WO2018180724A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2018180724A1
WO2018180724A1 PCT/JP2018/010863 JP2018010863W WO2018180724A1 WO 2018180724 A1 WO2018180724 A1 WO 2018180724A1 JP 2018010863 W JP2018010863 W JP 2018010863W WO 2018180724 A1 WO2018180724 A1 WO 2018180724A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
film
semiconductor light
dielectric film
dielectric
Prior art date
Application number
PCT/JP2018/010863
Other languages
English (en)
French (fr)
Inventor
上山 智
敦也 佐々木
亮介 平松
英明 平林
Original Assignee
東芝マテリアル株式会社
学校法人 名城大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝マテリアル株式会社, 学校法人 名城大学 filed Critical 東芝マテリアル株式会社
Priority to JP2019509357A priority Critical patent/JP7125720B2/ja
Priority to KR1020197027112A priority patent/KR102238351B1/ko
Publication of WO2018180724A1 publication Critical patent/WO2018180724A1/ja
Priority to US16/572,468 priority patent/US11211526B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • Embodiments relate to a semiconductor light emitting device.
  • Semiconductor light-emitting elements such as light-emitting diodes (LEDs) are popular from the viewpoint of long life and energy saving.
  • Semiconductor light-emitting devices having various emission peaks have been developed by improving a semiconductor layer serving as an active layer.
  • Mainstream light emitting diodes emit light in any one of blue, green, and red.
  • the blue LED obtains white light by combining with a phosphor.
  • a white LED using a blue LED is called pseudo-white, and reproducibility of natural light (sunlight) is low. Natural white light can be achieved by mixing blue, green and red components.
  • a semiconductor light emitting device using a blue LED has a limit in reproducibility because a blue peak is different from natural light.
  • the blue-violet LED has an emission peak around 400 nm.
  • Natural light is reproduced by combining various phosphors such as a blue phosphor, a green phosphor and a red phosphor.
  • a blue phosphor for example, an example in which natural light is reproduced by combining an LED having an emission peak wavelength of around 400 nm and a phosphor is known.
  • the light output of the blue-violet LED was not always sufficient. If the light emission output of the LED is insufficient, the light emission output of the white LED does not increase.
  • a multilayer reflective film is formed. The reflectance at around 360 nm can be improved to about 95% by the multilayer reflective film. By using a multilayer reflective film, the reflectance of around 500 nm can be improved.
  • the reflectance of a specific wavelength is increased by providing a multilayer reflective film. Thereby, the luminous efficiency of LED can be improved. However, even when the multilayer reflective film is applied to a blue-violet LED, the reflectance is not necessarily improved. Therefore, there has been a limit to improving the light emission output of the blue-violet LED.
  • Patent 5823416 JP 2016-201525 A Japanese Unexamined Patent Publication No. 2016-1740
  • the problem to be solved by one embodiment of the present invention is to provide a semiconductor light emitting device having excellent light emission output.
  • the semiconductor light emitting device having an emission peak wavelength of 395 nm or more and 425 nm or less includes a first surface and a second surface, and at least one selected from the group consisting of the first surface and the second surface.
  • the substrate includes a substrate having an uneven surface, a semiconductor layer in contact with the first surface, and a multilayer reflective film in contact with the second surface or the surface of the semiconductor layer.
  • the multilayer reflective film includes a plurality of first dielectric films and a plurality of second dielectric films, and has a structure in which the first dielectric films and the second dielectric films are alternately stacked.
  • FIG. 1 is a schematic cross-sectional view showing a structural example of a semiconductor light emitting device.
  • a semiconductor light emitting device 1 shown in FIG. 1 includes a substrate 2, a semiconductor layer 3, a multilayer reflective film 4, an electrode 5 (p pad electrode), an electrode 6 (n pad electrode), a translucent electrode 7, and a mounting.
  • a substrate 8. 1 illustrates a face-up type semiconductor light emitting device, the semiconductor light emitting device according to the embodiment is not limited to the face up type, and may be a flip-chip type semiconductor light emitting device.
  • the emission peak wavelength of the semiconductor light emitting device 1 is 395 nm or more and 425 nm or less.
  • the wavelength region below 395 nm is the ultraviolet region.
  • a wavelength region exceeding 425 nm is a blue region.
  • the wavelength region from 395 nm to 425 nm is a blue-violet region.
  • the emission peak wavelength is more preferably 400 nm or more and 420 nm or less.
  • the semiconductor layer 3 is provided on the front surface (first surface) side of the substrate 2.
  • the surface side of the substrate 2 is the surface side on which the semiconductor layer 3, that is, the light emitting layer is formed.
  • the structure of the semiconductor layer 3 is not particularly limited as long as the emission peak wavelength is in the range of 395 to 425 nm.
  • the semiconductor layer 3 preferably includes a buffer layer 31, an n-type layer 32, an active layer 33, and a p-type layer 34.
  • the buffer layer 31 is provided in order to improve the crystallinity of a semiconductor layer such as the active layer 33 provided thereon.
  • the buffer layer 31 preferably includes, for example, a gallium nitride (GaN) -based or aluminum nitride (AlN) -based material.
  • GaN gallium nitride
  • AlN aluminum nitride
  • the n-type layer 32 is an n-type semiconductor layer.
  • the n-type semiconductor layer include an n-type cladding layer and a layer combining an n-type contact layer and an n-type cladding layer.
  • the n-type cladding layer include Si-doped GaN and AlGaN.
  • the n-type contact layer include Si-doped GaN.
  • the active layer 33 is a light emitting layer.
  • the light emitting layer include an InGaN film, a GaN film, an InAlGaN film, an AlGaN film, or a laminated film obtained by laminating them.
  • a relaxation layer may be provided between the active layer 33 and the n-type layer 32. Examples of the relaxation layer include an InGaN film, a GaN film, an InAlGaN film, an AlGaN film, or a superlattice layer obtained by stacking them.
  • the p-type layer 34 is a p-type semiconductor layer.
  • the p-type semiconductor layer include a p-type contact layer, a p-type cladding layer, or a layer in which the p-type contact layer and the p-type cladding layer are combined.
  • the p-type contact layer include a GaN layer doped with an impurity element.
  • the impurity element include Mg (magnesium).
  • Examples of the p-type cladding layer include a GaN layer doped with an impurity element and an AlGaN layer.
  • the semiconductor layer 3 has a multilayer structure.
  • carriers are electrons
  • carriers are holes. Recombination occurs when electrons and holes collide and disappear at the pn junction. At the time of recombination, energy corresponding to the difference between the energy of electrons and the energy of holes is emitted as light.
  • the semiconductor layer 3 in a multilayer structure in which another layer is provided between the p-type layer 34 and the n-type layer 32 without directly joining them, electrons and holes can be efficiently collected. Thereby, luminous efficiency can be improved. In other words, if the multilayer structure is not homogeneous, the emission peak wavelength is likely to shift.
  • An electrode 5 and an electrode 6 are provided on the semiconductor layer 3. If necessary, a transparent electrode may be provided between the semiconductor layer 3 and the electrode 5 and between the semiconductor layer 3 and the electrode 6. In FIG. 1, the translucent electrode 7 is provided between the semiconductor layer 3 and the electrode 5, but it may be provided under the electrode 6. In FIG. 1, the electrode 5 is a p-pad electrode, and the electrode 6 is an n-pad electrode. The electrode 5 and the electrode 6 can be electrically connected to other components by wire bonding.
  • the electrode 5 and the electrode 6 include an Au film, an Au alloy film, an Au / Ti laminated film, an Au / Pd laminated film, an Au / Al laminated film, a Ni / Pd laminated film, and an Au / Ni laminated film. These electrodes have good adhesion to the bonding wires.
  • the translucent electrode 7 is preferably a film that transmits light. Examples of the light-transmitting electrode include an indium-tin-oxide (ITO) film, an indium-zinc-oxide (IZO) film, a zinc oxide film, and a tin oxide film.
  • a protective film may be provided on the semiconductor layer 3.
  • the protective film include oxide films such as a silicon oxide film and nitride films such as a silicon nitride film.
  • the protective film may be provided so as to cover not only the semiconductor layer 3 but also the entire semiconductor light emitting element 1.
  • the semiconductor layer 3 is provided on the substrate 2.
  • the substrate 2 include various substrates such as a sapphire substrate, a SiC substrate, and a GaN substrate.
  • the substrate 2 has fine irregularities on at least one of the front surface (first surface) side or the back surface (second surface) side.
  • FIG. 2 shows an example of fine irregularities.
  • FIG. 2 illustrates the substrate 2 and the semiconductor layer 3.
  • FIG. 2 shows a structure in which fine irregularities are provided on the surface side of the substrate 2, that is, on the side on which the semiconductor layer 3 is formed. By providing fine irregularities, an effect of reflecting light can be obtained.
  • the light from the active layer 33 includes light that goes out of the light emitting element and light that goes toward the inside of the element.
  • the light emission output of the light-emitting element can be improved by reflecting the light traveling toward the inside of the element so that the light exits from the element.
  • the fine irregularities preferably have a convex portion on the surface of the substrate 2.
  • the convex part include a conical shape and a polygonal pyramid shape.
  • the convex portion is preferably a polygon having a triangular or trapezoidal cross section.
  • the reflection effect can be improved by the convex portion having an inclined surface.
  • the convex portions are preferably provided periodically.
  • a sapphire substrate provided with fine irregularities is called Patterned Sapphire Substrate (PSS).
  • PSS Patterned Sapphire Substrate
  • the convex portion has a diameter of 0.5 to 5 ⁇ m, a height of 0.5 to 5 ⁇ m, and a pitch of 0.5 to 5 ⁇ m.
  • the pitch is a distance between vertices of adjacent convex portions.
  • the tip of the convex part has a planar shape (the cross section of the convex part is trapezoidal), the distance between the centers of the flat surfaces of the tip is defined as the pitch. If the size of the convex portion is outside the above range, the reflection effect and the light extraction effect may be insufficient.
  • the back surface (second surface) side of the substrate 2 has a multilayer reflective film 4 having a structure in which first dielectric films and second dielectric films are alternately laminated.
  • the back side of the substrate 2 is the surface opposite to the surface on which the semiconductor layer 3 is provided.
  • FIG. 3 is a cross-sectional view illustrating a multilayer reflective film.
  • FIG. 4 illustrates the first dielectric film 41, the second dielectric film 42, and the mounting substrate 8. As will be described later, in the case of the flip chip type, the order is substrate 2 / semiconductor layer 3 / multilayer reflective film 4.
  • the multilayer reflective film 4 is a multilayer film in which first dielectric films 41 and second dielectric films 42 are alternately stacked.
