WO2018180616A1 - 光送信器および光変調方法 - Google Patents

光送信器および光変調方法 Download PDF

Info

Publication number
WO2018180616A1
WO2018180616A1 PCT/JP2018/010520 JP2018010520W WO2018180616A1 WO 2018180616 A1 WO2018180616 A1 WO 2018180616A1 JP 2018010520 W JP2018010520 W JP 2018010520W WO 2018180616 A1 WO2018180616 A1 WO 2018180616A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
amplitude
optical
drive
pilot signal
Prior art date
Application number
PCT/JP2018/010520
Other languages
English (en)
French (fr)
Inventor
正夫 森江
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2018180616A1 publication Critical patent/WO2018180616A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation

Definitions

  • the present invention relates to an optical transmitter and an optical modulation method for generating an optical signal used for optical communication.
  • An optical transmitter including an external modulator that modulates light from a light source according to a drive signal and outputs the modulated optical signal and a drive circuit that inputs the drive signal to the external modulator has an amplitude of the drive signal.
  • the modulation degree of the external modulator changes in accordance with the drive amplitude.
  • the modulation degree is based on the waveform of an electrical signal corresponding to an optical signal having a desired modulation degree. Is set in advance so that a desired modulation degree is obtained.
  • the drive amplitude cannot be adjusted even if the modulation degree of the optical signal changes due to environmental fluctuations (for example, temperature fluctuations or wavelength fluctuations of the light source) during actual operation. There is a problem that the main signal characteristics deteriorate.
  • Patent Documents 1 to 5 disclose techniques for superimposing a pilot signal on an optical signal and adjusting the modulation degree of the modulator using the pilot signal included in the optical signal.
  • the modulation degree can be adjusted during the actual operation. Therefore, it is possible to suppress deterioration of the main signal characteristics of the signal.
  • Patent Documents 2 and 4 modulate an optical signal by directly inputting a modulation current corresponding to a data signal to a light source, and an external modulator that modulates light from the light source according to a drive signal It is difficult to apply to the technology for controlling the above.
  • Patent Documents 3 and 5 adjust the bias voltage of an LN (LiNbO 3 ) modulator, and a desired modulation degree may not be obtained only by adjusting the bias voltage.
  • an object of the present invention is to provide an optical transmitter and an optical modulation method that are highly versatile and can obtain a desired modulation degree using an external modulator.
  • An optical transmitter includes a driving unit that outputs a driving signal, a bias applying unit that outputs a bias voltage on which a pilot signal is superimposed, a light source, and the light from the light source is converted into the amplitude of the driving signal and the bias voltage. And an external modulator that modulates and outputs as an optical signal on which the pilot signal is superimposed, an amplitude detector that detects the amplitude of the pilot signal included in the optical signal, and power that detects the power of the optical signal A detection unit; and an adjustment unit that adjusts the amplitude of the drive signal based on the amplitude and power.
  • An optical modulation method outputs a drive signal, outputs a bias voltage on which a pilot signal is superimposed, and modulates light from a light source according to the amplitude of the drive signal and the bias voltage.
  • the signal is emitted as a signal, the amplitude of the pilot signal included in the optical signal is detected, the power of the optical signal is detected, and the amplitude of the drive signal is adjusted based on the amplitude and power of the pilot signal.
  • the versatility is high and a desired modulation degree can be obtained using an external modulator.
  • FIG. 1 is a diagram illustrating a configuration of an optical transmitter according to a first embodiment of the present invention.
  • an optical transmitter 100 includes a signal source 1, an optical signal output unit 2, a pilot signal generation circuit 3, a bias application circuit 4, a pilot signal demodulation circuit 5, an oscilloscope 6, and an optical power meter 7. And have.
  • the signal source 1 outputs a data signal that is an electrical signal.
  • the signal source 1 is a PPG (Pulse / Pattern / Generator) that outputs an electrical signal indicating a pulse pattern.
  • the optical signal output unit 2 outputs an optical signal corresponding to the data signal output from the signal source 1.
  • the optical signal output unit 2 includes a light source 21, a drive circuit (DRV: Driver) 22, an adjustment circuit 23, and an external modulator 24.
  • DUV Drive circuit
  • the light source 21 emits light toward the external modulator 24.
  • the light source 21 is an ITLA (Integrated Tunable Laser Assembly) type tunable laser, and emits laser light having a predetermined wavelength as light.
  • the drive circuit 22 is a drive unit that outputs a drive signal for driving the external modulator 24.
  • a data signal is input from the signal source 1 to the drive circuit 22, and an amplitude adjustment signal indicating the amplification factor of the data signal is input from the adjustment circuit 23.
  • the drive circuit 22 amplifies the input data signal according to the amplification factor indicated by the amplitude adjustment signal and outputs the amplified signal as a drive signal. For this reason, the drive amplitude which is the amplitude of a drive signal is determined according to an amplification factor.
  • the adjustment circuit 23 is an adjustment unit that adjusts the drive amplitude of the drive signal output from the drive circuit 22.
  • An amplitude detection signal indicating the amplitude of the pilot signal included in the optical signal is input from the oscilloscope 6 to the adjustment circuit 23, and a power detection signal indicating the power of the entire optical signal is input from the optical power meter 7.
  • the adjustment circuit 23 determines the amplification factor of the data signal by the adjustment circuit 23 based on the amplitude of the pilot signal indicated by the amplitude detection signal and the power of the optical signal indicated by the power detection signal. Then, the adjustment circuit 23 adjusts the drive amplitude by inputting an amplitude adjustment signal indicating the amplification factor to the drive circuit 22. A detailed description of the process for determining the amplification factor will be described later.
  • the external modulator 24 receives a drive signal from the drive circuit 22 and a bias voltage from the bias application circuit 4.
  • the external modulator 24 modulates the light from the light source 21 based on the amplitude of the drive signal and the bias voltage and outputs it as an optical signal.
  • a pilot signal is superimposed on the bias voltage as will be described later. For this reason, the pilot signal is superimposed on the optical signal output from the external modulator 24.
  • the external modulator 24 is an RF (Radio Frequency) modulator.
  • the pilot signal generation circuit 3 generates and outputs a pilot signal.
  • the pilot signal generation circuit 3 is a function generator that generates an AC voltage signal.
  • the function generator can adjust the frequency and waveform of the AC voltage signal to be generated. Therefore, the pilot signal is an AC voltage signal.
  • the frequency of the pilot signal is included in a low frequency band lower than the frequency band of the drive signal.
  • the bias application circuit 4 is a bias application unit that outputs a bias voltage to the external modulator 24.
  • the bias application circuit 4 receives the pilot signal from the pilot signal generation circuit 3.
  • the bias application circuit 4 generates a DC bias voltage.
  • the bias application circuit 4 superimposes the input pilot signal on a DC bias voltage, and outputs a bias voltage on which the pilot signal is superimposed to the external modulator 24.
  • the optical signal on which the pilot signal is superimposed is output from the external modulator 24 as described above.
  • the output optical signal is branched and input to the pilot signal demodulation circuit 5 and the optical power meter 7.
  • the pilot signal demodulating circuit 5 demodulates the pilot signal from the input optical signal and outputs the demodulated pilot signal, which is the demodulated pilot signal, to the oscilloscope 6.
  • the oscilloscope 6 is an amplitude detector that detects the amplitude of the demodulated pilot signal output from the pilot signal demodulation circuit 5.
  • the oscilloscope 6 receives the demodulated pilot signal from the pilot signal demodulation circuit 5 and the pilot signal from the pilot signal generation circuit 3.
  • the oscilloscope 6 detects the amplitude of the demodulated pilot signal using the ratio with the amplitude of the original pilot signal.
  • the oscilloscope 6 inputs an amplitude detection signal indicating the detected amplitude to the adjustment circuit 23.
  • the optical power meter 7 is a power detection unit that detects the power of the input optical signal.
  • the optical power meter 7 inputs a power detection signal indicating the detected power to the adjustment circuit 23.
  • 2A to 2D are diagrams for explaining the principle of pilot signal superposition and demodulation.
  • the optical output intensity which is the output intensity of the external modulator 24, changes according to the voltage applied to the external modulator 24.
  • the voltage width until the light output intensity reaches the minimum from the maximum is called the half-wave voltage V ⁇ .
  • the drive signal and the bias voltage on which the pilot signal is superimposed are input to the external modulator 24, the sum of the drive signal and the bias voltage becomes the applied voltage applied to the external modulator 24.
  • the DC component of the bias voltage is set in advance so as to coincide with the optimum bias point (the lowest point of the light intensity characteristic) V0.
  • the waveform of the demodulated pilot signal demodulated by the pilot signal demodulating circuit 5 differs depending on the drive amplitude which is the amplitude of the drive signal.
  • the waveforms on the right side of FIGS. 2A to 2D show demodulated pilot signals at different driving amplitudes. Since the voltage width from the maximum to the minimum light output intensity is the half-wave voltage V ⁇ , the maximum light output intensity can be obtained by setting the drive amplitude to 2V ⁇ .
  • FIG. 2A shows a demodulated pilot signal when the drive amplitude is 2V ⁇ .
  • the operating point is also shifted accordingly.
  • the wavelength of the demodulated pilot signal is half the wavelength of the original pilot signal.
  • FIG. 2B shows a demodulated pilot signal when the drive amplitude is smaller than 2V ⁇ and exceeds V ⁇ .
  • the light output intensity at the operating point is shifted in the opposite direction between the high voltage side and the low voltage side due to the pilot signal superimposed on the bias voltage.
  • the bias voltage deviates from the optimum bias point to the high voltage side
  • the light output intensity at the high pressure side operating point increases and the light output intensity at the low voltage side operating point decreases.
  • the bias voltage is shifted to the low voltage side from the optimum bias point
  • the light output intensity at the operating point on the high voltage side decreases and the light output intensity at the operating point on the low voltage side increases.
  • a difference between these optical output intensities is detected as a demodulated pilot signal.
  • the demodulated pilot signal has the same phase as the original pilot signal.
  • the demodulated pilot signal has an opposite phase to the original pilot signal.
  • FIG. 2D shows a demodulated pilot signal when the drive amplitude is 0, that is, when the drive signal is not input.
  • the demodulated pilot signal since there is no drive signal, the demodulated pilot signal has a waveform equivalent to that of the original pilot signal.
  • FIG. 3 is a diagram showing an example of the relationship between the amplitude of the demodulated pilot signal detected by the oscilloscope and the drive amplitude.
  • the amplitude of the demodulated pilot has the lowest minimum value 301 when the drive amplitude is V ⁇ , and has maximum values 302 and 303 when the drive amplitude is 0 and 2V ⁇ . Therefore, the amplitude of the demodulated pilot decreases as the driving amplitude increases from 0 to V ⁇ , and increases as the driving amplitude increases from V ⁇ to 2V ⁇ . Therefore, the drive amplitude cannot be specified only by the amplitude of the demodulated pilot signal.
  • FIG. 4 is a diagram showing an example of the relationship between the optical power, which is the power of the optical signal detected by the optical power meter 7, and the drive amplitude. As shown in FIG. 4, the power increases as the drive amplitude increases. Note that the ratio of the change in the optical power to the change in the drive amplitude is relatively small, and it is difficult to accurately specify the drive amplitude only with the optical power.
  • the drive amplitude is detected based on the amplitude of the demodulated pilot signal and the power of the optical signal.
  • the adjustment circuit 23 can adjust the drive amplitude to a desired value based on the amplitude of the demodulated pilot signal and the power of the optical signal.
  • the adjustment circuit 23 first determines whether the drive amplitude is equal to or greater than the half-wave voltage V ⁇ of the external modulator 24 based on the power of the optical signal. For example, the adjustment circuit 23 determines whether or not the power of the optical signal is equal to or greater than a predetermined value. If the power is equal to or greater than the predetermined value, the adjustment circuit 23 determines that the drive amplitude is equal to or greater than the half-wave voltage V ⁇ . It is determined that the drive amplitude is less than half-wave voltage V ⁇ .
