WO2018181116A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents

情報処理装置、情報処理方法およびプログラム Download PDF

Info

Publication number
WO2018181116A1
WO2018181116A1 PCT/JP2018/012014 JP2018012014W WO2018181116A1 WO 2018181116 A1 WO2018181116 A1 WO 2018181116A1 JP 2018012014 W JP2018012014 W JP 2018012014W WO 2018181116 A1 WO2018181116 A1 WO 2018181116A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
target device
statistical
state quantity
physical
Prior art date
Application number
PCT/JP2018/012014
Other languages
English (en)
French (fr)
Inventor
熊野 信太郎
真人 岸
圭介 山本
安部 克彦
Original Assignee
三菱重工業株式会社
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱日立パワーシステムズ株式会社 filed Critical 三菱重工業株式会社
Priority to DE112018001692.7T priority Critical patent/DE112018001692T5/de
Priority to US16/496,604 priority patent/US11378943B2/en
Priority to CN201880020861.2A priority patent/CN110520807B/zh
Publication of WO2018181116A1 publication Critical patent/WO2018181116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41885Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0254Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24075Predict control element state changes, event changes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32371Predict failure time by analysing history fault logs of same machines in databases
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37252Life of tool, service life, decay, wear estimation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/18Network design, e.g. design based on topological or interconnect aspects of utility systems, piping, heating ventilation air conditioning [HVAC] or cabling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/32Circuit design at the digital level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/34Circuit design for reconfigurable circuits, e.g. field programmable gate arrays [FPGA] or programmable logic devices [PLD]

