
상기 배리어층 형성은 스퍼터링, 증착, 이온플레이팅, 도금, 또는 소결에 의해 수행되는, 열전모듈의 제조방법.
【청구항 91
제 7항에 있어서,
상기 접합은 솔
제조방법.
PCT/KR2017/015484 2017-03-30 2017-12-26 열전 모듈 WO2018182139A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019541454A JP6820084B2 (ja) 2017-03-30 2017-12-26 熱電モジュール
US16/474,266 US11309477B2 (en) 2017-03-30 2017-12-26 Thermoelectric module
EP17902881.6A EP3553838B1 (en) 2017-03-30 2017-12-26 Thermoelectric module
CN201780083363.8A CN110178234B (zh) 2017-03-30 2017-12-26 热电模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170040553A KR102125051B1 (ko) 2017-03-30 2017-03-30 열전 모듈
KR10-2017-0040553 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018182139A1 true WO2018182139A1 (ko) 2018-10-04

Family

ID=63676574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015484 WO2018182139A1 (ko) 2017-03-30 2017-12-26 열전 모듈

Country Status (6)

Country Link
US (1) US11309477B2 (ko)
EP (1) EP3553838B1 (ko)
JP (1) JP6820084B2 (ko)
KR (1) KR102125051B1 (ko)
CN (1) CN110178234B (ko)
WO (1) WO2018182139A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102607281B1 (ko) * 2019-07-26 2023-11-27 주식회사 엘지화학 열전 모듈
KR102614366B1 (ko) * 2019-07-26 2023-12-14 주식회사 엘지화학 열전 모듈
CN110635020B (zh) * 2019-08-30 2021-05-25 中国科学院物理研究所 一种镁锑基热电元件及其制备方法和应用
CN111014929B (zh) * 2019-12-28 2021-04-20 哈尔滨工业大学 一种用于方钴矿热电材料与电极的快速扩散焊连接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028462A (ja) * 1999-07-13 2001-01-30 Yamaha Corp 熱電素子及び熱電素子の製造方法
US20060118159A1 (en) * 2004-10-29 2006-06-08 Kabushiki Kaisha Toshiba Thermoelectric direct conversion device
JP2014086623A (ja) * 2012-10-25 2014-05-12 Furukawa Co Ltd 熱電変換モジュール
US20140305482A1 (en) * 2013-04-10 2014-10-16 Hitachi Chemical Co., Ltd. Thermoelectric Module and Method of Manufacturing the Same
KR20160126558A (ko) * 2015-04-24 2016-11-02 한국세라믹기술원 그래핀-열전소재 복합체를 이용한 열전 모듈

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484960B2 (ja) 1997-12-22 2004-01-06 松下電工株式会社 熱電変換素子及び熱電変換素子の製造方法
US7074640B2 (en) * 2000-06-06 2006-07-11 Simon Fraser University Method of making barrier layers
JP2003092435A (ja) * 2001-09-17 2003-03-28 Komatsu Ltd 熱電モジュール及びその製造方法
US7321157B2 (en) * 2004-07-23 2008-01-22 Gm Global Technology Operations, Inc. CoSb3-based thermoelectric device fabrication method
JP4810652B2 (ja) 2004-10-18 2011-11-09 国立大学法人山口大学 熱電変換モジュール
JP2008010612A (ja) 2006-06-29 2008-01-17 Komatsu Ltd 熱電素子及びその製造方法、並びに、熱電モジュール
CN100524867C (zh) * 2007-08-10 2009-08-05 中国科学院上海硅酸盐研究所 一种锑化钴基热电器件的制造方法
WO2009079378A1 (en) * 2007-12-14 2009-06-25 Matthew Rubin Novel solid state thermovoltaic device for isothermal power generation and cooling
CN101447548B (zh) * 2008-12-26 2011-03-30 中国科学院上海硅酸盐研究所 热电器件的制作方法
CN101847686A (zh) 2009-03-26 2010-09-29 中国科学院上海硅酸盐研究所 热电器件、电极材料及其制作方法
US20120104346A1 (en) * 2010-10-29 2012-05-03 Wei Yi Semiconductor device for providing heat management
US8841540B2 (en) * 2011-08-03 2014-09-23 Marlow Industries, Inc. High temperature thermoelectrics
KR20140050390A (ko) * 2012-10-19 2014-04-29 삼성전자주식회사 열전모듈, 이를 구비한 열전장치, 및 열전모듈의 제조방법
US20140137917A1 (en) * 2012-11-19 2014-05-22 King Fahd University Of Petroleum And Minerals Thermoelectric module with bi-tapered thermoelectric pins
CN103311262B (zh) * 2013-06-09 2015-12-30 中国华能集团清洁能源技术研究院有限公司 微型热电器件、制作方法及包括其的温差发电机
JP6078438B2 (ja) 2013-08-30 2017-02-08 株式会社Kelk 熱電発電モジュール
CN103531704B (zh) * 2013-10-31 2020-01-21 中国科学院上海硅酸盐研究所 方钴矿热电单偶元件用电极与封装材料及一步法连接工艺
KR101673528B1 (ko) 2015-04-24 2016-11-21 이기호 건조 및 세척기능을 구비하는 그리스트랩
KR20170040663A (ko) 2015-10-05 2017-04-13 (주)대주기업 셔터용 슬랫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028462A (ja) * 1999-07-13 2001-01-30 Yamaha Corp 熱電素子及び熱電素子の製造方法
US20060118159A1 (en) * 2004-10-29 2006-06-08 Kabushiki Kaisha Toshiba Thermoelectric direct conversion device
JP2014086623A (ja) * 2012-10-25 2014-05-12 Furukawa Co Ltd 熱電変換モジュール
US20140305482A1 (en) * 2013-04-10 2014-10-16 Hitachi Chemical Co., Ltd. Thermoelectric Module and Method of Manufacturing the Same
KR20160126558A (ko) * 2015-04-24 2016-11-02 한국세라믹기술원 그래핀-열전소재 복합체를 이용한 열전 모듈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3553838A4 *