  • the adjustment circuit 23 specifies the drive amplitude based on the determination result and the amplitude of the pilot signal. For example, the adjustment circuit 23 determines the correspondence between the pilot signal amplitude and the drive amplitude when the drive amplitude is equal to or greater than the half-wave voltage V ⁇ , and the pilot signal amplitude and drive amplitude when the drive amplitude is less than the half-wave voltage V ⁇ . Correspondence information indicating the correspondence relationship between the driving amplitude and the drive amplitude is specified using the correspondence information.
  • the adjustment circuit 23 compares the identified drive amplitude with the desired drive amplitude, and determines the amplification factor of the drive circuit 22 so that the drive amplitude becomes the desired drive amplitude.
  • FIG. 5 is a flowchart for explaining the operation of the optical transmitter 100 of the present embodiment.
  • the pilot signal generation circuit 3 generates a pilot signal and inputs the pilot signal to the bias application circuit 4.
  • the bias application circuit 4 superimposes the input pilot signal on a DC bias voltage, and inputs the bias voltage on which the pilot signal is superimposed to the external modulator 24 (step S501).
  • the adjustment circuit 23 inputs an amplitude adjustment signal indicating a predetermined amplification factor to the drive circuit 22 (step S502).
  • the drive circuit 22 amplifies the data signal from the signal source 1 with the amplification factor indicated by the input amplitude adjustment signal, and inputs it to the external modulator 24 as a drive signal (step S503).
  • the external modulator 24 modulates the light from the light source 21 according to the input drive signal and bias voltage, and emits it as an optical signal (step S504).
  • the optical signal emitted from the external modulator 24 is branched and input to the pilot signal demodulation circuit 5 and the optical power meter 7.
  • the pilot signal demodulation circuit 5 demodulates the pilot signal from the input optical signal, and inputs the demodulated demodulated pilot signal to the oscilloscope 6 (step S505).
  • the oscilloscope 6 detects the amplitude of the input demodulated pilot signal, and inputs an amplitude detection signal indicating the amplitude to the adjustment circuit 23 (step S506).
  • the optical power meter 7 detects the power of the input optical signal, and inputs a power detection signal indicating the power to the adjustment circuit 23 (step S507).
  • the adjustment circuit 23 determines the amplification factor based on the input amplitude detection signal and power detection signal, and inputs the amplitude adjustment signal indicating the amplification factor to the drive circuit 22 (step S508). Thereafter, step S503 is executed.
  • the drive circuit 22 outputs a drive signal.
  • the bias application circuit 4 outputs a bias voltage on which the pilot signal is superimposed.
  • the external modulator 24 modulates the light from the light source 21 according to the amplitude and bias voltage of the drive signal, and outputs it as an optical signal on which a pilot signal is superimposed.
  • the oscilloscope 6 detects the amplitude of the pilot signal included in the optical signal.
  • the optical power meter 7 detects the power of the optical signal.
  • the adjustment circuit 23 adjusts the amplitude of the drive signal based on the amplitude of the pilot signal and the power of the optical signal.
  • the amplitude of the drive signal of the external modulator 24 is adjusted based on the amplitude of the pilot signal superimposed on the bias voltage and the power of the optical signal. Therefore, it is possible to obtain a desired modulation degree using the external modulator 24 without superimposing the pilot signal on the data signal in advance.
  • the adjustment circuit 23 determines whether the drive amplitude is equal to or greater than the half-wave voltage of the external modulator based on the power of the optical signal, and based on the determination result and the amplitude of the pilot signal, Adjust the drive amplitude. At this time, the adjustment circuit 23 determines whether the drive amplitude is equal to or greater than the half-wave voltage of the external modulator 24 by determining whether the power of the optical signal is equal to or greater than a predetermined value. For this reason, it becomes possible to adjust a drive amplitude more correctly.
  • the drive circuit 22 amplifies the data signal from the signal source 1 and outputs it as a drive signal.
  • the drive amplitude is adjusted by adjusting the amplification factor of the data signal by the adjustment circuit 23 and the drive circuit 22. For this reason, the drive amplitude can be easily adjusted.
  • FIG. 6 is a diagram illustrating the configuration of the optical transmitter according to the first embodiment of this invention.
  • the optical transmitter 100 a includes a drive unit 101, a bias application unit 102, a light source 103, an external modulator 104, an amplitude detection unit 105, a power detection unit 106, and an adjustment unit 107.
  • the drive unit 101 outputs a drive signal.
  • the bias applying unit 102 outputs a bias voltage on which the pilot signal is superimposed.
  • the light source 103 emits light.
  • the external modulator 104 modulates the light from the light source 103 according to the amplitude and bias voltage of the drive signal, and outputs the modulated optical signal as a pilot signal.
  • the amplitude detector 105 detects the amplitude of the pilot signal included in the optical signal.
  • the power detection unit 106 detects the power of the optical signal.
  • the adjustment unit 107 adjusts the amplitude of the drive signal based on the amplitude of the pilot signal and the power of the optical signal.
  • FIG. 7 is a flowchart for explaining the operation of the optical transmitter 100a of this embodiment.
  • the bias applying unit 102 inputs a bias voltage on which the pilot signal is superimposed to the external modulator 104 (step S701).
  • the adjusting unit 107 sets the drive amplitude, which is the amplitude of the drive signal, to a predetermined drive amplitude. Setting is performed (step S702).
  • the drive unit 101 inputs the drive signal having the set drive amplitude to the external modulator 104 (step S703).
  • the external modulator 104 modulates the light from the light source 103 according to the input drive signal and bias voltage, and emits it as an optical signal (step S704).
  • the optical signal emitted from the external modulator 104 is branched and input to the amplitude detector 105 and the power detector 106.
  • the amplitude detection unit 105 detects the amplitude of the pilot signal included in the input optical signal, and inputs an amplitude detection signal indicating the amplitude to the adjustment unit 107 (step S705).
  • the power detection unit 106 detects the power of the input optical signal, and inputs a power detection signal indicating the power to the adjustment unit 107 (step S706).
  • the adjustment unit 107 adjusts the amplitude of the drive signal output from the drive unit 101 based on the input amplitude detection signal and power detection signal (step S707).
  • the amplitude of the drive signal of the external modulator 104 is adjusted based on the amplitude of the pilot signal superimposed on the bias voltage and the power of the optical signal, as in the first embodiment. Therefore, it is possible to obtain a desired modulation degree using the external modulator 104 without superimposing the pilot signal on the data signal in advance.

Abstract

(課題)汎用性が高く、かつ、外部変調器を用いて所望の変調度を得ることが可能な光送信器および光変調方法を提供する。 (解決手段)駆動部101は、駆動信号を出力する。バイアス印加部102は、パイロット信号を重畳したバイアス電圧を出力する。光源103は、光を出射する。外部変調器104は、光源103からの光を駆動信号の振幅およびバイアス電圧に応じて変調して、パイロット信号が重畳された光信号として出力する。振幅検出部105は、光信号に含まれるパイロット信号の振幅を検出する。パワー検出部106は、光信号のパワーを検出する。調整部107は、パイロット信号の振幅および光信号のパワーに基づいて、駆動信号の振幅を調整する。

Description

光送信器および光変調方法
 本発明は、光通信に用いられる光信号を生成する光送信器および光変調方法に関する。
 光源からの光を駆動信号に応じて変調して光信号として出力する外部変調器と、外部変調器に対して駆動信号を入力する駆動回路とを備えた光送信器には、駆動信号の振幅である駆動振幅に応じて、外部変調器の変調度が変化するものがある。
 上記の光送信器では、変調度を表す指標を実動作中に検出することができないため、一般的には、所望の変調度を有する光信号に応じた電気信号の波形に基づいて、変調度が所望の変調度となるように駆動振幅が予め設定されている。しかしながら、この場合には、実動作中に環境変動(例えば、温度変動や光源の波長変動など)により光信号の変調度が変化しても、駆動振幅を調整することができないため、光信号の主信号特性が劣化してしまうという問題がある。
 これに対して特許文献1~5には、光信号にパイロット信号を重畳し、その光信号に含まれるパイロット信号を用いて変調器の変調度を調整する技術が開示されている。これらの技術では、実動作中にパイロット信号に基づいて変調度を表す指標を検出することができるため、実動作中に変調度を調整することが可能になる。したがって、信号の主信号特性の劣化を抑制することが可能になる。
特開平05-267766号公報 特表2001-519098号公報 特開2004-093945号公報 特開2004-158644号公報 特開2008-197639号公報
 特許文献1に記載の技術では、パイロット信号が重畳されたデータ信号に応じた光信号が出力され、その光信号全体の信号レベルと、その光信号に含まれるパイロット信号の信号レベルとの比が変調度として算出される。そして、その変調度が所定の基準値となるように変調器の駆動回路が制御されている。しかしながら、この技術では、パイロット信号の信号レベルとの比を変調度として算出するためにデータ信号にパイロット信号を予め重畳させなければならず、汎用性が低い。
 特許文献2および4に記載の技術は、データ信号に応じた変調電流を光源に直接入力することで光信号を変調するものであり、光源からの光を駆動信号に応じて変調する外部変調器を制御する技術には適用することが困難である。
 特許文献3および5に記載の技術は、LN(LiNbO)変調器のバイアス電圧を調整するものであり、バイアス電圧の調整だけでは、所望の変調度を得ることができない場合がある。
 本発明は、上述した課題を鑑み、汎用性が高く、かつ、外部変調器を用いて所望の変調度を得ることが可能な光送信器および光変調方法を提供することを目的とする。
 本発明による光送信器は、駆動信号を出力する駆動部と、パイロット信号を重畳したバイアス電圧を出力するバイアス印加部と、光源と、光源からの光を前記駆動信号の振幅および前記バイアス電圧に応じて変調して、前記パイロット信号が重畳された光信号として出力する外部変調器と、前記光信号に含まれるパイロット信号の振幅を検出する振幅検出部と、前記光信号のパワーを検出するパワー検出部と、前記振幅およびパワーに基づいて、前記駆動信号の振幅を調整する調整部と、を有する。
 本発明による光変調方法は、駆動信号を出力し、パイロット信号を重畳したバイアス電圧を出力し、光源からの光を、前記駆動信号の振幅と前記バイアス電圧とに応じて光を変調して光信号として出射し、前記光信号に含まれるパイロット信号の振幅を検出し、前記光信号のパワーを検出し、前記パイロット信号の振幅およびパワーに基づいて、前記駆動信号の振幅を調整する。
 本発明によれば、汎用性が高く、かつ、外部変調器を用いて所望の変調度を得ることが可能になる。
本発明の第1の実施形態の光送信器の構成を示す図である。 復調パイロット信号の一例を示す図である。 復調パイロット信号の他の例を示す図である。 復調パイロット信号の他の例を示す図である。 復調パイロット信号の他の例を示す図である。 復調パイロット信号の振幅と駆動振幅との関係を示す図である。 光信号のパワーと駆動振幅の関係を示す図である。 本発明の第1の実施形態の光送信器の動作を説明するためのフローチャートである。 本発明の第2の実施形態の光送信器の構成を示す図である。 本発明の第2の実施形態の光送信器の動作を説明するためのフローチャートである。
 以下、本発明の実施形態について図面を参照して説明する。なお、各図面において同じ機能を有するものには同じ符号を付け、その説明を省略する場合がある。
 (第1の実施形態)
 図1は、本発明の第1の実施形態の光送信器の構成を示す図である。図1において、光送信器100は、信号源1と、光信号出力部2と、パイロット信号生成回路3と、バイアス印加回路4と、パイロット信号復調回路5と、オシロスコープ6と、光パワーメータ7とを有する。
 信号源1は、電気信号であるデータ信号を出力する。信号源1は、本実施形態では、パルスパターンを示す電気信号を出力するPPG(Pulse Pattern Generator:パルスパターンジェネレ-タ)である。
 光信号出力部2は、信号源1から出力されたデータ信号に応じた光信号を出力する。光信号出力部2は、具体的には、光源21と、駆動回路(DRV:Driver)22と、調整回路23と、外部変調器24とを含む。
 光源21は、光を外部変調器24に向けて出射する。本実施形態では、光源21は、ITLA(Integrated Tunable Laser Assembly)型波長可変レーザであり、光として所定の波長を有するレーザ光を出射する。
 駆動回路22は、外部変調器24を駆動するための駆動信号を出力する駆動部である。
駆動回路22には、信号源1からデータ信号が入力され、調整回路23からデータ信号の増幅率を示す振幅調整信号が入力される。駆動回路22は、入力されたデータ信号を、振幅調整信号が示す増幅率に応じて増幅して駆動信号として出力する。このため、増幅率に応じて駆動信号の振幅である駆動振幅が決定される。
 調整回路23は、駆動回路22が出力する駆動信号の駆動振幅を調整する調整部である。調整回路23には、オシロスコープ6から、光信号に含まれるパイロット信号の振幅を示す振幅検出信号が入力され、光パワーメータ7から、光信号全体のパワーを示すパワー検出信号が入力される。調整回路23は、振幅検出信号が示すパイロット信号の振幅と、パワー検出信号が示す光信号のパワーとに基づいて、調整回路23によるデータ信号の増幅率を決定する。そして調整回路23は、その増幅率を示す振幅調整信号を駆動回路22に入力することで、駆動振幅を調整する。なお、増幅率を決定する処理の詳細な説明は後述する。
 外部変調器24には、駆動回路22から駆動信号が入力され、バイアス印加回路4からバイアス電圧が入力される。外部変調器24は、駆動信号の振幅およびバイアス電圧に基づいて、光源21からの光を変調して光信号として出力する。バイアス電圧には、後述するようにパイロット信号が重畳されている。このため、外部変調器24から出力される光信号には、パイロット信号が重畳されている。なお、外部変調器24は、RF(Radio Frequency)変調器である。
 パイロット信号生成回路3は、パイロット信号を生成して出力する。本実施形態では、パイロット信号生成回路3は、交流電圧信号を生成するファンクションジェネレータである。ファンクションジェネレータは、生成する交流電圧信号の周波数および波形を調整することができる。したがって、パイロット信号は交流電圧信号である。パイロット信号の周波数は、駆動信号の周波数帯よりも低い低周波帯に含まれる。
 バイアス印加回路4は、バイアス電圧を外部変調器24に出力するバイアス印加部である。バイアス印加回路4は、パイロット信号生成回路3からパイロット信号が入力される。バイアス印加回路4は、直流のバイアス電圧を生成する。バイアス印加回路4は、入力されたパイロット信号を直流のバイアス電圧に重畳し、そのパイロット信号を重畳したバイアス電圧を外部変調器24に出力する。これにより、上述したように外部変調器24からパイロット信号が重畳した光信号が出力されることになる。なお、出力された光信号は、分岐されてパイロット信号復調回路5と光パワーメータ7とに入力される。
 パイロット信号復調回路5は、入力された光信号からパイロット信号を復調し、その復調したパイロット信号である復調パイロット信号をオシロスコープ6に出力する。
 オシロスコープ6は、パイロット信号復調回路5から出力された復調パイロット信号の振幅を検出する振幅検出部である。オシロスコープ6には、パイロット信号復調回路5から復調パイロット信号が入力され、パイロット信号生成回路3からパイロット信号が入力される。オシロスコープ6は、元のパイロット信号の振幅との比を用いて復調パイロット信号の振幅を検出する。オシロスコープ6は、検出した振幅を示す振幅検出信号を調整回路23に入力する。
 光パワーメータ7は、入力された光信号のパワーを検出するパワー検出部である。光パワーメータ7は、検出したパワーを示すパワー検出信号を調整回路23に入力する。
 図2A~図2Dは、パイロット信号の重畳と復調についての原理的な説明するための図である。図2A~図2Dの左上の波形で示すように、外部変調器24の出力強度である光出力強度は、外部変調器24に印加される電圧に応じて変化する。なお、図2Aに示すように光出力強度が最大から最小になるまでの電圧幅は半波長電圧Vπと呼ばれる。
 本実施形態では、外部変調器24に駆動信号とパイロット信号が重畳されたバイアス電圧とが入力されるため、駆動信号とバイアス電圧との和が外部変調器24に印加される印加電圧となる。バイアス電圧の直流成分は、最適バイアス点(光強度特性の最低点)V0と一致するように予め設定されている。
 パイロット信号復調回路5にて復調される復調パイロット信号の波形は、駆動信号の振幅である駆動振幅に応じて異なる。図2A~図2Dの右側の波形は、それぞれ異なる駆動振幅における復調パイロット信号を示している。なお、光出力強度が最大から最小になるまでの電圧幅が半波長電圧Vπなので、駆動振幅を2Vπとすることで最大の光出力強度が得られる。
 図2Aでは、駆動振幅が2Vπの場合の復調パイロット信号が示されている。この例では、バイアス電圧に重畳されたパイロット信号によりバイアス電圧が最適バイアス点からずれると、それに伴い、動作点もずれる。このとき、バイアス電圧が最適バイアス点よりも高圧側にずれても低圧側にずれても、高圧側および低圧側の動作点の光出力強度は両方とも低くなる。このため、復調パイロット信号の波長は、元のパイロット信号の波長の半分となる。
 図2Bでは、駆動振幅が2Vπよりも小さく、かつ、Vπを超える場合の復調パイロット信号が示されている。この例では、バイアス電圧に重畳されたパイロット信号によって動作点の光出力強度は、高圧側と低圧側とで逆向きにシフトする。例えば、バイアス電圧が最適バイアス点よりも高圧側にずれると、高圧側の動作点の光出力強度は高くなり、低圧側の動作点の光出力強度が低くなる。また、バイアス電圧が最適バイアス点よりも低圧側にずれると、高圧側の動作点の光出力強度は低くなり、低圧側の動作点の光出力強度が高くなる。これらの光出力強度の差が復調パイロット信号として検出される。この場合、復調パイロット信号は、元のパイロット信号と同位相となる。なお、駆動振幅がVπより小さい場合には、復調パイロット信号は、元のパイロット信号と逆位相となる。
 図2Cでは、駆動振幅がVπの場合の復調パイロット信号が示されている。この例では、バイアス電圧に重畳されたパイロット信号による動作点の光出力強度は、高圧側と低圧側とで逆向きにシフトし、それらは互いに打ち消し合う。このため、パイロット信号を示す低周波成分が検出されない。
 図2Dでは、駆動振幅が0、つまり駆動信号が入力されていない場合の復調パイロット信号が示されている。この例では、駆動信号がないため、復調パイロット信号は元のパイロット信号と同等な波形となる。
 図3は、オシロスコープにて検出される復調パイロット信号の振幅と駆動振幅との関係の一例を示す図である。図3に示すように復調パイロットの振幅は、駆動振幅がVπの場合に最も低い最低値301となり、駆動振幅が0および2Vπの場合に極大値302および303となる。したがって、復調パイロットの振幅は、駆動振幅が0からVπまでは、駆動振幅が大きくなるほど小さくなり、駆動振幅がVπから2Vπまでは、駆動振幅が大きくなるほど大きくなる。したがって、復調パイロット信号の振幅だけでは、駆動振幅を特定することができない。
 図4は、光パワーメータ7にて検出される光信号のパワーである光パワーと駆動振幅との関係の一例を示す図である。図4に示すように駆動振幅が大きくなるほど、パワーが大きくなる。なお、駆動振幅の変化に対する光パワーの変化の割合は比較的小さく、光パワーだけでは駆動振幅を正確に特定することは困難である。
 そこで、復調パイロット信号の振幅と光信号のパワーに基づいて駆動振幅を検出する。その結果、調整回路23は、復調パイロット信号の振幅と光信号のパワーとに基づいて、駆動振幅を所望の値に調整することができる。
 具体的には、調整回路23は、先ず、光信号のパワーに基づいて、駆動振幅が外部変調器24の半波長電圧Vπ以上か否かを判断する。例えば、調整回路23は、光信号のパワーが所定値以上か否かを判断し、パワーが所定値以上の場合、駆動振幅が半波長電圧Vπ以上と判断し、パワーが所定値未満の場合、駆動振幅が半波長電圧Vπ未満と判断する。
 調整回路23は、上記の判断結果とパイロット信号の振幅とに基づいて、駆動振幅を特定する。例えば、調整回路23は、駆動振幅が半波長電圧Vπ以上の場合におけるパイロット信号の振幅と駆動振幅との対応関係と、駆動振幅が半波長電圧Vπ未満の場合におけるパイロット信号の振幅と駆動振幅との対応関係とを示す対応情報を保持し、その対応情報を用いて駆動振幅を特定する。
 調整回路23は、その特定した駆動振幅と所望の駆動振幅とを比較して、駆動振幅が所望の駆動振幅になるように駆動回路22の増幅率を決定する。
 次に動作を説明する。
 図5は、本実施形態の光送信器100の動作を説明するためのフローチャートである。
 先ず、パイロット信号生成回路3は、パイロット信号を生成し、そのパイロット信号をバイアス印加回路4に入力する。バイアス印加回路4は、入力されたパイロット信号を直流のバイアス電圧に重畳し、そのパイロット信号を重畳したバイアス電圧を外部変調器24に入力する(ステップS501)
 一方、調整回路23は、所定の増幅率を示す振幅調整信号を駆動回路22に入力する(ステップS502)。駆動回路22は、入力された振幅調整信号が示す増幅率で、信号源1からのデータ信号を増幅して駆動信号として外部変調器24に入力する(ステップS503)。外部変調器24は、光源21からの光を、入力された駆動信号およびバイアス電圧に応じて変調して光信号として出射する(ステップS504)。
 外部変調器24から出射された光信号は分岐されてパイロット信号復調回路5および光パワーメータ7に入力される。パイロット信号復調回路5は、入力された光信号からパイロット信号を復調し、その復調した復調パイロット信号をオシロスコープ6に入力する(ステップS505)。オシロスコープ6は、入力された復調パイロット信号の振幅を検出し、その振幅を示す振幅検出信号を調整回路23に入力する(ステップS506)。一方、光パワーメータ7は、入力された光信号のパワーを検出し、そのパワーを示すパワー検出信号を調整回路23に入力する(ステップS507)。
 調整回路23は、入力された振幅検出信号およびパワー検出信号に基づいて、増幅率を決定し、その増幅率を示す振幅調整信号を駆動回路22に入力する(ステップS508)。その後、ステップS503が実行される。
 以上説明したように本実施形態によれば、駆動回路22は、駆動信号を出力する。バイアス印加回路4は、パイロット信号を重畳したバイアス電圧を出力する。外部変調器24は、光源21からの光を駆動信号の振幅およびバイアス電圧に応じて変調して、パイロット信号が重畳された光信号として出力する。オシロスコープ6は、光信号に含まれるパイロット信号の振幅を検出する。光パワーメータ7は、光信号のパワーを検出する。調整回路23は、パイロット信号の振幅および光信号のパワーに基づいて、駆動信号の振幅を調整する。
 この場合、バイアス電圧に重畳されたパイロット信号の振幅と光信号のパワーとに基づいて、外部変調器24の駆動信号の振幅が調整される。このため、データ信号に予めパイロット信号を重畳させなくても、外部変調器24を用いて所望の変調度を得ることが可能になる。
 また、本実施形態では、調整回路23は、光信号のパワーに基づいて駆動振幅が外部変調器の半波長電圧以上か否かを判断し、その判断結果とパイロット信号の振幅とに基づいて、駆動振幅を調整する。このとき、調整回路23は、光信号のパワーが所定値以上か否かを判断することで、駆動振幅が外部変調器24の半波長電圧以上か否かを判断する。このため、駆動振幅をより正確に調整することが可能になる。
 また、本実施形態では、駆動回路22は、信号源1からのデータ信号を増幅して駆動信号として出力する。調整回路23、駆動回路22によるデータ信号の増幅率を調整することで、駆動振幅を調整する。このため、駆動振幅を容易に調整することが可能になる。
 (第2の実施形態)
 図6は、本発明の第1の実施形態の光送信器の構成を示す図である。図1において、光送信器100aは、駆動部101と、バイアス印加部102と、光源103と、外部変調器104と、振幅検出部105と、パワー検出部106と、調整部107とを有する。
 駆動部101は、駆動信号を出力する。バイアス印加部102は、パイロット信号を重畳したバイアス電圧を出力する。光源103は、光を出射する。外部変調器104は、光源103からの光を駆動信号の振幅およびバイアス電圧に応じて変調して、パイロット信号が重畳された光信号として出力する。振幅検出部105は、光信号に含まれるパイロット信号の振幅を検出する。パワー検出部106は、光信号のパワーを検出する。調整部107は、パイロット信号の振幅および光信号のパワーに基づいて、駆動信号の振幅を調整する。
 図7は、本実施形態の光送信器100aの動作を説明するためのフローチャートである。
 先ず、バイアス印加部102は、パイロット信号を重畳したバイアス電圧を外部変調器104に入力する(ステップS701)また、一方、調整部107は、駆動信号の振幅である駆動振幅を所定の駆動振幅に設定する(ステップS702)。駆動部101は、設定された駆動振幅を有する駆動信号として外部変調器104に入力する(ステップS703)。外部変調器104は、光源103からの光を、入力された駆動信号およびバイアス電圧に応じて変調して光信号として出射する(ステップS704)。
 外部変調器104から出射された光信号は分岐されて振幅検出部105およびパワー検出部106に入力される。振幅検出部105は、入力された光信号に含まれるパイロット信号の振幅を検出し、その振幅を示す振幅検出信号を調整部107に入力する(ステップS705)。一方、パワー検出部106は、入力された光信号のパワーを検出し、そのパワーを示すパワー検出信号を調整部107に入力する(ステップS706)。
 調整部107は、入力された振幅検出信号およびパワー検出信号に基づいて、駆動部101から出力される駆動信号の振幅を調整する(ステップS707)。
 以上説明した本実施形態でも、第1の実施形態と同様にバイアス電圧に重畳されたパイロット信号の振幅と光信号のパワーとに基づいて、外部変調器104の駆動信号の振幅が調整される。このため、データ信号に予めパイロット信号を重畳させなくても、外部変調器104を用いて所望の変調度を得ることが可能になる。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 この出願は、2017年3月30日に出願された日本出願特願2017-067826を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 信号源
 2 光信号出力部
 3 パイロット信号生成回路
 4 バイアス印加回路
 5 パイロット信号復調回路
 6 オシロスコープ
 7 光パワーメータ
 21 光源
 22 駆動回路
 23 調整回路
 24 外部変調器
 100、100a 光送信器
 101 駆動部
 102 バイアス印加部
 103 光源
 104 外部変調器
 105 振幅検出部
 106 パワー検出部
 107 調整部

Claims (8)

  1.  駆動信号を出力する駆動手段と、
     パイロット信号を重畳したバイアス電圧を出力するバイアス印加手段と、
     光源と、
     光源からの光を前記駆動信号の振幅および前記バイアス電圧に応じて変調して、前記パイロット信号が重畳された光信号として出力する外部変調手段と、
     前記光信号に含まれる前記パイロット信号の振幅を検出する振幅検出手段と、
     前記光信号のパワーを検出するパワー検出手段と、
     前記振幅およびパワーに基づいて、前記駆動信号の振幅を調整する調整手段と、を有する光送信器。
  2.  前記調整手段は、前記パワーに基づいて前記駆動信号の振幅が前記外部変調手段の半波長電圧以上か否かを判断し、前記判断の結果と前記パイロット信号の振幅とに基づいて、前記駆動信号の振幅を調整する、請求項1に記載の光送信器。
  3.  前記調整手段は、前記パワーが所定値以上か否かを判断することで、前記駆動信号の振幅が前記外部変調手段の半波長電圧以上か否かを判断する、請求項2に記載の光送信器。
  4.  データ信号を出力する信号源をさらに有し、
     前記駆動手段は、前記データ信号を増幅して前記駆動信号として出力し、
     前記調整手段は、前記データ信号の増幅率を調整することで、前記駆動信号の振幅を調整する、請求項1ないし3のいずれか1項に記載の光送信器。
  5.  駆動信号を出力し、
     パイロット信号を重畳したバイアス電圧を出力し、
     光源からの光を、前記駆動信号の振幅と前記バイアス電圧とに応じて光を変調して光信号として出射し、
     前記光信号に含まれるパイロット信号の振幅を検出し、
     前記光信号のパワーを検出し、
     前記パイロット信号の振幅およびパワーに基づいて、前記駆動信号の振幅を調整する、光変調方法。
  6.  前記パワーに基づいて前記駆動信号の振幅が前記光源からの光を変調する外部変調手段の半波長電圧以上か否かを判断し、前記判断の結果と前記パイロット信号の振幅とに基づいて、前記駆動信号の振幅を調整する、請求項5に記載の光変調方法。
  7.  前記パワーが所定値以上か否かを判断することで、前記駆動信号の振幅が前記外部変調手段の半波長電圧以上か否かを判断する、請求項6に記載の光変調方法。
  8.  データ信号を増幅して前記駆動信号として出力し、
     前記データ信号の増幅率を調整することで、前記駆動信号の振幅を調整する、請求項5ないし7のいずれか1項に記載の光変調方法。
PCT/JP2018/010520 2017-03-30 2018-03-16 光送信器および光変調方法 WO2018180616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017067826A JP2020113806A (ja) 2017-03-30 2017-03-30 光送信器および光変調方法
JP2017-067826 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018180616A1 true WO2018180616A1 (ja) 2018-10-04

Family

ID=63677599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010520 WO2018180616A1 (ja) 2017-03-30 2018-03-16 光送信器および光変調方法

Country Status (2)

Country Link
JP (1) JP2020113806A (ja)
WO (1) WO2018180616A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046838A (en) * 1998-12-22 2000-04-04 Kestrel Solutions, Inc. Automatic bias control for electro-optic modulators
JP2007208472A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd 光送信器
WO2012133472A1 (ja) * 2011-03-25 2012-10-04 日本電気株式会社 光送信機及び波長多重伝送装置及び光送信方法
JP2017040740A (ja) * 2015-08-19 2017-02-23 大井電気株式会社 光変調器および光変調装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6046838A (en) * 1998-12-22 2000-04-04 Kestrel Solutions, Inc. Automatic bias control for electro-optic modulators
JP2007208472A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd 光送信器
WO2012133472A1 (ja) * 2011-03-25 2012-10-04 日本電気株式会社 光送信機及び波長多重伝送装置及び光送信方法
JP2017040740A (ja) * 2015-08-19 2017-02-23 大井電気株式会社 光変調器および光変調装置

Also Published As

Publication number Publication date
JP2020113806A (ja) 2020-07-27

Similar Documents

Publication Publication Date Title
JP5884913B2 (ja) 光送信機、バイアス電圧制御方法
US7603007B2 (en) Quadrature phase-shift keying modulator and phase shift amount controlling method for the same
US9124364B1 (en) Quadrature power balance control in optical transmitters
US20040161249A1 (en) Optical transmitter
US10234704B2 (en) Optical module that includes optical modulator and bias control method for optical modulator
JP6003687B2 (ja) 光送信装置および変調光信号生成方法
EP3026832A1 (en) Optical transmitter and bias control method for optical modulator
WO2017208803A1 (ja) 光変調装置および光変調装置の制御方法
US9014570B2 (en) Optical transmitter and method for optical signal waveform compensation
WO2012132112A1 (ja) 補償方法、光変調システム、及び光復調システム
US9122084B2 (en) Phase modulation apparatus
JPWO2008111223A1 (ja) 光送信器
JPWO2017126546A1 (ja) 光送信器およびその制御方法
US11073706B2 (en) Transmitter and bias adjustment method
US7630651B2 (en) Method and apparatus for controlling bias point of optical transmitter
US7991299B2 (en) Optical transmitter with driving voltage control and method
WO2018180616A1 (ja) 光送信器および光変調方法
JP2009246578A (ja) 光送信装置及び光試験装置
JP6813528B2 (ja) 光変調器
US10560195B2 (en) Bias control apparatus and method of modulator of optical transmitter and optical transmitter
US7257332B2 (en) Optical transmitter and its control method
JP2009246579A (ja) 光送信装置及び光試験装置
JP4940705B2 (ja) 光送信器およびバイアス制御方法
JP2004301965A (ja) 光変調器のバイアス制御装置および該バイアス制御装置を用いた光変調装置
WO2015129192A1 (ja) 光変調器を備えた光送信機、及び光変調器のバイアス電圧制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18774840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18774840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP