WO2018180721A1 - 電動モータ - Google Patents
電動モータ Download PDFInfo
- Publication number
- WO2018180721A1 WO2018180721A1 PCT/JP2018/010856 JP2018010856W WO2018180721A1 WO 2018180721 A1 WO2018180721 A1 WO 2018180721A1 JP 2018010856 W JP2018010856 W JP 2018010856W WO 2018180721 A1 WO2018180721 A1 WO 2018180721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- coils
- electric motor
- winding
- axial direction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/28—Layout of windings or of connections between windings
Definitions
- the present invention relates to an axial gap type electric motor used in various devices such as an electric brake device.
- Patent Document 1 An electric brake device using a motor and a linear motion mechanism
- Patent Document 2 An electric brake device in which an electric motor is arranged on a parallel axis different from the rotation axis of the linear motion mechanism
- Patent Document 3 Axial gap type motor
- Patent Document 4 A method of manufacturing an iron core of an axial gap type motor that winds a ribbon-shaped magnetic plate to be a core
- an electric brake device using an electric linear actuator as described in Patent Document 1 it is generally desired to realize an electric actuator that is as space-saving and highly responsive as possible.
- an electric motor structure that enables high torque while saving space, for example, axial gap type electric motors as disclosed in Patent Documents 2 to 4 are known.
- the coil of the axial gap type electric motor an edgewise coil using a rectangular wire that is superior in terms of space factor and heat dissipation is often used.
- An object of the present invention is to provide an axial gap type electric motor capable of simplifying a wiring structure of a motor coil, reducing copper loss and reducing costs.
- the electric motor of the present invention is an axial gap type electric motor in which a stator and a rotor rotatable relative to the stator face each other in the axial direction of the rotor,
- a plurality of coils forming magnetic poles are arranged in the rotation direction of the rotor, and as these coils, the winding directions are opposite to each other and the winding ends are positioned at both ends in the axial direction.
- a coil and a reverse winding coil Each of the plurality of coils includes a plurality of coil groups in which the forward winding coil and the reverse winding coil are alternately arranged in the rotation direction, and the plurality of coils constituting the same coil group are arranged in the circumferential direction. The winding ends at the same axial position are coupled between the coils arranged side by side.
- the axial gap type electric motor In addition to this axial gap type, the plurality of coils are alternately arranged in the rotation direction with a normal winding coil and a reverse winding coil whose winding directions are opposite to each other and each winding end is positioned at each axial end. Therefore, the electric motor can be configured without adding new components or the like.
- a plurality of coils constituting the same coil group may generate magnetic fluxes in the same direction by coupling winding ends in the same axial direction between coils connected in the circumferential direction in the coil group.
- the coils can be wired in the shortest distance because they are electrically connected in series. For this reason, motor copper loss can be reduced.
- input / output ends of currents to the winding portions forming the magnetic poles may be located on the same plane orthogonal to the axial direction of the rotor. In this case, the connection between the electric motor and the control device for controlling the electric motor becomes easy, which is advantageous in manufacturing.
- the forward winding coil and the reverse winding coil are each wound so that conductors are laminated in the axial direction, and the plurality of coils constituting the same coil group are wound by a continuous coil wire. May be.
- a connection part can be reduced, a some coil can be wired in a space-saving, and an electric motor can be comprised compactly. Thereby, the versatility of the electric motor can be enhanced.
- the coil wire is a rectangular wire having a rectangular cross section cut along a plane including the axis of the coil wire, the longitudinal direction of the rectangular flat wire in the cross section is orthogonal to the axial direction, and
- the rectangular flat wire may be arranged such that the short direction in the cross section of the rectangular flat wire is parallel to the axial direction, and the flat wire may be wound so as to be stacked in the short direction.
- the short direction of the rectangular wire is laminated in parallel with the axial direction, there is relatively little ineffective space between the coils, and the coils can be wound, and space saving can be further achieved.
- a stator having high heat dissipation and excellent “space factor” which is a ratio of a conductor to a cross section of the winding can be configured.
- the plurality of coil groups constitute excitation magnetic poles of three or more phases having different current phases, and among the coil groups constituting the same phase, wiring between coils arranged in the circumferential direction is provided for each of the coil groups having different phases. , May be provided at different radial positions. In this case, even in a narrow space, wiring can be easily performed without interference between a plurality of coil groups having different phases, so that the wiring structure can be simplified.
- the plurality of coil groups constitute excitation magnetic poles of three or more phases having different current phases, and among the coil groups constituting the same phase, wiring between coils arranged in the circumferential direction is provided for each of the coil groups having different phases. , May be provided at different axial positions. In this case, wiring can be performed at the shortest distance without interfering between a plurality of coil groups having different phases, and an insulation distance between the coil wires can be easily ensured.
- the electric motor M includes a housing 1, a stator 2, and a rotor 3.
- the electric motor M is an axial gap type in which the stator 2 and the rotor 3 face each other in the axial direction of the rotor 3.
- the stator 2 is statically held by the housing 1.
- the rotor 3 is supported so as to be rotatable with respect to the stator 2.
- a rotating shaft 5 is rotatably supported on the housing 1 via a bearing 4, and a rotor 3 is fixed to the outer periphery of the rotating shaft 5.
- the housing 1 is composed of a plurality of divided housings 1A and 1B, and a stator 2 is installed in one of the divided housings 1A.
- the other divided housing 1B also serves as a housing of the motor using device 6 that uses the electric motor M, that is, a part of the housing of the motor using device 6 becomes a motor housing.
- the motor using device 6 includes, for example, a linear actuator described later.
- the axial gap type electric motor M is a permanent magnet type synchronous motor
- the stator 2 is an excitation mechanism for an assembly part having an iron core 7 and a coil 10.
- the rotor 3 is formed by embedding a plurality of permanent magnets 3a arranged in the circumferential direction in a disc-shaped holding member 3b.
- the holding member 3b may be a metal member or a resin member.
- the rotor 3 may be entirely made of a magnetic material. In that case, the rotor 3 is formed into a shape having a saliency in which the reluctance varies in synchronization with the rotation, so that a reluctance type synchronous motor is obtained.
- the iron core 7 in the stator 2 has a back yoke 8 and a plurality of cores 9.
- the back yoke 8 is a cylindrical or annular flat plate concentric with the rotation axis O of the rotor 3 and extending in the circumferential direction of the rotation shaft 5, and a magnetic path between the magnetic poles.
- the cores 9 protrude from the back yoke 8 in the axial direction of the rotor 3 and are arranged at equal intervals in the circumferential direction of the rotor 3 to form magnetic poles.
- the number of the cores 9 is preferably an integer multiple of the number of phases of the alternating current to be applied, so that a high-output motor can be configured. For example, since the illustrated example is a three-phase motor, the number of cores 9 is twelve, which is four times the number of phases “3”. However, the number of cores 9 may be configured to be 11 in total: 4 U phases, 4 V phases, and 3 W phases.
- the end surface of the core 9 in the axial direction faces the rotor 3 to form a magnetic pole, and the direction of the magnetic pole is parallel to the axial direction of the rotor 3.
- the coils 10 and the iron cores 7 are arranged at equal intervals in the circumferential direction (equal distribution), and the equal distribution directions of the coils 10 and the iron cores 7 coincide with the rotation direction of the rotor 3. For simplicity, some structures such as insulators and wiring are omitted.
- a plurality of coils 10 forming magnetic poles are arranged in the rotation direction of the rotor 3.
- the plurality of coils 10 there are two types, a normal winding coil 10a and a reverse winding coil 10b, in which the winding directions are opposite to each other and the respective winding ends are positioned at both ends in the axial direction.
- the plurality of coils 10 includes a plurality (three in this example) of coil groups 11 configured such that the forward winding coil 10a and the reverse winding coil 10b are alternately arranged in the rotation direction.
- the plurality of coil groups constitute U, V, and W three-phase excitation magnetic poles having different current phases.
- the same coil group 11, that is, a plurality of coils constituting the same phase, are wound around a continuous coil wire Ce.
- the coil wire Ce is a rectangular wire having a rectangular cross section cut along a plane including the axis L1 of the coil constituted by the coil wire Ce. That is, an edgewise coil using a rectangular wire is used as the coil.
- the rectangular flat wire is disposed such that the longitudinal direction of the cross section of the rectangular wire is perpendicular to the axial direction, and the short direction of the rectangular flat wire is parallel to the axial direction. It is wound so as to be laminated in the direction.
- the forward winding coil 10a and the reverse winding coil 10b are alternately arranged in the rotation direction, and the coils 10a and 10b adjacent in the circumferential direction are arranged.
- the same axial winding ends are coupled to each other. By being coupled in this way, they are electrically coupled in series so as to generate magnetic flux in the same direction.
- the current input / output terminal 13 to the winding part 12 forming the magnetic pole is the same plane orthogonal to the axial direction of the rotor 3 (FIG. 1). Located on the top.
- each coil group 11 for example, the coil wire is forward-wound from the current input / output end 13 which is the winding end at the lower end in the axial direction provided in the lower left in FIG. winding wound as 10a, the first winding portion 12 1 is completed at the winding end 14 of the axial base end side of the rear side in FIG. 3.
- the winding direction of the winding portion 12 that spirals from the winding end on the distal end side in the axial direction to the winding end 14 on the proximal end side in the axial direction is clockwise.
- the winding part 12 is referred to as a “normally wound coil”.
- the winding direction of the winding portion 12 that spirals from the winding end on the distal end side in the axial direction to the winding end 14 on the proximal end side in the axial direction is counterclockwise.
- the surrounding winding portion 12 is referred to as a “reverse winding coil”.
- the wiring 15 between the winding parts 12 and 12 adjacent to each other in the circumferential direction among the plurality of coils 10 constituting the same phase is provided at different radial positions for each phase and intersects each other. There is no such thing.
- the wiring 15 between the winding portions 12 and 12 of the plurality of coils constituting the U phase in FIG. 3 is provided at the radial position on the outermost diameter side, and winding of the plurality of coils constituting the W phase in FIG.
- the wiring 15 between the portions 12 and 12 is provided at a radial position closest to the inner diameter side.
- the wiring 15 between the winding parts 12 and 12 of the plurality of coils constituting the V phase in FIG. 4 is provided at a radial intermediate position between the wirings 15 and 15 in FIGS. Accordingly, as shown in FIGS.
- the wiring 15 between the winding portions 12 and 12 of the three phases U, V, and W is wired in the circumferential direction of the rotational axis in a different positional relationship in the radial direction of the rotational axis. , it reaches the second winding portion 12 of the second axial base end side winding end 14.
- the second winding portion 12 2 when viewed from the axial direction distal end side coil wire Ce is wound so as to reverse wound coil in the opposite winding direction from the first winding portion 12 1 .
- the second winding portion 12 2 for example, coil wire Ce to the near side from the winding end 14 of the axial base end side of the rear side is wound spirally in FIG 3, Figure 3 an axial tip end side of the winding end at the second winding portion 12 2 of the front side in is completed.
- the wiring 15 between the winding portions 12 and 12 positioned on the back side and the wiring 15 between the winding portions 12 and 12 positioned on the near side are: If the position is different in the direction of the rotation axis for each phase, the wiring length is the shortest and the insulation distance between the coil wires is easily secured.
- the wiring position may be adjusted as appropriate based on the convenience of the motor size and the like, such that the axial position of the wiring is relatively close.
- the third and fourth winding portions 12 3 and 12 4 are similarly formed so that the winding directions of the coil wires Ce viewed from the same axial front end side are in an alternating relationship.
- terminal end 16 is 12 winding end of the axial tip end side of the 4 shown in FIG. 2, to connect the ends of the three phases, respectively, a star three-phase alternating current circuit (not shown) Form.
- a star three-phase alternating current circuit (not shown) Form.
- the wiring distance is shortened, the efficiency is increased, and the outer diameter side where the magnetic pole area is relatively wide is connected to the magnetic pole. Effectively used to improve torque.
- a part or the whole of the wiring part may be configured to be wired on the outer diameter side.
- FIG. 6A is a schematic diagram in which a plurality of coils of the present embodiment are developed in the rotation direction of the rotor (rotational axis circumferential direction).
- FIG. 6B shows the case of using a coil wound in the same direction, which is a conventional structure.
- This conventional structure requires the wiring 15 between the coils to be routed in the direction of the rotation axis as compared with the wiring structure of the embodiment. For this reason, especially as the number of phases increases, the wiring structure becomes complicated, the wiring space increases, and the cost may increase.
- the conventional structure for example, when an axial gap motor with 12 cores is used in a three-phase motor, the wiring of the other phase coil and the wiring in the same slot must be avoided when wiring. In addition, the copper loss may increase because the wiring length is eliminated.
- the plurality of coils 10 includes a plurality of coils each having a winding direction opposite to each other and a forward winding coil 10a and a reverse winding coil 10b each having a winding end positioned at both ends in the axial direction alternately arranged in the rotation direction. Since it consists of the group 11, an electric motor can be comprised without adding a new component.
- a plurality of coils constituting the same coil group 11 generate magnetic fluxes in the same direction by coupling the winding ends in the same axial direction between coils adjacent in the circumferential direction.
- the coils can be wired in the shortest distance because they are electrically connected in series. For this reason, motor copper loss can be reduced.
- Coil ends at the same axial position are coupled between coils adjacent to each other in the circumferential direction, so that the coil wire Ce is not complicatedly entangled in the axial direction and the radial direction. Since wiring between them becomes easy, the wiring structure can be simplified. Therefore, the manufacturing cost of the electric motor M can be reduced and the motor size can be made compact.
- an electric motor M and a control device (not shown) for controlling the electric motor M are shown. Connection), which is advantageous in manufacturing.
- the forward winding coil 10a and the reverse winding coil 10b are respectively laminated in the axial direction, and the plurality of coils constituting the same coil group 11 are wound by a continuous coil wire Ce. Wiring can be performed in a space, and the electric motor M can be made compact. Thereby, the versatility of the electric motor M can be improved.
- the electric motor M can be wound around the coil with relatively little ineffective space between the coils, and space saving can be further achieved. Can do. Further, since the coil using the rectangular wire is used, the stator 2 having high heat dissipation and excellent “space factor” which is the ratio of the conductor to the cross section of the winding can be configured. Since the wiring 15 between the winding parts 12 and 12 adjacent to each other in the circumferential direction among the plurality of coils constituting the same phase is provided at different radial positions for each phase, the wiring 15 is circular even in a narrow space. Since the wiring 15 between the winding parts 12 adjacent to each other in the circumferential direction becomes easy, the wiring structure can be simplified.
- the wiring part in the wiring part between the winding parts, is shown in an arrangement in which the longitudinal direction of the cross section cut by a plane including the axial direction is parallel to the axial direction and the three phases are arranged in the radial direction.
- the arrangement is not limited to this.
- the wiring portion may be arranged in such a manner that a short direction of a cross section cut along a plane including the axial direction is parallel to the axial direction and three phases are aligned in the axial direction.
- the short side direction of the wiring portion in parallel with the axial direction and arranging the three phases in the axial direction, it is possible to wire in a space-saving manner.
- an example of three-phase 12 slots is shown, but the number of phases is appropriately determined according to the design. Further, for example, a configuration of four or more phases mainly in a reluctance motor may be used, or a two-phase configuration may be used as in a brushed DC motor.
- the iron core of the stator includes a back yoke
- a single gap type motor having a pair of magnetic poles using the stator, or magnetic poles on both sides of the rotor.
- a double stator type axial gap motor having stators at both ends can be configured.
- the back yoke is not provided, or the structure of the embodiment is provided on both sides of the back yoke so that the stator has magnetic poles on both sides, and the rotor is provided on both sides.
- a double rotor type axial gap motor can also be configured. Moreover, it is good also as a multistage type axial gap motor combining these structures.
- FIG. 7 is a simplified cross-sectional view of an electric linear actuator using a double stator type axial gap motor.
- a linear motion mechanism 101 is installed coaxially with the axial gap type electric motor M.
- the linear motion mechanism 101 includes a ball screw mechanism that is rotationally driven by the rotary shaft 5 of the electric motor M, and converts the rotational motion of the electric motor M into linear motion of the linear motion portion 102.
- the motor-using device 6 that is the electric linear motion actuator is used, for example, in an electric brake device for braking an automobile wheel, and the linear motion portion 102 is in contact with a brake rotor 103 provided on the wheel of the automobile. It is used for advancing and retracting driving of the friction pad 104 to be separated.
- the axial gap type electric motor M since the axial gap type electric motor M is provided, it is possible to realize an electric brake device that enables high torque in a small space. For this reason, the versatility which mounts an electric brake device in a vehicle can be improved. Moreover, by simplifying the wiring structure of the motor coil as described above, it is possible to reduce the copper loss and reduce the cost.
- the wiring part may be molded with, for example, a resin material. Such a structure is strong against vibrations and the like, and is suitable for operation under severe environmental conditions such as when used as an actuator for an electric brake device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Windings For Motors And Generators (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
モータコイルの配線構造を簡素化し、銅損の低減を図ると共にコスト低減を図ることができるアキシャルギャップ型の電動モータを提供する。この電動モータは、固定子(2)と回転子とを備えるアキシャルギャップ型の電動モータである。固定子(2)は、磁極を形成するコイル(10)が回転子の回転方向に複数並び、これら複数のコイル(10)として、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイル(10a)と逆巻きコイル(10b)との二種類を有する。複数のコイル(10)は、それぞれ正巻きコイル(10a)と逆巻きコイル(10b)とが回転方向に交互に並んで構成される複数のコイル群(11)から成る。同じコイル群(11)を構成する複数のコイルは、円周方向に隣合うコイルの間で互いに同じ軸方向の巻線端が結合される。
Description
本出願は、2017年3月28日出願の特願2017-062139の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、例えば、電動ブレーキ装置等の各種の装置に用いられるアキシャルギャップ型の電動モータに関する。
電動モータとして、以下の提案がなされている。
1.モータおよび直動機構を用いた電動ブレーキ装置(特許文献1)。
2.電動モータを直動機構の回転軸と異なる平行軸に配置した電動ブレーキ装置(特許文献2)。
3.アキシャルギャップ型のモータ(特許文献3)。
4.リボン状の磁性板を巻き取ってコアとするアキシャルギャップ型のモータの鉄心の製造方法(特許文献4)。
1.モータおよび直動機構を用いた電動ブレーキ装置(特許文献1)。
2.電動モータを直動機構の回転軸と異なる平行軸に配置した電動ブレーキ装置(特許文献2)。
3.アキシャルギャップ型のモータ(特許文献3)。
4.リボン状の磁性板を巻き取ってコアとするアキシャルギャップ型のモータの鉄心の製造方法(特許文献4)。
特許文献1に記載のような電動式直動アクチュエータを用いた電動ブレーキ装置において、一般に可能な限り省スペースかつ高応答な電動アクチュエータの実現が望まれる。省スペースで高トルクを可能とする電動モータの構造として、例えば、特許文献2~4に示すようなアキシャルギャップ型の電動モータが知られている。アキシャルギャップ型の電動モータのコイルについて、占積率および放熱性の面で優位となる平角線を用いたエッジワイズコイルが用いられる場合が多い。
平角線のコイルを用いて省スペースに配線する場合、平角線の厚みにより、ステータの一スロット当たりの巻回数を増やせないため、複数のコイルを直列に結線する場合が多い。この場合、電動モータの軸の円周方向に並ぶコイルに対してコイル端部が軸方向に異なる位置となる。このため、コイルを三次元に配線する必要があり配線構造が複雑化し、コイル間を結合する配線が長くなるため、銅損が増加する。また、サイズとコストの面で課題となる場合がある。
この発明の目的は、モータコイルの配線構造を簡素化し、銅損の低減を図ると共にコスト低減を図ることができるアキシャルギャップ型の電動モータを提供することである。
この発明の電動モータは、固定子と、この固定子に対して回転可能な回転子とが、前記回転子の軸方向に対面するアキシャルギャップ型の電動モータであって、
前記固定子は、磁極を形成するコイルが前記回転子の回転方向に複数並び、これら複数のコイルとして、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイルと逆巻きコイルとを有し、
前記複数のコイルは、それぞれ前記正巻きコイルと前記逆巻きコイルとが前記回転方向に交互に並んで構成される複数のコイル群から成り、同じコイル群を構成する複数のコイルは、円周方向に並ぶコイルの間で互いに同じ軸方向位置の前記巻線端が結合されている。
前記固定子は、磁極を形成するコイルが前記回転子の回転方向に複数並び、これら複数のコイルとして、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイルと逆巻きコイルとを有し、
前記複数のコイルは、それぞれ前記正巻きコイルと前記逆巻きコイルとが前記回転方向に交互に並んで構成される複数のコイル群から成り、同じコイル群を構成する複数のコイルは、円周方向に並ぶコイルの間で互いに同じ軸方向位置の前記巻線端が結合されている。
この構成によると、アキシャルギャップ型の電動モータにより、省スペース化および高応答化を図ることができる。このアキシャルギャップ型であることに加え、複数のコイルは、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイルと逆巻きコイルとが回転方向に交互に並んで構成される複数のコイル群から成るため、新たな構成部品等を付加することなく電動モータを構成することができる。
また同じコイル群を構成する複数のコイルは、コイル群中で円周方向に連結されるコイルの間で互いに同じ軸方向の巻線端が結合されることで、同一方向の磁束を発生するように電気的に直列結合されているため、最短距離でコイルの配線が行える。このためモータ銅損を低減できる。円周方向に隣合うコイルの間で互いに同じ軸方向位置の巻線端が結合されることで、コイル線が軸方向および径方向に複雑に絡み合うことがなく、狭いスペースであってもコイル間の配線が容易となるため、配線構造を簡素化することができる。したがって、この電動モータの製造コストの低減を図れ、モータサイズをコンパクトに構成できる。
前記直列結合された複数のコイルについて、前記磁極を形成する巻回部への電流の入出力端が、前記回転子の軸方向に直交する同一平面上に位置してもよい。この場合、電動モータと、この電動モータを制御する制御装置との接続が容易となり、製造上有利となる。
前記正巻きコイルおよび前記逆巻きコイルがそれぞれ前記軸方向に導体が積層されるように巻回され、前記同じコイル群を構成する複数のコイルは、一続きのコイル線により巻回されたものであってもよい。この場合、結線部を削減できることで複数のコイルを省スペースに配線することができ、電動モータをコンパクトに構成できる。これにより電動モータの汎用性を高めることができる。
前記コイル線は、このコイル線の軸心を含む平面で切断した断面が長方形状の平角線であり、この長方形状の平角線の前記断面における長手方向が前記軸方向に直交し、且つ、前記長方形状の平角線の前記断面における短手方向が前記軸方向と平行となるように配置され、前記平角線は前記短手方向に積層されるように巻回されていてもよい。この場合、平角線の前記短手方向が軸方向と平行に積層されているため、コイル間の無効なスペースが比較的少なくコイルを巻回することができ、省スペース化をより図ることができる。また前記平角線を用いたコイルを用いると、放熱性が高く、巻線の断面に占める導体の割合である「占積率」に優れた固定子を構成できる。
前記複数のコイル群は、異なる電流位相となる三相以上の励磁磁極を構成し、同位相を構成するコイル群のうち円周方向に並ぶコイル間の配線は、前記位相の異なるコイル群毎に、異なる径方向位置に設けられてもよい。この場合、狭いスペースであっても位相の異なる複数のコイル群の間で干渉することなく容易に配線ができるため、配線構造を簡素化することができる。
前記複数のコイル群は、異なる電流位相となる三相以上の励磁磁極を構成し、同位相を構成するコイル群のうち円周方向に並ぶコイル間の配線は、前記位相の異なるコイル群毎に、異なる軸方向位置に設けられてもよい。この場合、位相の異なる複数のコイル群の間で干渉することなく最短距離で配線することが可能で、且つコイル線間の絶縁距離が確保し易くなる。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態に係る電動モータを図1ないし図6と共に説明する。
<アキシャルギャップモータの全体構造>
図1に示すように、この電動モータMは、ハウジング1と、固定子2と、回転子3とを備える。この電動モータMは、固定子2と回転子3とが回転子3の軸方向に対面するアキシャルギャップ型である。固定子2は、ハウジング1に静的に保持される。回転子3は、固定子2に対して回転可能に支持されている。ハウジング1に軸受4を介して回転軸5が回転自在に支持され、この回転軸5の外周に回転子3が固定されている。
<アキシャルギャップモータの全体構造>
図1に示すように、この電動モータMは、ハウジング1と、固定子2と、回転子3とを備える。この電動モータMは、固定子2と回転子3とが回転子3の軸方向に対面するアキシャルギャップ型である。固定子2は、ハウジング1に静的に保持される。回転子3は、固定子2に対して回転可能に支持されている。ハウジング1に軸受4を介して回転軸5が回転自在に支持され、この回転軸5の外周に回転子3が固定されている。
ハウジング1は、複数の分割ハウジング1A,1Bで構成され、一方の分割ハウジング1Aに固定子2が設置されている。他方の分割ハウジング1Bは、この電動モータMを使用するモータ使用機器6のハウジングを兼用し、すなわち、モータ使用機器6のハウジングの一部がモータハウジングとなる。モータ使用機器6は、例えば、後述する直動アクチュエータ等を備える。
このアキシャルギャップ型の電動モータMは、永久磁石型の同期モータであり、固定子2は、鉄心7とコイル10とを有するアセンブリ部品の励磁機構とされている。回転子3は、円周方向に並ぶ複数の永久磁石3aを円板状の保持部材3bに埋め込んで成る。保持部材3bは、金属部材でもよく、樹脂部材等であってもよい。また、回転子3は、全体が磁性体から成るものであってもよい。その場合、回転子3が、回転に同期してリラクタンスが変動する突極性を有する形状とされることで、リラクタンス型の同期モータとなる。
<固定子等の構造について>
図2に示すように、固定子2における鉄心7は、バックヨーク8と、複数のコア9とを有する。図1および図2に示すように、バックヨーク8は、回転子3の回転軸心Oと同心で回転軸5の円周方向に延びる円筒状または環状の平板状であり、磁極間の磁路を形成する。各コア9は、バックヨーク8から回転子3の軸方向に突出し回転子3の円周方向に等間隔に並び、磁極を形成する。コア9の個数は、印加する交流電流の相数の整数倍とすると高出力なモータを構成できて好ましいが、交流電流の相毎に異なる個数とすることもできる。例えば、図示の例は三相モータであるため、コア9の個数は、相数である「3」の4倍である12個とされている。しかしながら、コア9の個数を、U相4個、V相4個、W相3個、計11個のように構成することもできる。
図2に示すように、固定子2における鉄心7は、バックヨーク8と、複数のコア9とを有する。図1および図2に示すように、バックヨーク8は、回転子3の回転軸心Oと同心で回転軸5の円周方向に延びる円筒状または環状の平板状であり、磁極間の磁路を形成する。各コア9は、バックヨーク8から回転子3の軸方向に突出し回転子3の円周方向に等間隔に並び、磁極を形成する。コア9の個数は、印加する交流電流の相数の整数倍とすると高出力なモータを構成できて好ましいが、交流電流の相毎に異なる個数とすることもできる。例えば、図示の例は三相モータであるため、コア9の個数は、相数である「3」の4倍である12個とされている。しかしながら、コア9の個数を、U相4個、V相4個、W相3個、計11個のように構成することもできる。
コア9の軸方向の端面が回転子3と対向して磁極を形成し、この磁極の向きが回転子3の軸方向と平行である。コイル10および鉄心7は円周方向に等間隔で配置(等配)され、コイル10および鉄心7の等配方向が回転子3の回転方向と一致する。なお、簡単のため、インシュレータおよび配線等の一部の構造は省略する。
<<コイル10について>>
固定子2では、磁極を形成するコイル10が回転子3の回転方向に複数並ぶ。これら複数のコイル10として、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイル10aと逆巻きコイル10bとの二種類が有る。複数のコイル10は、それぞれ正巻きコイル10aと逆巻きコイル10bとが回転方向に交互に並んで構成される複数(この例では三つ)のコイル群11から成る。複数のコイル群は、それぞれ異なる電流位相となるU,V,W三相の励磁磁極を構成する。
固定子2では、磁極を形成するコイル10が回転子3の回転方向に複数並ぶ。これら複数のコイル10として、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイル10aと逆巻きコイル10bとの二種類が有る。複数のコイル10は、それぞれ正巻きコイル10aと逆巻きコイル10bとが回転方向に交互に並んで構成される複数(この例では三つ)のコイル群11から成る。複数のコイル群は、それぞれ異なる電流位相となるU,V,W三相の励磁磁極を構成する。
同じコイル群11つまり同位相を構成する複数のコイルは、一続きのコイル線Ceにより巻回されている。コイル線Ceは、このコイル線Ceにより構成される上記コイルの軸心L1を含む平面で切断した断面が長方形状の平角線である。すなわちコイルとして、平角線を用いたエッジワイズコイルが用いられている。長方形状の平角線の前記断面における長手方向が軸方向に直交し、且つ、長方形状の平角線の前記断面における短手方向が軸方向と平行となるように配置され、平角線は前記短手方向に積層されるように巻回されている。
図6Aに示すように、同じコイル群11(同位相)を構成する複数のコイルは、正巻きコイル10aと逆巻きコイル10bとが回転方向に交互に並び、円周方向に隣合うコイル10a,10bの間で互いに同じ軸方向の巻線端が結合されている。このように結合されることで、同一方向の磁束が発生するように電気的に直列結合されている。図2に示すように、直列結合された複数のコイル10について、磁極を形成する巻回部12への電流の入出力端13が、回転子3(図1)の軸方向に直交する同一平面上に位置する。
図3~図5に示すように、各コイル群11において、例えば、図3中で左下に設けられた軸方向先端側の巻線端である電流の入出力端13からコイル線が正巻きコイル10aとして巻回され、図3中で奥側の軸方向基端側の巻線端14において第1の巻回部121が終了する。巻回部12を前記軸方向先端側から見て、この軸方向先端側の巻線端から軸方向基端側の巻線端14に螺旋状に至る巻回部12の巻回方向が時計回りの巻回部12を「正巻きコイル」と称す。巻回部12を前記軸方向先端側から見て、この軸方向先端側の巻線端から軸方向基端側の巻線端14に螺旋状に至る巻回部12の巻回方向が反時計回りの巻回部12を「逆巻きコイル」と称す。この第1の巻回部121の軸方向基端側の巻線端14よりコイル線Ceが、回転軸内径方向に引き出される。図2に示すように、同位相を構成する複数のコイル10のうち円周方向に隣合う巻回部12,12間の配線15は、位相毎に、異なる径方向位置に設けられ、互いに交わらないようになっている。
図3のU相を構成する複数のコイルの巻回部12,12間の配線15は、最も外径側の径方向位置に設けられ、図5のW相を構成する複数のコイルの巻回部12,12間の配線15は、最も内径側の径方向位置に設けられる。図4のV相を構成する複数のコイルの巻回部12,12間の配線15は、図3,図5の配線15,15間の径方向中間位置に設けられる。したがって、図3~図5に示すように、U,V,Wの三相それぞれの巻回部12,12間の配線15が、回転軸径方向に異なる位置関係に回転軸周方向に配線され、第2の巻回部122の軸方向基端側の巻線端14に到達する。
第2の巻回部122は、前記軸方向先端側から見て、第1の巻回部121とは逆の巻回方向となる逆巻きコイルとなるようにコイル線Ceが巻回される。具体的には、第2の巻回部122は、例えば、図3中で奥側の軸方向基端側の巻線端14から手前側へとコイル線Ceが螺旋状に巻回され、図3中で手前側の軸方向先端側の巻線端で第2の巻回部122が終了する。このように複数のコイルを配置すると、入出力端13から電流を印加した際、電気的に直列結合された各巻線部12において発生する磁界の向きが電流の極性に対して同相の各スロット部において一致する。
第2の巻回部122が終了する軸方向先端側の巻線端より、前記と同様にコイル線Ceが回転軸内径方向に引き出され、第3の巻回部123に向けてコイル線Ceが配線される。なお、同位相を構成する複数のコイルのうち円周方向に隣合う巻回部12,12間の配線15が、位相毎に、異なる軸方向位置に設けられてもよい。
例えば、回転軸方向に相当する図3中で奥行き方向において、奥側に位置する巻回部12,12間の配線15と手前側に位置する巻回部12,12間の配線15とが、位相毎に、回転軸方向に異なる位置とすると、配線長さが最短となり、且つコイル線間の絶縁距離が確保し易くなる。例えば、より軸方向に扁平な電動モータにおいては、配線の軸方向位置が比較的近い関係とする等、配線位置をモータサイズ等の都合を踏まえて適宜調整してもよい。以降、第3および第4の巻回部123,124も、同様に、同じ軸方向先端側から見たコイル線Ceの巻回方向が交互の関係となるように形成される。
図2に示す第4の巻回部124の軸方向先端側の巻線端である終了端16において、三相それぞれの端部を接続し、スター型の三相交流回路(不図示)を形成する。本図2のように、モータ電流の入出力端13を除いて内径側で結線する構成とすると、配線距離が短くなって高効率となり、また磁極面積が相対的に広くなる外径側を磁極に有効に活用しトルクが向上する。但し、配線部の一部または全体を外径側で配線する構造としてもよい。
<本実施形態のモータコイルの配線構造と従来構造との比較>
図6Aは、本実施形態の複数のコイルを回転子の回転方向(回転軸周方向)に展開した模式図を示す。図6Bは、従来構造である同一方向に巻回されたコイルを用いる場合を示す。この従来構造は、実施形態の配線構造と比較して、コイル間の配線15を回転軸方向において引き回す必要が生じる。このため、特に多相になる程、配線構造が複雑になり、配線スペースが増加し、コスト増となる場合がある。従来構造において、例えば、三相モータでコアの個数が12個のアキシャルギャップモータを適用しようとすると、配線の際に他相コイルの配線および同一スロット内での配線を回避する構造としなければならず、また配線長が無くなるため銅損が増加する場合がある。
図6Aは、本実施形態の複数のコイルを回転子の回転方向(回転軸周方向)に展開した模式図を示す。図6Bは、従来構造である同一方向に巻回されたコイルを用いる場合を示す。この従来構造は、実施形態の配線構造と比較して、コイル間の配線15を回転軸方向において引き回す必要が生じる。このため、特に多相になる程、配線構造が複雑になり、配線スペースが増加し、コスト増となる場合がある。従来構造において、例えば、三相モータでコアの個数が12個のアキシャルギャップモータを適用しようとすると、配線の際に他相コイルの配線および同一スロット内での配線を回避する構造としなければならず、また配線長が無くなるため銅損が増加する場合がある。
<作用効果について>
以上説明した本実施形態の電動モータMによれば、アキシャルギャップ型の電動モータにより、省スペース化および高応答化を図ることができる。複数のコイル10は、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイル10aと逆巻きコイル10bとが回転方向に交互に並んで構成される複数のコイル群11から成るため、新たな構成部品等を付加することなく電動モータを構成することができる。
以上説明した本実施形態の電動モータMによれば、アキシャルギャップ型の電動モータにより、省スペース化および高応答化を図ることができる。複数のコイル10は、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイル10aと逆巻きコイル10bとが回転方向に交互に並んで構成される複数のコイル群11から成るため、新たな構成部品等を付加することなく電動モータを構成することができる。
また同じコイル群11(同位相)を構成する複数のコイルは、円周方向に隣合うコイルの間で互いに同じ軸方向の巻線端が結合されることで、同一方向の磁束を発生するように電気的に直列結合されているため、最短距離でコイルの配線が行える。このためモータ銅損を低減できる。円周方向に隣合うコイルの間で互いに同じ軸方向位置の巻線端が結合されることで、コイル線Ceが軸方向および径方向に複雑に絡み合うことがなく、狭いスペースであってもコイル間の配線が容易となるため、配線構造を簡素化することができる。したがって、この電動モータMの製造コストの低減を図れ、モータサイズをコンパクトに構成できる。
巻回部12への電流の入出力端13が、回転子3の軸方向に直交する同一平面上に位置しているため、電動モータMと、この電動モータMを制御する制御装置(図示せず)との接続が容易となり、製造上有利となる。正巻きコイル10aおよび逆巻きコイル10bがそれぞれ軸方向に積層され、同じコイル群11を構成する複数のコイルは、一続きのコイル線Ceにより巻回されたものであるため、複数のコイル10を省スペースに配線することができ、電動モータMのコンパクト化が図れる。これにより電動モータMの汎用性を高めることができる。
平角線の前記短手方向が軸方向と平行に積層されているため、電動モータMは、コイル間の無効なスペースが比較的少なくコイルを巻回することができ、省スペース化をより図ることができる。また前記平角線を用いたコイルを用いるため、放熱性が高く、巻線の断面に占める導体の割合である「占積率」に優れた固定子2を構成できる。同位相を構成する複数のコイルのうち円周方向に隣合う巻回部12,12間の配線15は、位相毎に、異なる径方向位置に設けられているため、狭いスペースであっても円周方向に隣合う巻回部12,12間の配線15が容易となるため、配線構造を簡素化することができる。
<他の実施形態について>
前述の実施形態では、三相のコイルの端部を接続したスター結線の例を示すが、例えば、三相それぞれの電流の入出力端を、別の相の巻回部の両端と結線することで、デルタ結線を構成することもできる。巻回部間の配線の三相それぞれの径方向の位置関係について、軸方向基端側の配線部と軸方向先端側の配線部とで相順を径方向に対して同じ並びとしてもよく、あるいは、例えば、軸方向基端側の配線部と軸方向先端側の配線部とで相順を径方向に対して逆の並びとしてもよい。前記の並びは、巻線工程の都合等製造上の都合に応じて適宜定めることができる。
前述の実施形態では、三相のコイルの端部を接続したスター結線の例を示すが、例えば、三相それぞれの電流の入出力端を、別の相の巻回部の両端と結線することで、デルタ結線を構成することもできる。巻回部間の配線の三相それぞれの径方向の位置関係について、軸方向基端側の配線部と軸方向先端側の配線部とで相順を径方向に対して同じ並びとしてもよく、あるいは、例えば、軸方向基端側の配線部と軸方向先端側の配線部とで相順を径方向に対して逆の並びとしてもよい。前記の並びは、巻線工程の都合等製造上の都合に応じて適宜定めることができる。
前述の実施形態では、巻線部間の配線部において、同配線部を、軸方向を含む平面で切断した断面の長手方向が軸方向と平行で三相が径方向に並ぶ配置を示すが、この配置に限定されるものではない。例えば、配線部を、軸方向を含む平面で切断した断面の短手方向が軸方向と平行で三相が軸方向に並ぶ配置としてもよい。このように配線部の短手方向が軸方向と平行で三相が軸方向に並ぶ配置とすることで、省スペースで配線することが可能となる。
前述の実施形態では、三相12スロットの例を示すが、相数は設計に応じて適宜定められるものとする。また、例えば、主にリラクタンスモータにおける四相以上の構成としてもよく、あるいはブラシ付DCモータのように二相の構成としてもよい。
その他、前述の実施形態では、固定子の鉄心がバックヨークを備えた例を示しており、前記固定子を用いて一対の磁極を有するシングルギャップ型モータ、または回転子の両面に磁極を有しその両端に固定子を設けたダブルステータ型アキシャルギャップモータを構成することができる。前述の実施形態の固定子に変えてバックヨークを設けないか、またはバックヨークの両面に実施形態の構造を用いて固定子の両面に磁極を有する構造とし、その両面に回転子を設けることで、ダブルロータ型アキシャルギャップモータを構成することもできる。また、これらの構造を併用し、多段型のアキシャルギャップモータとしてもよい。
<電動モータの適用例について>
図7は、ダブルステータ型アキシャルギャップモータを用いた電動式直動アクチュエータを簡略化して示す断面図である。このアキシャルギャップ型の電動モータMと同軸心に直動機構101が設置されている。直動機構101は、電動モータMの回転軸5により回転駆動されるボールねじ機構等を備え、電動モータMの回転運動を直動部102の直線運動に変換する。前記電動式直動アクチュエータであるモータ使用機器6は、例えば、自動車の車輪制動用の電動ブレーキ装置に用いられ、直動部102は、上記自動車の車輪に設けられているブレーキロータ103に接触および離間させる摩擦パッド104の進退駆動に用いられる。
図7は、ダブルステータ型アキシャルギャップモータを用いた電動式直動アクチュエータを簡略化して示す断面図である。このアキシャルギャップ型の電動モータMと同軸心に直動機構101が設置されている。直動機構101は、電動モータMの回転軸5により回転駆動されるボールねじ機構等を備え、電動モータMの回転運動を直動部102の直線運動に変換する。前記電動式直動アクチュエータであるモータ使用機器6は、例えば、自動車の車輪制動用の電動ブレーキ装置に用いられ、直動部102は、上記自動車の車輪に設けられているブレーキロータ103に接触および離間させる摩擦パッド104の進退駆動に用いられる。
この電動式直動アクチュエータによれば、アキシャルギャップ型の電動モータMを備えているため、省スペースで高トルクを可能とする電動ブレーキ装置を実現できる。このため、電動ブレーキ装置を車両へ搭載する汎用性を高めることができる。また、前述のようにモータコイルの配線構造を簡素化することで、銅損の低減を図ると共にコスト低減を図ることができる。前記配線部は、例えば、樹脂材等でモールドされていてもよい。このような構造とすると、振動等に対して強固となるため、例えば、電動ブレーキ装置用のアクチュエータとして用いる場合等の過酷な環境条件での運用に対して好適となる。
以上のとおり、図面を参照しながら好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更、削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
2…固定子
3…回転子
10…コイル
10a…正巻きコイル
10b…逆巻きコイル
11…コイル群
12…巻回部
13…入出力端
Ce…コイル線
3…回転子
10…コイル
10a…正巻きコイル
10b…逆巻きコイル
11…コイル群
12…巻回部
13…入出力端
Ce…コイル線
Claims (6)
- 固定子と、この固定子に対して回転可能な回転子とが、前記回転子の軸方向に対面するアキシャルギャップ型の電動モータであって、
前記固定子は、磁極を形成するコイルが前記回転子の回転方向に複数並び、これら複数のコイルとして、巻回方向が互いに逆であってそれぞれ軸方向の両端に各巻線端が位置する正巻きコイルと逆巻きコイルとを有し、
前記複数のコイルは、それぞれ前記正巻きコイルと前記逆巻きコイルとが前記回転方向に交互に並んで構成される複数のコイル群から成り、同じコイル群を構成する複数のコイルは、円周方向に並ぶコイルの間で互いに同じ軸方向位置の前記巻線端が結合される電動モータ。 - 請求項1に記載の電動モータにおいて、前記直列結合された複数のコイルについて、前記磁極を形成する巻回部への電流の入出力端が、前記回転子の軸方向に直交する同一平面上に位置する電動モータ。
- 請求項1、2の何れかに記載の電動モータにおいて、前記正巻きコイルおよび前記逆巻きコイルはそれぞれ前記軸方向に導体が積層されるよう巻回され、前記同じコイル群を構成する複数のコイルは、一続きのコイル線により巻回された電動モータ。
- 請求項3に記載の電動モータにおいて、前記コイル線は、このコイル線の軸心を含む平面で切断した断面が長方形状の平角線であり、この長方形状の平角線の前記断面における長手方向が前記軸方向に直交し、且つ、前記長方形状の平角線の前記断面における短手方向が前記軸方向と平行となるように配置され、前記平角線は前記短手方向に積層されるように巻回されている電動モータ。
- 請求項4に記載の電動モータにおいて、前記複数のコイル群は、異なる電流位相となる三相以上の励磁磁極を構成し、同位相を構成するコイル群のうち円周方向に並ぶコイル間の配線は、前記位相の異なるコイル群毎に、異なる径方向位置に設けられた電動モータ。
- 請求項4に記載の電動モータにおいて、前記複数のコイル群は、異なる電流位相となる三相以上の励磁磁極を構成し、同位相を構成するコイル群のうち円周方向に並ぶコイル間の配線は、前記位相の異なるコイル群毎に、異なる軸方向位置に設けられた電動モータ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017062139A JP2018166353A (ja) | 2017-03-28 | 2017-03-28 | 電動モータ |
JP2017-062139 | 2017-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018180721A1 true WO2018180721A1 (ja) | 2018-10-04 |
Family
ID=63675560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010856 WO2018180721A1 (ja) | 2017-03-28 | 2018-03-19 | 電動モータ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018166353A (ja) |
WO (1) | WO2018180721A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113113977A (zh) * | 2020-01-10 | 2021-07-13 | 浙江盘毂动力科技有限公司 | 一种轴向磁场电机的绕组结构及绕制方法 |
DE102022206234B3 (de) | 2022-06-22 | 2023-09-07 | Vitesco Technologies GmbH | Stator für eine Axialflussmaschine, Axialflussmaschine und Kraftfahrzeug mit Axialflussmaschine |
WO2024041602A1 (zh) * | 2022-08-25 | 2024-02-29 | 上海盘毂动力科技股份有限公司 | 一种定子绕组结构及轴向磁场电机和成型方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN209329821U (zh) | 2019-02-01 | 2019-08-30 | 上海磁雷革传动系统有限公司 | 一种定子绕组、定子和电机 |
JP7474027B2 (ja) * | 2019-02-14 | 2024-04-24 | 三星電子株式会社 | ミニファンモータ |
CN110417154B (zh) * | 2019-08-15 | 2020-04-14 | 上海大学 | 一种轴向磁通永磁同步电机的定子 |
US11616410B2 (en) | 2020-01-10 | 2023-03-28 | Samsung Electronics Co., Ltd. | Cleaner |
JP7503448B2 (ja) | 2020-01-10 | 2024-06-20 | 三星電子株式会社 | アキシャルギャップ型のミニファンモータ |
EP4412048A1 (en) * | 2021-09-27 | 2024-08-07 | Denso Corporation | Rotating electrical machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188587A (ja) * | 2010-03-05 | 2011-09-22 | Daihatsu Motor Co Ltd | ステータ |
JP2013118750A (ja) * | 2011-12-02 | 2013-06-13 | Hitachi Ltd | アキシャルギャップ型回転電機及びその製造方法 |
JP2016226195A (ja) * | 2015-06-01 | 2016-12-28 | マツダ株式会社 | アキシャルギャップ型回転電機のステータ構造およびその製造方法 |
-
2017
- 2017-03-28 JP JP2017062139A patent/JP2018166353A/ja active Pending
-
2018
- 2018-03-19 WO PCT/JP2018/010856 patent/WO2018180721A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011188587A (ja) * | 2010-03-05 | 2011-09-22 | Daihatsu Motor Co Ltd | ステータ |
JP2013118750A (ja) * | 2011-12-02 | 2013-06-13 | Hitachi Ltd | アキシャルギャップ型回転電機及びその製造方法 |
JP2016226195A (ja) * | 2015-06-01 | 2016-12-28 | マツダ株式会社 | アキシャルギャップ型回転電機のステータ構造およびその製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113113977A (zh) * | 2020-01-10 | 2021-07-13 | 浙江盘毂动力科技有限公司 | 一种轴向磁场电机的绕组结构及绕制方法 |
CN113113977B (zh) * | 2020-01-10 | 2022-10-04 | 浙江盘毂动力科技有限公司 | 一种轴向磁场电机的绕组结构及绕制方法 |
DE102022206234B3 (de) | 2022-06-22 | 2023-09-07 | Vitesco Technologies GmbH | Stator für eine Axialflussmaschine, Axialflussmaschine und Kraftfahrzeug mit Axialflussmaschine |
WO2024041602A1 (zh) * | 2022-08-25 | 2024-02-29 | 上海盘毂动力科技股份有限公司 | 一种定子绕组结构及轴向磁场电机和成型方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2018166353A (ja) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018180721A1 (ja) | 電動モータ | |
US5866965A (en) | Variable reluctance motor having foil wire wound coils | |
JP5248751B2 (ja) | スロットレス永久磁石型回転電機 | |
JP2004032984A (ja) | 誘導電動機 | |
US20060038461A1 (en) | Optimized air core armature | |
JP6048191B2 (ja) | マルチギャップ型回転電機 | |
JP2006191757A (ja) | 回転電機及びそれを用いた電動パワーステアリング装置 | |
WO2018193969A1 (ja) | 回転電気機械 | |
CN107534325B (zh) | 具有环形绕组的开关磁阻电机 | |
WO2019008848A1 (ja) | 回転電機および直動電動機 | |
JP7523095B2 (ja) | ステータ及びそれを用いたモータ | |
JP2011223676A (ja) | 永久磁石式電動機 | |
JP6589721B2 (ja) | 回転電機 | |
US20230318382A1 (en) | Stator and motor | |
JP2005020885A (ja) | ロータリ・リニア直流モータ | |
JP7258824B2 (ja) | 回転電機 | |
JP2018137836A (ja) | ステータおよび回転電機 | |
JP2006025486A (ja) | 回転電機 | |
JP2002119034A (ja) | 磁気的にセンタリングするトルクモータ | |
JP6582973B2 (ja) | 回転電機およびその製造方法 | |
JP6968215B2 (ja) | 回転電機 | |
WO2023106338A1 (ja) | モータ | |
JP2013094030A (ja) | 電機子コイル及び同期回転機 | |
WO2021010009A1 (ja) | モータ | |
JP3632721B2 (ja) | 永久磁石形同期電動機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774577 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18774577 Country of ref document: EP Kind code of ref document: A1 |