Also Published As

Publication number Publication date
US11309477B2 (en) 2022-04-19
EP3553838A1 (en) 2019-10-16
KR20180110795A (ko) 2018-10-11
KR102125051B1 (ko) 2020-06-19
EP3553838A4 (en) 2019-12-18
US20200127185A1 (en) 2020-04-23
JP2020510990A (ja) 2020-04-09
JP6820084B2 (ja) 2021-01-27
EP3553838B1 (en) 2020-08-05
CN110178234B (zh) 2023-02-07
CN110178234A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2018182139A1 (ko) 열전 모듈
CN105637662B (zh) 热电发电模块
KR101876947B1 (ko) 나노 구조의 벌크소재를 이용한 열전소자와 이를 포함하는 열전모듈 및 그의 제조 방법
WO2002023643A1 (fr) Element de conversion thermoelectrique
EP3218941B1 (en) Method for pre-processing semiconducting thermoelectric materials for metallization, interconnection and bonding
US9627600B2 (en) Mg—Si system thermoelectric conversion material, method for producing same, sintered body for thermoelectric conversion, thermoelectric conversion element, and thermoelectric conversion module
US20160190420A1 (en) Electrical and thermal contacts for bulk tetrahedrite material, and methods of making the same
KR101766197B1 (ko) 비정질 및 발열 접합재를 이용한 열전소자 및 그 제조방법
JP5780254B2 (ja) 熱電変換素子
Le et al. Research progress of interfacial design between thermoelectric materials and electrode materials
JP2013089719A (ja) 熱電変換素子
Li et al. Enhanced interfacial reliability and mechanical strength of CoSb3-based thermoelectric joints with rationally designed diffusion barrier materials of Ti-based alloys
Zhang et al. Enhanced contact performance and thermal tolerance of Ni/Bi2Te3 joints for Bi2Te3-based thermoelectric devices
CN103187519B (zh) 热电模块及其制造方法
KR102487993B1 (ko) 열전 모듈
WO2014010588A1 (ja) 熱電変換材料およびそれを用いた熱電変換モジュール並びに熱電変換材料の製造方法
JP2001217469A (ja) 熱電変換素子とその製造方法
Chen et al. Design of diffusion barrier and buffer layers for β-Zn4Sb3 mid-temperature thermoelectric modules
KR101944036B1 (ko) 열전소자, 열전소자의 제조 방법 및 초경재료 접합방법
EP3428980B1 (en) A thermoelectric module
RU2601243C1 (ru) Способ получения термоэлектрического элемента
KR102340798B1 (ko) 열전 소자 및 이를 포함하는 열전 모듈
Muthiah et al. High-Performance Functionalized Mg2Si0. 9Sn0. 1 Thermoelectric Leg Synthesis by a Single-Step Reactive SPS Process
CN110178235A (zh) 热电模块
US20230019266A1 (en) Thermoelectric module and a vehicle including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017902881

Country of ref document: EP

Effective date: 20190708

ENP Entry into the national phase

Ref document number: 2019541454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE