WO2018181079A1 - 液晶表示パネル、及び、液晶表示パネルの製造方法 - Google Patents

液晶表示パネル、及び、液晶表示パネルの製造方法 Download PDF

Info

Publication number
WO2018181079A1
WO2018181079A1 PCT/JP2018/011954 JP2018011954W WO2018181079A1 WO 2018181079 A1 WO2018181079 A1 WO 2018181079A1 JP 2018011954 W JP2018011954 W JP 2018011954W WO 2018181079 A1 WO2018181079 A1 WO 2018181079A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
liquid crystal
stretched film
film
crystal display
Prior art date
Application number
PCT/JP2018/011954
Other languages
English (en)
French (fr)
Inventor
さおり 鐵
泰彦 杉原
正裕 奥野
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US16/499,235 priority Critical patent/US20200026124A1/en
Priority to CN201880021104.7A priority patent/CN110462500A/zh
Publication of WO2018181079A1 publication Critical patent/WO2018181079A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/503Arrangements improving the resistance to shock

Definitions

  • the present invention relates to a liquid crystal display panel and a method for manufacturing a liquid crystal display panel. More specifically, the present invention relates to a liquid crystal display panel including a polarizing plate provided with a hole, and a method for manufacturing the liquid crystal display panel.
  • a liquid crystal display panel is known to have a configuration in which a liquid crystal panel and a polarizing plate are combined.
  • the polarizing plate is usually cut out in a rectangular shape from a roll-shaped raw fabric according to the size of the screen of the liquid crystal panel.
  • a method for cutting the polarizing plate a method using a punching die (hereinafter also referred to as a punching method) is generally employed (see, for example, Patent Document 1).
  • Patent Document 1 discloses a method for producing an optical film product by a punching method. However, the above-mentioned Patent Document 1 does not describe the above-described crack, and does not suppress the occurrence thereof.
  • the present invention has been made in view of the above-described current situation, and can maintain a superior design and can suppress a decrease in durability and reliability, and a method for manufacturing the liquid crystal display panel Is intended to provide.
  • FIG. 5 is a schematic perspective view showing the polarizing plate used in the examination experiment.
  • FIG. 6 is a schematic plan view showing a polarizing plate in which cracks have occurred in the heat shock test.
  • a white double arrow in the vicinity of the polarizing plate 40 represents the absorption axis of the polarizing plate 40.
  • the polarizing plate 40 has protective films 43 on both sides of the stretched film 42.
  • the stretched film 42 constituting the polarizing plate 40 has a contraction force smaller than an intermolecular force in the flow direction MD 42 (MD: Machine Direction).
  • the contraction force is larger than the intermolecular force.
  • polarizer 40 is likely to shrink in the width direction TD 42.
  • a punching method As a processing method of the polarizing plate, a punching method (Thomson method) is generally used.
  • Thomson method since an impact is applied to the end surface portion (processed cross section) of the polarizing plate, stress is generated in the processed cross section, and damage is given.
  • the heat shock test for verifying the durability is performed on the polarizing plate 40 provided with the hole 41, the stress that tears the damaged portion in the lateral width direction TD 42 works, as shown in FIG. believed crack 44 is generated in the flow direction MD 42. That is, it is considered that the contraction force of the polarizing plate 40 increases as the length of the stretched film 42 along the lateral width direction TD 42 increases, and the crack 44 is likely to occur.
  • the present inventors have repeatedly studied and found that the thinner the stretched film constituting the polarizing plate, the smaller the stress applied to the processed portion of the hole, and the less likely that cracking occurs. .
  • the present inventors consider these examination results, and when a pair of polarizing plates are arranged in crossed Nicols, the polarizing plate having a longer length along the direction orthogonal to the flow direction of the stretched film It was found that cracks are less likely to occur even if a heat shock test is performed by making the thickness of the stretched film constituting the film thinner than the thickness of the stretched film constituting the other polarizing plate. As a result, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • one embodiment of the present invention includes a first polarizing film having a first stretched film and having a hole, a liquid crystal panel, and a second stretched film having a second stretched film.
  • the flow direction of the first stretched film is orthogonal to the flow direction of the second stretched film, and the flow direction of the first stretched film of the first polarizer
  • the length along the orthogonal direction is longer than the length along the direction orthogonal to the flow direction of the second stretched film of the second polarizing plate, and the thickness of the first stretched film is
  • the liquid crystal display panel is thinner than the thickness of the stretched film.
  • Another aspect of the present invention is the step of providing a hole in the first polarizing plate having the first stretched film, the step of providing a hole in the second polarizing plate having the second stretched film, Including a step of laminating a first polarizing plate provided, a liquid crystal panel, and a second polarizing plate provided with the hole in this order to produce a liquid crystal display panel.
  • the flow direction of the first stretched film is perpendicular to the flow direction of the second stretched film, and the length along the direction of the first polarizing plate perpendicular to the flow direction of the first stretched film is:
  • liquid crystal display panel of the present invention it is possible to suppress deterioration in durability and reliability while maintaining excellent design.
  • the method for manufacturing a liquid crystal display panel of the present invention it is possible to manufacture a liquid crystal display panel that is excellent in design and that suppresses deterioration in durability and reliability.
  • FIG. 6 is a schematic cross-sectional view illustrating an example of a liquid crystal display panel according to Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing an example of a liquid crystal display panel according to Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view showing an example of a liquid crystal display panel according to Embodiment 4.
  • FIG. It is a perspective schematic diagram which shows the polarizing plate used for examination experiment. In a heat shock test, it is a mimetic diagram showing a polarizing plate with a crack.
  • FIG. 1 is a schematic perspective view illustrating an example of a liquid crystal display panel according to the first embodiment.
  • the liquid crystal display panel 100A according to Embodiment 1 includes a first polarizing plate 10 provided with a hole 11, a liquid crystal panel 20, and a second polarizing plate 30 provided with a hole 31 in this order.
  • each member is illustrated separately, but the liquid crystal panel 20 and the first polarizing plate 10, and the liquid crystal panel 20 and the second polarizing plate 30 are attached via an adhesive or the like. It may be.
  • polarizing plate refers to an optical member that transmits polarized light in a specific direction.
  • the hole 11 is preferably provided in a region surrounded by the first polarizing plate 10 in plan view.
  • the hole 31 is preferably provided in a region surrounded by the second polarizing plate 30 in plan view. Moreover, it is preferable that at least a part of the holes 11 and 31 overlap in plan view.
  • the shape of the hole 11 provided in the first polarizing plate 10 and the shape of the hole 31 provided in the second polarizing plate 30 are not particularly limited, and may be circular as shown in FIG. It may be other than circular.
  • the shape of the hole 11 and the shape of the hole 31 may be elliptical.
  • the shape of the hole 11 and the shape of the hole 31 may be a shape in which the outer periphery of the holes 11 and 31 is configured by a combination of straight lines and curves. From the viewpoint of sufficiently preventing cracks from occurring in the first polarizing plate 10 and the second polarizing plate 30 under the heat shock test, the shape of the hole 11 and the shape of the hole 31 are circular.
  • the outer periphery of the shape, ellipse shape or the like is a shape (a shape having no corners) constituted by a curve.
  • the shape of the hole 11 and the shape of the hole 31 may be the same or different from each other.
  • the number of holes 11 and the number of holes 31 are not particularly limited, and may be one or plural.
  • a method for forming the holes 11 and 31 will be described later, and examples thereof include a punching process using a punching die, a method using an end mill, or a laser.
  • the holes 11 and 31 may be formed simultaneously with cutting out a polarizing plate having a desired shape from a roll-shaped polarizing plate original.
  • the first polarizing plate 10 has a first stretched film 12, and the second polarizing plate 30 has a second stretched film 32.
  • the resin film containing a dichroic substance can be used, for example. By stretching a resin film containing a dichroic material, the dichroic material is oriented in the stretching direction, and only polarized light in a certain vibration direction can pass therethrough.
  • the dichroic substance include iodine and organic dyes.
  • the resin forming the resin film include those containing polyvinyl alcohol (PVA), ethylene-vinyl alcohol copolymer, and the like.
  • PVA polyvinyl alcohol
  • the 1st stretched film 12 and the 2nd stretched film 32 contain polyvinyl alcohol.
  • the polyvinyl alcohol can be obtained by saponifying polyvinyl acetate.
  • the white double arrow near the first polarizing plate 10 represents the absorption axis of the first polarizing plate 10
  • the white double arrow near the second polarizing plate 30 represents the second polarizing plate 30. Represents the absorption axis.
  • the two flow directions being orthogonal means that the angle formed by the two flow directions is within a range of 90 ⁇ 1 °, preferably within a range of 90 ⁇ 0.5 °, The angle is preferably 90 ° (completely orthogonal).
  • Flow direction represents the flow direction of the resin when forming a stretched film.
  • the flow direction is also referred to as the machine axis direction.
  • the flow direction MD 12 of the first stretched film 12 is parallel to the absorption axis direction of the first polarizing plate 10.
  • the flow direction MD 32 of the second stretched film 32 is parallel to the direction of the absorption axis of the second polarizing plate 30.
  • the direction orthogonal to the flow direction is also referred to as the width direction and is parallel to the direction of the transmission axis.
  • the length L 10TD along the direction (lateral width direction TD 12 ) orthogonal to the flow direction MD 12 of the first stretched film 12 of the first polarizing plate 10 is the length of the second stretched film 32 of the second polarizing plate 30. It is longer than the length L 30TD along the direction (lateral width direction TD 32 ) orthogonal to the flow direction MD 32 .
  • the length L 10TD is a straight line passing through the hole 11 provided in the first polarizing plate 10 along the direction perpendicular to the flow direction MD 12 of the first stretched film 12 of the first polarizing plate 10.
  • the length of the line segment connecting the intersection with the outer periphery of the first polarizing plate 10 is referred to.
  • the length of the maximum line segment is set to a length L 10TD .
  • the length L 30TD is a straight line passing through the hole 31 provided in the second polarizing plate 30 along the direction orthogonal to the flow direction MD 32 of the second stretched film 32 of the second polarizing plate 30. And the length of the line connecting the intersections with the outer periphery of the second polarizing plate 30.
  • the length of the maximum line segment is set as a length L 30TD .
  • the length L 10TD and the length L 30TD may pass through at least one hole.
  • the length L 10TD along the width direction TD 12 of the first polarizing plate 10 is not particularly limited, but is longer than the length L 10MD along the flow direction MD 12 of the first polarizing plate 10 as shown in FIG. It is preferable. Such a configuration can be easily realized by setting the longitudinal direction of the first polarizing plate 10 to the lateral width direction TD 12 and setting the short direction of the first polarizing plate 10 to the flow direction MD 12. .
  • the length L 30TD along the lateral width direction TD 32 of the second polarizing plate 30 is not particularly limited, but is shorter than the length L 30MD along the flow direction MD 32 of the second polarizing plate 30 as shown in FIG. It is preferable. Such a configuration can be easily realized by setting the longitudinal direction of the second polarizing plate 30 to the flow direction MD 32 and setting the short direction of the second polarizing plate 30 to the lateral width direction TD 32. .
  • the length L 10TD along the direction orthogonal to the flow direction MD 12 of the first stretched film 12 of the first polarizing plate 10 is orthogonal to the flow direction MD 32 of the second stretched film 32 of the second polarizing plate 30. It is preferable that it is 1.1 times or more with respect to the length L 30TD along the direction.
  • the length L 10TD is more preferably 1.2 times or more the length L 30TD.
  • the length L 10TD with respect to the length L 30TD is not particularly limited, but is, for example, 10 times or less.
  • the thickness T 12 of the first stretched film 12 is thinner than the thickness T 32 of the second stretched film 32.
  • the polarizing plate tends to easily generate cracks as the length along the width direction of the stretched film increases. Moreover, the polarizing plate tends to generate cracks as the stretched film is thicker. Therefore, for the longer polarizing plate along the direction orthogonal to the flow direction of the stretched film, the thickness of the stretched film constituting the polarizing plate is made thinner than the thickness of the stretched film constituting the other polarizing plate. Thus, durability against the heat shock test can be improved.
  • the thicknesses T 12 and T 32 can be measured by, for example, an optical microscope or an electron microscope.
  • the thickness T 12 of the first stretched film 12 is preferably 0.8 times or less with respect to the thickness T 32 of the second stretched film 32.
  • the thickness T 12 of the first stretched film 12 is more preferably 0.6 times or less with respect to the thickness T 32 of the second stretched film 32.
  • the lower limit of the thickness T 12 of the first stretched film 12 is not particularly limited, the thickness T 32 of the second oriented film 32, for example, 0.1 times or more.
  • the thickness T 12 of the first stretched film 12 is not particularly limited as thinner than the second thickness T 32 of the stretched film 32 of, for example, it may be 1 [mu] m ⁇ 80 [mu] m.
  • the thickness T 12 of the first stretched film 12 is more preferably at least 3 [mu] m, more preferably at most 40 [mu] m.
  • the mobile liquid crystal display panel because it thinner is progressed, the thickness T 12 is more preferably 12 ⁇ m or less.
  • the thickness T 32 of the second stretched film 32 is not particularly limited as long as it is thicker than the thickness T 12 of the first stretched film 12, but may be, for example, 1 ⁇ m to 80 ⁇ m.
  • the thickness T 32 of the second oriented film 32 is more preferably equal to or less than 60 [mu] m. Since the liquid crystal display panel for mobile use is becoming thinner, the thickness T 32 is more preferably 50 ⁇ m or less.
  • the shape of the first polarizer 10 and second polarizer 30, the length L 10TD is may be longer than the L 30TD, not particularly limited.
  • the shape of the first polarizing plate 10 and the second polarizing plate 30 is a rectangle, but it may be a shape constituted by a straight line or a shape constituted by a curve, The shape may be a combination of straight lines and curves.
  • the shape of the 1st polarizing plate 10 and the 2nd polarizing plate 30 means the shape of the outer periphery of each polarizing plate.
  • the first polarizing plate 10 may further include a first film on at least one of the first stretched film 12 on the liquid crystal panel 20 side and the side opposite to the liquid crystal panel 20.
  • the second polarizing plate 30 may further include a second film on at least one of the second stretched film 32 on the liquid crystal panel 20 side and the side opposite to the liquid crystal panel 20.
  • the protective film is a film that protects the first stretched film 12 and / or the second stretched film 32.
  • the film having the phase difference is a birefringent element that causes a phase difference between orthogonally polarized components. Although it does not specifically limit as a film which has the said phase difference, For example, (lambda) / 2 board, (lambda) / 4 board, or these combination etc. are mentioned.
  • the brightness enhancement film is a film that scatters incident light and improves the brightness of the liquid crystal display panel.
  • Embodiment 1 demonstrates the case where it has a protective film as said 1st film and 2nd film.
  • the protective films 13 and 33 include cellulose resins such as diacetyl cellulose and triacetyl cellulose (TAC); (meth) acrylic resins; cycloolefin resins; olefin resins such as polypropylene; and polyethylene terephthalate resins. Examples include ester resins; polyamide resins; polycarbonate resins; and films containing these copolymer resins.
  • the protective films 13 and 33 contain a triacetyl cellulose.
  • the thickness of the protective films 13 and 33 is not particularly limited, but may be, for example, 10 ⁇ m to 200 ⁇ m. From the viewpoint of enhancing durability, it is preferable to use protective films 13 and 33 having no phase difference.
  • the protective film 13 may be disposed on the surface of the first stretched film 12 opposite to the liquid crystal panel 20. Further, the protective film 33 may be disposed on the surface of the second stretched film 32 opposite to the liquid crystal panel 20. From the viewpoint of enhancing the durability, as shown in FIG. 1, it is preferable to have protective films 13 containing TAC on both surfaces of the first stretched film 12, and TAC on both surfaces of the second stretched film 32. It is preferable to have a protective film 33 containing More preferably, the first polarizing plate 10 has protective films containing TAC on both sides of the first stretched film 12 containing PVA. Moreover, it is more preferable that the 2nd polarizing plate 30 has a protective film containing TAC on both surfaces of the 2nd stretched film 32 containing PVA. By using a TAC film having high adhesion with PVA as the protective films 13 and 33, the first polarizing plate 10 and the second polarizing plate 30 can be made difficult to break.
  • the liquid crystal panel 20 has a configuration in which a liquid crystal layer is sandwiched between a pair of substrates, for example.
  • the pair of substrates are bonded to each other with a sealing material so as to sandwich a liquid crystal layer containing liquid crystal molecules.
  • substrate which comprises the liquid crystal panel 20 is not specifically limited, For example, the combination etc. of a thin-film transistor array board
  • the thin film transistor array substrate for example, a plurality of thin film transistor elements, pixel electrodes, various wirings (scanning lines and signal lines) may be arranged on a glass substrate, and a plastic substrate or the like may be used instead of the glass substrate.
  • a plastic substrate or the like may be used instead of the glass substrate.
  • the structure using the transparent substrate may be used.
  • the structure of the semiconductor layer included in the thin film transistor element is not particularly limited, and may include, for example, amorphous silicon, low-temperature polysilicon, an oxide semiconductor, or the like.
  • Examples of the structure of the oxide semiconductor include a compound composed of indium, gallium, zinc, and oxygen, a compound composed of indium, zinc, and oxygen.
  • the color filter substrate for example, a configuration in which a plurality of color filter layers, black masks (light shielding layers) and the like are arranged on a glass substrate may be used. Instead of the glass substrate, a transparent substrate such as a plastic substrate is used. The configuration may be acceptable.
  • the combination of colors of the color filter layer is not particularly limited, and examples thereof include a combination of red, green, and blue, a combination of red, green, blue, and yellow.
  • a plurality of pixel electrodes may be further disposed on the color filter substrate.
  • the liquid crystal panel 20 may be provided with holes.
  • the hole provided in the liquid crystal panel 20 is smaller than at least one of the holes 11 and 31 and overlaps with the holes 11 and 31 when the liquid crystal display panel 100A is viewed in plan. It is preferable to be provided at a position where
  • the liquid crystal display panel of the present invention can realize high design, it can be suitably used for, for example, a clock display screen, a car meter display unit, an operation screen of a game machine, and the like.
  • the liquid crystal display panel 100A can be used as a liquid crystal display device by further arranging a backlight, an external circuit, and the like.
  • the front and back sides of the liquid crystal display panel 100A are not particularly limited.
  • the first polarizing plate 10 side of the liquid crystal display panel 100A is the front side (observer side) of the liquid crystal display device, and the second polarizing plate.
  • the 30 side may be the back side of the liquid crystal display device.
  • the second polarizing plate 30 side of the liquid crystal display panel 100A may be the front side of the liquid crystal display device, and the first polarizing plate 10 side may be the back side of the liquid crystal display device.
  • the display mode of the liquid crystal display device is not particularly limited.
  • IPS In-Plane Switching
  • FFS Flexible Field Switching
  • VA Very Alignment
  • TN Transmission Nematic
  • UV2A Ultra-) violet induced multi-domain vertical alignment
  • FIG. 2 is a schematic cross-sectional view illustrating an example of a liquid crystal display panel according to the second embodiment.
  • the first polarizing plate 10 may further have a coating layer in contact with the first stretched film 12 on at least one of the first stretched film 12 on the liquid crystal panel 20 side and the side opposite to the liquid crystal panel 20.
  • the second polarizing plate 30 further has a coating layer in contact with the second stretched film 32 on at least one of the second stretched film 32 on the liquid crystal panel 20 side and the side opposite to the liquid crystal panel 20. May be.
  • the first polarizing plate 10 is a coating layer in contact with the first stretched film 12 on the liquid crystal panel 20 side of the first stretched film 12.
  • the second polarizing plate 30 has a coating layer 34 in contact with the second stretched film 32 on the liquid crystal panel 20 side of the second stretched film 32.
  • the coating layer 14 is formed on both surfaces of the first stretched film 12 so as to be in contact with the first stretched film 12.
  • the coating layer 34 is preferably formed on both surfaces of the second stretched film 32 so as to be in contact with the second stretched film 32.
  • Examples of the coating layers 14 and 34 include those containing polyester resin, acrylic resin, polycarbonate, and the like.
  • the thickness of the coating layers 14 and 34 is, for example, 0.3 ⁇ m to 10 ⁇ m.
  • a more preferable lower limit of the thickness of the coating layers 14 and 34 is 0.5 ⁇ m, and a more preferable upper limit is 5 ⁇ m.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a liquid crystal display panel according to the third embodiment.
  • the first polarizing plate 10 includes the viewing angle compensation film 15 as the first film.
  • the 2nd polarizing plate 30 has the brightness enhancement film 35 as a 2nd film.
  • the viewing angle compensation film 15 is preferably disposed closer to the liquid crystal panel 20 than the first stretched film 12.
  • the viewing angle compensation film 15 is preferably a film having a phase difference. Since the viewing angle can be corrected by having the phase difference, viewing angle characteristics can be improved. Although it does not specifically limit as the viewing angle compensation film 15, For example, (lambda) / 2 board, (lambda) / 4 board, or these combination etc. are mentioned. Examples of the viewing angle compensation film 15 include a film (COP film) containing a cycloolefin polymer.
  • the brightness enhancement film 35 is preferably disposed on the opposite side of the second stretched film 32 from the liquid crystal panel 20.
  • the brightness enhancement film 35 is preferably disposed on the outermost surface of the second polarizing plate 30 on the side opposite to the liquid crystal panel 20.
  • Examples of the brightness enhancement film 35 include a brightness enhancement film (Brightness Enhancement Film: BEF) (for example, manufactured by 3M), a reflective polarizing film (DBEF: Dual Brightness Enhancement Film) (for example, manufactured by 3M), and an APF film. (For example, manufactured by 3M).
  • BEF brightness Enhancement Film
  • DBEF Dual Brightness Enhancement Film
  • APF film for example, manufactured by 3M
  • a polarizing plate with an APCF (brightness enhancement film) (for example, manufactured by Nitto Denko Corporation) can also be used.
  • the liquid crystal display panel 100C includes the first stretched film 12, the protective film 13, and the like as shown in FIG. Even if it contacts, it has sufficient adhesiveness.
  • the first polarizing plate 10 has a viewing angle compensation film 15 such as a COP film, the first stretching is performed in order to improve the adhesion between the first stretching film 12 and the viewing angle compensation film 15.
  • a coating layer 14 may be provided between the film 12 and the viewing angle compensation film 15. That is, the first polarizing plate 10 may have a coating layer 14 in contact with the first stretched film 12 on the liquid crystal panel 20 side of the first stretched film 12.
  • the viewing angle compensation film 15 may be a COP film
  • the brightness enhancement film 35 may be an APF.
  • the brightness enhancement film 35 may be used as a protective film.
  • a coating layer 34 may be provided between the second stretched film 32 and the brightness enhancement film 35. That is, the second polarizing plate 30 may have a coating layer 34 in contact with the second stretched film 32 on the side opposite to the liquid crystal panel 20 of the second stretched film 32. Further, the second polarizing plate 30 may also have a coating layer 34 in contact with the second stretched film 32 on the liquid crystal panel 20 side of the second stretched film 32.
  • an adhesive layer may be provided between the coating layer 34 and the brightness enhancement film 35.
  • the pressure-sensitive adhesive layer is not particularly limited, and those generally used in the field of liquid crystal display panels can be used.
  • a backlight may be disposed on the second polarizing plate 30 side of the liquid crystal display panel 100C.
  • the second polarizing plate 30 preferably has a brightness enhancement film 35 on the outermost surface on the side opposite to the liquid crystal panel 20.
  • FIG. 4 is a schematic cross-sectional view illustrating an example of a liquid crystal display panel according to the fourth embodiment.
  • the first polarizing plate 10 includes a sunglasses countermeasure film 16 as a first film.
  • the liquid crystal display panel 100 ⁇ / b> D may further include a transparent substrate on the side opposite to the liquid crystal panel 20 of the first polarizing plate 10 or on the side opposite to the liquid crystal panel 20 of the second polarizing plate 30.
  • a transparent base material is arrange
  • the length L 10TD along the direction (lateral width direction TD 12 ) orthogonal to the flow direction MD 12 of the first stretched film 12 of the first polarizing plate 10 is the length of the second stretched film 32 of the second polarizing plate 30.
  • the first polarizing plate 10 tends to break more easily than the second polarizing plate 30. Therefore, in the liquid crystal display panel 100D, it is preferable to dispose a transparent substrate on the opposite side of the first polarizing plate 10 from the liquid crystal panel 20, and the durability of the liquid crystal display panel 100D can be further improved.
  • the transparent substrate is a separate member from the first polarizing plate 10 and the second polarizing plate 30.
  • the transparent substrate is on the side opposite to the liquid crystal panel 20 of the first polarizing plate 10 and on the outermost surface of the liquid crystal display panel 100D or on the side opposite to the liquid crystal panel 20 of the second polarizing plate 30;
  • the liquid crystal display panel 100D is preferably disposed on the outermost surface.
  • the transparent substrate may or may not be provided with holes. When providing a hole in the said transparent base material, it is preferable to be provided in the position which overlaps with the holes 11 and 31.
  • the transparent substrate is not particularly limited as long as it has high scratch resistance and transparency, and examples thereof include glass and polycarbonate. From the viewpoint of enhancing durability, the transparent substrate preferably has no phase difference. As shown in FIG. 4, the liquid crystal display panel 100 ⁇ / b> D has a cover glass 50 on the side opposite to the liquid crystal panel 20.
  • An adhesive layer may be further provided between the cover glass 50 and the anti-sunglass film 16.
  • an optically transparent adhesive OCA: Optically Clear
  • OCR Optically Clear Resin
  • the anti-sunglass film 16 may be a ⁇ / 4 plate.
  • the anti-sunglass film 16 may be disposed on the opposite side of the first stretched film 12 from the liquid crystal panel 20. By arranging in this way, it is possible to prevent the circularly polarized light from becoming invisible due to interference between the axis of the sunglasses and the axis of the first stretched film 12.
  • Sunglasses countermeasure film 16 may be a COP film.
  • the pressure-sensitive adhesive layer is not particularly limited, but a diffusion pressure-sensitive adhesive containing light diffusing fine particles and enhancing the light diffusion effect may be used. By using the diffusion adhesive, the interference unevenness of the backlight can be reduced.
  • the light diffusing fine particles are not particularly limited, and examples thereof include fine particles containing an inorganic compound and fine particles containing an organic compound.
  • examples of the inorganic compound include aluminum oxide and silicon oxide.
  • examples of the organic compound include melamine resin, acrylic resin, polycarbonate, polyethylene resin, polystyrene resin, polyvinyl chloride resin, and silicone resin.
  • a backlight may be disposed on the second polarizing plate 30 side of the liquid crystal display panel 100D.
  • the transparent substrate is located on the opposite side of the first polarizing plate 10 from the liquid crystal panel 20, and the second polarizing plate 30 is provided on the outermost surface on the opposite side of the liquid crystal panel 20 with the brightness enhancement film 35. You may have.
  • the backlight may be disposed on the first polarizing plate side of the liquid crystal display panel.
  • the brightness enhancement film may be disposed on the outermost surface of the first polarizing plate opposite to the liquid crystal panel.
  • the first polarizing plate has the brightness enhancement film on the outermost surface opposite to the liquid crystal panel, and the transparent substrate is opposite to the liquid crystal panel of the second polarizing plate. May be located.
  • a method for manufacturing the liquid crystal display panels of Embodiments 1 to 4 will be described below.
  • Another aspect of the present invention is the step of providing a hole in the first polarizing plate having the first stretched film, the step of providing a hole in the second polarizing plate having the second stretched film, Including a step of laminating a first polarizing plate provided, a liquid crystal panel, and a second polarizing plate provided with the hole in this order to produce a liquid crystal display panel.
  • the flow direction of the first stretched film is perpendicular to the flow direction of the second stretched film, and the length along the direction of the first polarizing plate perpendicular to the flow direction of the first stretched film is:
  • the step of providing holes in the first polarizing plate and the second polarizing plate may be performed by punching using a punching die.
  • a punching die for example, a Thomson die in which a Thomson blade is arranged, a Pinnacle die in which a pinnacle blade is arranged, an engraving die in which an engraving blade is arranged, or the like is used.
  • the punching process causes large damage to the first polarizing plate and the second polarizing plate, it is excellent in mass productivity as compared with an end mill or a laser.
  • the step of providing holes in the first polarizing plate and the second polarizing plate may use an end mill.
  • an end mill When an end mill is used, a hole can be provided while suppressing damage applied to the first polarizing plate and the second polarizing plate as compared with the punching method. In addition, it is more mass-productive than the following laser method.
  • the method using the end mill (hereinafter also referred to as an end mill method) is pressed against the first polarizing plate while rotating the end mill blade.
  • the first polarizing plate can be cut to provide a hole.
  • known end mill blades can be used.
  • the material of the end mill blade is not particularly limited, and may be appropriately selected depending on the material of the first polarizing plate 10.
  • the diameter of the end mill blade is not particularly limited, and may be appropriately selected depending on the size of the hole to be formed.
  • the step of providing holes in the first polarizing plate and the second polarizing plate may use a laser.
  • a laser When a laser is used, a hole can be provided while suppressing damage applied to the first polarizing plate and the second polarizing plate as compared with the punching method.
  • a method using the above laser (hereinafter also referred to as a laser system) is not particularly limited.
  • a laser that can emit light having a wavelength in the range of 150 nm to 11 ⁇ m is used.
  • a gas laser such as a CO 2 laser
  • a solid laser such as a YAG laser
  • a semiconductor laser Preferably, a CO 2 laser is used.
  • the irradiation condition of the laser beam can be set to any appropriate condition depending on the laser to be used, for example. Taking the case of using a CO 2 laser as an example, the output conditions are preferably 10 W to 1000 W, more preferably 100 W to 400 W.
  • a smooth cut surface can be obtained, so that the generation of cracks can be suppressed.
  • an apparatus for irradiating the laser beam for example, a CO 2 laser apparatus manufactured by Samsung Diamond Industrial Co., Ltd. can be used.
  • first polarizing plate has the first film and / or coating layer
  • second polarizing plate has the second film and / or coating layer
  • a hole is provided in the second polarizing plate after the second film and / or coating layer is formed. It is done.
  • a transparent substrate is applied to the first polarizing plate or the second polarizing plate. You may have the process of laminating
  • providing a hole in the transparent substrate after laminating the transparent substrate on the first polarizing plate or the second polarizing plate, providing a hole in the first polarizing plate or the second polarizing plate. At the same time, a hole may be provided in the transparent substrate.
  • the first polarizing plate may be cut into a desired shape simultaneously with forming the hole in the first polarizing plate.
  • the second polarizing plate may be cut into a desired shape simultaneously with forming the hole in the second polarizing plate.
  • the first polarizing plate provided with the holes, the liquid crystal panel, and the second polarizing plate provided with the holes are laminated in this order.
  • the lamination method is not particularly limited, for example, a method of applying an adhesive between the first polarizing plate and the liquid crystal panel, and between the liquid crystal panel and the second polarizing plate, Examples include a method of interposing an adhesive sheet. The kind of the said adhesive and an adhesive sheet can be selected suitably. *
  • the flow direction of the first stretched film and the flow direction of the second stretched film are orthogonal to each other, and the flow of the first stretched film of the first polarizing plate. Bonding is performed so that the length along the direction orthogonal to the direction becomes longer than the length along the direction orthogonal to the flow direction of the second stretched film of the second polarizing plate.
  • the step of producing the liquid crystal display panel is performed on the side opposite to the liquid crystal panel of the first polarizing plate provided with the hole, or on the side opposite to the liquid crystal panel of the second polarizing plate provided with the hole.
  • the step of laminating a transparent substrate may be included. When providing a hole in the transparent substrate, after making a hole in the transparent substrate, it is affixed to the first polarizing plate provided with the hole or the second polarizing plate provided with the hole Also good. *
  • the obtained liquid crystal display panel may be cut into a desired shape.
  • the polarizing plate for heat shock test 40 has a PVA film as a stretched film, and has a TAC film having a thickness of 25 ⁇ m and a TAC film having a thickness of 40 ⁇ m on both sides of the PVA film as protective films for the PVA film.
  • a polarizing plate was used.
  • MD flow direction
  • TD width direction
  • Examination was made by changing the length along the length as shown in Table 1 below. Using a Thomson blade, a hole 41 having a radius of curvature of 1 mm was punched into each polarizing plate to obtain a test piece.
  • Each test piece was subjected to a heat shock test under the following conditions.
  • the heat shock test was performed using a thermal shock apparatus (product name: TSA-71L-A) manufactured by Espec. Specifically, the process of holding each polarizing plate for 30 minutes in an environment at a temperature of 85 ° C. and then holding it for 30 minutes in an environment at a temperature of ⁇ 40 ° C. was defined as one cycle. The switching time between the environment at a temperature of 85 ° C. and the environment at ⁇ 40 ° C. was 30 minutes.
  • the heat shock test was done in 6 cycles, 72 cycles, 120 cycles, 240 cycles, and 500 cycles. After the heat shock test in each cycle, each polarizing plate was visually observed to confirm the occurrence of cracks. The case where a crack did not occur was marked as ⁇ , and the case where a crack occurred was marked as x.
  • Table 1 The test results are shown in Table 1 below.
  • the polarizing plate cracks when the length along the width direction (TD) of the stretched film is longer than the length along the flow direction (MD) of the stretched film. It was found that is likely to occur. It was also found that the polarizing plate is more likely to crack as the PVA film is thicker. From these results, it was found that a shorter length along the width direction of the polarizing plate is more advantageous for suppressing the occurrence of cracks, and the occurrence of cracks can be reduced by reducing the thickness of the PVA film.
  • Example 1 a liquid crystal display panel including a first polarizing plate, a liquid crystal panel, and a second polarizing plate in order was produced.
  • the first polarizing plate the length along the flow direction is 40 mm, the length along the width direction is 60 mm, the thickness of the PVA film is 12 ⁇ m, and a TAC film having a thickness of 25 ⁇ m is provided on both sides of the PVA film.
  • An absorptive polarizing plate was used.
  • the length along the flow direction is 60 mm
  • the length along the width direction is 40 mm
  • the thickness of the PVA film is 22 ⁇ m
  • a TAC film having a thickness of 25 ⁇ m is provided on both sides of the PVA film.
  • An absorptive polarizing plate was used.
  • a hole with a radius of curvature of 1 mm was punched in the center of each of the first polarizing plate and the second polarizing plate using a Thomson blade. Thereafter, the absorption axes of the first polarizing plate and the second polarizing plate were arranged so that the holes overlap each other and the absorption axes were orthogonal to each other, and were attached to both surfaces of the liquid crystal panel. Thus, the liquid crystal display panel according to Example 1 was completed.
  • One embodiment of the present invention includes a first polarizing film having a first stretched film and having a hole, a liquid crystal panel, and a second polarizing film having a second stretched film and having a hole. And a flow direction of the first stretched film and a flow direction of the second stretched film are orthogonal to each other, and are orthogonal to a flow direction of the first stretched film of the first polarizing plate. The length along the direction is longer than the length along the direction perpendicular to the flow direction of the second stretched film of the second polarizing plate, and the thickness of the first stretched film is equal to the second stretch The liquid crystal display panel is thinner than the film thickness.
  • the thickness of the first stretched film may be 0.8 times or less with respect to the thickness of the second stretched film.
  • the length along the direction orthogonal to the flow direction of the first stretched film of the first polarizing plate is the length along the direction orthogonal to the flow direction of the second stretched film of the second polarizing plate. However, it may be 1.1 times or more.
  • the first polarizing plate may further include a first film on at least one of the liquid crystal panel side and the liquid crystal panel side of the second stretched film.
  • the first film may be a brightness enhancement film, and the brightness enhancement film may be disposed on the outermost surface of the first polarizing plate opposite to the liquid crystal panel.
  • the first polarizing plate has the brightness enhancement film on the outermost surface opposite to the liquid crystal panel, and the transparent substrate is located on the opposite side of the second polarizing plate from the liquid crystal panel. May be.
  • the second polarizing plate may further include a second film on at least one of the liquid crystal panel side and the liquid crystal panel side of the second stretched film.
  • the second film may be a brightness enhancement film, and the brightness enhancement film may be disposed on the outermost surface of the second polarizing plate opposite to the liquid crystal panel.
  • the transparent substrate is located on the opposite side of the first polarizing plate from the liquid crystal panel, and the second polarizing plate has the brightness enhancement film on the outermost surface opposite to the liquid crystal panel. May be.
  • the first stretched film and the second stretched film may contain polyvinyl alcohol, and the first film and / or the second film may contain triacetylcellulose.
  • the first polarizing plate may further include a coating layer in contact with the first stretched film on at least one of the first stretched film on the liquid crystal panel side and the side opposite to the liquid crystal panel. Good.
  • the second polarizing plate may further have a coating layer in contact with the second stretched film on at least one of the liquid crystal panel side and the liquid crystal panel side of the second stretched film. Good.
  • Another aspect of the present invention is the step of providing a hole in the first polarizing plate having the first stretched film, the step of providing a hole in the second polarizing plate having the second stretched film, Including a step of laminating a first polarizing plate provided, a liquid crystal panel, and a second polarizing plate provided with the hole in this order to produce a liquid crystal display panel.
  • the flow direction of the first stretched film is perpendicular to the flow direction of the second stretched film, and the length along the direction of the first polarizing plate perpendicular to the flow direction of the first stretched film is:
  • the step of providing holes in the first polarizing plate and the second polarizing plate may be performed by punching using a punching die.
  • the step of providing holes in the first polarizing plate and the second polarizing plate may use an end mill.
  • the step of providing holes in the first polarizing plate and the second polarizing plate may use a laser.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、優れたデザイン性を維持しつつ、耐久性及び信頼性の低下を抑制することができる液晶表示パネルを提供する。本発明は、第一の延伸フィルム(12)を有し、穴(11)が設けられた第一の偏光板(10)と、液晶パネル(20)と、第二の延伸フィルム(32)を有し、穴(31)が設けられた第二の偏光板(30)とを順に備え、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さ(L10TD)は、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さ(L30TD)よりも長く、上記第一の延伸フィルムの厚さ(T12)は、上記第二の延伸フィルムの厚さ(T32)よりも薄い液晶表示パネルである。

Description

液晶表示パネル、及び、液晶表示パネルの製造方法
本発明は、液晶表示パネル、及び、液晶表示パネルの製造方法に関する。より詳しくは、穴が設けられた偏光板を備えた液晶表示パネル、及び、該液晶表示パネルの製造方法に関するものである。
液晶表示パネルは、液晶パネルと偏光板とが組み合わされた構成であることが知られている。偏光板は、通常、ロール状の原反から、液晶パネルの画面の大きさに合わせて矩形状に切り出される。偏光板の切断方法としては、一般的に、打ち抜き型を用いる方式(以下、打ち抜き方式とも言う。)が採用されている(例えば、特許文献1参照)。
特開2007-187781号公報
近年では、液晶表示パネルが様々な用途で使用される中で、従来とは異なる形状の液晶表示パネルに対する要望が強くなっている。これに対して、液晶パネルの前面側及び背面側にクロスニコルに配置される二つの偏光板に穴を形成することが検討されている。しかしながら、本発明者らが検討したところ、偏光板に穴を形成すると、耐久性試験(ヒートショック試験)によって、偏光板にクラックが発生し易いことが分かった。クラックが発生することで、偏光板から光漏れが起こり、液晶表示パネルの信頼性が低下することがあった。
上記特許文献1は、打ち抜き方式による光学フィルム製品の製造方法を開示している。しかしながら、上記特許文献1には、上述したクラックに関する記載はなく、その発生を抑制するものではなかった。
本発明は、上記現状に鑑みてなされたものであり、優れたデザイン性を維持しつつ、耐久性及び信頼性の低下を抑制することができる液晶表示パネル、及び、該液晶表示パネルの製造方法を提供することを目的とするものである。
本発明者らは、穴あきの液晶表示パネルの耐久性試験において、偏光板にクラックが発生する原因について検討を行った。図5は、検討実験に用いた偏光板を示す斜視模式図である。図6は、ヒートショック試験において、クラックが生じた偏光板を示す平面模式図である。図5及び図6中、偏光板40近傍の白抜き両矢印は、偏光板40の吸収軸を表す。図5に示したように、偏光板40は、延伸フィルム42の両面に保護フィルム43を有する。偏光板40を構成する延伸フィルム42は、流れ方向MD42(MD:Machine Direction)においては、収縮力が分子間力よりも小さい。一方、延伸フィルムの流れ方向と直交する横幅方向TD42(TD:Transverse Direction)においては、収縮力が分子間力よりも大きい。よって、偏光板40は、横幅方向TD42に収縮しやすい。
偏光板の加工方法としては、打ち抜き方式(トムソン方式)を用いることが一般的である。上記加工工程では、偏光板の端面部(加工断面)に衝撃が加わるため、上記加工断面に応力が発生し、ダメージが与えられる。穴41を設けた偏光板40に対して、耐久性を検証するためのヒートショック試験を行うと、ダメージが加わった部分を横幅方向TD42に裂く応力が働き、図6に示したように、流れ方向MD42にクラック44が発生すると考えられる。すなわち、偏光板40は、延伸フィルム42の横幅方向TD42に沿う長さが長いほど、収縮力が大きくなり、クラック44が発生しやすいと考えられる。
更に、本発明者らは、検討を重ね、偏光板を構成する延伸フィルムの厚さが薄い方が、穴の加工部分にかかる応力が小さくなり、クラックが発生しにくい傾向があることを見出した。
本発明者らは、これらの検討結果を考え合わせ、一対の偏光板をクロスニコルに配置した場合に、延伸フィルムの流れ方向と直交する方向に沿う長さが長い方の偏光板について、偏光板を構成する延伸フィルムの厚さを、他方の偏光板を構成する延伸フィルムの厚さよりも薄くすることで、ヒートショック試験を行ってもクラックが発生し難くなることを見出した。以上により、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様は、第一の延伸フィルムを有し、穴が設けられた第一の偏光板と、液晶パネルと、第二の延伸フィルムを有し、穴が設けられた第二の偏光板とを順に備え、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、上記第一の延伸フィルムの厚さは、上記第二の延伸フィルムの厚さよりも薄い液晶表示パネルである。
本発明の他の一態様は、第一の延伸フィルムを有する第一の偏光板に穴を設ける工程と、第二の延伸フィルムを有する第二の偏光板に穴を設ける工程と、上記穴が設けられた第一の偏光板と、液晶パネルと、上記穴が設けられた第二の偏光板とをこの順に積層して液晶表示パネルを作製する工程とを含み、上記液晶表示パネルにおいて、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、上記第一の延伸フィルムの厚さは、上記第二の延伸フィルムの厚さよりも薄い液晶表示パネルの製造方法である。
本発明の液晶表示パネルによれば、優れたデザイン性を維持しつつ、耐久性及び信頼性の低下を抑制することができる。本発明の液晶表示パネルの製造方法によれば、デザイン性に優れ、かつ、耐久性及び信頼性の低下を抑制した液晶表示パネルを製造することができる。
実施形態1に係る液晶表示パネルの一例を示す斜視模式図である。 実施形態2に係る液晶表示パネルの一例を示す断面模式図である。 実施形態3に係る液晶表示パネルの一例を示す断面模式図である。 実施形態4に係る液晶表示パネルの一例を示す断面模式図である。 検討実験に用いた偏光板を示す斜視模式図である。 ヒートショック試験において、クラックが生じた偏光板を示す平面模式図である。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこの実施形態のみに限定されるものではない。なお、以下の説明において、同一部分又は同様な機能を有する部分には、同様な符号を異なる図面間で共通して用い、その繰り返しの説明は適宜省略する。また、実施形態の各構成は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。
<実施形態1>
実施形態1に係る液晶表示パネルについて、図1を参照して説明する。図1は、実施形態1に係る液晶表示パネルの一例を示す斜視模式図である。実施形態1に係る液晶表示パネル100Aは、穴11が設けられた第一の偏光板10と、液晶パネル20と、穴31が設けられた第二の偏光板30とを順に備える。図1中では各部材を離間して図示しているが、液晶パネル20と第一の偏光板10、及び、液晶パネル20と第二の偏光板30とは粘着剤等を介して貼り付けられていてもよい。本明細書中、「偏光板」とは、特定方向の偏光を透過させる光学部材をいう。
穴11は、平面視において、第一の偏光板10に囲まれた領域に設けられることが好ましい。穴31は、平面視において、第二の偏光板30に囲まれた領域に設けられることが好ましい。また、穴11及び31は、平面視において、少なくとも一部が重畳していることが好ましい。
第一の偏光板10に設けられた穴11の形状、及び、第二の偏光板30に設けられた穴31の形状は特に限定されず、図1に示すような円形状であってもよく、円形状以外であってもよい。穴11の形状、及び、穴31の形状は、楕円形状であってもよい。また、穴11の形状、及び、穴31の形状は、穴11及び31の外周が直線及び曲線の組み合わせで構成される形状であってもよい。ヒートショック試験下で、第一の偏光板10、及び、第二の偏光板30にクラックが発生するのを充分に防止する観点からは、穴11の形状、及び、穴31の形状は、円形状、楕円形状等の外周が曲線で構成される形状(角がない形状)であることが好ましい。穴11の形状、及び、穴31の形状は、同じであってもよいし、互いに異なっていてもよい。穴11の個数、及び、穴31の個数は特に限定されず、1個であってもよく、複数個であってもよい。
穴11及び31の形成方法については後述するが、例えば、打ち抜き型を用いた打ち抜き加工、エンドミル又はレーザーを用いた方法等が挙げられる。穴11及び31は、ロール状の偏光板の原反から所望の形状の偏光板を切り出すのと同時に形成されてもよい。
第一の偏光板10は、第一の延伸フィルム12を有し、第二の偏光板30は、第二の延伸フィルム32を有する。第一の延伸フィルム12及び第二の延伸フィルム32としては、例えば、二色性物質を含む樹脂フィルムを用いることができる。二色性物質を含む樹脂フィルムを延伸加工することで、上記二色性物質が延伸方向に配向し、ある振動方向の偏光のみを通過させることができる。上記二色性物質としては、例えば、ヨウ素、有機染料等が挙げられる。上記樹脂フィルムを形成する樹脂としては、例えば、ポリビニルアルコール(PVA)、エチレン-ビニルアルコール共重合体等を含有するものが挙げられる。なかでも、第一の延伸フィルム12及び二の延伸フィルム32は、ポリビニルアルコールを含有することが好ましい。上記ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。
第一の延伸フィルム12の流れ方向MD12と、第二の延伸フィルム32の流れ方向MD32とは直交する。すなわち、第一の偏光板10のと第二の偏光板30とは、互いの吸収軸が直交するようにクロスニコルに配置される。図1中、第一の偏光板10近傍の白抜き両矢印は、第一の偏光板10の吸収軸を表し、第二の偏光板30近傍の白抜き両矢印は、第二の偏光板30の吸収軸を表す。このように配置することで、液晶層中の液晶分子の配向を制御して、液晶表示パネルを透過する光の量を調整し表示を行うことができる。本明細書中、二つの流れ方向が直交するとは、二つの流れ方向の成す角度が90±1°の範囲内であることを示し、好ましくは90±0.5°の範囲内であり、特に好ましくは90°(完全に直交)である。「流れ方向」は、延伸フィルムを成形する際の樹脂の流動方向を表す。流れ方向は、機械軸方向ともいう。例えば、第一の偏光板10及び第二の偏光板30が吸収型偏光板である場合、第一の延伸フィルム12の流れ方向MD12は第一の偏光板10の吸収軸の方向と平行であり、第二の延伸フィルム32の流れ方向MD32は、第二の偏光板30の吸収軸の方向と平行である。流れ方向と直交する方向は、横幅方向ともいい、透過軸の方向と平行である。
第一の偏光板10の第一の延伸フィルム12の流れ方向MD12と直交する方向(横幅方向TD12)に沿う長さL10TDは、第二の偏光板30の第二の延伸フィルム32の流れ方向MD32と直交する方向(横幅方向TD32)に沿う長さL30TDよりも長い。上記長さL10TDとは、第一の偏光板10の第一の延伸フィルム12の流れ方向MD12と直交する方向に沿い、かつ、第一偏光板10に設けられた穴11を通る直線と、第一の偏光板10の外周との交点を結んだ線分の長さをいう。上記線分が複数存在する場合は、最大の線分の長さを長さL10TDとする。上記長さL30TDとは、第二の偏光板30の第二の延伸フィルム32の流れ方向MD32と直交する方向に沿い、かつ、第二の偏光板30に設けられた穴31を通る直線と、第二の偏光板30の外周との交点を結んだ線分の長さをいう。上記線分が複数存在する場合は、最大の線分の長さを長さL30TDとする。穴11及び31が複数個である場合、上記長さL10TD及び上記長さL30TDは、少なくとも1個の穴を通ればよい。
第一の偏光板10の横幅方向TD12に沿う長さL10TDは特に限定されないが、図1に示すように、第一の偏光板10の流れ方向MD12に沿う長さL10MDよりも長いことが好ましい。このような構成は、第一の偏光板10の長手方向を横幅方向TD12に設定し、第一の偏光板10の短手方向を流れ方向MD12に設定することによって容易に実現可能である。
第二の偏光板30の横幅方向TD32に沿う長さL30TDは特に限定されないが、図1に示すように、第二の偏光板30の流れ方向MD32に沿う長さL30MDよりも短いことが好ましい。このような構成は、第二の偏光板30の長手方向を流れ方向MD32に設定し、第二の偏光板30の短手方向を横幅方向TD32に設定することによって容易に実現可能である。
第一の偏光板10の第一の延伸フィルム12の流れ方向MD12と直交する方向に沿う長さL10TDは、第二の偏光板30の第二の延伸フィルム32の流れ方向MD32と直交する方向に沿う長さL30TDに対して、1.1倍以上であることが好ましい。上記長さL10TDは、長さL30TDに対して1.2倍以上であることがより好ましい。上記長さL30TDに対する上記長さL10TDは特に限定されないが、例えば、10倍以下である。
第一の延伸フィルム12の厚さT12は、第二の延伸フィルム32の厚さT32よりも薄い。後述する偏光板の耐久性に関する検討実験の結果から、偏光板は、延伸フィルムの横幅方向に沿う長さが長いほど、クラックが発生しやすい傾向がある。また、偏光板は、延伸フィルムの厚さが厚いほど、クラックが発生しやすい傾向がある。そのため、延伸フィルムの流れ方向と直交する方向に沿う長さが長い方の偏光板について、偏光板を構成する延伸フィルムの厚さを、他方の偏光板を構成する延伸フィルムの厚さよりも薄くすることで、ヒートショック試験に対する耐久性向上させることができる。上記厚さT12、T32は、例えば、光学顕微鏡や電子顕微鏡等により測定することができる。
第一の延伸フィルム12の厚さT12は、第二の延伸フィルム32の厚さT32に対して、0.8倍以下であることが好ましい。第一の延伸フィルム12の厚さT12が、第二の延伸フィルム32の厚さT32に対して、0.8倍以下であると、第一偏光板10のクラックの発生を効果的に抑制することができる。第一の延伸フィルム12の厚さT12は、第二の延伸フィルム32の厚さT32に対して、0.6倍以下であることがより好ましい。第一の延伸フィルム12の厚さT12の下限は特に限定されないが、第二の延伸フィルム32の厚さT32に対して、例えば、0.1倍以上である。
第一の延伸フィルム12の厚さT12は、第二の延伸フィルム32の厚さT32よりも薄ければ特に限定されないが、例えば、1μm~80μmであってもよい。第一の延伸フィルム12の厚さT12は、3μm以上がより好ましく、40μm以下がより好ましい。モバイル向け液晶表示パネルでは、より薄型化が進んでいるため、上記厚さT12は、12μm以下が更に好ましい。
第二の延伸フィルム32の厚さT32は、第一の延伸フィルム12の厚さT12よりも厚ければ特に限定されないが、例えば、1μm~80μmであってもよい。第二の延伸フィルム32の厚さT32は、60μm以下がより好ましい。モバイル向け液晶表示パネルでは、より薄型が進んでいるため、上記厚さT32は、50μm以下が更に好ましい。
第一の偏光板10及び第二の偏光板30の形状は、上記長さL10TDが上記L30TDよりも長ければよく、特に限定されない。図1では、第一の偏光板10及び第二の偏光板30の形状は、長方形であるが、直線で構成される形状であってもよく、曲線で構成される形状であってもよく、直線及び曲線の組み合わせで構成される形状であってもよい。第一の偏光板10及び第二の偏光板30の形状とは、それぞれの偏光板の外周の形状をいう。
第一の偏光板10は、更に、第一の延伸フィルム12の液晶パネル20側、及び、液晶パネル20と反対側の少なくとも一方に、第一のフィルムを有してもよい。また、第二の偏光板30は、更に、第二の延伸フィルム32の液晶パネル20側、及び、液晶パネル20と反対側の少なくとも一方に、第二のフィルムを有してもよい。
上記第一のフィルム及び上記第二のフィルムとしては、保護フィルム、位相差を有するフィルム、輝度向上フィルム、若しくは、これらの積層体、又は、これらの機能を兼ねるフィルム等が挙げられる。上記保護フィルムは、第一の延伸フィルム12、及び/又は、第二の延伸フィルム32を保護するフィルムである。上記位相差を有するフィルムは、直交する偏光成分の間に位相差を生じさせる複屈折素子である。上記位相差を有するフィルムとしては、特に限定されないが、例えば、λ/2板、λ/4板、又は、これらの組み合わせ等が挙げられる。上記輝度向上フィルムは、入射光を散乱し、液晶表示パネルの輝度を向上させるフィルムである。
実施形態1では、上記第一のフィルム及び第二のフィルムとして、保護フィルムを有する場合を説明する。保護フィルム13及び33としては、例えば、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系樹脂;(メタ)アクリル系樹脂;シクロオレフィン系樹脂;ポリプロピレン等のオレフィン系樹脂;ポリエチレンテレフタレート系樹脂等のエステル系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;これらの共重合体樹脂等を含有するフィルムが挙げられる。なかでも、保護フィルム13及び33は、トリアセチルセルロースを含有することが好ましい。保護フィルム13及び33の厚みは特に限定されないが、例えば、10μm~200μmであってもよい。耐久性を高める観点からは、保護フィルム13及び33は位相差を有さないフィルムを用いることが好ましい。
保護フィルム13は、第一の延伸フィルム12の液晶パネル20と反対側の面に配置されてもよい。また、保護フィルム33は、第二の延伸フィルム32の液晶パネル20と反対側の面に配置されてもよい。耐久性を高める観点からは、図1に示したように、第一の延伸フィルム12の両面に、TACを含有する保護フィルム13を有することが好ましく、第二の延伸フィルム32の両面に、TACを含有する保護フィルム33を有することが好ましい。第一の偏光板10は、PVAを含有する第一の延伸フィルム12の両面に、TACを含有する保護フィルムを有することがより好ましい。また、第二の偏光板30は、PVAを含有する第二の延伸フィルム32の両面に、TACを含有する保護フィルムを有することがより好ましい。PVAとの密着性が高いTACフィルムを保護フィルム13及び33として用いることで、第一の偏光板10及び第二の偏光板30を割れにくくすることができる。
液晶パネル20は、図示はしないが、例えば、一対の基板間に液晶層を挟持する構成を有する。一対の基板は、液晶分子を含有する液晶層を挟持するように、シール材を介して貼り合わされる。液晶パネル20を構成する一対の基板の種類は特に限定されず、例えば、薄膜トランジスタアレイ基板とカラーフィルタ基板との組み合わせ等が挙げられる。
薄膜トランジスタアレイ基板としては、例えば、ガラス基板上に、薄膜トランジスタ素子、画素電極、各種配線(走査線及び信号線)等が複数配置された構成であってもよく、ガラス基板の代わりに、プラスチック基板等の透明基板を用いた構成であってもよい。
薄膜トランジスタ素子が有する半導体層の構成は特に限定されず、例えば、アモルファスシリコン、低温ポリシリコン、酸化物半導体等を含むものであってもよい。酸化物半導体の構成としては、例えば、インジウム、ガリウム、亜鉛、及び、酸素から構成される化合物、インジウム、亜鉛、及び、酸素から構成される化合物等が挙げられる。酸化物半導体として、インジウム、ガリウム、亜鉛、及び、酸素から構成される化合物を用いる場合は、オフリーク電流が少ないため、一旦電圧を印加すると、次のデータ信号(電圧)を書き込む(印加する)まで電圧印加状態を保持する休止駆動が可能となる。よって、低消費電力の観点からは、酸化物半導体として、インジウム、ガリウム、亜鉛、及び、酸素から構成される化合物を用いることが好ましい。
カラーフィルタ基板としては、例えば、ガラス基板上に、カラーフィルタ層、ブラックマスク(遮光層)等が複数配置された構成であってもよく、ガラス基板の代わりに、プラスチック基板等の透明基板を用いた構成であってもよい。カラーフィルタ層の色の組み合わせは特に限定されず、例えば、赤色、緑色、及び、青色の組み合わせ、赤色、緑色、青色、及び、黄色の組み合わせ等が挙げられる。カラーフィルタ基板には、更に、画素電極が複数配置されていてもよい。
液晶パネル20には、穴が設けられていてもよい。この場合、表示領域をより広く確保する観点から、液晶パネル20に設けられる穴は、液晶表示パネル100Aを平面視した場合に、穴11及び31の少なくとも一方よりも小さく、穴11及び31と重畳する位置に設けられることが好ましい。
本発明の液晶表示パネルは、高いデザイン性を実現できるため、例えば、時計の表示画面、自動車のメーター表示部、ゲーム機器の操作画面等に好適に用いることができる。
液晶表示パネル100Aは、更に、バックライト、外部回路等を配置して液晶表示装置として用いることができる。液晶表示パネル100Aの裏表は特に限定されず、上記液晶表示装置において、液晶表示パネル100Aの第一の偏光板10側が上記液晶表示装置の前面側(観察者側)であり、第二の偏光板30側が上記液晶表示装置の背面側であってもよい。また、液晶表示パネル100Aの第二の偏光板30側が上記液晶表示装置の前面側であり、第一の偏光板10側が上記液晶表示装置の背面側であってもよい。
上記液晶表示装置の表示モードは特に限定されず、例えば、IPS(In-Plane Switching)モード、FFS(Fringe Field Switching)モード、VA(Vertical Alignment)モード、TN(Twisted Nematic)モード、UV2A(Ultra-violet induced Multi-domain Vertical Alignment)モード等が挙げられる。
<実施形態2>
実施形態2に係る液晶表示パネルについて、図2を参照して説明する。図2は、実施形態2に係る液晶表示パネルの一例を示す断面模式図である。
第一の偏光板10は、更に、第一の延伸フィルム12の液晶パネル20側、及び、液晶パネル20と反対側の少なくとも一方に、第一の延伸フィルム12と接するコーティング層を有してもよい。また、第二の偏光板30は、更に、第二の延伸フィルム32の液晶パネル20側、及び、液晶パネ20ルと反対側の少なくとも一方に、第二の延伸フィルム32と接するコーティング層を有してもよい。第一の延伸フィルム12、及び/又は、第二の延伸フィルム32と接するようにコーティング層を形成することで、第一の延伸フィルム、及び/又は、第二の延伸フィルム32の収縮を抑制し、割れにくくすることができる。
実施形態2に係る液晶表示パネル100Bでは、図2に示したように、第一の偏光板10は、第一の延伸フィルム12の液晶パネル20側に、第一の延伸フィルム12と接するコーティング層14を有し、第二の偏光板30は、第二の延伸フィルム32の液晶パネル20側に、第二の延伸フィルム32と接するコーティング層34を有する。液晶パネル20側にコーティング層14及び34を有することで、第一の延伸フィルム12と液晶パネル20の密着性、及び、第二の延伸フィルム32と液晶パネル20の密着性を向上させ、第一の偏光板10及び第二の偏光板30を割れにくくすることができる。耐久性を高める観点からは、第一の延伸フィルム12の両面に、第一の延伸フィルム12と接するように、コーティング層14が形成されることが好ましい。また、第二の延伸フィルム32の両面に、第二の延伸フィルム32と接するように、コーティング層34が形成されることが好ましい。
コーティング層14及び34としては、例えば、ポリエステル系樹脂、アクリル系樹脂、ポリカーボネート等を含有するものが挙げられる。コーティング層14及び34の厚さは、例えば、0.3μm~10μmである。コーティング層14及び34の厚さのより好ましい下限は0.5μmであり、より好ましい上限は5μmである。
<実施形態3>
実施形態3に係る液晶表示パネルについて、図3を参照して説明する。図3は、実施形態3に係る液晶表示パネルの一例を示す断面模式図である。実施形態3に係る液晶表示パネル100Cでは、図3に示したように、液晶表示パネル100Cは、第一の偏光板10が、第一フィルムとして視野角補償フィルム15を有する。また、第二の偏光板30は、第二のフィルムとして輝度向上フィルム35を有する。
上記第一のフィルムが視野角補償フィルム15である場合、視野角補償フィルム15は、第一の延伸フィルム12よりも液晶パネル20側に配置されることが好ましい。
視野角補償フィルム15は、位相差を有するフィルムであることが好ましい。位相差を有することで、視野角を補正することができるため、視野角特性を向上させることができる。視野角補償フィルム15としては、特に限定されないが、例えば、λ/2板、λ/4板、又は、これらの組み合わせ等が挙げられる。視野角補償フィルム15としては、例えば、シクロオレフィンポリマーを含有するフィルム(COPフィルム)等が挙げられる。
上記第二のフィルムが輝度向上フィルム35である場合、上記輝度向上フィルム35は、第二の延伸フィルム32の液晶パネル20と反対側に配置されることが好ましい。また、輝度向上フィルム35は、第二の偏光板30の液晶パネル20と反対側の最表面に配置されことが好ましい。
輝度向上フィルム35としては、例えば、輝度上昇フィルム(Brightness Enhancement Film:BEF)(例えば、3M社製)、反射型偏光性フィルム(DBEF:Dual Brightness Enhancement Film)(例えば、3M社製)、APFフィルム(例えば、3M社製)等が挙げられる。また、APCF(輝度向上フィルム)付偏光板(例えば、日東電工株式会社製)を用いることもできる。
例えば、保護フィルム13がTACを含有するフィルムである場合、PVAフィルムとの密着性がよいため、図3に示したように、液晶表示パネル100Cは、第一の延伸フィルム12と保護フィルム13とが接しても充分な密着性を有する。一方で、第一の偏光板10が、COPフィルム等の視野角補償フィルム15を有する場合、第一の延伸フィルム12と視野角補償フィルム15との密着性を向上させるために、第一の延伸フィルム12と視野角補償フィルム15との間に、コーティング層14を有してもよい。すなわち、第一の偏光板10は、第一の延伸フィルム12の液晶パネル20側に、第一の延伸フィルム12と接するコーティング層14を有してもよい。
実施形態3では、例えば、視野角補償フィルム15はCOPフィルムであり、輝度向上フィルム35はAPFであってもよい。例えば、図3のように、第二の偏光板30の液晶パネル20と反対側の最表面に、輝度向上フィルム35を配置する場合は、輝度向上フィルム35を保護フィルムとして活用してもよい。第二の延伸フィルム32と輝度向上フィルム35との密着性を向上させるために、第二の延伸フィルム32と輝度向上フィルム35との間に、コーティング層34を有してもよい。すなわち、第二の偏光板30は、第二の延伸フィルム32の液晶パネ20ルと反対側に、第二の延伸フィルム32と接するコーティング層34を有してもよい。更に、第二の偏光板30は、第二の延伸フィルム32の液晶パネル20側にも、第二の延伸フィルム32と接するコーティング層34を有してもよい。
更に、コーティング層34と輝度向上フィルム35との間に、粘着剤層を有してもよい。上記粘着剤層は特に限定されず、液晶表示パネルの分野で一般的に用いられるものを用いることができる。
実施形態3の場合、例えば、液晶表示パネル100Cの第二の偏光板30側にバックライトを配置してもよい。この場合、第二の偏光板30は、液晶パネル20と反対側の最表面に輝度向上フィルム35を有することが好ましい。
<実施形態4>
実施形態4に係る液晶表示パネルについて、図4を参照して説明する。図4は、実施形態4に係る液晶表示パネルの一例を示す断面模式図である。液晶表示パネル100Dは、第一の偏光板10が、第一フィルムとしてサングラス対策フィルム16を有する。
液晶表示パネル100Dは、更に、第一の偏光板10の液晶パネル20と反対側、又は、第二の偏光板30の液晶パネル20と反対側に、透明基材を有してもよい。実施形態4では、透明基材が、第一の偏光板10の液晶パネル20と反対側に配置される場合を例示する。第一の偏光板10の第一の延伸フィルム12の流れ方向MD12と直交する方向(横幅方向TD12)に沿う長さL10TDは、第二の偏光板30の第二の延伸フィルム32の流れ方向MD32と直交する方向(横幅方向TD32)に沿う長さL30TDよりも長いため、第一の偏光板10は、第二の偏光板30よりも割れやすい傾向にある。そのため、液晶表示パネル100Dは、第一の偏光板10の液晶パネル20と反対側に、透明基材を配置することが好ましく、液晶表示パネル100Dの耐久性をより高めることができる。
上記透明基材は、第一の偏光板10及び第二の偏光板30とは別部材である。上記透明基材は、第一の偏光板10の液晶パネル20と反対側であって、液晶表示パネル100Dの最表面、又は、第二の偏光板30の液晶パネル20と反対側であって、液晶表示パネル100Dの最表面に配置されることが好ましい。上記透明基材には、穴が設けられていてもよいし、設けられなくてもよい。上記透明基材に穴を設ける場合は、穴11及び31と重畳する位置に設けられることが好ましい。
上記透明基材としては、耐傷性が高く、透明性を有するものであれば特に限定されないが、例えば、ガラス、ポリカーボネート等が挙げられる。耐久性を高める観点からは、上記透明基材は位相差を有さないことが好ましい。図4に示したように、液晶表示パネル100Dは、液晶パネル20と反対側に、カバーガラス50を有する。
カバーガラス50とサングラス対策フィルム16との間に、更に、粘着剤層(図示せず)を有してもよい。上記粘着剤層は、例えば、光学透明粘着(OCA:Optically Clear Adhesive)シート、光学透明樹脂(OCR:Optically Clear Resin)等を用いてもよい。
サングラス対策フィルム16は、λ/4板であってもよい。サングラス対策フィルム16がλ/4板である場合、サングラス対策フィルム16は、第一の延伸フィルム12の液晶パネル20と反対側に配置されてもよい。このように配置することで、サングラスの軸と第一の延伸フィルム12の軸との干渉で見えなくなるのを円偏光にして防ぐことができる。サングラス対策フィルム16はCOPフィルムであってもよい。
実施形態4に限定されないが、例えば、第二の偏光板30の液晶パネル20と反対側の最表面に、輝度向上フィルム35を配置する場合、延伸フィルム32(図4では、保護フィルム33)と輝度向上フィルム35との間に、更に、粘着剤層(図示せず)を有してもよい。
上記粘着剤層は、特に限定されないが、光拡散性微粒子を含有し、光の拡散効果を高めた拡散粘着剤を用いてもよい。上記拡散粘着剤を用いることで、バックライトの干渉ムラを低減させることができる。
上記光拡散性微粒子としては、特に限定されないが、例えば、無機化合物を含有する微粒子、有機化合物を含有する微粒子等が挙げられる。上記無機化合物としては、例えば、酸化アルミニウム、酸化ケイ素等が挙げられる。上記有機化合物としては、例えば、メラミン系樹脂、アクリル系樹脂、ポリカーボネート、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、シリコーン系樹脂等が挙げられる。
実施形態4の場合、例えば、液晶表示パネル100Dの第二の偏光板30側にバックライトを配置してもよい。この場合、上記透明基材は、第一の偏光板10の液晶パネル20と反対側に位置し、かつ、第二の偏光板30は、液晶パネル20と反対側の最表面に輝度向上フィルム35を有してもよい。
なお、バックライトは、上記液晶表示パネルの上記第一の偏光板側に配置されてもよい。上記第一のフィルムが、輝度向上フィルムである場合、上記輝度向上フィルムは、上記第一の偏光板の上記液晶パネルと反対側の最表面に配置されてもよい。また、上記第一の偏光板は、上記液晶パネルと反対側の最表面に上記輝度向上フィルムを有し、かつ、上記透明基材は、上記第二の偏光板の上記液晶パネルと反対側に位置してもよい。
以下に、実施形態1~4の液晶表示パネルの製造方法を説明する。本発明の他の一態様は、第一の延伸フィルムを有する第一の偏光板に穴を設ける工程と、第二の延伸フィルムを有する第二の偏光板に穴を設ける工程と、上記穴が設けられた第一の偏光板と、液晶パネルと、上記穴が設けられた第二の偏光板とをこの順に積層して液晶表示パネルを作製する工程とを含み、上記液晶表示パネルにおいて、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、上記第一の延伸フィルムの厚さは、上記第二の延伸フィルムの厚さよりも薄い液晶表示パネルの製造方法である。
上記第一の偏光板及び上記第二の偏光板に穴を設ける工程は、打ち抜き型を用いた打ち抜き加工を行ってもよい。上記打ち抜き型としては、例えば、トムソン刃が配置されたトムソン型、ピナクル刃が配置されたピナクル型、彫刻刃が配置された彫刻型等が用いられる。上記打ち抜き加工は、上記第一の偏光板及び上記第二の偏光板に加わるダメージが大きいが、エンドミルやレーザーと比較して量産性に優れる。
上記第一の偏光板及び上記第二の偏光板に穴を設ける工程は、エンドミルを用いてもよい。エンドミルを用いると、打ち抜き方式と比較して、上記第一の偏光板及び上記第二の偏光板に加わるダメージを抑制しつつ、穴を設けることができる。また、下記レーザー方式よりも量産性に優れる。
上記エンドミルを用いる方法(以下、エンドミル方式ともいう。)は、例えば、上記第一の偏光板に穴を設ける場合には、上記第一の偏光板に対してエンドミル刃を回転させながら押し当てた状態で、上記第一の偏光板及び上記エンドミル刃の少なくとも一方を移動させることによって、上記第一の偏光板を切削し、穴を設けることができる。上記エンドミル刃としては、公知のものを用いることができる。上記エンドミル刃の材質は特に限定されず、第一の偏光板10の材質によって適宜選択すればよい。上記エンドミル刃の刃径は特に限定されず、形成したい穴の大きさによって適宜選択すればよい。