  • the reflectance can be improved by alternately laminating the first dielectric film 41 and the second dielectric film 42 having different refractive indexes.
  • the number of layers is preferably 3 times or more.
  • the number of stacked layers indicates the number of times that one first dielectric film 41 and one second dielectric film 42 are paired and this pair is repeated.
  • the multilayer reflective film 4 composed of the first dielectric film 41 / second dielectric film 42 / first dielectric film 41 / second dielectric film 42 is stacked twice.
  • the structure in which the first dielectric film 41 and the second dielectric film 42 are alternately stacked five times or more is a multilayer reflective film in which a pair of the first dielectric film 41 and the second dielectric film 42 is stacked three or more times. Indicates that The light reflectance can be improved by alternately laminating.
  • the upper limit of the number of layers is not particularly limited, but is preferably 50 times or less.
  • the number of laminated layers can be reduced to 30 times or less by using a metal reflective film 9 described later. It is sufficient if there are at least one set of wavelengths ⁇ 1 and ⁇ 2 that satisfy the following expressions 1 to 6.
  • the refractive index of the first dielectric film 41 is n1
  • the film thickness is d1 (nm)
  • the refractive index of the second dielectric film 42 is n2
  • the film thickness is d2 (nm)
  • an arbitrary wavelength in the wavelength range of 380 to 430 nm The relationship between the wavelength ⁇ 1 and the arbitrary wavelength ⁇ 2 in the wavelengths 380 to 430 nm preferably satisfies the following expressions 1 to 6.
  • Formula 1 0.9 ( ⁇ 1 / (4 ⁇ n1)) ⁇ d1 ⁇ 1.1 ( ⁇ 1 / (4 ⁇ n1))
  • Formula 2 0.9 ( ⁇ 2 / (4 ⁇ n2)) ⁇ d2 ⁇ 1.1 ( ⁇ 2 / (4 ⁇ n2))
  • Formula 3 n1> n2
  • Formula 4 20 ⁇
  • Formula 5 380 ⁇ ⁇ 1 ⁇ 430
  • Formula 6 380 ⁇ ⁇ 2 ⁇ 430
  • the refractive index n1 of the first dielectric film 41 is larger than the refractive index n2 of the second dielectric film.
  • the wavelengths ⁇ 1 (nm) and ⁇ 2 (nm) are arbitrary wavelengths selected from 380 to 430 nm. ⁇ 1 and ⁇ 2 have a relationship of 20 ⁇
  • ⁇ 1 (nm) is fixed from 380 to 430 nm.
  • ⁇ 2 covers the entire range satisfying 20 ⁇
  • the reason why the peak wavelength ⁇ p of the light emitting element is used as a reference is that it is light to be reflected.
  • the standard is a quarter wavelength of light whose thickness is to be reflected. In this way, when light enters a low refractive index medium from a high refractive index medium, the phase of the reflected wave does not change at the boundary surface, but from a low refractive index medium to a high refractive index medium.
  • the phase of the reflected wave changes by ⁇ (180 °: ⁇ / 2 wavelength) at the boundary surface.
  • 180 °: ⁇ / 2 wavelength
  • the thicknesses of the respective media are alternately arranged periodically with a quarter optical thickness of the wavelength ⁇
  • the phases of the reflected waves from the respective boundary surfaces are aligned, so that a high reflectance is obtained.
  • ⁇ 1 and ⁇ 2 are arbitrary wavelengths in the wavelength range of 380 to 430 nm.
  • ⁇ 1 can be arbitrarily selected within this range.
  • ⁇ 2 is a range that satisfies both 20 ⁇
  • the film thickness is controlled to be .1 ( ⁇ 2 / (4 ⁇ n2)).
  • the multilayer reflective film of the embodiment Since 20 ⁇
  • two types of wavelengths to be reflected are set. Thereby, the reflectance in the range of 380 to 430 nm can be improved.
  • the semiconductor light emitting device according to the embodiment has an emission peak wavelength in the range of 395 to 425 nm.
  • a multilayer reflective film capable of improving the reflectance in the range of 380 to 430 nm is formed.
  • the emission peak has a predetermined half-value width and therefore includes the ultraviolet region to the visible light region.
  • the peak wavelength of an LED tends to shift by about 5 to 15 nm due to manufacturing variations. If the reflective film is designed in accordance with the theoretical value of the target peak wavelength, the reflectance decreases when the peak wavelength is slightly shifted. For this reason, the light emission output of a light emitting element will fall.
  • the reflectance of 380 to 430 nm is improved as in the embodiment, the reflectance can be increased even if the peak wavelength is shifted.
  • the light emission output can be increased.
  • the reflective film of the embodiment it is not necessary to design for each wavelength, and it becomes possible to manufacture a semiconductor light emitting device with high emission intensity at low cost.
  • This reference value is regarded as the optimum theoretical value.
  • the multilayer reflective film 4 indicates that when the first dielectric film 41 and the second dielectric film 42 are alternately laminated, at least one dielectric film has a thickness deviating from the theoretical value. .
  • the deviation from the theoretical value of 1 nm or more may be 1 nm or more thick or thin.
  • the reflectance in the range of 380 to 430 nm can be further improved.
  • the deviation from the theoretical value is preferably 1 nm or more, more preferably 3 nm or more.
  • the variation in film thickness between the first dielectric films 41 is 5 nm or more. It is also effective that the variation in film thickness of the second dielectric film 42 is 5 nm or more.
  • the variation in the film thickness of the first dielectric film 41 being 5 nm or more indicates that the difference in film thickness between the first dielectric films 41 is 5 nm or more.
  • the variation in the film thickness of the second dielectric film 42 being 5 nm or more indicates that the difference in film thickness between the second dielectric films 42 is 5 nm or more.
  • the deviation from the theoretical value or the variation in the film thickness can be applied to one or both of the first dielectric film 41 and the second dielectric film 42. Most preferably, it is applied to both the first dielectric film 41 and the second dielectric film 42.
  • the first dielectric film 41 preferably contains at least one selected from titanium oxide, zirconium oxide, silicon nitride, niobium oxide, and tantalum oxide.
  • the titanium oxide include TiO 2 .
  • zirconium oxide include ZrO 2 .
  • silicon nitride include Si 3 N 4 .
  • niobium oxide include Nb 2 O 5 .
  • the tantalum oxide is preferably at least one selected from Ta 2 O 5 .
  • Titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), silicon nitride (Si 3 N 4 ), niobium oxide (Nb 2 O 5 ), and tantalum oxide (Ta 2 O 5 ) are formed by thin film technology such as sputtering. Therefore, it is easy to control the film thickness.
  • the second dielectric film 42 preferably contains at least one selected from silicon oxide, magnesium fluoride, and calcium fluoride.
  • silicon oxide include SiO 2 .
  • magnesium fluoride include MgF.
  • calcium fluoride include CaF 2 . Since silicon oxide (SiO 2 ), magnesium fluoride (MgF), and calcium fluoride (CaF 2 ) can be formed by a thin film technique such as sputtering, the film thickness can be easily controlled. The above materials can easily adjust the relationship between the refractive indexes of the first dielectric film 41 and the second dielectric film 42 such that n1> n2.
  • the first dielectric film 41 is preferably a dielectric film having a large difference in refractive index from the substrate 2.
  • the refractive index in the vicinity of 380 to 430 nm of the sapphire substrate is about 1.8.
  • n1> n2 the difference in refractive index from the substrate 2 can be increased.
  • the reflectance of light transmitted through the substrate 2 can be increased.
  • the difference in refractive index between the first dielectric film 41 and the second dielectric film 42 is large.
  • another layer may be provided between the substrate 2 and the first dielectric film 41. For example, there is a method of improving adhesion by providing another layer such as the second dielectric film 42, a metal film, a metal oxide film, or a metal nitride film on the substrate 2.
  • FIG. 4 illustrates the multilayer reflective film 4, the mounting substrate 8, and the metal reflective film 9.
  • the metal reflective film 9 is provided on the surface of the multilayer reflective film 4 and mounted on the mounting substrate 8.
  • the metal reflection film 9 preferably contains at least one selected from the group consisting of Au, Ag, and Al as a main component.
  • the main component means that the mass ratio is 50% or more and 100% or less. Therefore, Au simple substance, Au alloy, Ag simple substance, Ag alloy, Al simple substance, Al alloy are mentioned.
  • the Ag alloy includes an AgPdCu alloy.
  • a reflectance of 380 to 430 nm is preferable because Ag, Ag alloy, Al, and Al alloy are higher in reflectance. The price is cheap compared to Au.
  • the mounting substrate 8 is a substrate for mounting the semiconductor light emitting element 1. For this reason, it is distinguished from the substrate 2 for growing the semiconductor layer 3. Since the mounting substrate 8 needs to efficiently reflect the light emitted from the semiconductor layer 3, it is preferable that the mounting substrate 8 has a high reflectance. It is required to further increase the luminance of a light emitting device using the semiconductor light emitting element 1. For this reason, the high-power light-emitting device is characterized by a large input power and a high junction temperature. Therefore, it is required that the heat dissipation of the mounting substrate is high. From these characteristics, the mounting substrate 8 may be a metal substrate. As the metal substrate, an Al plate is preferable.
  • Silver (Ag), aluminum (Al) or ceramic substrate coated with aluminum oxide (Al 2 O 3) is also effective.
  • As the ceramic substrate a silicon nitride substrate, an aluminum nitride substrate, or an aluminum oxide substrate is preferable.
  • the semiconductor light emitting element 1 is mounted on the mounting substrate 8, it may be mounted directly or via an adhesive layer or the like.
  • the semiconductor light emitting device as described above has a light emission peak wavelength in the range of 395 to 425 nm, and the reflectance is improved by the multilayer reflective film, so that the light emission efficiency is improved.
  • the area of the semiconductor light emitting device 1 is preferably 0.1 mm 2 or more.
  • the area of the light emitting element is the area of the semiconductor layer when the light emitting element is viewed from above. Taking FIG. 1 as an example, it is the area when the semiconductor layer 3 is viewed from above.
  • the semiconductor light emitting device Since the semiconductor light emitting device according to the embodiment has improved the light emission efficiency, the light emission efficiency is improved even if the area of the device is increased. When the element becomes large, manufacturing variations of the semiconductor layer 3 are likely to occur. This is caused by so-called non-uniformity of the crystal layer. As a result, the emission peak shifts. Since the reflectance of 380 to 430 nm is improved by the multilayer reflective film 4, the reflectance can be increased even if the emission peak is shifted.
  • the half width of the emission peak of the semiconductor light emitting device 1 is preferably 10 nm or more.
  • the emission peak wavelength is 395 to 425 nm and the half width of the emission peak is 10 nm or more, the emission peak has both an ultraviolet region and a visible light region.
  • the reflectance in both the ultraviolet region and the visible light region can be improved. Therefore, it is effective for a light-emitting element having a half-value width of an emission peak of 10 nm or more.
  • the upper limit of the half-value width of the emission peak is not particularly limited, but is preferably 30 nm or less.
  • the present invention can be applied not only to a light emitting diode (LED) but also to a light emitting element such as a semiconductor laser.
  • FIG. 5 is a schematic cross-sectional view showing a structural example of a flip-chip type semiconductor light emitting device.
  • 5 includes a substrate 2, a semiconductor layer 3, a multilayer reflective film 4, an electrode 5 (p pad electrode), an electrode 6 (n pad electrode), a translucent electrode 7, and a mounting. And a substrate 8.
  • a laminated structure of substrate 2 / semiconductor layer 3 / multilayer reflective film 4 is formed.
  • FIG. 5 shows a structure in which electrodes 5 are provided between the multilayer reflective films 4.
  • the electrode structure is not limited to such a structure, and an n-pad electrode and a p-pad electrode may be provided where necessary.
  • a translucent electrode 7, a metal reflective film 9, and the like may be provided.
  • the semiconductor light emitting device as described above has a light emission peak wavelength of 395 to 425 nm and high light emission efficiency. Therefore, it is suitable for a single light emitting element or a white light emitting device combined with a phosphor. When combined with a phosphor, it is applicable not only to white but also to a light emitting device that emits visible light such as blue, yellow, green, and red.
  • the phosphor emits light in a blue to red range with a wavelength of 395 to 425 nm as an excitation source.
  • the blue phosphor is a phosphor having an emission peak wavelength of 450 nm or more and 520 nm or less.
  • Examples of such phosphors include halophosphate phosphors, phosphate phosphors, and alkaline earth metal aluminate phosphors.
  • the halophosphate phosphor includes (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 (Cl, Br): Eu, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: Eu, and the like. Can be mentioned.
  • phosphate phosphors include 2SrO.0.84P 2 O 5 .0.16B 2 O 3 : Eu.
  • alkaline earth metal aluminate phosphor include BaMgAl 10 O 17 : Eu, BaMg 2 Al 16 O 27 : Eu, and BaMgAl 10 O 17 : Eu, Mn.
  • the green phosphor and the yellow phosphor are phosphors having a main emission peak in a wavelength region of 520 nm or more and 580 nm or less.
  • phosphors include silicate phosphors, aluminate phosphors, sulfide phosphors, alkaline earth oxynitride phosphors, and the like.
  • silicate phosphor include (Sr, Ca, Ba) 2 SiO 4 : Eu, Ca 3 (Sc, Mg) 2 Si 3 O 12 : Ce, and the like.
  • Examples of the aluminate phosphor include (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce.
  • Examples of the sulfide phosphor include (Ca, Sr, Ba) Ga 2 S 4 : Eu.
  • Examples of the alkaline earth oxynitride phosphor include (Ca, Sr, Ba) Si 2 O 2 N 2 : Eu, (Ca, Sr) - ⁇ SiAlON: Eu, ⁇ -SiAlON: Eu, and the like.
  • the red phosphor can be said to be a phosphor having a main emission peak in the orange to red wavelength region of 580 nm to 680 nm.
  • red phosphors include silicate phosphors, oxyfluoride phosphors, fluoride phosphors, oxide phosphors, oxysulfide phosphors, sulfide phosphors, and nitride phosphors.
  • Examples of the silicate phosphor include (Sr, Ca, Ba) 2 SiO 4 : Eu.
  • Examples of the oxyfluoride phosphor include 3.5MgO ⁇ 0.5MgF ⁇ GeO 2 : Mn 4+ .
  • Examples of the fluoride phosphor include (Na, K, Rb, Cs) 2 (Si, Ti, Ge) F: Mn 4+ .
  • Examples of the oxide phosphor include YVO 4 : Eu.
  • Examples of the oxysulfide phosphor include (La, Gd, Y) 2 O 2 S: Eu.
  • Examples of the sulfide phosphor include (Ca, Sr, Ba) S: Eu.
  • Examples of the nitride phosphor include (Sr, Ba, Ca) 2 Si 5 N 8 : Eu, (Sr, Ca) AlSiN 3 : Eu, and the like.
  • the phosphor is not limited to the above phosphors, and various phosphors can be used.
  • the light emitting device can be used for various purposes such as illumination and backlight.
  • the manufacturing method will not be specifically limited if the semiconductor light-emitting device concerning embodiment has the above-mentioned composition, the following method is mentioned as a method for obtaining efficiently.
  • the substrate 2 is prepared. Fine irregularities are provided on the surface of the substrate 2 on which the semiconductor layer 3 is provided. Examples of the substrate 2 include sapphire, SiC, and GaN.
  • the substrate 2 is produced by a sublimation method, a chemical vapor deposition method or the like.
  • the formation method of the semiconductor layer 3 is preferably a metal-organic vapor phase epitaxy (MOVPE) method.
  • MOVPE method is a method for forming a target semiconductor layer by reacting a plurality of organometallic gases.
  • Various semiconductor layers such as GaN, InGaN, AlGaN, and InAlGaN can be formed.
  • the organometallic gas include trimethyl gallium (TMGa) or triethyl gallium (TEGa) as a Ga raw material.
  • the Al material include trimethylaluminum (TMAl), and the In material includes trimethylindium (TMIn).
  • An organic metal gas can be supplied onto the substrate 2 heated in the MOVPE apparatus, and the semiconductor layers can be grown sequentially.
  • a buffer layer 31, an n-type layer 32, an active layer 33, and a p-type layer 34 can be formed. If necessary, a step of doping with an impurity element may be performed.
  • an electrode 5 (p pad electrode) and an electrode 6 (n pad electrode) are formed. If necessary, the transparent electrode 7 is formed on the semiconductor layer 3.
  • the electrodes 5 and 6 can be formed, for example, by sputtering or electron beam (EB) evaporation.
  • the translucent electrode 7 can be formed by sputtering, for example.
  • the multilayer reflective film 4 is formed.
  • the multilayer reflective film 4 is formed on the surface of the substrate 2 where the semiconductor layer 3 is not provided. At that time, if necessary, the substrate 2 is ground and polished to reduce the thickness of the substrate 2 and control the roughness, and then the multilayer reflective film 4 is formed.
  • the multilayer reflective film 4 is formed on the semiconductor layer 3.
  • the multilayer reflective film 4 has a structure in which first dielectric films 41 and second dielectric films 42 are alternately stacked.
  • the multilayer reflective film 4 can be formed by, for example, physical vapor deposition (PVD).
  • PVD physical vapor deposition
  • Examples of the physical vapor deposition include vacuum vapor deposition, molecular beam vapor deposition (MBE), ion plating, ion beam vapor deposition, and sputtering.
  • Ion-beam assisted deposition is also effective.
  • the IAD method is a method of forming a dense film by irradiating gas ions with an ion gun during vacuum deposition. When irradiating with gas ions, it is also effective to neutralize by skipping the same amount of electrons. By using the IAD method, a dense and flat multilayer film can be formed.
  • the multilayer reflective film 4 is formed by providing the first dielectric film 41 on the substrate 2 side and forming the second dielectric film 42 and the first dielectric film 41 alternately thereafter.
  • a metal reflective film 9 may be formed as necessary.
  • the metal reflective film 9 can be formed, for example, by sputtering or electron beam (EB) evaporation. You may form the protective film which covers the semiconductor layer 3 or the semiconductor light-emitting device 1 whole as needed.
  • EB electron beam
  • an adhesive layer may be provided when the adhesion between the multilayer reflective film 4 or the metal reflective film 9 and the mounting substrate 8 is insufficient.
  • Examples 1-7, Comparative Examples 1-2 A glass substrate was prepared as a mounting substrate.
  • the multilayer reflective film shown in Table 1 was formed on the glass substrate.
  • the reflectance of the reflection film formed using an ultraviolet-visible spectrophotometer (Shimadzu Corporation UV-2600) was measured.
  • the refractive index in Table 1 is a refractive index in the vicinity of 390 to 430 nm.
  • the multilayer reflective films of Examples 1 to 7 shown in Table 1 satisfied the following relationship. 0.9 ( ⁇ 1 / (4 ⁇ n1)) ⁇ d1 ⁇ 1.1 ( ⁇ 1 / (4 ⁇ n1)), 0.9 ( ⁇ 2 / (4 ⁇ n2)) ⁇ d2 ⁇ 1.1 ( ⁇ 2 / (4 ⁇ n2)), n1> n2, 20 ⁇
  • the multilayer reflective film according to the example had a reflectivity of 80 to 100% at a wavelength of 380 to 430 nm.
  • the maximum reflectance was over 95%. This shows that the reflectance is high even if the emission peak wavelength is shifted.
  • FIG. 6 shows the reflectance in the wavelength range of 360 nm to 460 nm in Example 3.
  • Comparative Example 1 and Comparative Example 2 showed excellent reflectance at a peak wavelength of 400 nm, but a decrease in reflectance was observed at other wavelengths.
  • the metal reflective film shown in Table 3 was provided on the surface of the multilayer reflective film according to the example and the comparative example.
  • the reflectance was measured by the same method as in Table 1. The results are shown in Table 4.
  • the multilayer reflective film according to the example improved the reflectance to 92% or more and 100% or less.
  • the maximum reflectance was 100%.
  • Comparative Example 3 and Comparative Example 4 were provided with a metal reflective film, no further effect was obtained.
  • Examples 15 to 28, Comparative Examples 5 and 6 The sapphire substrate was PSS and provided with fine irregularities. A semiconductor layer was provided thereon. A semiconductor light emitting device was manufactured by providing an electrode and a light transmitting electrode. Table 5 shows the area of each semiconductor light emitting device. The area of the semiconductor light emitting element was the area when the light emitting layer was viewed from above. The multilayer reflective films of Examples 1 to 14 and Comparative Examples 3 and 4 were provided on the sapphire substrate of the manufactured semiconductor light emitting device on the side opposite to the semiconductor light emitting device. Luminous efficiency was calculated
  • the produced semiconductor light emitting device was cut into the area shown in Table 5, fixed on the mounting substrate using silver paste, solder, transparent adhesive, etc., and conduction with the mounting substrate was ensured using a gold wire or the like.
  • a total luminous flux measurement was performed on the mounted semiconductor light emitting device using a total luminous flux measurement system (MCPD9800 manufactured by Otsuka Electronics Co., Ltd.) having an integrating sphere, and the external quantum efficiency of the semiconductor light emitting device was calculated from the obtained result.
  • MCPD9800 manufactured by Otsuka Electronics Co., Ltd.
  • each semiconductor light emitting element was compared. The comparison was described as a relative efficiency value when the external quantum efficiency of the semiconductor light emitting device of Comparative Example 5 was taken as 100.
  • a semiconductor light emitting element having a peak wavelength of 400 nm ⁇ 5 nm (half width 15 nm ⁇ 3 nm) and a peak wavelength 415 nm ⁇ 10 nm (half width 15 nm ⁇ 3 nm) was used. The results are shown in Table 5.
  • the light emitting efficiency of the semiconductor light emitting device according to the example was improved.
  • the semiconductor light emitting device of the comparative example was not improved. It has been found that the improvement of the multilayer reflective film is effective in improving the luminous efficiency. It was effective even when the element was large.
  • Example 15A to 28A Comparative Examples 5A and 6A
  • the white light emitting devices of Examples 15A to 28A and Comparative Examples 5A and 6A were fabricated by combining the semiconductor light emitting elements of Examples 15 to 28 and Comparative Examples 5 and 6 and phosphors.
  • the phosphor used was a halophosphate phosphor (peak wavelength 480 nm) as a blue phosphor, a silicate phosphor (peak wavelength 560 nm) as a green phosphor, and a nitride phosphor (peak wavelength 620 nm) as a red phosphor. .
  • the light emitting device according to the example has improved luminous efficiency. This indicates that improving the performance of the semiconductor light emitting element leads to improving the performance of the light emitting device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

発光ピーク波長が395nm以上425nm以下である半導体発光素子は、第1の面と第2の面とを備え、第1の面および第2の面からなる群より選択される少なくとも一つ面が凹凸を有する基板と、第1の面に接する半導体層と、第2の面または半導体層の表面に接する多層反射膜と、を具備する。多層反射膜は、複数の第1の誘電体膜と複数の第2の誘電体膜とを有し且つ第1の誘電体膜および第2の誘電体膜が交互に積層された構造を備える。

Description

半導体発光素子
 実施形態は、半導体発光素子に関する。
 発光ダイオード(LED)などの半導体発光素子は長寿命や省エネの観点から普及している。活性層となる半導体層を改良することにより、様々な発光ピークを有する半導体発光素子が開発されている。主流の発光ダイオードは、青色、緑色、赤色のいずれか単色に発光する。青色LEDは蛍光体と組み合わせることにより、白色光を得ている。青色LEDを使った白色LEDは、擬似白色と呼ばれており、自然光(太陽光)の再現性は低かった。自然光の白色は青色成分、緑色成分、赤色成分が混合することにより成し得ている。青色LEDを使った半導体発光素子は青色ピークが自然光と異なるため再現性には限界があった。
 これに変わり、青紫LEDを使って自然光を再現することが試みられている。青紫LEDは発光ピークが400nm前後にある。これに青色蛍光体、緑色蛍光体、赤色蛍光体などの各種蛍光体を組み合わせることにより、自然光を再現している。例えば、発光ピーク波長400nm前後のLEDと蛍光体を組み合わせることにより、自然光を再現する例が知られている。このように青紫LEDを使うことにより、自然光を再現した白色LEDを提供できるようになっている。
 その一方で、青紫LEDに関しては発光出力が必ずしも十分ではなかった。LEDの発光出力が不十分であると、白色LEDの発光出力も大きくならない。LEDの発光出力を向上させるために、例えば多層反射膜を形成することが挙げられる。多層反射膜により360nm前後の反射率を95%程度まで向上させることができる。多層反射膜を用いることにより、500nm前後の反射率を向上させることができる。
 多層反射膜を設けることにより、特定の波長の反射率を大きくしている。これにより、LEDの発光効率を向上させることができる。しかしながら、多層反射膜を青紫LEDに適用したとしても、必ずしも反射率の向上が見られなかった。そのため、青紫LEDの発光出力の向上には限界があった。
特許第5823416号 特開2016-201525号公報 特開2016-1740号公報
 本発明の一態様が解決しようとする課題は、発光出力が優れた半導体発光素子を提供することである。
 発光ピーク波長が395nm以上425nm以下である実施形態の半導体発光素子は、第1の面と第2の面とを備え、第1の面および第2の面からなる群より選択される少なくとも一つの面が凹凸を有する基板と、第1の面に接する半導体層と、第2の面または半導体層の表面に接する多層反射膜と、を具備する。多層反射膜は、複数の第1の誘電体膜と複数の第2の誘電体膜とを有し且つ第1の誘電体膜および第2の誘電体膜が交互に積層された構造を備える。
半導体発光素子の構造例を示す断面模式図である。 基板の構造例を示す断面模式図である。 多層反射膜の構造例を示す断面模式図である。 半導体発光素子の他の構造例を示す断面模式図である。 半導体発光素子の他の構造例を示す断面模式図である。 多層反射膜の反射率を示す図である。
 図1に半導体発光素子の構造例を示す断面模式図である。図1に示す半導体発光素子1は、基板2と、半導体層3と、多層反射膜4と、電極5(pパッド電極)と、電極6(nパッド電極)と、透光電極7と、実装基板8と、を具備する。図1は、フェイスアップ型の半導体発光素子を例示しているが、実施形態にかかる半導体発光素子はフェイスアップ型に限定されず、フリップチップ型の半導体発光素子であってもよい。
 半導体発光素子1の発光ピーク波長は395nm以上425nm以下である。395nm未満の波長領域は紫外領域である。425nmを超える波長領域は青色領域である。395nm以上425nm以下の波長領域は青紫領域である。発光ピーク波長は400nm以上420nm以下がより好ましい。
 基板2の表面(第1の面)側に半導体層3を有している。基板2の表面側とは半導体層3、すなわち発光層が形成される表面側である。半導体層3は、発光ピーク波長が395~425nmの範囲にあれば、その構造は特に限定されない。半導体層3は、図1に示すように、バッファ層31と、n型層32と、活性層33と、p型層34と、を有することが好ましい。
 バッファ層31は、その上に設ける活性層33等の半導体層の結晶性を向上させるために設けられる。バッファ層31は、例えば窒化ガリウム(GaN)系、窒化アルミニウム(AlN)系の材料等を含むことが好ましい。バッファ層31は、必要に応じ設けられる。
 n型層32は、n型半導体層である。n型半導体層は、例えばn型クラッド層や、n型コンタクト層とn型クラッド層を組み合わせた層などが挙げられる。n型クラッド層は、SiドープGaN、AlGaNなどが挙げられる。n型コンタクト層は、SiドープGaNなどが挙げられる。
 活性層33は、発光層である。発光層は、例えばInGaN膜、GaN膜、InAlGaN膜、AlGaN膜またはそれらを積層した積層膜、などが挙げられる。活性層33とn型層32の間に緩和層を設けても良い。緩和層は、InGaN膜、GaN膜、InAlGaN膜、AlGaN膜またはそれらを積層した超格子層、などが挙げられる。
 p型層34は、p型半導体層である。p型半導体層は、p型コンタクト層、p型クラッド層、またはp型コンタクト層とp型クラッド層を組み合わせた層、などが挙げられる。p型コンタクト層は、不純物元素をドープしたGaN層、などが挙げられる。不純物元素としては、Mg(マグネシウム)などが挙げられる。p型クラッド層は、不純物元素をドープしたGaN層、AlGaN層などが挙げられる。
 上記のように半導体層3は、多層構造を有している。n型半導体層はキャリアが電子、p型半導体層はキャリアが正孔である。pn接合部で電子と正孔がぶつかって消滅することにより再結合が起きる。再結合の際に、電子が有するエネルギーと正孔が有するエネルギーの差に相当するエネルギーを光として放出する。半導体層3をp型層34とn型層32を直接接合せずに間に別の層を設けた多層構造とすることにより、電子と正孔を効率よく溜めることができる。これにより発光効率を向上させることができる。言い換えると、多層構造が均質でないと、発光ピーク波長のずれが生じやすい構造である。
 半導体層3上には、電極5および電極6が設けられている。必要に応じ、半導体層3と電極5との間、半導体層3と電極6との間に透光電極を設けてもよい。図1では、半導体層3と電極5の間に透光電極7を設けているが、電極6の下に設けても良い。図1では、電極5はpパッド電極、電極6はnパッド電極となる。電極5および電極6は、ワイヤボンディングにより他の構成要素と電気的に接続することができる。
 電極5および電極6は、Au膜、Au合金膜、Au/Ti積層膜、Au/Pd積層膜、Au/Al積層膜、Ni/Pd積層膜、Au/Ni積層膜、などが挙げられる。これらの電極はボンディングワイヤとの密着性が良い。透光電極7は、光を透過する膜であることが好ましい。透光電極としては、インジウム-錫-酸化物(Indium Tin Oxide:ITO)膜、インジウム-亜鉛-酸化物(Indium Zinc Oxide:IZO)膜、酸化亜鉛膜、酸化錫膜、などが挙げられる。
 図示していないが、半導体層3に保護膜を設けても良い。保護膜は、酸化珪素膜などの酸化物膜、窒化珪素膜などの窒化物膜が挙げられる。保護膜は、半導体層3だけでなく半導体発光素子1全体を覆うように設けても良い。
 半導体層3は基板2上に設けられている。基板2は、例えばサファイア基板、SiC基板、GaN基板など様々な基板が挙げられる。基板2は表面(第1の面)側または裏面(第2の面)側の少なくとも一方に微細凹凸を有する。図2に、微細凹凸の一例を示す。図2は、基板2と、半導体層3と、を図示する。図2は基板2の表面側、つまりは半導体層3を形成した側に微細凹凸を設けた構造である。微細凹凸を設けることにより、光を反射する効果が得られる。活性層33からの光は発光素子の外に出る光と、素子の内部に向かう光とがある。素子の内部に向かう光を反射させて素子の外に出るようにすることにより、発光素子の発光出力を向上させることができる。
 微細凹凸は、基板2表面に凸部を有することが好ましい。凸部は、円錐形状や多角錐形状が挙げられる。凸部は、断面が三角形や台形となる多角形が好ましい。凸部が斜面を有することにより反射効果を向上させることができる。凸部は周期的に設けることが好ましい。微細凹凸を設けたサファイア基板はPatterned Sapphire Substrate(PSS)と呼ばれている。微細凹凸構造としては、凸部の直径が0.5~5μm、高さが0.5~5μm、ピッチが0.5~5μmの範囲内であることが好ましい。ピッチとは、隣り合う凸部の頂点間の距離である。凸部の先端が平面形状(凸部の断面が台形)の場合、先端の平面の中心間の距離をピッチとする。凸部のサイズが上記範囲以外になると、反射の効果や光取出し効果が不十分となる恐れがある。
 基板2の裏面(第2の面)側には第1誘電体膜と第2誘電体膜を交互に積層した構造を有する多層反射膜4を有している。基板2の裏面側とは半導体層3が設けられている面とは反対側の面である。図3に多層反射膜を例示する断面図を示した。図4は、第1誘電体膜41と、第2誘電体膜42、実装基板8と、を図示する。後述するようにフリップチップ型の場合は、基板2/半導体層3/多層反射膜4の順番となる。
 多層反射膜4は第1誘電体膜41と第2誘電体膜42が交互に積層された多層膜である。屈折率が異なる第1誘電体膜41と第2誘電体膜42とを交互に積層することにより反射率を向上させることができる。
 積層数は3回以上が好ましい。積層数とは、一つの第1誘電体膜41と一つの第2誘電体膜42をペアとし、このペアが繰り返された回数を示す。例えば、第1誘電体膜41/第2誘電体膜42/第1誘電体膜41/第2誘電体膜42からなる多層反射膜4の積層数は2回となる。第1誘電体膜41と第2誘電体膜42が交互に5回以上積層した構造とは、第1誘電体膜41と第2誘電体膜42のペアが3回以上積層された多層反射膜であることを示す。交互に積層することにより光の反射率を向上させることができる。積層数の上限は特に限定されないが、50回以下が好ましい。50回を超えると反射率向上の効果が少なく、コストアップの要因となる。後述する金属反射膜9を用いることにより積層数を30回以下にすることもできる。以下の式1~6を満たす波長λ1およびλ2が一組以上あればよい。
 第1誘電体膜41の屈折率をn1、膜厚をd1(nm)とし、第2誘電体膜42の屈折率をn2、膜厚をd2(nm)とし、波長380~430nm中の任意の波長λ1および波長380~430nm中の任意の波長λ2との関係が以下の式1~6を満たすことが好ましい。
 式1:0.9(λ1/(4×n1))≦d1≦1.1(λ1/(4×n1))
 式2:0.9(λ2/(4×n2))≦d2≦1.1(λ2/(4×n2))
 式3:n1>n2
 式4:20≦|λ1-λ2|
 式5:380≦λ1≦430
 式6:380≦λ2≦430
 n1>n2であるから、第1誘電体膜41の屈折率n1は第2誘電体膜42の屈折率n2よりも大きい。
 波長λ1(nm)、λ2(nm)は380~430nmの中から選ばれる任意の波長である。λ1とλ2は20≦|λ1-λ2|の関係を有している。これは、まず380~430nmの中からλ1(nm)を固定する。λ2は20≦|λ1-λ2|(nm)かつ380≦λ2≦430(nm)を満たす範囲すべてが対象となる。例えば、λ1を405nmとしたとき、λ2は380~385nmおよび425~430nmとなる。
 反射膜の膜厚d(nm)、反射膜の屈折率n、発光素子のピーク波長λp(nm)としたとき、膜厚d=λp/(4×n)で設計される。発光素子のピーク波長λpを基準としたのは反射させたい光であるからである。膜厚を反射させたい光の1/4波長を基準としている。このようにすることにより、高屈折率の媒質中から低屈折率の媒質に光が入射すると、その反射波の位相は境界面において変化しないが、低屈折率の媒質中から高屈折率の媒質に光が入射すると、反射波の位相は境界面でπ(180°:λ/2波長分)だけ変化する。このため、それぞれの媒質の膜厚を波長λの1/4光学厚さで、交互に周期的に配列させると、各境界面からの反射波の位相が揃うため、高い反射率が得られる。このため、反射膜は膜厚d=λp/(4×n)を理論値(理想的な反射膜)として考えられている。
 これに対し、実施形態にかかる多層反射膜は、波長380~430nm中の任意の波長をλ1およびλ2としている。λ1は、この範囲であれば任意に選択することができる。λ2は、20≦|λ1-λ2|および380≦λ2≦430の両方を満たす範囲となる。その上で、0.9(λ1/(4×n1))≦d1≦1.1(λ1/(4×n1))、かつ、0.9(λ2/(4×n2))≦d2≦1.1(λ2/(4×n2))、となるように膜厚が制御されている。20≦|λ1-λ2|を満たすことから、λ1とλ2は少なくとも20nmの差がある。実施形態の多層反射膜は、反射したい波長を2種類設定している。これにより、380~430nmの範囲の反射率を向上させることができる。実施形態にかかる半導体発光素子は発光ピーク波長が395~425nmの範囲にある。それに対し、380~430nmの範囲の反射率を向上させることができる多層反射膜を形成しているのである。
 LEDなどの半導体発光素子は前述のように発光ピーク波長λpを基準に反射膜の膜厚dが設計されている(反射膜厚d=λp/(4×n))。一方、発光ピーク波長395~425nmの青紫LEDでは、その発光ピークは所定の半値幅を有するため紫外領域から可視光領域まで含んでいる。λ1とλ2といった2つの波長を基準とした多層反射膜を形成することにより、380~430nmの範囲の反射率を向上させることができる。
 これに対し、理論値(反射膜厚d=λp/(4×n))のみで作製された反射膜ではピーク波長のみの反射率が向上するだけであり、反射率の向上が不十分であった。LEDは、その製造ばらつきによりピーク波長が5~15nm程度ずれ易い。目的とするピーク波長の理論値にあわせて反射膜を設計してしまうと、ピーク波長がわずかにずれると反射率が低下してしまう。このため、発光素子の発光出力が低下してしまう。実施形態のように380~430nmの反射率が向上するように設計することにより、ピーク波長がずれたとしても反射率を高めることができる。つまり、半導体発光素子のピーク波長がずれたとしても発光出力を高めることができる。実施形態の反射膜を有することにより各波長ごとに設計する必要が無くなり、低コストで発光強度が高い半導体発光装置を製造することが可能になる。
 発光ピーク波長をλp(nm)としたとき、複数の第1誘電体膜41は、式7:d1=λp/(4×n1)で表される膜厚d1(nm)の値から1nm以上ずれた膜厚を有する第1誘電体膜41を有することが好ましい。発光ピーク波長をλp(nm)としたとき、複数の第2誘電体膜42は、式8:d2=λp/(4×n2)で表される第2誘電体膜42の膜厚d2(nm)の値から1nm以上ずれた膜厚を有する第2誘電体膜42を有することが好ましい。
 前述のように反射膜の膜厚はd=λp/(4×n)を基準値にして設計される。この基準値を最適な理論値とされている。多層反射膜4は、第1誘電体膜41と第2誘電体膜42を交互に積層したとき、少なくとも1つの誘電体膜は理論値からずれた膜厚を有していることを示している。理論値からのずれが1nm以上とは、1nm以上厚くてもよいし薄くてもよい。理論値からずれた膜厚を有することにより、380~430nmの範囲の反射率をさらに向上させることができる。理論値からのずれは1nm以上、さらには3nm以上であることが好ましい。
 第1誘電体膜41同士の膜厚のばらつきが5nm以上であることも有効である。第2誘電体膜42の膜厚のばらつきが5nm以上であることも有効である。第1誘電体膜41の膜厚のばらつきが5nm以上とは、第1誘電体膜41同士の膜厚の差が5nm以上あることを示す。同様に、第2誘電体膜42の膜厚のばらつきが5nm以上とは、第2誘電体膜42同士の膜厚の差が5nm以上あることを示す。
 理論値からのずれまたは膜厚のばらつきは、第1誘電体膜41または第2誘電体膜42のどちらか一方または両方に適用できる。第1誘電体膜41および第2誘電体膜42の両方に適用することが最も好ましい。
 第1誘電体膜41は、酸化チタン、酸化ジルコニウム、窒化珪素、酸化ニオブ、および酸化タンタルから選ばれる少なくとも1つを含むことが好ましい。酸化チタンはTiOなどが挙げられる。酸化ジルコニウムは、ZrOなどが挙げられる。窒化珪素は、Siなどが挙げられる。酸化ニオブはNbなどが挙げられる。酸化タンタルはTaから選ばれる少なくとも1種であることが好ましい。酸化チタン(TiO)、酸化ジルコニウム(ZrO)、窒化珪素(Si)、酸化ニオブ(Nb)、酸化タンタル(Ta)は、スパッタリングなどの薄膜技術により成膜できるため膜厚の制御が行い易い。
 第2誘電体膜42は、酸化珪素、フッ化マグネシウム、およびフッ化カルシウムから選ばれる少なくとも1つを含むことが好ましい。酸化珪素はSiOなどが挙げられる。フッ化マグネシウムはMgFなどが挙げられる。フッ化カルシウムはCaFなどが挙げられる。酸化珪素(SiO)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)は、スパッタリングなどの薄膜技術により成膜できるため膜厚を制御し易い。上記材料は、第1誘電体膜41と第2誘電体膜42の屈折率の関係をn1>n2に調整し易い。
 基板2との間で屈折率の差が大きい誘電体膜を第1誘電体膜41にすることが好ましい。サファイア基板の380~430nm付近の屈折率は1.8程度である。n1>n2とすることにより、基板2との屈折率の差を大きくすることができる。基板2との屈折率の差を大きくすることにより、基板2を透過した光の反射率を大きくすることができる。第1誘電体膜41と第2誘電体膜42の屈折率の差が大きい方が好ましい。必要に応じ、基板2と第1誘電体膜41との間に別の層を設けても良い。例えば、第2誘電体膜42、金属膜、金属酸化膜、金属窒化膜などの別の層を基板2に設けることにより、密着性を向上させる方法もある。
 多層反射膜4の表面に金属反射膜を有することが好ましい。多層反射膜4の表面とは実装基板8側の面である。図4は多層反射膜4と、実装基板8と、金属反射膜9と、を例示する。図4では、多層反射膜4の表面に金属反射膜9を設け、実装基板8に実装した構造である。
 金属反射膜9を設けることにより、さらに反射率を向上させることができる。よって、多層反射膜4の積層数を減らすこともできる。金属反射膜9はAu、Ag、およびAlからなる群より選択される少なくとも一つを主成分として含むことが好ましい。主成分とは質量比で50%以上100%以下となっていることを示す。そのため、Au単体、Au合金、Ag単体、Ag合金、Al単体、Al合金が挙げられる。例えば、Ag合金としては、AgPdCu合金が挙げられる。380~430nmの反射率はAg、Ag合金、Al、Al合金の方が高いため、好ましい。Auに比べて価格も安い。
 実装基板8は、半導体発光素子1を実装するための基板である。このため、半導体層3を成長させるための基板2とは区別される。実装基板8は半導体層3から放射される光を効率よく反射する必要があるため、反射率が高いことが好ましい。半導体発光素子1を使用した発光装置の輝度をより高めることが要求されている。そのため、高出力型の発光装置は、投入電力が大きいことやジャンクション温度が高くなるといった特徴を有しており、そのため実装基板の放熱性が高いことが要求される。これらの特徴から、実装基板8は、金属基板が挙げられる。金属基板としては、Al板が好ましい。銀(Ag)、アルミニウム(Al)または酸化アルミニウム(Al)で被覆されたセラミックス基板も有効である。セラミックス基板としては、窒化珪素基板や窒化アルミニウム基板、酸化アルミニウム基板が好ましい。実装基板8上に半導体発光素子1を実装する際は、直接実装しても良いし、接着剤層などを介して実装しても良い。
 以上のような半導体発光素子は発光ピーク波長が395~425nmにあり、多層反射膜により反射率が改善されるため発光効率が向上する。
 半導体発光素子1の面積は0.1mm以上であることが好ましい。発光素子の面積とは、発光素子を上から見たときの半導体層の面積である。図1を例にすると半導体層3を上方向から見たときの面積である。
 実施形態にかかる半導体発光素子は、発光効率を改善しているため、素子の面積が大きくなったとしても発光効率が向上する。素子が大きくなると、半導体層3の製造ばらつきが生じやすい。いわゆる結晶層の不均一などが原因である。これにより、発光ピークのずれが生じる。多層反射膜4により380~430nmの反射率を向上するようにしているため、発光ピークがずれたとしても反射率を高くすることができる。
 半導体発光素子1の発光ピークの半値幅は10nm以上であることが好ましい。発光ピーク波長が395~425nmであってかつ発光ピークの半値幅が10nm以上であると、発光ピークは紫外領域と可視光領域の両方を有することになる。前述のような多層反射膜を形成することにより、紫外領域と可視光領域の両方の反射率を向上させることができる。このため、発光ピークの半値幅が10nm以上あるような発光素子に有効である。発光ピークの半値幅の上限は特に限定されないが30nm以下が好ましい。半値幅が30nmを超えて大きいと、発光ピークの一部が380~430nmの範囲から外れる割合が多くなり、反射効果が不十分となる恐れがある。発光ダイオード(LED)に限らず半導体レーザなどの発光素子に適用することもできる。
 実施形態にかかる半導体発光素子は、フリップチップ型にも好適である。図5にフリップチップ型の半導体発光素子の構造例を示す断面模式図である。図5に示す半導体発光素子1は、基板2と、半導体層3と、多層反射膜4と、電極5(pパッド電極)と、電極6(nパッド電極)と、透光電極7と、実装基板8と、を具備する。図5では、基板2/半導体層3/多層反射膜4の積層構造となっている。図5では、多層反射膜4同士の間に電極5をそれぞれ設けた構造である。電極構造に関しては、このような構造に限定されず、nパッド電極およびpパッド電極を必要な箇所に設けてもよい。必要に応じ、透光電極7、金属反射膜9などを設けてもよい。基板2、半導体層3、多層反射膜4、電極5、電極6、透光電極7、実装基板8の構成において、前述のフェイスアップ型の半導体発光素子1の構成と同じ部分は、適宜説明を援用することができる。
 以上のような半導体発光素子は、発光ピーク波長が395~425nmであり、発光効率が高い。このため、単独の発光素子や、蛍光体と組み合わせた白色発光装置に好適である。蛍光体と組み合わせる場合は、白色に限らず、青色、黄色、緑色、赤色など目的とする可視光を発する発光装置に適用できる。蛍光体は、395~425nmの波長を励起源として青色~赤色の範囲で発光する。
 青色蛍光体とは発光ピーク波長が450nm以上520nm以下に有する蛍光体のことである。このような蛍光体としては、ハロリン酸塩蛍光体、リン酸塩蛍光体、アルカリ土類金属アルミン酸塩蛍光体などが挙げられる。
 ハロリン酸塩蛍光体は、(Sr,Ca,Ba,Mg)(PO(Cl,Br):Eu、(Sr,Ca,Ba,Mg)(POCl:Euなどが挙げられる。リン酸塩蛍光体としては、2SrO・0.84P・0.16B:Euなどが挙げられる。アルカリ土類金属アルミン酸塩蛍光体としては、BaMgAl1017:Eu、BaMgAl1627:Eu、BaMgAl1017:Eu,Mnなどが挙げられる。
 緑色蛍光体および黄色蛍光体は、520nm以上580nm以下の波長領域に主発光ピークを有する蛍光体である。このような蛍光体としては、ケイ酸塩蛍光体、アルミン酸塩蛍光体、硫化物蛍光体、アルカリ土類酸窒化物蛍光体などが挙げられる。ケイ酸塩蛍光体は(Sr,Ca,Ba)SiO:Eu、Ca(Sc,Mg)Si12:Ceなどが挙げられる。アルミン酸塩蛍光体は(Y,Gd)(Al,Ga)12:Ceなどが挙げられる。硫化物蛍光体は、(Ca,Sr,Ba)Ga:Euなどが挙げられる。アルカリ土類酸窒化物蛍光体は、(Ca,Sr,Ba)Si:Eu、(Ca,Sr)-αSiAlON:Eu、β-SiAlON:Euなどが挙げられる。
 赤色蛍光体は580nm以上680nm以下の橙色から赤色の波長領域に主発光ピークを有する蛍光体ということができる。赤色蛍光体としては、ケイ酸塩蛍光体、酸フッ化物蛍光体、フッ化物蛍光体、酸化物蛍光体、酸硫化物蛍光体、硫化物蛍光体、窒化物蛍光体などが挙げられる。
 ケイ酸塩蛍光体は(Sr,Ca,Ba)SiO:Euなどが挙げられる。酸フッ化物蛍光体は、3.5MgO・0.5MgF・GeO:Mn4+などが挙げられる。フッ化物蛍光体は(Na,K,Rb,Cs)(Si,Ti,Ge)F:Mn4+などが挙げられる。酸化物蛍光体は、YVO:Euなどが挙げられる。酸硫化物蛍光体は、(La,Gd,Y)S:Euなどが挙げられる。硫化物蛍光体は、(Ca,Sr,Ba)S:Euなどが挙げられる。窒化物蛍光体は、(Sr,Ba,Ca)Si:Eu、(Sr,Ca)AlSiN:Euなどが挙げられる。
 蛍光体としては、上記蛍光体に限定されず、種々の蛍光体を用いることができる。発光装置は、照明やバックライトなど、様々な用途に使用することができる。
 次に、半導体発光素子の製造方法について説明する。実施形態にかかる半導体発光素子は前述の構成を有していればその製造方法は特に限定されないが、効率よく得るための方法として次の方法が挙げられる。
 まず、基板2を用意する。基板2の半導体層3を設ける面には微細凹凸を設ける。基板2は、サファイア、SiC、GaNなどが挙げられる。基板2は昇華法、化学気相成長法等によって作製される。
 次に、微細凹凸構造を有する面上に半導体層3を設ける。半導体層3の形成方法は、有機金属気相成長(Metal-Organic Vapor Phase Epitaxy:MOVPE)法が好ましい。MOVPE法は、複数の有機金属ガスを反応させて目的とする半導体層を形成する方法である。GaN、InGaN、AlGaN、InAlGaNなど様々な半導体層を形成することができる。有機金属ガスとしては、Gaの原料としてトリメチルガリウム(TMGa)またはトリエチルガリウム(TEGa)が挙げられる。Alの原料としてトリメチルアルミニウム(TMAl)、Inの原料としてトリメチルインジウム(TMIn)、などが挙げられる。MOVPE装置内で加熱した基板2上に有機金属ガスを供給し、半導体層を順次成長させていくことができる。バッファ層31、n型層32、活性層33、p型層34をそれぞれ形成することができる。必要に応じ、不純物元素をドープする工程を行ってもよい。
 半導体層3を形成した後、電極5(pパッド電極)、電極6(nパッド電極)を形成する。必要に応じ、半導体層3上に透光電極7を形成する。電極5および電極6は、例えばスパッタリングや電子ビーム(Electron Beam:EB)蒸着により形成することができる。透光電極7は、例えばスパッタリングにより形成することができる。
 次に、多層反射膜4を形成する。フェイスアップ型の場合は、基板2の半導体層3を設けていない面に多層反射膜4を形成する。その際、必要に応じて基板2の研削・研磨を行い、基板2の薄膜化や粗さの制御を行ってから、多層反射膜4を形成する。フリップチップ型の場合は、半導体層3上に多層反射膜4を形成する。
 多層反射膜4は第1誘電体膜41と第2誘電体膜42を交互に積層した構造を有している。多層反射膜4は、例えば物理蒸着法(PVD)により形成することができる。物理蒸着法は、真空蒸着、分子線蒸着(MBE)、イオンプレーティング、イオンビーム蒸着、スパッタリングなどが挙げられる。イオンビームアシスト蒸着(Ion-beam Assisted Deposition:IAD)も有効である。IAD法は真空蒸着中にイオン銃でガスイオンを照射し、緻密な膜にする方法である。ガスイオンを照射する際に、同量の電子を飛ばして中和することも有効である。IAD法に用いることにより、緻密で平坦な多層膜を形成することができる。
 多層反射膜4は、基板2側に第1誘電体膜41を設けて、以下、第2誘電体膜42と第1誘電体膜41を交互に成膜することにより形成される。
 必要に応じて金属反射膜9を形成してもよい。金属反射膜9は、例えばスパッタリング法や電子ビーム(Electron Beam:EB)蒸着により形成することができる。必要に応じ、半導体層3または半導体発光素子1全体を覆う保護膜を形成してもよい。
 次に、実装基板8に、半導体発光素子1を実装する。実装工程では、多層反射膜4または金属反射膜9と実装基板8の密着性が不十分な場合は接着層を設けてもよい。
(実施例1~7、比較例1~2)
 実装基板としてガラス基板を用意した。ガラス基板上に、表1に示した多層反射膜を形成した。紫外可視分光光度計(島津製作所製UV-2600)を用いて形成した反射膜の反射率測定を行った。
Figure JPOXMLDOC01-appb-T000001
 表1の屈折率は390~430nm付近の屈折率である。表1に示す実施例1~7の多層反射膜は、以下の関係を満たしていた。
0.9(λ1/(4×n1))≦d1≦1.1(λ1/(4×n1))、
0.9(λ2/(4×n2))≦d2≦1.1(λ2/(4×n2))、
 n1>n2、
20≦|λ1-λ2|、380≦λ1≦430、380≦λ2≦430。
 一方、比較例1は第1誘電体膜および第2誘電体膜共にピーク波長400nmにおける理論値(d=λp/(4×n))で設計された例である。膜厚のバラつきもゼロに抑えられている。比較例2は、20≦|λ1-λ2|を満たしていない。
 次に、上記反射膜の反射率測定を実施して、表2に示す波長の反射率を測定した。測定方法は表1と同等の方法により実施した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表から分かる通り、実施例にかかる多層反射膜は波長380~430nmの反射率が80%以上100%以下であった。最大反射率は95%超であった。このことから発光ピーク波長がずれたとしても反射率が高いことが分かる。図6に実施例3の360nmから460nmの波長範囲の反射率を示す。一方、比較例1や比較例2ではピーク波長400nmでは優れた反射率を示すが、それ以外の波長では反射率の低下が見られた。
 次に、実施例および比較例にかかる多層反射膜の表面に表3に示す金属反射膜を設けた。表1と同等の方法で反射率の測定を行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表から分かる通り、実施例にかかる多層反射膜は、反射率が92%以上100%以下と向上した。最大反射率は100%であった。一方、比較例3、比較例4は金属反射膜を設けたとしても、これ以上の効果が得られなかった。
(実施例15~28、比較例5、6)
 サファイア基板はPSSとし、微細凹凸を設けた。その上に半導体層を設けた。電極や透光電極を設けて半導体発光素子を作製した。それぞれ半導体発光素子の面積を表5に示す。半導体発光素子の面積は発光層を上からみたときの面積とした。作製した半導体発光素子のサファイア基板に、半導体発光素子とは反対側に実施例1~14および比較例3、4の多層反射膜を設けた。作製した各半導体発光素子に対し、発光効率を求めた。発光効率の測定方法は以下の通りである。作製した半導体発光素子を表5の面積に切断し、実装基板上に銀ペーストや半田、透明な接着剤などを使用して固定し、金ワイヤーなどを用いて実装基板との導通を確保した。実装した半導体発光素子を積分球を有する全光束測定システム(大塚電子製MCPD9800)を用いて、全光束測定を実施し、得られた結果から半導体発光素子の外部量子効率を算出した。
 各半導体発光素子の発光強度の対比を行った。対比は比較例5の半導体発光素子の外部量子効率を100とした際の相対的な効率値として記載した。各半導体発光素子は、ピーク波長400nm±5nm(半値幅15nm±3nm)およびピーク波長415nm±10nm(半値幅15nm±3nm)の半導体発光素子を用いた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表から分かる通り、実施例にかかる半導体発光素子は発光効率が向上した。それに対し、比較例の半導体発光素子は向上しなかった。多層反射膜の改善は、発光効率の向上に有効であることが分かった。素子が大きくなっても有効であった。
(実施例15A~28A、比較例5A、6A)
 実施例15~28および比較例5、6の半導体発光素子と蛍光体を組み合わせて実施例15A~28A、比較例5A、6Aの白色発光装置を作製した。蛍光体は、青色蛍光体としてハロリン酸塩蛍光体(ピーク波長480nm)、緑色蛍光体としてケイ酸塩蛍光体(ピーク波長560nm)、赤色蛍光体として窒化物蛍光体(ピーク波長620nm)を用いた。3種類の蛍光体を樹脂に混合して、半導体発光素子上に塗布、乾燥させて白色発光装置とした。各発光装置に対して、全光束を測定した。全光束の測定は、実施例15と同様の方法で測定した。比較例5Aの発光効率を100としたときの相対効率で示す。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表から分かる通り、実施例にかかる発光装置は、発光効率が向上した。これは、半導体発光素子の性能を向上させることは、発光装置の性能を向上させることにつながることを示す。
 以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。前述の各実施形態は、相互に組み合わせて実施することができる。

Claims (11)

  1.  発光ピーク波長が395nm以上425nm以下である半導体発光素子であって、
     第1の面と第2の面とを備え、前記第1の面および前記第2の面からなる群より選択される少なくとも一つの面が凹凸を有する基板と、
     前記第1の面に接する半導体層と、
     前記第2の面または前記半導体層の表面に接する多層反射膜と、を具備し、
     前記多層反射膜は、複数の第1の誘電体膜と複数の第2の誘電体膜とを有し且つ前記第1の誘電体膜および前記第2の誘電体膜が交互に積層された構造を備える、半導体発光素子。
  2.  フェイスアップ型である、請求項1に記載の半導体発光素子。
  3.  前記第1の誘電体膜および前記第2の誘電体膜は、
     式1:0.9(λ1/(4×n1))≦d1≦1.1(λ1/(4×n1))、
     式2:0.9(λ2/(4×n2))≦d2≦1.1(λ2/(4×n2))、
     式3:n1>n2、
     式4:20≦|λ1-λ2|、
     式5:380≦λ1≦430、および
     式6:380≦λ2≦430
     (式1~6中、前記d1は、前記第1の誘電体膜の膜厚(nm)を表し、前記n1は、前記第1の誘電体膜の屈折率を表し、前記d2は、前記第2の誘電体膜の膜厚(nm)を表し、前記n2は、前記第2の誘電体膜の屈折率を表し、前記λ1は、380nm以上430nm以下の波長範囲から選ばれる第1の波長(nm)を表し、前記λ2は、前記波長範囲から選ばれる第2の波長(nm)を表す)
     を満たす、請求項1に記載の半導体発光素子。
  4.  前記複数の第1の誘電体膜の少なくとも一つの膜厚は、
     式7:d1=λp/(4×n1)
    (式7中、前記d1は、前記第1の誘電体膜の膜厚(nm)を表し、前記n1は、前記第1の誘電体膜の屈折率を表し、前記λpは、前記発光ピーク波長を表す)
     で表される前記d1の値から1nm以上ずれた値である、請求項3に記載の半導体発光素子。
  5.  前記複数の第2の誘電体膜の少なくとも一つの膜厚は、
     式8:d2=λp/(4×n2)
    (式7中、前記d2は、前記第2の誘電体膜の膜厚(nm)を表し、前記n2は、前記第2の誘電体膜の屈折率を表し、前記λpは、前記発光ピーク波長を表す)
     で表される前記d2の値から1nm以上ずれた値である、請求項3に記載の半導体発光素子。
  6.  前記第1の誘電体膜は、酸化チタン、酸化ジルコニウム、窒化珪素、酸化ニオブ、および酸化タンタルからなる群より選択される少なくとも1つを含む、請求項1に記載の半導体発光素子。
  7.  前記第2の誘電体膜は、酸化珪素、フッ化マグネシウム、およびフッ化カルシウムからなる群より選ばれる少なくとも1つを含む、請求項1に記載の半導体発光素子。
  8.  前記複数の第1の誘電体膜は、3以上の前記第1の誘電体膜を有し、
     前記複数の第2の誘電体膜は、3以上の前記第2の誘電体膜を有する、請求項1に記載の半導体発光素子。
  9.  前記多層反射膜の表面に設けられた金属反射膜をさらに具備する、請求項1に記載の半導体発光素子。
  10.  前記金属反射膜は、Au、Ag、およびAlからなる群より選択される少なくとも一つの元素を含む、請求項9に記載の半導体発光素子。
  11.  前記半導体発光素子の面積は、0.1mm以上である、請求項1に記載の半導体発光素子。
PCT/JP2018/010863 2017-03-28 2018-03-19 半導体発光素子 WO2018180724A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019509357A JP7125720B2 (ja) 2017-03-28 2018-03-19 半導体発光素子
KR1020197027112A KR102238351B1 (ko) 2017-03-28 2018-03-19 반도체 발광 소자
US16/572,468 US11211526B2 (en) 2017-03-28 2019-09-16 Semiconductor light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-062990 2017-03-28
JP2017062990 2017-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/572,468 Continuation US11211526B2 (en) 2017-03-28 2019-09-16 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
WO2018180724A1 true WO2018180724A1 (ja) 2018-10-04

Family

ID=63675499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010863 WO2018180724A1 (ja) 2017-03-28 2018-03-19 半導体発光素子

Country Status (4)

Country Link
US (1) US11211526B2 (ja)
JP (1) JP7125720B2 (ja)
KR (1) KR102238351B1 (ja)
WO (1) WO2018180724A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115798A1 (de) * 2017-07-13 2019-01-17 Alanod Gmbh & Co. Kg Reflektierendes Verbundmaterial, insbesondere für oberflächenmontierte Bauelemente (SMD), und lichtemittierende Vorrichtung mit einem derartigen Verbundmaterial
WO2024096154A1 (ko) * 2022-11-02 2024-05-10 엘지전자 주식회사 반도체 발광 소자 및 디스플레이 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081368A (ja) * 2004-06-14 2007-03-29 Mitsubishi Cable Ind Ltd 窒化物系半導体発光素子
JP2011109094A (ja) * 2009-11-13 2011-06-02 Seoul Opto Devices Co Ltd 分布ブラッグ反射器を有する発光ダイオードチップ、その製造方法及び分布ブラッグ反射器を有する発光ダイオードパッケージ
WO2014058069A1 (ja) * 2012-10-12 2014-04-17 エルシード株式会社 半導体発光素子及びその製造方法
JP2014524674A (ja) * 2011-09-01 2014-09-22 株式会社東芝 発光ダイオード装置
US20160013383A1 (en) * 2014-07-14 2016-01-14 Epistar Corporation Light-emitting device
JP2016146407A (ja) * 2015-02-06 2016-08-12 豊田合成株式会社 光学多層膜および発光素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2313722B2 (de) 1973-03-20 1977-08-11 Bayer Ag, 5090 Leverkusen Chromischkomplex-farbstoffe und ihre verwendung zum faerben und bedrucken von stickstoffhaltigen fasermaterialien
JP2973460B2 (ja) * 1990-04-09 1999-11-08 日本電気株式会社 半導体発光素子
US5226053A (en) * 1991-12-27 1993-07-06 At&T Bell Laboratories Light emitting diode
CN1993835A (zh) 2004-06-14 2007-07-04 三菱电线工业株式会社 氮化物半导体发光器件
JP4865047B2 (ja) * 2010-02-24 2012-02-01 株式会社東芝 結晶成長方法
KR101158075B1 (ko) * 2010-08-10 2012-06-22 서울옵토디바이스주식회사 분포 브래그 반사기를 갖는 발광 다이오드
DE112011102506B4 (de) 2010-07-28 2021-03-25 Seoul Viosys Co., Ltd. Lichtemittierende Diode und lichtemittierende Diodeneinheit
KR101364720B1 (ko) * 2010-07-28 2014-02-19 서울바이오시스 주식회사 분포 브래그 반사기를 갖는 발광 다이오드
KR20120024489A (ko) * 2010-09-01 2012-03-14 삼성엘이디 주식회사 반도체 발광다이오드 칩, 발광장치 및 그 제조방법
EP3683494A1 (en) 2011-02-09 2020-07-22 Kabushiki Kaisha Toshiba White light source and white light source system including the same
JP5961740B1 (ja) 2015-04-09 2016-08-02 エルシード株式会社 光学装置及び発光素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081368A (ja) * 2004-06-14 2007-03-29 Mitsubishi Cable Ind Ltd 窒化物系半導体発光素子
JP2011109094A (ja) * 2009-11-13 2011-06-02 Seoul Opto Devices Co Ltd 分布ブラッグ反射器を有する発光ダイオードチップ、その製造方法及び分布ブラッグ反射器を有する発光ダイオードパッケージ
JP2014524674A (ja) * 2011-09-01 2014-09-22 株式会社東芝 発光ダイオード装置
WO2014058069A1 (ja) * 2012-10-12 2014-04-17 エルシード株式会社 半導体発光素子及びその製造方法
US20160013383A1 (en) * 2014-07-14 2016-01-14 Epistar Corporation Light-emitting device
JP2016146407A (ja) * 2015-02-06 2016-08-12 豊田合成株式会社 光学多層膜および発光素子

Also Published As

Publication number Publication date
JPWO2018180724A1 (ja) 2020-02-06
KR20200066590A (ko) 2020-06-10
US20200013924A1 (en) 2020-01-09
JP7125720B2 (ja) 2022-08-25
US11211526B2 (en) 2021-12-28
KR102238351B1 (ko) 2021-04-09

Similar Documents

Publication Publication Date Title
US10734559B2 (en) Light-emitting diode (LED), LED package and apparatus including the same
KR102380825B1 (ko) 반도체 발광다이오드 칩 및 이를 구비한 발광장치
CN101017869B (zh) 氮化物基半导体发光器件及其制造方法
TWI794311B (zh) 發光模組及整合式發光模組
JP2005183911A (ja) 窒化物半導体発光素子及び製造方法
JP6947966B2 (ja) 発光装置
WO2021195863A1 (zh) 一种半导体发光元件
JP2013527617A (ja) 発光デバイスのためのフィルタ
US11211526B2 (en) Semiconductor light-emitting element
US20120126203A1 (en) High Power LED Device Architecture Employing Dielectric Coatings and Method of Manufacture
JP2011258657A (ja) 半導体発光装置および半導体発光装置の製造方法
US9112089B2 (en) Semiconductor chip, display comprising a plurality of semiconductor chips and methods for the production thereof
TW201603315A (zh) 發光元件
JP2013098571A (ja) 半導体発光素子及びその製造方法
JP5778466B2 (ja) 発光素子、発光素子パッケージ、及び照明システム
KR101157705B1 (ko) 몰드부로부터 분리된 형광체부를 구비한 발광 소자
US11367810B2 (en) Light-altering particle arrangements for light-emitting devices
US20220165923A1 (en) Cover structure arrangements for light emitting diode packages
TW201123543A (en) High power LED device architectures employing dielectric coatings and method of manufacture
KR100774995B1 (ko) Zn화합물층을 갖는 수직형 발광다이오드와 그 제조방법
KR100550846B1 (ko) 플립칩 본딩 구조의 질화 갈륨계 발광다이오드
JP5455854B2 (ja) 半導体発光装置および半導体発光装置の製造方法
WO2024119693A1 (zh) 一种窄发光峰led芯片及其制备方法
KR20110101463A (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
JP2007281529A (ja) 半導体発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775955

Country of ref document: EP

Kind code of ref document: A1