Definitions

  • the present invention relates to an information processing apparatus, an information processing method, and a program.
  • the monitoring device collects the state quantity of the target device such as temperature and pressure during operation of the target device constituting the plant, and uses the collected state quantity for maintenance and monitoring of the device. Is being considered. It has been proposed that a monitoring device processes operation data collected so that it can be easily used by an operator of the device, and performs maintenance and monitoring of the device. For example, Patent Document 1 proposes that when a computer detects a missing portion of collected industrial plant operation data, a complementary process is executed to calculate a missing state quantity value. In addition, it is known that models such as a physical model and a statistical model are used when setting the value of a missing state quantity by complement processing.
  • Patent Document 1 discloses that an information processing apparatus performs a complementing process to supplement a missing state quantity value, a specific method for setting a missing state quantity value is disclosed. It has not been.
  • Each of the models used for the complementing process has an adaptation condition set based on the operation status of the target device, and the more accurate the estimated data value is calculated as the adaptation condition is met.
  • the computer does not process the estimated value of the state quantity in consideration of each adaptation condition of the model and set it as the value of the state quantity.
  • This invention is made in view of said subject, Comprising: Based on the estimated value of the state quantity calculated by the several model, specifying the value of the state quantity used for management of an object apparatus appropriately Objective.
  • the information processing apparatus includes: a statistical estimation unit that estimates a state quantity value using a statistical model constructed based on a past state quantity value of the target apparatus; A physical estimation unit that estimates a value of a state quantity using a physical model constructed based on device design data; and a value estimated by the statistical estimation unit based on aged deterioration of the target device and the physical estimation unit And a specifying unit that specifies a value used for management of the target device from the estimated value.
  • the specifying unit is configured to determine the past state quantity value used for constructing the statistical model based on an amount of the past state quantity value.
  • the value used for management of the target device may be specified.
  • the specifying unit specifies a value used for management of the target device based on a predetermined application condition of the physical model. It may be a thing.
  • the specifying unit is used for managing the target device based on an operation time of the target device. It may specify a value.
  • the difference between the value estimated by the statistical estimation unit and the value estimated by the physical estimation unit is predetermined.
  • a notification unit that issues a notification when the value is greater than or equal to the value.
  • the information processing apparatus is based on a statistical model based on the value of the past state quantity used to construct the statistical model.
  • the model update unit may be further updated, and the specifying unit may specify a value used for managing the target device using the updated statistical model.
  • the specifying unit estimates the statistical estimation unit based on weighting according to aged deterioration of the target device.
  • a weighted average value between the measured value and the value estimated by the physical estimation unit may be specified as a value used for management of the target device.
  • an information processing method estimates a state quantity value using a statistical model constructed based on a past state quantity value of a target device; Estimating the value of the state quantity using a physical model constructed based on the design data, and using the value estimated using the statistical model and the physical model based on the aging of the target device And identifying a value used for management of the target device from the obtained value.
  • a program estimates a state quantity value using a statistical model constructed based on a past state quantity value of a target device in a computer; Estimating the value of the state quantity using a physical model constructed based on the design data of, and using the value estimated using the statistical model and the physical model based on the aging of the target device A value to be used for management of the target device is specified from the estimated value.
  • the information processing device identifies a value used for management of the target device from the statistical model estimation value and the physical model estimation value based on the aging degradation of the target device. . Thereby, the value of the state quantity used for management of the target device can be specified appropriately.
  • FIG. 1 is a schematic block diagram showing the configuration of the management system according to the first embodiment.
  • the management system 1 includes a target device 10, a plurality of measuring instruments 20, a communication device 30, and a management device 40.
  • the target device 10 is a device to be managed by the management device 40. Examples of the target device 10 include a gas turbine, a steam turbine, a boiler, a coal gasifier, and the like. It may also be a transportation system such as an environmental plant, a chemical plant, and an aircraft.
  • the measuring instrument 20 is provided in the target device 10 and measures a state quantity of the target device 10.
  • the communication device 30 transmits the measurement value of the state quantity measured by the measuring instrument 20 to the management device 40 via the network N.
  • the management device 40 manages the target device 10 based on the measurement value received from the communication device 30.
  • the management device 40 is an example of an information processing device.
  • FIG. 2 is a schematic block diagram illustrating the configuration of the management apparatus according to the first embodiment.
  • the management device 40 includes a measured value acquisition unit 401, a missing detection unit 402, a statistical model storage unit 403, a statistical estimation unit 404, a physical model storage unit 405, a physical estimation unit 406, and an operating time measurement unit 407. , A weight calculation unit 408, a specification unit 409, a management unit 410, a notification unit 411, and a statistical model update unit 412.
  • the measurement value acquisition unit 401 receives measurement values of state quantities measured by the plurality of measuring devices 20 from the communication device 30. Based on the plurality of measurement values acquired by the measurement value acquisition unit 401, the missing detection unit 402 detects a missing value among state quantities to be managed.
  • the missing value means a temporal or spatial loss. For example, when the management unit 410 manages the state quantity for each time ⁇ t and the measurement value at the time T and the measurement value at the time T + 2 ⁇ t are acquired, the missing detection unit 402 detects the lack of the measurement value at the time T + ⁇ t. To do.
  • the management unit 410 manages the state quantity for each distance ⁇ d
  • the measured values of the position (0, 0), the position (2 ⁇ d, 0), the position (0, 2 ⁇ d), and the position (2 ⁇ d, 2 ⁇ d) are If acquired, the lack of measured values at position (0, ⁇ d), position ( ⁇ d, 0), position ( ⁇ d, ⁇ d), position ( ⁇ d, 2 ⁇ d), and position (2 ⁇ d, ⁇ d) is detected.
  • the statistical model storage unit 403 stores a statistical model used for estimation by the statistical estimation unit 404.
  • the statistical model is a model that statistically reproduces the behavior of the target device 10 based on the value of the state quantity in the past operation of the target device 10.
  • the measurement value acquired by the measurement value acquisition unit 401 and the value specified by the specifying unit 409 are accumulated.
  • the statistical model is updated based on the accumulated value.
  • the accuracy of the statistical model improves with the accumulation of state quantity values. Examples of statistical models include multiple regression models, classification tree models, neural network models, autoregressive models, and the like.
  • the statistical estimation unit 404 estimates the state quantity value by applying the measurement value acquired by the measurement value acquisition unit 401 to the statistical model stored in the statistical model storage unit 403.
  • the value of the state quantity estimated by the statistical estimation unit 404 is referred to as a statistical estimated value.
  • the physical model storage unit 405 stores a physical model used for estimation by the physical estimation unit 406.
  • the physical model is a model that is constructed based on the design data of the target device 10 and reproduces the behavior of the target device 10 using a mathematical formula (for example, a thermodynamic equation) that follows the law of nature.
  • the accuracy of the estimated value based on the physical model generally decreases with the aging of the target device 10.
  • the degree of aging is an example of the application conditions of the physical model.
  • the physical estimation unit 406 estimates the value of the state quantity by applying the measurement value acquired by the measurement value acquisition unit 401 to the physical model stored in the physical model storage unit 405.
  • the value of the state quantity estimated by the physical estimation unit 406 is referred to as a physical estimation value.
  • the operation time measurement unit 407 monitors the measurement value acquired by the measurement value acquisition unit 401 and measures the operation time of the target device 10.
  • the operation time may be measured by an equivalent operation time or may be measured by real time.
  • the weight calculation unit 408 calculates a weight coefficient between the statistical estimation value and the physical estimation value based on the amount that changes according to the aging of the target device 10. Examples of the amount that changes according to the aging deterioration of the target device 10 include the operable time, remaining life, compressor efficiency, and exhaust gas temperature of the target device 10. In the first embodiment, the weight calculation unit 408 calculates the weighting factor based on the operation time measured by the operation time measurement unit 407.
  • the weight calculation unit 408 increases the weight coefficient of the statistical estimation value and decreases the weight coefficient of the physical estimation value as the operation time is longer (as the aging deterioration progresses). That is, the weight coefficient of the statistical estimation value monotonously increases with the degree of aging deterioration, and the weight coefficient of the physical estimation value monotonously decreases with the degree of aging deterioration.
  • the identifying unit 409 identifies the value of the state quantity based on the statistical estimated value and the physical estimated value relating to the state quantity in which the missing is detected by the missing detection unit 402. Specifically, the specifying unit 409 obtains a weighted average value of the statistical estimated value and the physical estimated value based on the weighting coefficient calculated by the weight calculating unit 408, and this is the state quantity in which the missing detection is detected by the missing detection unit 402 Specified as the value of.
  • the management unit 410 manages the target device 10 based on the measurement value acquired by the measurement value acquisition unit 401 and the value specified by the specifying unit 409.
  • Examples of management of the target device 10 include monitoring whether the state quantity of the target device 10 deviates from the allowable operating range, monitoring whether the output of the target device 10 satisfies the target, and the target device 10. Output a control signal.
  • the notification unit 411 issues a notification to the administrator when the physical estimated value and the statistical estimated value deviate by a predetermined value or more. The fact that the physical estimated value and the statistical estimated value are deviated indicates that the value accumulated in the statistical model storage unit 403 is deviated from the value obtained from the design information. In other words, the notification unit 411 can notify the administrator of a statistical model abnormality due to deterioration of the target device 10 or accumulation of abnormal measurement values.
  • the statistical model update unit 412 updates the statistical model based on the values accumulated in the statistical model storage unit 403.
  • FIG. 3 is a flowchart illustrating the operation of the management apparatus according to the first embodiment.
  • the measurement value acquisition unit 401 acquires the measurement value of the state quantity by the measuring device 20 from the communication device 30 (step S1).
  • the operation time measurement unit 407 measures the operation time of the target device 10 based on the measurement value acquired by the measurement value acquisition unit 401 (step S2).
  • the missing detection unit 402 detects a missing measurement value acquired by the measurement value acquisition unit 401 (step S3).
  • the statistical estimation unit 404 applies the measurement value acquired by the measurement value acquisition unit 401 to the statistical model, and estimates the value of the state quantity in which the loss is detected (step S4).
  • the physical estimation unit 406 applies the measurement value acquired by the measurement value acquisition unit 401 to the physical model, and estimates the value of the state quantity in which the loss is detected (step S5).
  • the notification unit 411 determines whether or not the difference between the statistical estimation value estimated by the statistical estimation unit 404 and the physical estimation value estimated by the physical estimation unit 406 is greater than or equal to a predetermined value (step S6).
  • step S6 YES
  • the notification unit 411 notifies the administrator of the occurrence of an abnormality in the target device 10 or the statistical model (step S7).
  • step S6 When the difference between the statistical estimated value and the physical estimated value is less than the predetermined value (step S6: NO), or when the notification unit 411 issues a notification to the administrator, the weight calculation unit 408 is measured by the driving time measurement unit 407. Based on the operated time, a weighting coefficient between the statistical estimated value and the physical estimated value is calculated (step S8).
  • the specifying unit 409 uses the weighting factor calculated by the weight calculating unit 408 to calculate the weighted average value of the statistical estimated value and the physical estimated value, thereby specifying the value of the physical quantity in which the omission is detected (step) S9).
  • the management unit 410 manages the target device 10 based on the measurement value acquired by the measurement value acquisition unit 401 and the value specified by the specifying unit 409 (step S10).
  • the target device 10 is a gas turbine
  • the target device 10 is changed based on the management value specified by changing the gas turbine output command value, changing the IGV opening setting, changing the fuel flow rate, or the like.
  • the measurement value acquisition unit 401 and the specifying unit 409 cause the statistical model storage unit 403 to accumulate the values used for managing the target device 10 (step S11).
  • the statistical model update unit 412 updates the statistical model based on the values accumulated in the statistical model storage unit 403 (step S12).
  • the statistical estimation unit 404 can estimate the value of the state quantity using the statistical model updated at the next management timing.
  • the management device 40 specifies a value used for management of the target device 10 from the statistical estimated value and the physical estimated value based on the aging of the target device 10. Thereby, the value of the state quantity used for management of the target apparatus 10 can be specified appropriately. In addition, it is known that aged deterioration will progress, so that the operation time of the object apparatus 10 becomes long. Therefore, as in the first embodiment, the management device 40 identifies the value used for management of the target device 10 based on the operation time of the target device 10, thereby managing the target device 10 according to aging degradation. The value of the state quantity to be used can be specified appropriately. On the other hand, in other embodiment, it is not restricted to this, You may specify the value used for management of the object apparatus 10 using the other quantity which changes according to aged deterioration like compressor efficiency and exhaust gas temperature. .
  • the management device 40 obtains a weighted average value of the statistical estimated value and the physical estimated value by the weighting coefficient according to the aging deterioration, and uses this for the state quantity used for management of the target device 10. Value.
  • the management device 40 may determine to use one of the statistical estimated value and the physical estimated value for managing the target device 10 according to the aging deterioration. This is equivalent to setting one of the weighting coefficient of the statistical estimation value and the weighting coefficient of the physical estimation value to 1 and setting the other to 0.
  • the management device 40 issues a notification when the difference between the statistical estimated value and the physical estimated value is greater than or equal to a predetermined value.
  • the management device 40 can notify the administrator when a statistical model abnormality occurs due to deterioration of the target device 10 or accumulation of abnormal measurement values.
  • the management device 40 according to another embodiment may not issue a notification based on the difference between the statistical estimated value and the physical estimated value.
  • the statistical estimation unit 404 can estimate the value of the state quantity using the statistical model updated at the previous management timing at each management timing. That is, according to the first embodiment, the statistical estimated value can be estimated more accurately by updating not only the statistical data but also the statistical model itself at each management timing.
  • the management apparatus 40 which concerns on 1st Embodiment updates a statistical model based on the value of the past state quantity, it is not restricted to this.
  • the management device 40 may accumulate the state quantity in the statistical model storage unit 403 while not updating the statistical model. Even in this case, the accuracy of estimation by the statistical model can be improved by accumulating values of past state quantities. For example, the estimated accuracy can be expected to be improved by accumulating data so that the estimated value of the average value approaches the true value according to the “Law of Large Numbers” and the range of dispersion is narrowed down.
  • the management device 40 according to the first embodiment specifies a value used for management of the target device 10 based on the operation time of the target device 10.
  • the management device 40 according to the second embodiment is based on the total number (amount) of state quantity values related to past operations of the target device 10 stored in the statistical model storage unit 403. Specify the value used to manage That is, the weight calculation unit 408 according to the second embodiment calculates the statistical estimation value weighting factor larger as the total number of values stored in the statistical model storage unit 403 increases, and calculates the physical estimation value weighting factor smaller. .
  • the weight calculation unit 408 can calculate the weight coefficient of the statistical estimation value by substituting the total number of values stored in the statistical model storage unit 403 into the arctangent function.
  • the weight calculation unit 408 monotonically increases the weight coefficient of the statistical estimation value to the total number of values stored in the statistical model storage unit 403 when the total number of values stored in the statistical model storage unit 403 is less than a predetermined value. (However, the range of values is 0 or more and 1 or less.)
  • the weight coefficient of the statistical estimation value may be 1.
  • FIG. 4 is a flowchart illustrating the operation of the management apparatus according to the second embodiment.
  • the measurement value acquisition unit 401 acquires a state quantity measurement value by the measuring instrument 20 from the communication apparatus 30 (step S ⁇ b> 101).
  • the operation time measurement unit 407 measures the operation time of the target device 10 based on the measurement value acquired by the measurement value acquisition unit 401 (step S102).
  • the missing detection unit 402 detects a missing measurement value acquired by the measurement value acquisition unit 401 (step S103).
  • the statistical estimation unit 404 applies the measurement value acquired by the measurement value acquisition unit 401 to the statistical model, and estimates the value of the state quantity in which the loss is detected (step S104).
  • the physical estimation unit 406 applies the measurement value acquired by the measurement value acquisition unit 401 to the physical model, and estimates the value of the state quantity in which the loss is detected (step S105).
  • the notification unit 411 determines whether or not the difference between the statistical estimation value estimated by the statistical estimation unit 404 and the physical estimation value estimated by the physical estimation unit 406 is greater than or equal to a predetermined value (step S106).
  • step S106 YES
  • the notification unit 411 notifies the administrator of the occurrence of an abnormality in the target device 10 or the statistical model (step S107).
  • the weight calculation unit 408 is stored in the statistical model storage unit 403. Based on the total number of values to be calculated, the weighting coefficient between the statistical estimated value and the physical estimated value is calculated (step S108).
  • the specifying unit 409 uses the weighting factor calculated by the weight calculating unit 408 to calculate the weighted average value of the statistical estimated value and the physical estimated value, thereby specifying the value of the physical quantity in which the omission is detected (step) S109).
  • the management unit 410 manages the target device 10 based on the measurement value acquired by the measurement value acquisition unit 401 and the value specified by the specifying unit 409 (step S110). Further, the measurement value acquisition unit 401 and the specifying unit 409 accumulate the values used for management of the target device 10 in the statistical model storage unit 403 (step S111). Then, the statistical model update unit 412 updates the statistical model based on the values accumulated in the statistical model storage unit 403 (step S112).
  • the management device 40 specifies the value used for management of the target device 10 based on the past value of the state quantity, thereby managing the target device 10 according to the aging deterioration.
  • the value of the state quantity used for can be specified appropriately.
  • the management apparatus 40 obtains a weighted average value of a statistical estimated value and a physical estimated value based on a weighting factor according to the total number of values stored in the statistical model storage unit 403, and targets this Although it is set as the value of the state quantity used for management of the apparatus 10, it is not restricted to this.
  • the management apparatus 40 determines to use either the statistical estimated value or the physical estimated value for managing the target apparatus 10 according to the total number of values stored in the statistical model storage unit 403. May be.
  • the management device 40 in the management system 1 according to the above-described embodiment has a function of extracting and specifying a value used for management of the target device 10, but is not limited thereto.
  • the management system 1 according to another embodiment includes an information processing device that extracts and specifies values used for management of the target device 10 separately from the management device 40.
  • the management device 40 is specified by the information processing device.
  • the target device 10 may be managed using the obtained value.
  • the management apparatus 40 which concerns on embodiment mentioned above acquires a measured value via the network N, it is not restricted to this.
  • the management apparatus according to another embodiment may acquire the measurement value directly from the measuring instrument 20. In this case, the management system 1 may not include the communication device 30.
  • the management device 40 obtains a value in which a loss is detected by estimation, but is not limited thereto.
  • the management device 40 obtains the value of the state quantity by estimation regardless of the presence or absence of the missing amount, and uses it for management of the target device 10 by weighted average of the measured value and the estimated value or by selection.
  • a value may be specified.
  • the management device 40 obtains or selects a weighted average of one statistical estimated value and one physical estimated value, but is not limited thereto.
  • the management device 40 generates a plurality of statistical estimation values related to one state quantity from a plurality of statistical models, or generates a plurality of physical estimation values related to one state quantity from a plurality of physical models. It may be generated.
  • the management device 40 specifies a value used for management of the target device 10 from among the plurality of statistical estimation values and the plurality of physical estimation values according to the aging degradation of the target device 10.
  • the management device 40 may specify a value used for managing the target device 10 based on the application conditions of the physical model. For example, when the physical model is a model having an application condition that the outside air temperature is X degrees Celsius and near 100% load, the weighted average based on the similarity between the real environment and the application condition or by selection A value used for management of the device 10 may be specified.
  • the management device 40 causes the measurement value acquisition unit 401 and the specification unit 409 to accumulate the values used for management of the target device 10 in the statistical model storage unit 403. I can't.
  • the data may be stored in a database external to the management device 40.
  • FIG. 5 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer 90 includes a CPU 91, a main storage device 92, an auxiliary storage device 93, and an interface 94.
  • the management device 40 described above is mounted on the computer 90.
  • the operation of each processing unit described above is stored in the auxiliary storage device 93 in the form of a program.
  • the CPU 91 reads out the program from the auxiliary storage device 93 and develops it in the main storage device 92, and executes the above processing according to the program. Further, the CPU 91 secures a storage area corresponding to the above-described statistical model storage unit 403 and physical model storage unit 405 in the main storage device 92 according to the program.
  • auxiliary storage device 93 examples include an HDD (Hard Disk Drive), an SSD (Solid State Drive), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Versatile Disc Read Only. Memory), semiconductor memory, and the like.
  • the auxiliary storage device 93 may be an internal medium directly connected to the bus of the computer 90 or an external medium connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 via a communication line, the computer 90 that has received the distribution may develop the program in the main storage device 92 and execute the above processing.
  • the auxiliary storage device 93 is a tangible storage medium that is not temporary.
  • the program may be for realizing a part of the functions described above. Further, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the auxiliary storage device 93.
  • difference file difference program
  • the information processing apparatus specifies a value used for management of the target apparatus from the estimated value of the statistical model and the estimated value of the physical model based on the aging of the target apparatus. Thereby, the value of the state quantity used for management of the target device can be specified appropriately.

Abstract

本発明に係る情報処理装置において、統計推定部は、対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定する。物理推定部は、対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定する。特定部は、対象装置の経年劣化に基づいて、統計推定部が推定した値と物理推定部が推定した値とから、対象装置の管理に用いる値を特定する。

Description

情報処理装置、情報処理方法およびプログラム
 本発明は、情報処理装置、情報処理方法およびプログラムに関する。
 本願は、2017年3月29日に日本に出願された特願2017-065993号について優先権を主張し、その内容をここに援用する。
 発電プラント等のプラントにおいて、プラントを構成する対象装置の運用時の温度および圧力等の対象装置の状態量を監視装置が収集し、収集した状態量を用いて装置の保守及び監視等に用いることが検討されている。
 監視装置が、装置の運用者が使用し易いように収集した運用データを加工して、装置の保守及び監視等を実行することが提案されている。例えば、特許文献1には、コンピュータが、収集された産業用プラントの運用データの欠落部分を検出すると、補完処理を実行し、欠落した状態量の値を算出することが提案されている。
 また、補完処理により、欠落した状態量の値の設定を行う際には、物理モデルおよび統計モデル等のモデルが用いられることが知られている。
米国特許出願公開第2016/0004794号明細書
 特許文献1には、情報処理装置が補完処理を実行することにより、欠落した状態量の値を補完することは開示されているものの、欠落した状態量の値の具体的な設定方法については開示されていない。
 補完処理に用いられるモデルの各々は、対象装置の運用状況等を基に設定されている適応条件を有しており、適応条件に合致するほど精度の高い推定データの値が算出される。しかし、コンピュータが、モデルの各々の適応条件を考慮して状態量の推定値を処理し、状態量の値として設定することは行われていなかった。
 本発明は、上記の課題に鑑みてされたものであって、複数のモデルにより算出された状態量の推定値に基づいて、対象装置の管理に用いる状態量の値を適切に特定することを目的とする。
 本発明の第1の態様によれば、情報処理装置は、対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定する統計推定部と、前記対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定する物理推定部と、前記対象装置の経年劣化に基づいて、前記統計推定部が推定した値と前記物理推定部が推定した値とから、前記対象装置の管理に用いる値を特定する特定部と、を備える。
 本発明の第2の態様によれば、第1の態様に係る情報処理装置は、前記特定部は、前記統計モデルの構築に用いられた前記過去の状態量の値の量に基づいて、前記対象装置の管理に用いる値を特定するものであってよい。
 本発明の第3の態様によれば、第1の態様に係る情報処理装置は、前記特定部は、前記物理モデルの所定の適用条件に基づいて、前記対象装置の管理に用いる値を特定するものであってよい。
 本発明の第4の態様によれば、第1から第3の何れかの態様に係る情報処理装置は、前記特定部は、前記対象装置の運転時間に基づいて、前記対象装置の管理に用いる値を特定するものであってよい。
 本発明の第5の態様によれば、第1から第4の何れかの態様に係る情報処理装置は、前記統計推定部が推定した値と前記物理推定部が推定した値との差が所定値以上である場合に通知を発する通知部と、をさらに備えるものであってよい。
 本発明の第6の態様によれば、第1から第5の何れかの態様に係る情報処理装置は、前記統計モデルの構築に用いられた前記過去の状態量の値に基づいて、統計モデルを更新するモデル更新部をさらに備え、前記特定部は、前記更新された統計モデルを用いて、前記対象装置の管理に用いる値を特定するものであってよい。
 本発明の第7の態様によれば、第1から第6の何れかの態様に係る情報処理装置は、前記特定部は、前記対象装置の経年劣化に応じた重み付けによる前記統計推定部が推定した値と前記物理推定部が推定した値との加重平均値を、前記対象装置の管理に用いる値として特定するものであってよい。
 本発明の第8の態様によれば、情報処理方法は、対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定することと、前記対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定することと、前記対象装置の経年劣化に基づいて、前記統計モデルを用いて推定した値と前記物理モデルを用いて推定した値とから、前記対象装置の管理に用いる値を特定することとを有する。
 本発明の第9の態様によれば、プログラムは、コンピュータに、対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定することと、前記対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定することと、前記対象装置の経年劣化に基づいて、前記統計モデルを用いて推定した値と前記物理モデルを用いて推定した値とから、前記対象装置の管理に用いる値を特定することとを実行させる。
 上記態様のうち少なくとも1つの態様によれば、情報処理装置は、対象装置の経年劣化に基づいて、統計モデルの推定値と物理モデルの推定値とから、対象装置の管理に用いる値を特定する。これにより、対象装置の管理に用いる状態量の値を適切に特定することができる。
第1の実施形態に係る管理システムの構成を示す概略ブロック図である。 第1の実施形態に係る管理装置の構成を示す概略ブロック図である。 第1の実施形態に係る管理装置の動作を示すフローチャートである。 第2の実施形態に係る管理装置の動作を示すフローチャートである。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
〈第1の実施形態〉
 以下、図面を参照しながら実施形態について詳しく説明する。
《全体構成》
 図1は、第1の実施形態に係る管理システムの構成を示す概略ブロック図である。
 管理システム1は、対象装置10と、複数の計測器20と、通信装置30と、管理装置40とを備える。
 対象装置10は、管理装置40による管理対象の装置である。対象装置10の例としては、例えばガスタービン、蒸気タービン、ボイラ、石炭ガス化炉などが挙げられる。また、環境プラント、化学プラント、および航空機のような交輸システムであってもよい。
 計測器20は、対象装置10に設けられ、対象装置10の状態量を計測する。
 通信装置30は、計測器20が計測した状態量の計測値をネットワークNを介して管理装置40に送信する。
 管理装置40は、通信装置30から受信した計測値に基づいて対象装置10を管理する。管理装置40は、情報処理装置の一例である。
《管理装置の構成》
 図2は、第1の実施形態に係る管理装置の構成を示す概略ブロック図である。
 管理装置40は、計測値取得部401と、欠落検出部402と、統計モデル記憶部403と、統計推定部404と、物理モデル記憶部405と、物理推定部406と、運転時間計測部407と、重み算出部408と、特定部409と、管理部410と、通知部411と、統計モデル更新部412とを備える。
 計測値取得部401は、通信装置30から、複数の計測器20によって計測された状態量の計測値を受信する。
 欠落検出部402は、計測値取得部401が取得した複数の計測値に基づいて、管理すべき状態量のうち値が欠落しているものを検出する。ここで、値の欠落とは、時間的または空間的な欠落をいう。例えば、管理部410が時間Δtごとの状態量を管理する場合において、時刻Tの計測値と時刻T+2Δtの計測値が取得された場合、欠落検出部402は、時刻T+Δtの計測値の欠落を検出する。また例えば、管理部410が距離Δdごとの状態量を管理する場合において、位置(0,0)、位置(2Δd,0)、位置(0,2Δd)、位置(2Δd,2Δd)の計測値が取得された場合、位置(0,Δd)、位置(Δd,0)、位置(Δd,Δd)、位置(Δd,2Δd)、位置(2Δd,Δd)の計測値の欠落を検出する。
 統計モデル記憶部403は、統計推定部404による推定に用いられる統計モデルを記憶する。統計モデルとは、対象装置10の過去の運用における状態量の値に基づいて、統計学的に対象装置10の挙動を再現したモデルである。統計モデル記憶部403には、計測値取得部401によって取得された計測値および特定部409によって特定された値が蓄積される。統計モデルは、蓄積された値に基づいて更新される。統計モデルの精度は、状態量の値の蓄積とともに向上する。統計モデルの例としては、重回帰モデル、分類木モデル、ニューラルネットワークモデル、自己回帰モデルなどが挙げられる。
 統計推定部404は、計測値取得部401が取得した計測値を統計モデル記憶部403が記憶する統計モデルに適用することで、状態量の値を推定する。以下、統計推定部404によって推定された状態量の値を統計推定値という。
 物理モデル記憶部405は、物理推定部406による推定に用いられる物理モデルを記憶する。物理モデルとは、対象装置10の設計データに基づいて構築され、自然法則に倣った数式(例えば、熱力学方程式)により対象装置10の挙動を再現したモデルである。物理モデルによる推定値の精度は、一般に対象装置10の経年劣化とともに低下する。経年劣化の度合いは物理モデルの適用条件の一例である。
 物理推定部406は、計測値取得部401が取得した計測値を物理モデル記憶部405が記憶する物理モデルに適用することで状態量の値を推定する。以下、物理推定部406によって推定された状態量の値を物理推定値という。
 運転時間計測部407は、計測値取得部401が取得した計測値を監視し、対象装置10の運転時間を計測する。運転時間は、等価運転時間によって計測されてもよいし、実時間によって計測されてもよい。
 重み算出部408は、対象装置10の経年劣化に応じて変化する量に基づいて、統計推定値と物理推定値の重み係数を算出する。対象装置10の経年劣化に応じて変化する量の例としては、対象装置10の運転可能時間、余寿命、圧縮機効率、排ガス温度などが挙げられる。なお、第1の実施形態においては、重み算出部408は運転時間計測部407が計測した運転時間に基づいて重み係数を算出する。重み算出部408は、運転時間が長いほど(経年劣化が進んでいるほど)、統計推定値の重み係数を大きくし、物理推定値の重み係数を小さくする。つまり、統計推定値の重み係数は経年劣化の度合いに対して単調増加し、物理推定値の重み係数は経年劣化の度合いに対して単調減少する。
 特定部409は、欠落検出部402によって欠落が検出された状態量に係る統計推定値と物理推定値に基づいて、当該状態量の値を特定する。具体的には、特定部409は、重み算出部408が算出した重み係数に基づいて統計推定値と物理推定値の加重平均値を求め、これを欠落検出部402によって欠落が検出された状態量の値として特定する。
 管理部410は、計測値取得部401が取得した計測値および特定部409が特定した値に基づいて対象装置10を管理する。対象装置10の管理の例としては、対象装置10の状態量が運転許容範囲を逸脱していないか監視すること、対象装置10の出力が目標を満たしているかを監視すること、および対象装置10に制御信号を出力することなどが挙げられる。
 通知部411は、物理推定値と統計推定値とが所定値以上乖離した場合に、管理者に通知を発する。物理推定値と統計推定値が乖離しているということは、統計モデル記憶部403に蓄積された値が、設計情報から求められる値と乖離していることを示す。つまり、通知部411は、対象装置10の劣化、または異常な計測値の蓄積による統計モデルの異常を、管理者に通知することができる。
 統計モデル更新部412は、統計モデル記憶部403に蓄積された値に基づいて統計モデルを更新する。
《管理装置の動作》
 図3は、第1の実施形態に係る管理装置の動作を示すフローチャートである。
 管理装置40が対象装置10の管理を開始すると、計測値取得部401は、通信装置30から計測器20による状態量の計測値を取得する(ステップS1)。また、運転時間計測部407は、計測値取得部401が取得した計測値に基づいて対象装置10の運転時間を計測する(ステップS2)。
 次に、欠落検出部402は、計測値取得部401が取得した計測値の欠落を検出する(ステップS3)。統計推定部404は、計測値取得部401が取得した計測値を統計モデルに適用し、欠落が検出された状態量の値を推定する(ステップS4)。また物理推定部406は、計測値取得部401が取得した計測値を物理モデルに適用し、欠落が検出された状態量の値を推定する(ステップS5)。
 次に、通知部411は、統計推定部404が推定した統計推定値と物理推定部406が推定した物理推定値の差が所定値以上であるか否かを判定する(ステップS6)。統計推定値と物理推定値の差が所定値以上である場合(ステップS6:YES)、通知部411は、管理者に対象装置10または統計モデルの異常の発生を通知する(ステップS7)。
 統計推定値と物理推定値の差が所定値未満である場合(ステップS6:NO)、または通知部411が管理者に通知を発した場合、重み算出部408は、運転時間計測部407が計測した運転時間に基づいて、統計推定値と物理推定値の重み係数を算出する(ステップS8)。次に、特定部409は、重み算出部408が算出した重み係数を用いて統計推定値と物理推定値の加重平均値を算出することで、欠落が検出された物理量の値を特定する(ステップS9)。そして管理部410は、計測値取得部401が取得した計測値および特定部409が特定した値に基づいて対象装置10を管理する(ステップS10)。対象装置10がガスタービンの場合、例えば、ガスタービン出力指令値を変更する、IGVの開度設定を変更する、燃料流量を変更する、等により、特定された管理値に基づいて、対象装置10を管理する。
 また、計測値取得部401および特定部409は、対象装置10の管理に用いた値を、統計モデル記憶部403に蓄積させる(ステップS11)。そして、統計モデル更新部412は、統計モデル記憶部403に蓄積された値に基づいて統計モデルを更新する(ステップS12)。これにより、統計推定部404は、次回の管理のタイミングにおいて更新された統計モデルを用いて、状態量の値を推定することができる。
《作用・効果》
 このように、第1の実施形態によれば、管理装置40は、対象装置10の経年劣化に基づいて、統計推定値と物理推定値とから、対象装置10の管理に用いる値を特定する。これにより、対象装置10の管理に用いる状態量の値を適切に特定することができる。
 なお、対象装置10の運転時間が長くなるほど、経年劣化が進むことが知られている。したがって、第1の実施形態のように管理装置40は、対象装置10の運転時間に基づいて、対象装置10の管理に用いる値を特定することで、経年劣化に応じて対象装置10の管理に用いる状態量の値を適切に特定することができる。他方、他の実施形態においてはこれに限られず、圧縮機効率および排ガス温度のように、経年劣化に応じて変化する他の量を用いて対象装置10の管理に用いる値を特定してもよい。
 また、第1の実施形態によれば、管理装置40は、経年劣化に応じた重み係数による統計推定値と物理推定値の加重平均値を求め、これを対象装置10の管理に用いる状態量の値とする。これにより、統計推定値と物理推定値が急に切り替わることがなくなり、管理装置40は、シームレスな状態量の値を用いて対象装置10を管理することができる。一方で、他の実施形態においては、管理装置40は、経年劣化に応じて統計推定値と物理推定値の何れか一方を対象装置10の管理に用いるように決定してもよい。これは、統計推定値の重み係数と物理推定値の重み係数の一方を1にし、他方を0にすることと等価である。
 また、第1の実施形態によれば、管理装置40は、統計推定値と物理推定値との差が所定値以上である場合に通知を発する。これにより、管理装置40は、対象装置10の劣化、または異常な計測値の蓄積による統計モデルの異常が発生したときに、そのことを管理者に通知することができる。他方、他の実施形態に係る管理装置40は、統計推定値と物理推定値との差に基づく通知を発しなくてもよい。
 また、第1の実施形態によれば、統計推定部404は、各管理のタイミングにおいて、前回の管理のタイミングにおいて更新された統計モデルを用いて、状態量の値を推定することができる。つまり、第1の実施形態によれば、各管理のタイミングにおいて統計データだけでなく、統計モデル自体も更新することで、統計推定値をより精度よく推定することができる。
 なお、第1の実施形態に係る管理装置40は、統計モデルを過去の状態量の値に基づいて更新するが、これに限られない。例えば他の実施形態においては管理装置40は、統計モデル記憶部403に状態量を蓄積させる一方で統計モデルの更新をしないものであってもよい。この場合においても、過去の状態量の値が蓄積することにより、統計モデルによる推定の精度が向上し得る。例えば、データの蓄積により「大数の法則」で平均値の推定値が真値に近づくこと、分散の範囲を狭く絞り込むことにより、推定精度の向上が期待できる。
〈第2の実施形態〉
 第1の実施形態に係る管理装置40は、対象装置10の運転時間に基づいて、対象装置10の管理に用いる値を特定する。これに対し、第2の実施形態に係る管理装置40は、統計モデル記憶部403に記憶された対象装置10の過去の運転に係る状態量の値の総数(量)に基づいて、対象装置10の管理に用いる値を特定する。
 つまり、第2の実施形態に係る重み算出部408は、統計モデル記憶部403が記憶する値の総数が多いほど統計推定値の重み係数を大きく算出し、物理推定値の重み係数を小さく算出する。例えば、重み算出部408は、統計モデル記憶部403が記憶する値の総数をアークタンジェント関数に代入することにより、統計推定値の重み係数を算出することができる。または、重み算出部408は、統計モデル記憶部403が記憶する値の総数が所定値未満の場合に、統計推定値の重み係数を統計モデル記憶部403が記憶する値の総数に単調増加する関数(ただし、値域は0以上1以下)に基づいて算出し、統計モデル記憶部403が記憶する値の総数が所定値以上の場合に、統計推定値の重み係数を1としてもよい。
 図4は、第2の実施形態に係る管理装置の動作を示すフローチャートである。
 管理装置40が対象装置10の管理を開始すると、計測値取得部401は、通信装置30から計測器20による状態量の計測値を取得する(ステップS101)。また、運転時間計測部407は、計測値取得部401が取得した計測値に基づいて対象装置10の運転時間を計測する(ステップS102)。
 次に、欠落検出部402は、計測値取得部401が取得した計測値の欠落を検出する(ステップS103)。統計推定部404は、計測値取得部401が取得した計測値を統計モデルに適用し、欠落が検出された状態量の値を推定する(ステップS104)。また物理推定部406は、計測値取得部401が取得した計測値を物理モデルに適用し、欠落が検出された状態量の値を推定する(ステップS105)。
 次に、通知部411は、統計推定部404が推定した統計推定値と物理推定部406が推定した物理推定値の差が所定値以上であるか否かを判定する(ステップS106)。統計推定値と物理推定値の差が所定値以上である場合(ステップS106:YES)、通知部411は、管理者に対象装置10または統計モデルの異常の発生を通知する(ステップS107)。
 統計推定値と物理推定値の差が所定値未満である場合(ステップS106:NO)、または通知部411が管理者に通知を発した場合、重み算出部408は、統計モデル記憶部403が記憶する値の総数に基づいて、統計推定値と物理推定値の重み係数を算出する(ステップS108)。次に、特定部409は、重み算出部408が算出した重み係数を用いて統計推定値と物理推定値の加重平均値を算出することで、欠落が検出された物理量の値を特定する(ステップS109)。そして管理部410は、計測値取得部401が取得した計測値および特定部409が特定した値に基づいて対象装置10を管理する(ステップS110)。また、計測値取得部401および特定部409は、対象装置10の管理に用いた値を、統計モデル記憶部403に蓄積させる(ステップS111)。そして、統計モデル更新部412は、統計モデル記憶部403に蓄積された値に基づいて統計モデルを更新する(ステップS112)。
 以上のように、統計モデル記憶部403が記憶する値の総数、すなわち過去の状態量の値の量は、対象装置10の運転時間が長くなるほど多くなる。つまり、統計モデル記憶部403が記憶する値の総数は経年劣化によって変化する値である。したがって、第2の実施形態に係る管理装置40は、過去の状態量の値の量に基づいて、対象装置10の管理に用いる値を特定することで、経年劣化に応じて対象装置10の管理に用いる状態量の値を適切に特定することができる。
 なお、第2の実施形態によれば、管理装置40は、統計モデル記憶部403が記憶する値の総数に応じた重み係数による統計推定値と物理推定値の加重平均値を求め、これを対象装置10の管理に用いる状態量の値とするが、これに限られない。例えば、他の実施形態においては、管理装置40は、統計モデル記憶部403が記憶する値の総数に応じて統計推定値と物理推定値の何れか一方を対象装置10の管理に用いるように決定してもよい。
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
 例えば、上述した実施形態に係る管理システム1における管理装置40は、対象装置10の管理に用いる値の抽出および特定をする機能を有するが、これに限られない。例えば、他の実施形態に係る管理システム1においては、管理装置40と別個に対象装置10の管理に用いる値の抽出および特定をする情報処理装置を備え、管理装置40は、情報処理装置が特定した値を用いて対象装置10を管理してもよい。
 また例えば、上述した実施形態に係る管理装置40は、ネットワークNを介して計測値を取得するが、これに限られない。例えば、他の実施形態に係る管理装置は、計測器20から直接計測値を取得してもよい。この場合、管理システム1は通信装置30を備えなくてもよい。
 また、上述した実施形態によれば、管理装置40は、欠落が検出された値を推定により求めるが、これに限られない。例えば、他の実施形態においては、管理装置40は、欠落の有無に関わらず推定により状態量の値を求め、計測値と推定値の加重平均により、または選択により、対象装置10の管理に用いる値を特定してもよい。
 また、上述した実施形態によれば、管理装置40は、1つの統計推定値と1つの物理推定値との加重平均を求め、または選択をするが、これに限られない。例えば、他の実施形態では、管理装置40が複数の統計モデルから1つの状態量に係る複数の統計推定値を生成し、または複数の物理モデルから1つの状態量に係る複数の物理推定値を生成してもよい。この場合、管理装置40は、対象装置10の経年劣化に応じて、複数の統計推定値と複数の物理推定値との中から、対象装置10の管理に用いる値を特定する。
 また、他の実施形態においては、管理装置40は、物理モデルの適用条件に基づいて対象装置10の管理に用いる値を特定してもよい。例えば、物理モデルが、外気温摂氏X度かつ100%負荷付近という適用条件を有するモデルである場合、実環境とこの適用条件との類似度に基づいた重み付けの加重平均により、または選択により、対象装置10の管理に用いる値を特定してもよい。
 また、上述した実施形態によれば、管理装置40は、計測値取得部401および特定部409は、対象装置10の管理に用いた値を、統計モデル記憶部403に蓄積させるが、これに限られない。例えば、他の実施形態では、管理装置40の外部のデータベースに蓄積させてもよい。
 図5は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、CPU91、主記憶装置92、補助記憶装置93、インタフェース94を備える。
 上述の管理装置40は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式で補助記憶装置93に記憶されている。CPU91は、プログラムを補助記憶装置93から読み出して主記憶装置92に展開し、当該プログラムに従って上記処理を実行する。また、CPU91は、プログラムに従って、上述した統計モデル記憶部403および物理モデル記憶部405に対応する記憶領域を主記憶装置92に確保する。
 補助記憶装置93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。補助記憶装置93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムを主記憶装置92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、補助記憶装置93は、一時的でない有形の記憶媒体である。
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能を補助記憶装置93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 本発明に係る情報処理装置は、対象装置の経年劣化に基づいて、統計モデルの推定値と物理モデルの推定値とから、対象装置の管理に用いる値を特定する。これにより、対象装置の管理に用いる状態量の値を適切に特定することができる。
1 管理システム
10 対象装置
20 計測器
30 通信装置
40 管理装置(情報処理装置)
401 計測値取得部
402 欠落検出部
403 統計モデル記憶部
404 統計推定部
405 物理モデル記憶部
406 物理推定部
407 運転時間計測部
408 重み算出部
409 特定部
410 管理部
411 通知部
412 統計モデル更新部

Claims (9)

  1.  対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定する統計推定部と、
     前記対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定する物理推定部と、
     前記対象装置の経年劣化に基づいて、前記統計推定部が推定した値と前記物理推定部が推定した値とから、前記対象装置の管理に用いる値を特定する特定部と、
     を備える情報処理装置。
  2.  前記特定部は、前記統計モデルの構築に用いられた前記過去の状態量の値の量に基づいて、前記対象装置の管理に用いる値を特定する
     請求項1に記載の情報処理装置。
  3.  前記特定部は、前記物理モデルの所定の適用条件に基づいて、前記対象装置の管理に用いる値を特定する
     請求項1に記載の情報処理装置。
  4.  前記特定部は、前記対象装置の運転時間に基づいて、前記対象装置の管理に用いる値を特定する
     請求項1から請求項3の何れか1項に記載の情報処理装置。
  5.  前記統計推定部が推定した値と前記物理推定部が推定した値との差が所定値以上である場合に通知を発する通知部と、
     をさらに備える請求項1から請求項4の何れか1項に記載の情報処理装置。
  6.  前記統計モデルの構築に用いられた前記過去の状態量の値に基づいて、統計モデルを更新するモデル更新部をさらに備え、
     前記特定部は、前記更新された統計モデルを用いて、前記対象装置の管理に用いる値を特定する
     請求項1から請求項5の何れか1項に記載の情報処理装置。
  7.  前記特定部は、前記対象装置の経年劣化に応じた重み付けによる前記統計推定部が推定した値と前記物理推定部が推定した値との加重平均値を、前記対象装置の管理に用いる値として特定する
     請求項1から請求項6の何れか1項に記載の情報処理装置。
  8.  対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定することと、
     前記対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定することと、
     前記対象装置の経年劣化に基づいて、前記統計モデルを用いて推定した値と前記物理モデルを用いて推定した値とから、前記対象装置の管理に用いる値を特定することと
     を有する情報処理方法。
  9.  コンピュータに、
     対象装置の過去の状態量の値に基づいて構築された統計モデルを用いて状態量の値を推定することと、
     前記対象装置の設計データに基づいて構築された物理モデルを用いて状態量の値を推定することと、
     前記対象装置の経年劣化に基づいて、前記統計モデルを用いて推定した値と前記物理モデルを用いて推定した値とから、前記対象装置の管理に用いる値を特定することと
     を実行させるためのプログラム。
PCT/JP2018/012014 2017-03-29 2018-03-26 情報処理装置、情報処理方法およびプログラム WO2018181116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018001692.7T DE112018001692T5 (de) 2017-03-29 2018-03-26 Informationsverarbeitungsvorrichtung, informationsverarbeitungsverfahren und programm
US16/496,604 US11378943B2 (en) 2017-03-29 2018-03-26 Information processing device, information processing method, and program
CN201880020861.2A CN110520807B (zh) 2017-03-29 2018-03-26 信息处理装置、信息处理方法以及存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-065993 2017-03-29
JP2017065993A JP6986358B2 (ja) 2017-03-29 2017-03-29 情報処理装置、情報処理方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2018181116A1 true WO2018181116A1 (ja) 2018-10-04

Family

ID=63675742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012014 WO2018181116A1 (ja) 2017-03-29 2018-03-26 情報処理装置、情報処理方法およびプログラム

Country Status (5)

Country Link
US (1) US11378943B2 (ja)
JP (1) JP6986358B2 (ja)
CN (1) CN110520807B (ja)
DE (1) DE112018001692T5 (ja)
WO (1) WO2018181116A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113939777A (zh) * 2020-05-13 2022-01-14 东芝三菱电机产业系统株式会社 物理模型辨识系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114294A (ja) * 2001-10-04 2003-04-18 Toshiba Corp 発電プラントの監視・診断・検査・保全システム
JP2005309616A (ja) * 2004-04-19 2005-11-04 Mitsubishi Electric Corp 設備機器故障診断システム及び故障診断ルール作成方法
JP2009053938A (ja) * 2007-08-27 2009-03-12 Toshiba Corp 複数モデルに基づく設備診断システム及びその設備診断方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330103A (ja) * 1996-06-11 1997-12-22 Hitachi Ltd プロセス適応制御方法及びプロセス適応制御システム
JP2001082782A (ja) * 1999-09-13 2001-03-30 Toshiba Corp 空調制御装置
US20020127529A1 (en) * 2000-12-06 2002-09-12 Cassuto Nadav Yehudah Prediction model creation, evaluation, and training
US7668966B2 (en) * 2001-11-02 2010-02-23 Internap Network Services Corporation Data network controller
AU2002366902A1 (en) * 2001-12-21 2003-07-09 Nokia Corporation Location-based novelty index value and recommendation system and method
US7570943B2 (en) * 2002-08-29 2009-08-04 Nokia Corporation System and method for providing context sensitive recommendations to digital services
JP4144377B2 (ja) * 2003-02-28 2008-09-03 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
US7366997B1 (en) * 2005-01-11 2008-04-29 Synplicity, Inc. Methods and apparatuses for thermal analysis based circuit design
US8275596B2 (en) * 2006-12-08 2012-09-25 Globalfoundries Inc. Method for robust statistical semiconductor device modeling
JP5431235B2 (ja) * 2009-08-28 2014-03-05 株式会社日立製作所 設備状態監視方法およびその装置
JP5556232B2 (ja) * 2010-02-25 2014-07-23 日本電気株式会社 推定装置、推定方法及びコンピュータプログラム
WO2011127238A1 (en) * 2010-04-07 2011-10-13 Precision Energy Services, Inc. Multi-well interference testing and in-situ reservoir behavior characterization
US20120078678A1 (en) * 2010-09-23 2012-03-29 Infosys Technologies Limited Method and system for estimation and analysis of operational parameters in workflow processes
CN102137282B (zh) * 2010-12-15 2014-02-19 华为技术有限公司 一种检测故障链路的方法、装置、节点和系统
MX349730B (es) * 2011-03-10 2017-08-10 Magforce Ag Herramienta para simulacion asistida por computadora para proporcionar asistencia en la planeacion de termoterapia.
US9625532B2 (en) * 2011-10-10 2017-04-18 Battelle Energy Alliance, Llc Method, system, and computer-readable medium for determining performance characteristics of an object undergoing one or more arbitrary aging conditions
US8843423B2 (en) * 2012-02-23 2014-09-23 International Business Machines Corporation Missing value imputation for predictive models
CN103236953A (zh) * 2012-10-30 2013-08-07 吉林大学 一种基于模糊时间序列预测模型的ip承载网性能指标主动监控方法
US20160004794A1 (en) 2014-07-02 2016-01-07 General Electric Company System and method using generative model to supplement incomplete industrial plant information
JP6658540B2 (ja) * 2014-12-05 2020-03-04 日本電気株式会社 システム分析装置、システム分析方法およびプログラム
JP6670460B2 (ja) 2015-09-28 2020-03-25 日本電気硝子株式会社 溶融ガラスの素地替え方法及び連続ガラス溶融炉
EP3279756B1 (de) * 2016-08-01 2019-07-10 Siemens Aktiengesellschaft Diagnoseeinrichtung und verfahren zur überwachung des betriebs einer technischen anlage
WO2018063225A1 (en) * 2016-09-29 2018-04-05 Hewlett-Packard Development Company, L.P. Component failure prediction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114294A (ja) * 2001-10-04 2003-04-18 Toshiba Corp 発電プラントの監視・診断・検査・保全システム
JP2005309616A (ja) * 2004-04-19 2005-11-04 Mitsubishi Electric Corp 設備機器故障診断システム及び故障診断ルール作成方法
JP2009053938A (ja) * 2007-08-27 2009-03-12 Toshiba Corp 複数モデルに基づく設備診断システム及びその設備診断方法

Also Published As

Publication number Publication date
DE112018001692T5 (de) 2019-12-19
CN110520807B (zh) 2022-06-17
CN110520807A (zh) 2019-11-29
JP2018169763A (ja) 2018-11-01
US20210109511A1 (en) 2021-04-15
JP6986358B2 (ja) 2021-12-22
US11378943B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
JP6777069B2 (ja) 情報処理装置、情報処理方法、及び、プログラム
JP6896432B2 (ja) 故障予知方法、故障予知装置および故障予知プログラム
KR102202161B1 (ko) 감시 장치, 대상 장치의 감시 방법 및 프로그램
EP3584657B1 (en) Risk assessment device, risk assessment method, and risk assessment program
EP3584656B1 (en) Risk assessment device, risk assessment method, and risk assessment program
CN109612029B (zh) 效能预测方法
KR102202159B1 (ko) 감시 장치, 대상 장치의 감시 방법 및 프로그램
KR20150056612A (ko) 플랜트 감시장치, 플랜트 감시프로그램 및 플랜트 감시방법
WO2018181120A1 (ja) 情報処理装置、情報処理方法およびプログラム
JP2019168274A (ja) 損傷確率演算装置、損傷確率演算方法及びプログラム
WO2018181116A1 (ja) 情報処理装置、情報処理方法およびプログラム
WO2019124367A1 (ja) 単位空間生成装置、プラント診断システム、単位空間生成方法、プラント診断方法、及びプログラム
JP6892753B2 (ja) 機器状態推定装置、機器状態推定方法およびプログラム
JP6381282B2 (ja) 異常検出装置及びプログラム
JP7048216B2 (ja) 情報処理装置、情報処理方法およびプログラム
JP6800065B2 (ja) 管理システム、情報処理方法、プログラム、通信装置
US20100324745A1 (en) Method for estimating generation limits
JP6148144B2 (ja) 劣化率特定装置、劣化率特定方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774859

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18774859

Country of ref document: EP

Kind code of ref document: A1