上記第一の偏光板及び上記第二の偏光板に穴を設ける工程は、レーザーを用いてもよい。レーザーを用いると、打ち抜き方式と比較して、上記第一の偏光板及び上記第二の偏光板に加わるダメージを抑制しつつ、穴を設けることができる。
上記レーザーを用いる方法(以下、レーザー方式ともいう。)は、特に限定されないが、例えば、150nm~11μmの範囲内の波長の光を放射し得るレーザーが用いられる。具体例としては、COレーザー等の気体レーザー;YAGレーザー等の固体レーザー;半導体レーザーが挙げられる。好ましくは、COレーザーが用いられる。上記レーザー光の照射条件は、例えば、用いるレーザーに応じて、任意の適切な条件に設定され得る。COレーザーを用いる場合を例に挙げると、出力条件は、好ましくは10W~1000W、さらに好ましくは100W~400Wである。上記レーザー方式を用いることで、滑らかな切断面が得られるため、クラックの起点の発生を抑制することができる。上記レーザー光を照射する装置としては、例えば、三星ダイヤモンド工業社製のCOレーザー装置を用いることができる。 
上記第一の偏光板が、上記第一のフィルム及び/又はコーティング層を有する場合、上記第一のフィルム及び/又はコーティング層が形成された後に、上記第一の偏光板に穴が設けられる。また、上記第二の偏光板が、上記第二のフィルム及び/又はコーティング層を有する場合、上記第二のフィルム及び/又はコーティング層が形成された後に、上記第二の偏光板に穴が設けられる。 
上記第一の偏光板に穴を設ける工程、又は、上記第二の偏光板に穴を設ける工程の前に、上記第一の偏光板、又は、上記第二の偏光板に、透明基材を積層する工程を有してもよい。上記透明基材に穴を設ける場合、上記第一の偏光板又は上記第二の偏光板に上記透明基材を積層した後、上記第一の偏光板又は上記第二の偏光板に穴を設けるのと同時に、上記透明基材に穴を設けてもよい。 
第一の偏光板に穴を設ける工程では、上記第一の偏光板に穴を形成するのと同時に、上記第一の偏光板を所望の形状に切り出してもよい。また、第二の偏光板に穴を設ける工程では、上記第二の偏光板に穴を形成するのと同時に、上記第二の偏光板を所望の形状に切り出してもよい。 
上記液晶表示パネルを作製する工程では、上記穴が設けられた第一の偏光板と、液晶パネルと、上記穴が設けられた第二の偏光板とをこの順に積層する。上記積層方法は特に限定されず、例えば、上記第一の偏光板と上記液晶パネルとの間、及び、上記液晶パネルと上記第二の偏光板との間に、粘着剤を塗工する方法、粘着シートを介在させる方法等が挙げられる。上記粘着剤、粘着シートの種類は適宜選択することができる。 
上記液晶表示パネルを作製する工程では、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さが、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長くなるように貼り合わせる。これにより、ヒートショック試験を行っても、クラックが発生し難い液晶表示パネルを製造することができる。 
上記液晶表示パネルを作製する工程は、上記穴が設けられた第一の偏光板の上記液晶パネルと反対側、又は、上記穴が設けられた第二の偏光板の上記液晶パネルの反対側に、透明基材を積層する工程を含んでもよい。上記透明基材に穴を設ける場合は、透明基板に穴を開けた後、上記穴が設けられた第一の偏光板、又は、上記穴が設けられた第二の偏光板に貼り付けられてもよい。 
上記液晶表示パネルを作製する工程の後に、得られた液晶表示パネルを所望の形状に切断してもよい。
以下に、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの例によって限定されるものではない。
<検討実験>
以下に、延伸フィルムの横幅方向に沿う偏光板の長さ、及び、延伸フィルムの厚さと、偏光板の耐久性との関係について検討を行った。
ヒートショック試験用偏光板40としては、延伸フィルムとしてPVAフィルムを有し、上記PVAフィルムの保護フィルムとして、上記PVAフィルムの両面に、厚さ25μmのTACフィルムと厚さ40μmのTACフィルムを有するPVA偏光板を用いた。上記PVAフィルムの厚さが、7μm、12μm、22μm、及び、28μmの4種類のPVAフィルムを有する偏光板について、それぞれ、流れ方向(MD)に沿う長さを50mmとし、横幅方向(TD)に沿う長さを下記表1に示したように変えて検討を行った。トムソン刃を用いて、各偏光板に、曲率半径1mmの穴41を打ち抜き、試験片とした。
各試験片に対して、以下の条件でヒートショック試験を行った。ヒートショック試験は、エスペック社製の冷熱衝撃装置(製品名:TSA-71L-A)を用いて行った。具体的には、各偏光板を、温度85℃の環境下で30分間保持した後、温度-40℃の環境下で30分間保持する工程を1サイクルとした。温度85℃の環境と-40℃の環境との間の切り替え時間は、30分とした。各偏光板について、6サイクル、72サイクル、120サイクル、240サイクル、及び、500サイクルでヒートショック試験を行った。各サイクルでのヒートショック試験後、各偏光板を目視にて観察し、クラックの発生の有無を確認した。クラックが発生しなかった場合を○、クラックが発生した場合を×とした。試験結果を下記表1に示した。
Figure JPOXMLDOC01-appb-T000001
表1に示したように、検討実験の結果から、偏光板は、延伸フィルムの流れ方向(MD)に沿う長さよりも、延伸フィルムの横幅方向(TD)に沿う長さが長い場合に、クラックが発生しやすいことが分かった。また、偏光板は、PVAフィルムの厚さが厚いほど、クラックが発生しやすいことが分かった。これらの結果から、偏光板の横幅方向に沿う長さが短い方がクラックの発生の抑制に有利であり、PVAフィルムの厚さを薄くすることで、クラックの発生が低減できることが分かった。
<実施例1>
実施例1では、第一の偏光板と、液晶パネルと、第二の偏光板とを順に備えた液晶表示パネルを作製した。第一の偏光板としては、流れ方向に沿う長さが40mm、横幅方向に沿う長さが60mm、PVAフィルムの厚さが12μmであり、上記PVAフィルムの両面に厚さ25μmのTACフィルムを有する吸収型偏光板を用いた。第二の偏光板としては、流れ方向に沿う長さが60mm、横幅方向に沿う長さが40mm、PVAフィルムの厚さが22μmであり、上記PVAフィルムの両面に厚さ25μmのTACフィルムを有する吸収型偏光板を用いた。
第一の偏光板及び第二の偏光板の中央に、トムソン刃を用いて、それぞれ曲率半径1mmの穴を打ち抜いた。その後、第一の偏光板と第二の偏光板の吸収軸とを、互いの穴が重畳し、かつ、互いの吸収軸が直交するように配置し、液晶パネルの両面に貼り付けた。以上により実施例1に係る液晶表示パネルが完成した。
実施例1に係る液晶表示パネルについて、上記検討試験と同様の条件でヒートショック試験を120サイクル行っても、クラックの発生は観察されなかった。
[付記]
本発明の一態様は、第一の延伸フィルムを有し、穴が設けられた第一の偏光板と、液晶パネルと、第二の延伸フィルムを有し、穴が設けられた第二の偏光板とを順に備え、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、上記第一の延伸フィルムの厚さは、上記第二の延伸フィルムの厚さよりも薄い液晶表示パネルである。
上記第一の延伸フィルムの厚さは、上記第二の延伸フィルムの厚さに対して、0.8倍以下であってもよい。
上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さに対して、1.1倍以上であってもよい。
更に、上記第一の偏光板の上記液晶パネルと反対側、又は、上記第二の偏光板の上記液晶パネルと反対側に、透明基材を有してもよい。
上記第一の偏光板は、更に、上記第二の延伸フィルムの上記液晶パネル側、及び、上記液晶パネルと反対側の少なくとも一方に、第一のフィルムを有してもよい。
上記第一のフィルムは、輝度向上フィルムであり、上記輝度向上フィルムは、上記第一の偏光板の上記液晶パネルと反対側の最表面に配置されてもよい。
上記第一の偏光板は、上記液晶パネルと反対側の最表面に上記輝度向上フィルムを有し、かつ、上記透明基材は、上記第二の偏光板の上記液晶パネルと反対側に位置してもよい。
上記第二の偏光板は、更に、上記第二の延伸フィルムの上記液晶パネル側、及び、上記液晶パネルと反対側の少なくとも一方に、第二のフィルムを有してもよい。
上記第二のフィルムは、輝度向上フィルムであり、上記輝度向上フィルムは、上記第二の偏光板の上記液晶パネルと反対側の最表面に配置されてもよい。
上記透明基材は、上記第一の偏光板の上記液晶パネルと反対側に位置し、かつ、上記第二の偏光板は、上記液晶パネルと反対側の最表面に上記輝度向上フィルムを有してもよい。
上記第一の延伸フィルム及び上記第二の延伸フィルムは、ポリビニルアルコールを含有し、上記第一フィルム及び/又は上記第二のフィルムは、トリアセチルセルロースを含有してもよい。
上記第一の偏光板は、更に、上記第一の延伸フィルムの上記液晶パネル側、及び、上記液晶パネルと反対側の少なくとも一方に、上記第一の延伸フィルムと接するコーティング層を有してもよい。
上記第二の偏光板は、更に、上記第二の延伸フィルムの上記液晶パネル側、及び、上記液晶パネルと反対側の少なくとも一方に、上記第二の延伸フィルムと接するコーティング層を有してもよい。
本発明の他の一態様は、第一の延伸フィルムを有する第一の偏光板に穴を設ける工程と、第二の延伸フィルムを有する第二の偏光板に穴を設ける工程と、上記穴が設けられた第一の偏光板と、液晶パネルと、上記穴が設けられた第二の偏光板とをこの順に積層して液晶表示パネルを作製する工程とを含み、上記液晶表示パネルにおいて、上記第一の延伸フィルムの流れ方向と、上記第二の延伸フィルムの流れ方向とは直交し、上記第一の偏光板の上記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、上記第二の偏光板の上記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、上記第一の延伸フィルムの厚さは、上記第二の延伸フィルムの厚さよりも薄い液晶表示パネルの製造方法である。
上記第一の偏光板及び上記第二の偏光板に穴を設ける工程は、打ち抜き型を用いた打ち抜き加工を行ってもよい。上記第一の偏光板及び上記第二の偏光板に穴を設ける工程は、エンドミルを用いてもよい。また、上記第一の偏光板及び上記第二の偏光板に穴を設ける工程は、レーザーを用いてもよい。
10、30、40:偏光板
11、31、41:穴
12、32、42:延伸フィルム
13、33、43:保護フィルム
14、34:コーティング層
15:視野角補償フィルム
16:サングラス対策フィルム
20:液晶パネル
44:クラック
35:輝度向上フィルム
50:カバーガラス
100A、100B、100C、100D:液晶表示パネル
MD12、MD32、MD42:延伸フィルムの流れ方向
TD12、TD32、TD42:延伸フィルムの流れ方向と直交する方向
10TD、L30TD:偏光板の延伸フィルムの流れ方向と直交する方向に沿う長さ
12、T32:延伸フィルムの厚さ

Claims (17)

  1. 第一の延伸フィルムを有し、穴が設けられた第一の偏光板と、
    液晶パネルと、
    第二の延伸フィルムを有し、穴が設けられた第二の偏光板とを順に備え、
    前記第一の延伸フィルムの流れ方向と、前記第二の延伸フィルムの流れ方向とは直交し、
    前記第一の偏光板の前記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、前記第二の偏光板の前記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、
    前記第一の延伸フィルムの厚さは、前記第二の延伸フィルムの厚さよりも薄いことを特徴とする液晶表示パネル。
  2. 前記第一の延伸フィルムの厚さは、前記第二の延伸フィルムの厚さに対して、0.8倍以下であることを特徴とする請求項1に記載の液晶表示パネル。
  3. 前記第一の偏光板の前記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、前記第二の偏光板の前記第二の延伸フィルムの流れ方向と直交する方向に沿う長さに対して、1.1倍以上であることを特徴とする請求項1又は2に記載の液晶表示パネル。
  4. 更に、前記第一の偏光板の前記液晶パネルと反対側、又は、前記第二の偏光板の前記液晶パネルと反対側に、透明基材を有することを特徴とする請求項1~3のいずれかに記載の液晶表示パネル。
  5. 前記第一の偏光板は、更に、前記第一の延伸フィルムの前記液晶パネル側、及び、前記液晶パネルと反対側の少なくとも一方に、第一のフィルムを有することを特徴とする請求項1~4のいずれかに記載の液晶表示パネル。
  6. 前記第一のフィルムは、輝度向上フィルムであり、
    前記輝度向上フィルムは、前記第一の偏光板の前記液晶パネルと反対側の最表面に配置されることを特徴とする請求項5に記載の液晶表示パネル。
  7. 前記第一の偏光板は、前記液晶パネルと反対側の最表面に前記輝度向上フィルムを有し、かつ、前記透明基材は、前記第二の偏光板の前記液晶パネルと反対側に位置することを特徴とする請求項6に記載の液晶表示パネル。
  8. 前記第二の偏光板は、更に、前記第二の延伸フィルムの前記液晶パネル側、及び、前記液晶パネルと反対側の少なくとも一方に、第二のフィルムを有することを特徴とする請求項1~7のいずれかに記載の液晶表示パネル。
  9. 前記第二のフィルムは、輝度向上フィルムであり、
    前記輝度向上フィルムは、前記第二の偏光板の前記液晶パネルと反対側の最表面に配置されることを特徴とする請求項8に記載の液晶表示パネル。
  10. 前記透明基材は、前記第一の偏光板の前記液晶パネルと反対側に位置し、かつ、前記第二の偏光板は、前記液晶パネルと反対側の最表面に前記輝度向上フィルムを有することを特徴とする請求項9に記載の液晶表示パネル。
  11. 前記第一の延伸フィルム及び前記第二の延伸フィルムは、ポリビニルアルコールを含有し、前記第一フィルム及び/又は前記第二のフィルムは、トリアセチルセルロースを含有することを特徴とする請求項5又は8に記載の液晶表示パネル。
  12. 前記第一の偏光板は、更に、前記第一の延伸フィルムの前記液晶パネル側、及び、前記液晶パネルと反対側の少なくとも一方に、前記第一の延伸フィルムと接するコーティング層を有することを特徴とする請求項1~11のいずれかに記載の液晶表示パネル。
  13. 前記第二の偏光板は、更に、前記第二の延伸フィルムの前記液晶パネル側、及び、前記液晶パネルと反対側の少なくとも一方に、前記第二の延伸フィルムと接するコーティング層を有することを特徴とする請求項1~12のいずれかに記載の液晶表示パネル。
  14. 第一の延伸フィルムを有する第一の偏光板に穴を設ける工程と、
    第二の延伸フィルムを有する第二の偏光板に穴を設ける工程と、
    前記穴が設けられた第一の偏光板と、液晶パネルと、前記穴が設けられた第二の偏光板とをこの順に積層して液晶表示パネルを作製する工程とを含み、
    前記液晶表示パネルにおいて、前記第一の延伸フィルムの流れ方向と、前記第二の延伸フィルムの流れ方向とは直交し、
    前記第一の偏光板の前記第一の延伸フィルムの流れ方向と直交する方向に沿う長さは、前記第二の偏光板の前記第二の延伸フィルムの流れ方向と直交する方向に沿う長さよりも長く、
    前記第一の延伸フィルムの厚さは、前記第二の延伸フィルムの厚さよりも薄いことを特徴とする液晶表示パネルの製造方法。
  15. 前記第一の偏光板及び前記第二の偏光板に穴を設ける工程は、打ち抜き型を用いた打ち抜き加工を行うことを特徴とする請求項14に記載の液晶表示パネルの製造方法。
  16. 前記第一の偏光板及び前記第二の偏光板に穴を設ける工程は、エンドミルを用いることを特徴とする請求項14に記載の液晶表示パネルの製造方法。
  17. 前記第一の偏光板及び前記第二の偏光板に穴を設ける工程は、レーザーを用いることを特徴とする請求項14に記載の液晶表示パネルの製造方法。
PCT/JP2018/011954 2017-03-31 2018-03-26 液晶表示パネル、及び、液晶表示パネルの製造方法 WO2018181079A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/499,235 US20200026124A1 (en) 2017-03-31 2018-03-26 Liquid crystal display panel and manufacturing method for liquid crystal display panel
CN201880021104.7A CN110462500A (zh) 2017-03-31 2018-03-26 液晶显示面板以及液晶显示面板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017071585 2017-03-31
JP2017-071585 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181079A1 true WO2018181079A1 (ja) 2018-10-04

Family

ID=63676108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011954 WO2018181079A1 (ja) 2017-03-31 2018-03-26 液晶表示パネル、及び、液晶表示パネルの製造方法

Country Status (3)

Country Link
US (1) US20200026124A1 (ja)
CN (1) CN110462500A (ja)
WO (1) WO2018181079A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021128202A (ja) * 2020-02-12 2021-09-02 住友化学株式会社 表示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102522945B1 (ko) * 2017-10-31 2023-04-17 엘지디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 액정 표시 장치
KR102513512B1 (ko) 2017-10-31 2023-03-22 엘지디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 액정 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187134A1 (ja) * 2012-06-11 2013-12-19 富士フイルム株式会社 液晶表示装置
US20150168779A1 (en) * 2013-12-17 2015-06-18 Samsung Sdi Co., Ltd. Module for liquid crystal displays and liquid crystal display including the same
JP2016206640A (ja) * 2015-04-17 2016-12-08 日東電工株式会社 偏光板およびその製造方法
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW570197U (en) * 2002-12-17 2004-01-01 Prokia Technology Co Ltd Polarizing plate
JP2009294445A (ja) * 2008-06-05 2009-12-17 Yamamoto Kogaku Co Ltd 偏光性積層体とその製造方法
JP6488125B2 (ja) * 2013-12-26 2019-03-20 日東電工株式会社 積層偏光フィルム、その製造方法、積層光学フィルムおよび画像表示装置
JP6219781B2 (ja) * 2014-05-23 2017-10-25 住友化学株式会社 偏光フィルム、偏光板及び液晶パネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187134A1 (ja) * 2012-06-11 2013-12-19 富士フイルム株式会社 液晶表示装置
US20150168779A1 (en) * 2013-12-17 2015-06-18 Samsung Sdi Co., Ltd. Module for liquid crystal displays and liquid crystal display including the same
JP2016206640A (ja) * 2015-04-17 2016-12-08 日東電工株式会社 偏光板およびその製造方法
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021128202A (ja) * 2020-02-12 2021-09-02 住友化学株式会社 表示装置
JP2022000693A (ja) * 2020-02-12 2022-01-04 住友化学株式会社 粘着剤層付き光学積層体及び表示装置

Also Published As

Publication number Publication date
CN110462500A (zh) 2019-11-15
US20200026124A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
CN104755999B (zh) 液晶显示装置
US11835814B2 (en) Method of manufacturing polarizing plate and display device including polarizing plate
KR101730499B1 (ko) 액정 표시 장치 및 그 제조방법
WO2020087620A1 (zh) 光学复合膜、显示面板和显示装置
WO2017077963A1 (ja) 液晶表示装置
JP2015118272A (ja) ヘッドアップディスプレイ装置用液晶表示装置及びヘッドアップディスプレイ装置
JP2002365430A (ja) 積層光学フィルムとその製造方法及びこれを用いた液晶表示装置
US10207645B2 (en) Vehicle including mirror with image display apparatus
WO2018181079A1 (ja) 液晶表示パネル、及び、液晶表示パネルの製造方法
JP4691615B2 (ja) 液晶表示装置
CN102971664B (zh) 液晶显示装置
CN104280811A (zh) 偏光片、液晶面板以及液晶显示器
KR20110096766A (ko) 광학 필름, 이의 제조 방법과 이를 적용한 액정 표시 장치
US20130258254A1 (en) Liquid crystal display
JP5203557B2 (ja) 液晶表示装置
JP2006322964A (ja) 液晶表示装置
TWI559052B (zh) 用於液晶顯示器的模組和含有其的液晶顯示器
US9684201B2 (en) Liquid crystal display device
WO2018225631A1 (ja) 液晶表示装置
KR20160085970A (ko) 액정 표시 장치
CN107077026B (zh) 镜面显示器
JP2024048962A (ja) 表示装置
TWI631392B (zh) 背光模組
KR101759558B1 (ko) 편광판 및 그 제조방법
JP2023169673A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP