WO2018180381A1 - 中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法 - Google Patents

中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法 Download PDF

Info

Publication number
WO2018180381A1
WO2018180381A1 PCT/JP2018/009309 JP2018009309W WO2018180381A1 WO 2018180381 A1 WO2018180381 A1 WO 2018180381A1 JP 2018009309 W JP2018009309 W JP 2018009309W WO 2018180381 A1 WO2018180381 A1 WO 2018180381A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
region
cross
bending
curvature
Prior art date
Application number
PCT/JP2018/009309
Other languages
English (en)
French (fr)
Inventor
寛弘 川上
由利香 奥平
雄史 野上
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018030036A external-priority patent/JP6703022B2/ja
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to MX2019011474A priority Critical patent/MX2019011474A/es
Priority to CN201880023157.2A priority patent/CN110475626B/zh
Priority to EP18775833.9A priority patent/EP3603835A4/en
Priority to EP24186852.0A priority patent/EP4417445A3/en
Priority to KR1020197028043A priority patent/KR102180825B1/ko
Priority to BR112019020540-3A priority patent/BR112019020540B1/pt
Publication of WO2018180381A1 publication Critical patent/WO2018180381A1/ja
Priority to US16/586,692 priority patent/US11167615B2/en
Priority to US17/355,520 priority patent/US11571943B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/02Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
    • B21D7/024Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/14Torsion springs consisting of bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/10Type of spring
    • B60G2202/13Torsion spring
    • B60G2202/135Stabiliser bar and/or tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/012Hollow or tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/72Steel
    • B60G2206/724Wires, bars or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/81Shaping
    • B60G2206/8103Shaping by folding or bending
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts

Definitions

  • This invention relates to the hollow stabilizer arrange
  • the stabilizer disposed in the vehicle suspension mechanism is formed between a torsion part (twisted part) extending in the width direction of the vehicle, a pair of arm parts connected to both ends of the torsion part, and the torsion part and the arm part. And a bent portion.
  • the torsion part is supported by the vehicle body via a rubber bush or the like.
  • the arm part is connected to a suspension arm or the like of the suspension mechanism part.
  • the stabilizer assembled to the suspension mechanism part functions as a spring by elastically deforming the arm part, the bending part, and the torsion part against the rolling behavior of the vehicle body that occurs when the vehicle travels on a curve. Such a stabilizer can increase the roll rigidity of the vehicle body.
  • the pipe that is the material of the hollow stabilizer is a round pipe having a substantially circular cross section in the radial direction.
  • a bending machine pipe bender
  • the cross section of the bent portion cross section in the pipe radial direction
  • Patent Document 1 there has been proposed a hollow stabilizer having an inner surface of a bent portion having an elliptical cross section. Further, as disclosed in Patent Document 2, a hollow stabilizer in which the thickness of the pipe is changed in the circumferential direction has also been proposed. In these hollow stabilizers, a bent portion or the like is formed by bending a metal pipe with a pipe bender.
  • a pipe vendor grips a portion of a predetermined length from the tip of a pipe with a pipe clamp (chuck). And while pulling the pipe, the pipe is bent by hitting the pipe against the roller. For this reason, the pipe bender can suppress the bending portion from becoming flat to some extent, and can form a bending portion having a relatively small flatness.
  • JP 62-224422 A Japanese Patent No. 5851305 JP 2004-9125 A Japanese Patent No. 2010-162557
  • the distance from the tip of the arm part to the bent part may be shorter than that of the conventional stabilizer.
  • a pipe bender In order to form a metal pipe by a pipe bender, it is necessary to hold the end of the pipe with a pipe clamp (chuck). In this case, a certain length of “grasping margin” is required at the end of the pipe. For this reason, a stabilizer with a short distance from the tip of the arm portion to the bent portion is difficult to bend by the pipe bender. Therefore, instead of a pipe bender, it was considered to mold the bent portion of the stabilizer using a mold.
  • the bent part is flattened.
  • a part that bends to a right angle with a relatively small radius of curvature such as a bent part (so-called shoulder part) between the torsion part and the arm part
  • the flatness becomes larger than when bent by a pipe bender. End up.
  • the allowable range of flatness is, for example, up to ⁇ 10% of the diameter of the pipe. Since the bending part formed by the conventional metal mold has a large flatness, the stress of the bending part may be a problem. Further, if the flatness of the bent portion is large, the bent portion may interfere with parts around the stabilizer, which is not preferable.
  • an object of the present invention is to provide a hollow stabilizer and a stabilizer manufacturing apparatus capable of suppressing an increase in the flatness of the cross section of the bent portion and suppressing an increase in variation in the stress distribution in the circumferential direction of the cross section of the bent portion. And it is providing the manufacturing method of a hollow stabilizer.
  • One embodiment is a hollow stabilizer disposed in a suspension mechanism part of a vehicle, and includes a torsion part, a bending part connected to the torsion part, and an arm part connected to the bending part. And regarding the cross section of the pipe radial direction of the said bending part, the 1st cross section, the 2nd cross section, the 3rd cross section, and the 4th cross section are comprised. When the center of the bend is 0 ° and the center of the bend is 180 °, the first cross section is in the range of 60 ° to 300 ° centering on 0 °.
  • the second cross-sectional portion is formed within a range of 120 ° to 240 ° around 180 °, and has a smaller curvature than the first cross-sectional portion.
  • the third cross-sectional portion is formed within a range of more than 60 ° and less than 120 ° centered on 90 °, and has a smaller curvature than the second cross-sectional portion.
  • the fourth cross-sectional portion is formed within a range of more than 240 ° and less than 300 ° around 270 °, and has a smaller curvature than the second cross-sectional portion.
  • the flatness of the cross section of the bent portion is within ⁇ 10% of the diameter of the pipe.
  • a stabilizer manufacturing apparatus includes a base mold, a clamp mold, a pressing mold, and a moving mold.
  • the base mold has a bottom wall on which the pipe is placed, a support wall with which the side surface of the pipe is in contact, and an arc-shaped molding curved surface corresponding to the curvature inside the bending portion of the pipe.
  • the clamp mold holds the pipe by sandwiching the pipe in a radial direction with the support wall of the base mold.
  • the pressing mold is disposed to face the bottom wall of the base mold, and forms a cavity into which the bent portion of the pipe enters between the bottom wall.
  • the moving mold is arranged to face the molding curved surface of the base mold.
  • the moving mold moves in a direction in which the pipe is bent in a state in which a part of the pipe in the longitudinal direction is held at a portion closer to the tip side than a part to be the bent portion. Further, this moving mold allows the portion to be the bent portion to enter the cavity and press it against the molding curved surface.
  • a taper surface that increases a distance from the bottom wall toward the opening of the cavity is formed on a surface of the pressing die that faces the bottom wall.
  • the heating step the pipe that is a material of the hollow stabilizer is heated to a warm region.
  • the placing step the pipe is placed on a base mold.
  • the bending step is performed by bending the pipe with a moving mold in a state where the portion to be a bent portion of the pipe is flatly crushed by the base mold, the clamp mold, and the holding mold. Forming part.
  • a hollow stabilizer relates to a cross section in the pipe radial direction of the bent portion, and is defined in the circumferential direction of the cross section when the center of the bend is 0 ° and the center of the bend is 180 °. Has two areas.
  • each of the third portion and the seventh portion is larger than the radius of curvature of the outer surface of each of the fourth portion and the fifth portion, and the second portion
  • Each of the portion and the sixth portion has an outer peripheral surface with a small radius of curvature of the outer surface.
  • the flatness of the cross section of the bent portion is within ⁇ 10% of the diameter of the pipe.
  • the curvature radii of the inner surfaces of the third portion and the seventh portion are larger than the radii of curvature of the inner surfaces of the fourth portion and the fifth portion, respectively.
  • the hollow stabilizer having a bent portion according to this embodiment has a smaller flatness than a bent portion bent by a conventional mold, and the cross section of the bent portion is a shape close to a perfect circle. For this reason, it is suppressed that the dispersion
  • This bent portion can be formed by the stabilizer manufacturing apparatus according to this embodiment.
  • FIG. 1 is a perspective view showing a part of a vehicle and a stabilizer.
  • FIG. 2 is a plan view schematically showing an example of a hollow stabilizer according to one embodiment.
  • FIG. 3 is a cross-sectional view of the bent portion of the hollow stabilizer taken along line F3-F3 in FIG.
  • FIG. 4 is a diagram showing the relationship between the position in the circumferential direction of the bent portion of the hollow stabilizer shown in FIG. 3 and the stress.
  • FIG. 5 is a perspective view of a stabilizer manufacturing apparatus according to one embodiment.
  • FIG. 6 is a perspective view showing a state in the middle of bending a pipe by the stabilizer manufacturing apparatus shown in FIG. FIG.
  • FIG. 7 is a perspective view of a state where the bending of the pipe is finished by the stabilizer manufacturing apparatus.
  • FIG. 8 is a plan view schematically showing the stabilizer manufacturing apparatus.
  • FIG. 9 is a plan view schematically showing a state in the middle of bending the pipe by the stabilizer manufacturing apparatus.
  • FIG. 10 is a plan view schematically showing a state in which the pipe has been bent by the stabilizer manufacturing apparatus.
  • FIG. 11 is a cross-sectional view of the stabilizer manufacturing apparatus taken along line F11-F11 in FIG.
  • FIG. 12 is a cross-sectional view showing another embodiment of the stabilizer manufacturing apparatus.
  • FIG. 13 is sectional drawing which shows the cross section of the radial direction of the bending part of other embodiment of a hollow stabilizer.
  • FIG. 13 is sectional drawing which shows the cross section of the radial direction of the bending part of other embodiment of a hollow stabilizer.
  • FIG. 14 is a diagram illustrating the relationship between the circumferential position of the bent portion of Example 1 and the curvature radius of the outer surface.
  • FIG. 15 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion of Example 1 and the radius of curvature of the inner surface.
  • FIG. 16 is a diagram illustrating the relationship between the circumferential position of the bent portion of Example 2 and the curvature radius of the outer surface.
  • FIG. 17 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion of Example 2 and the radius of curvature of the inner surface.
  • FIG. 18 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion of Example 3 and the radius of curvature of the outer surface.
  • FIG. 19 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion and the radius of curvature of the inner surface according to the third embodiment.
  • FIG. 20 is a diagram illustrating the relationship between the circumferential position of the bent portion of Example 4 and the radius of curvature of the outer surface.
  • FIG. 21 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion of Example 4 and the radius of curvature of the inner surface.
  • FIG. 22 is a diagram illustrating the relationship between the circumferential position of the bent portion of Example 5 and the radius of curvature of the outer surface.
  • FIG. 23 is a diagram illustrating the relationship between the circumferential position of the bent portion of Example 5 and the curvature radius of the inner surface.
  • FIG. 24 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion of Example 6 and the radius of curvature of the outer surface.
  • FIG. 25 is a diagram illustrating the relationship between the position in the circumferential direction of the bent portion of Example 6 and the radius of curvature of the inner surface.
  • FIG. 26 is a diagram showing the relationship between the position of the bent portion of the conventional product 1-3 and the curvature radius of the outer surface.
  • FIG. 27 is a diagram showing the relationship between the position of the bent portion of the conventional product 1-3 and the curvature radius of the inner surface.
  • FIG. 28 is a diagram showing the relationship between the position of the bent portion of the conventional product 4-6 and the curvature radius of the outer surface.
  • FIG. 29 is a diagram showing the relationship between the position of the bent portion of the conventional product 4-6 and the curvature radius of the inner surface.
  • FIG. 1 shows a part of a vehicle 11 provided with a hollow stabilizer 10.
  • the hollow stabilizer 10 is disposed in the suspension mechanism 12 of the vehicle 11.
  • the hollow stabilizer 10 is connected to the torsion part 20 extending in the width direction of the vehicle body 13 (the direction indicated by the arrow W in FIG. 1), the pair of bending parts 21 and 22 connected to both ends of the torsion part 20, and the bending parts 21 and 22.
  • a pair of arm portions 23 and 24 are included.
  • the torsion part 20 is supported by, for example, a part of the vehicle body 13 via a pair of support parts 30 and 31 provided with rubber bushes or the like.
  • the pair of arm portions 23 and 24 are connected to the suspension arm of the suspension mechanism portion 12 via link members 32 and 33, respectively.
  • loads of opposite phases are input to the arm portions 23 and 24 when the vehicle 11 travels on a curve, for example, bending force is applied to the arm portions 23 and 24 and bending and twisting forces are applied to the bending portions 21 and 22. It takes.
  • the torsion part 20 is twisted, a repulsive load that suppresses rolling of the vehicle body 13 is generated.
  • FIG. 2 is a plan view schematically showing the hollow stabilizer 10.
  • the material of the hollow stabilizer 10 is a pipe 40 made of a metal (for example, spring steel) whose strength can be improved by heat treatment such as quenching.
  • An example of the outer diameter of the pipe 40 is 22 mm and a wall thickness of 3 mm.
  • An example of the curvature radius (center curvature radius r) of the bent portions 21 and 22 is 50 mm.
  • the endurance test double swing test
  • a load in the vertical direction is applied to the load point B of the other arm portion 24 with one arm portion 23 fixed at the fixed point A. .
  • the hollow stabilizer 10 is symmetrical with the center in the longitudinal direction as the symmetry axis X1. Since the shapes of the bent portions 21 and 22 are substantially common to each other, the following description will be made with one bent portion 21 as a representative. Since the other bending part 22 is also the same structure, description is abbreviate
  • the specific shape of the hollow stabilizer 10 one or more bent portions may be formed in the arm portions 23 and 24, including a three-dimensionally bent shape. Moreover, you may have one or more bending parts in the middle of the longitudinal direction of the torsion part 20.
  • FIG. 3 shows a cross section of the bent portion 21 of the hollow stabilizer 10 (the cross section in the radial direction of the pipe 40).
  • FIG. 3 shows a cross section at a position that forms an angle ⁇ 1 (shown in FIG. 2) from the boundary between the torsion part 20 and the bending part 21.
  • ⁇ 1 shown in FIG. 2
  • the center of the bending inner side is defined as 0 °
  • the center of the bending outer side is defined as 180 °.
  • the bending portion 21 includes a first cross-sectional portion 41, a second cross-sectional portion 42, a third cross-sectional portion 43, and a fourth cross-sectional portion 44 with respect to the cross section in the pipe radial direction.
  • the center inside the bend is 0 °
  • the center outside the bend is 180 °.
  • the first cross section 41 is in the range of 60 ° to 300 ° centered on 0 °.
  • the second cross section 42 is in the range of 120 ° to 240 ° with 180 ° as the center.
  • the third cross-sectional portion 43 is in the range of more than 60 ° and less than 120 ° around 90 °.
  • the fourth cross section 44 is in the range of more than 240 ° and less than 300 ° around 270 °.
  • a two-dot chain line Q1 in FIG. 3 represents the contour of the surface of the pipe 40 before bending.
  • the cross section of the other bent portion 22 has the same shape.
  • the radius of curvature r1 of the first cross section 41 is a distance from the first center of curvature C1 (the center of the pipe 40) to the surface of the first cross section 41.
  • a region close to 0 ° in the first cross section 41 forms a part of a circle (arc) equivalent to the surface of the pipe 40 before bending.
  • the radius of curvature r2 of the second cross section 42 is the distance from the second center of curvature C2 to the surface of the second cross section 42.
  • the radius of curvature r2 of the second cross section 42 is larger than the radius of curvature r1 of the first cross section 41. That is, the curvature of the second cross section 42 is smaller than the curvature of the first cross section 41.
  • the third cross section 43 has a region indicated by ⁇ S1 in FIG.
  • This region ⁇ S1 has a shape that is close to flat due to being in contact with the pressing wall 81 of the pressing mold 80 when the bending portion 21 is bent by the stabilizer manufacturing apparatus 50.
  • the stabilizer manufacturing apparatus 50 will be described in detail later.
  • the radius of curvature r3 of the third cross section 43 is a distance from the third center of curvature C3 to the surface of the third cross section 43.
  • the radius of curvature r3 of the third cross section 43 is larger than the radius of curvature r2 of the second cross section 42. That is, the curvature of the third cross section 43 is smaller than the curvature of the second cross section 42.
  • the radius of curvature r3 is infinite.
  • the fourth cross section 44 contacts the bottom wall 61 of the base mold 60 of the stabilizer manufacturing apparatus 50.
  • the radius of curvature r4 of the fourth cross section 44 is the distance from the fourth center of curvature C4 to the surface of the fourth cross section 44.
  • the radius of curvature r4 of the fourth cross section 44 is larger than the radius of curvature r2 of the second cross section 42. That is, the curvature of the fourth cross section 44 is smaller than the curvature of the second cross section 42.
  • the radius of curvature r4 is infinite.
  • the surface of the third cross section 43 and the surface of the fourth cross section 44 are substantially parallel to each other.
  • the hollow stabilizer 10 has a pair of arm portions 23 and 24.
  • FIG. 3 shows a cross section of the bent portion 21 in the pipe radial direction.
  • FIG. 4 shows an example of the relationship (stress distribution) between the circumferential position of the cross section of the bending portion 21 and the stress generated in the bending portion 21 when loads having opposite phases are applied to the arm portions 23 and 24.
  • a solid line L1 in FIG. 4 is a stress distribution when a downward load (plus load) is applied to the other arm portion 24 while the one arm portion 23 is fixed.
  • the horizontal axis 180 ° in FIG. 4 is set as the symmetry axis X2, and the stress distribution is symmetrical with respect to the solid line L1.
  • the bending portion 21 of the hollow stabilizer 10 of the present embodiment has a cross section in the pipe radial direction as shown in FIG.
  • This cross section is not exactly circular, but has a shape close to a circle.
  • the flatness of the cross section of the bent portion 21 is within ⁇ 10% of the diameter of the pipe.
  • the stabilizer 10 of the present embodiment can be molded by a stabilizer manufacturing apparatus 50 (shown in FIGS. 5 to 11) described below.
  • the absolute value of the flatness is less than 10%.
  • Compressive residual stress effective for durability can be generated on the outer surface of the hollow stabilizer 10 by performing shot peening. However, it is actually difficult to perform shot peening on the inner surface of the hollow stabilizer 10. It is not preferable that the peak of stress generated on the inner surface of the hollow stabilizer 10 (the inner surface of the pipe 40) is high or that the shape change of the inner surface is large. This is because if there is a defect such as a scratch on the inner surface of the pipe 40, it may become the starting point of breakage. For this reason, the hollow stabilizer 10 is particularly desired to minimize the stress peak on the inner surface side.
  • the bending part 21 of the hollow stabilizer 10 of this embodiment is a cross section close to a circle in which the flatness is suppressed. For this reason, it is possible to lower the peak value of the stress as compared with the stress of the conventional bending portion having a large flatness.
  • FIG. 5 is a perspective view showing a part of the stabilizer manufacturing apparatus 50.
  • FIG. 6 shows a state in the middle of bending a part of the pipe 40 (bending portion 21) by the stabilizer manufacturing apparatus 50.
  • FIG. 7 shows a state where the bending process by the stabilizer manufacturing apparatus 50 is completed.
  • 8 to 11 are plan views schematically showing the stabilizer manufacturing apparatus 50, respectively.
  • FIG. 11 is a cross-sectional view of the stabilizer manufacturing apparatus 50 taken along line F11-F11 in FIG.
  • the stabilizer manufacturing apparatus 50 includes a base mold 60, a clamp mold 70, a pressing mold 80, a moving mold 90, an actuator 91 such as a hydraulic cylinder for driving the moving mold 90, and the like. .
  • the base mold 60 has a bottom wall 61, a support wall 62, and an arc-shaped molding curved surface 63.
  • the lower surface 40 a of the pipe 40 is in contact with the bottom wall 61.
  • the side wall 40b of the pipe 40 is in contact with the support wall 62.
  • the molding curved surface 63 is curved according to the curvature of the bending portion 21 on the inner side of the bending.
  • the molding curved surface 63 is formed between the bottom wall 61 and the support wall 62.
  • the formed curved surface 63 forms an arc having a quarter of the curvature corresponding to the outer diameter of the pipe 40.
  • the molding curved surface 63 forms an arc.
  • the curvature radius of the forming curved surface 63 corresponds to the curvature radius r5 (shown in FIG. 10) inside the bending portion 21.
  • a vertical wall 64 is formed continuously to the molding curved surface 63.
  • the pipe 40 is placed on the bottom wall 61 of the base mold 60.
  • the clamp mold 70 includes a first clamp wall 71 (shown in FIGS. 7 to 9) and a second clamp wall 72.
  • the pipe 40 is sandwiched in the radial direction between the first clamp wall 71 and the bottom wall 61 of the base mold 60.
  • the pipe 40 is sandwiched in the radial direction between the second clamp wall 72 and the support wall 62 of the base mold 60.
  • the upper surface 40 c of the pipe 40 is in contact with the first clamp wall 71.
  • the pipe 40 is fixed by the base mold 60 and the clamp mold 70.
  • the pressing mold 80 is disposed above the bottom wall 61 of the base mold 60 so as to be opposed thereto. As shown in FIG. 11, a pressing wall 81 is formed on the lower surface of the pressing mold 80. The holding wall 81 faces the bottom wall 61 of the base mold 60. A cavity 82 into which the pipe 40 can enter is formed between the pressing wall 81 and the bottom wall 61. The opening width G1 in the vertical direction of the cavity 82 is slightly larger than the diameter of the pipe 40.
  • a tapered surface 83 is formed on a part of the pressing mold 80 (a part of the pressing wall 81).
  • the tapered surface 83 faces the bottom wall 61 of the base mold 60.
  • An opening width G ⁇ b> 1 shown in FIG. 11 is a distance between the tapered surface 83 and the bottom wall 61.
  • the tapered surface 83 is inclined so that the opening width G1 gradually increases toward the opening 82a of the cavity 82.
  • the inclination angle of the taper surface 83 that is, the angle ⁇ formed by the taper surface 83 with respect to the line segment L4 parallel to the bottom wall 61 is, for example, about 10 to 20 °. This angle ⁇ is a value that changes according to the diameter, thickness, etc. of the pipe 40.
  • the moving mold 90 is disposed so as to face the forming curved surface 63 of the base mold 60 in the horizontal direction. As shown in FIGS. 5 to 7, the moving mold 90 is attached to the arm 93. When the arm 93 is rotated by the actuator 91, the moving mold 90 moves in the direction of bending the pipe 40. That is, the movable mold 90 is reciprocally rotated from the initial position (position shown in FIGS. 5 and 8) to the bending end position (position shown in FIGS. 7 and 10) around the shaft 92 by the actuator 91. .
  • the moving mold 90 has a holding part 95 that holds the pipe 40.
  • the holding part 95 holds a part 40 d on the tip side of a part of the pipe 40, that is, a part that becomes the bending part 21.
  • the holding portion 95 holds the portion 40d on the distal end side of the pipe 40.
  • the movable mold 90 rotates around the shaft 92.
  • the holding portion 95 moves in a direction in which the pipe 40 is bent.
  • the portion that becomes the bent portion 21 enters the cavity 82 and is pressed against the molding curved surface 63.
  • the pipe 40 is inserted between the base mold 60 and the clamp mold 70, and the pipe 40 is fixed. At this time, the moving mold 90 is retracted to a position where it does not interfere with the pipe 40. A portion 40 d on the distal end side of the pipe 40 is in a state of protruding to the outside of the base mold 60.
  • the pipe 40 is heated in advance by a heating means in a warm region of 700 ° C. or less (temperature lower than the temperature at which the steel is austenitized), for example.
  • the heated pipe 40 has a hardness that is easier to be plastically processed when it is bent than when it is cold (room temperature).
  • An example of the heating means is a heating furnace, but electric heating or high frequency induction heating may be employed.
  • the movable mold 90 is rotated about the shaft 92 toward the vertical wall 64 of the base mold 60. In the middle of this rotation, the portion that becomes the bent portion 21 of the pipe 40 enters the cavity 82. At this time, the upper surface 40 c of the pipe 40 moves toward the forming curved surface 63 at the back of the cavity 82 while contacting the tapered surface 83. For this reason, it is suppressed that the upper surface 40c of the pipe 40 is damaged. As shown in FIGS. 7 and 10, the bending portion 21 is formed by moving the movable mold 90 to the bending end position.
  • the method for manufacturing the hollow stabilizer includes a heating step, a placing step, and a bending step.
  • the material of the hollow stabilizer 10 is a pipe 40.
  • the heating step the pipe 40 is heated to a warm region by a heating means.
  • the placing process the pipe 40 is placed on the base mold 60 of the stabilizer manufacturing apparatus 50.
  • the bending step the pipe 40 is moved to the moving mold 90 in a state where the flat portion of the bent portion 21 is crushed by the base mold 60, the clamp mold 70, and the holding mold 80 of the stabilizer manufacturing apparatus 50.
  • the bent portion 21 is formed by bending by.
  • the bent portion 21 enters the cavity 82 in the middle of bending a part of the pipe 40 in the longitudinal direction (the bent portion 21). Accordingly, the bottom wall 61 and the pressing wall 81 can suppress the bending portion 21 from being flattened.
  • the cavity 82 is formed between the bottom wall 61 and the pressing wall 81.
  • the bent portion 21 is restrained with the upper surface in contact with the pressing wall 81. For this reason, the 3rd cross-section part 43 with a small curvature is formed.
  • the bent portion 21 is restrained with the lower surface in contact with the bottom wall 61. Thereby, the 4th cross-section part 44 with a small curvature is formed. If the bottom wall 61 and the pressing wall 81 are parallel to each other, the surface of the third cross section 43 and the surface of the fourth cross section 44 are parallel to each other.
  • the curvature of the outer side of the bend (second cross section 42) is smaller than the curvature of the inner side of the bend (first cross section 41). That is, the radius of curvature r2 of the second cross section 42 is larger than the radius of curvature r1 of the first cross section 41.
  • the third cross section 43 is plastically deformed by being pressed in the radial direction by the pressing wall 81 of the pressing die 80. For this reason, the part in contact with the pressing wall 81 is flat. When the pressure is released, the shape returns a little, but the surface of the third cross-sectional portion 43 has a shape that is nearly flat. For this reason, the curvature of the third cross section 43 is smaller than the curvature of the second cross section 42.
  • the fourth cross section 44 is plastically deformed by being pressurized in the radial direction by the bottom wall 61 of the base mold 60. For this reason, the part in contact with the bottom wall 61 becomes flat. When the pressurization is released, the shape returns a little, but the surface of the fourth cross section 44 has a shape that is nearly flat. For this reason, the curvature of the fourth cross section 44 is smaller than the curvature of the second cross section 42.
  • the cross section of the bent portion 21 is not exactly a perfect circle, but an increase in flatness can be suppressed.
  • a tapered surface 83 is formed on the lower surface (pressing wall 81) of the pressing die 80. Along the tapered surface 83, the upper surface of the pipe 40 being bent moves toward the forming curved surface 63. For this reason, it can prevent that the upper surface of the bending part 21 touches the side surface 84 of the pressing die 80, and a damage
  • the stabilizer manufacturing apparatus 50 of the present embodiment it is not necessary to “grab” the end of the pipe, which is necessary when the pipe is bent by a pipe vendor. For this reason, the bending part of the stabilizer with a short distance from the tip of the pipe to the bending part can also be bent. Moreover, it is possible to suppress the cross-section of the bent portion from being flattened excessively, and it is possible to form a bent portion that is closer to a perfect circle and whose flatness is suppressed. The flatness of the cross section of the bent portion is within ⁇ 10% of the diameter of the pipe.
  • the pipe 40 that has been heated to the warm region and has a low deformation resistance tends to have a large flatness at the bent portion.
  • the stabilizer manufacturing apparatus 50 of the present embodiment even when the pipe 40 is preheated to a warm region and has a low deformation resistance, the bending portion 21 with reduced flatness is formed when bending is performed. can do.
  • FIG. 12 shows a part of a stabilizer manufacturing apparatus 50A according to another embodiment.
  • a minute gap ⁇ G of about several tens to several hundreds of ⁇ m is formed between the upper surface of the pipe 40 placed on the bottom wall 61 of the base mold 60 and the pressing mold 80. .
  • the pipe 40 is allowed to move by a minute amount with respect to the base mold 60 by the gap ⁇ G. Since the stabilizer manufacturing apparatus 50A is the same as the stabilizer manufacturing apparatus 50 (FIGS. 5 to 11), the same reference numerals are given to both, and the description thereof is omitted.
  • FIG. 13 shows a cross section (a cross section in the pipe radial direction) of the bent portion 21 of the hollow stabilizer 10 manufactured by the stabilizer manufacturing apparatus 50A.
  • FIG. 13 shows an outer peripheral surface 40e and an inner peripheral surface 40f of the pipe 40.
  • the outer peripheral surface 40e and the inner peripheral surface 40f of the bent portion 21 are not a perfect circle but a slightly distorted circle as described in detail below.
  • the flatness of the cross section of the bent portion 21 is within ⁇ 10% of the diameter of the pipe.
  • the cross section in the radial direction of the bent portion 21 has eight regions S1-S8 defined by 45 ° in the circumferential direction. That is, the cross section includes a first region S1 centered at 90 °, a third region S3 centered at 0 °, a fifth region S5 centered at 270 °, and a seventh region centered at 180 °. S7.
  • the first region S1 the first part No. 1 is included.
  • the third region S3, the third part No. 3 is included.
  • the fifth region S5 is included in the seventh region S7.
  • the bent portion 21 includes a second region S2 between the first region S1 and the third region S3, a fourth region S4 between the third region S3 and the fifth region S5, and a fifth region S5. It has a sixth area S6 between the seventh area S7 and an eighth area S8 between the first area S1 and the seventh area S7.
  • the second region S2 the second part No. 2 is included.
  • the fourth region S4 the fourth part No. 4 is included.
  • the sixth region S6 the sixth part No. 6 is included.
  • the eighth area S8 the eighth part No. 8 is included.
  • the first region S1 is defined in a range from 67.5 ° to 112.5 °.
  • the first part No. 1 exists in 1st area
  • the third region S3 is defined in a range from 22.5 ° to 337.5 °.
  • Third part no. 3 exists in 3rd area
  • the fifth region S5 is defined in a range from 247.5 ° to 292.5 °.
  • the fifth part No. 5 exists in 5th area
  • the seventh region S7 is defined in a range from 157.5 ° to 202.5 °.
  • the seventh part no. 7 exists in 7th area
  • the second region S2 is defined between the first region S1 and the third region S3.
  • Second part no. 2 exists in 2nd area
  • the fourth area S4 is defined between the third area S3 and the fifth area S5.
  • the fourth part no. 4 exists in 4th area
  • the sixth area S6 is defined between the fifth area S5 and the seventh area S7.
  • the sixth part no. 6 exists in 6th area
  • the eighth area S8 is defined between the first area S1 and the seventh area S7. Eighth part no. 8 exists in the eighth region S8 with 135 ° as the center.
  • R1 to R8 represent the radii of curvature of the outer surfaces of the first part to the eighth part (No. 1 to No. 8). Further, d1 to d8 in FIG. 13 represent the radii of curvature of the inner surfaces of the first to eighth parts (No. 1 to No. 8).
  • FIG. 14 shows the relationship between the position in the circumferential direction of the bent portion of Example 1 manufactured by the stabilizer manufacturing apparatus 50A and the radius of curvature of the outer surface.
  • FIG. 15 shows the relationship between the position in the circumferential direction of Example 1 and the radius of curvature of the inner surface.
  • the outer diameter of the pipe before bending is 22.2 mm and the thickness of the pipe is 3.1 mm.
  • FIG. 16 shows the relationship between the position in the circumferential direction of the bent portion of Example 2 manufactured by the stabilizer manufacturing apparatus 50A and the radius of curvature of the outer surface.
  • FIG. 17 shows the relationship between the circumferential position of Example 2 and the radius of curvature of the inner surface.
  • the outer diameter and thickness of the pipe before bending are the same as those in the first embodiment.
  • FIG. 18 shows the relationship between the position in the circumferential direction of the bent portion of Example 3 manufactured by the stabilizer manufacturing apparatus 50A and the radius of curvature of the outer surface.
  • FIG. 19 shows the relationship between the position in the circumferential direction of Example 3 and the radius of curvature of the inner surface.
  • the outer diameter and thickness of the pipe before bending are the same as those in the first embodiment.
  • FIG. 20 shows the relationship between the position in the circumferential direction of the bent portion of Example 4 manufactured by the stabilizer manufacturing apparatus 50A and the radius of curvature of the outer surface.
  • FIG. 21 shows the relationship between the circumferential position of Example 4 and the curvature radius of the inner surface.
  • the outer diameter of the pipe before bending is 22.2 mm and the thickness of the pipe is 4.4 mm.
  • FIG. 22 shows the relationship between the position in the circumferential direction of the bent portion of Example 5 manufactured by the stabilizer manufacturing apparatus 50A and the radius of curvature of the outer surface.
  • FIG. 23 shows the relationship between the position in the circumferential direction of Example 5 and the radius of curvature of the inner surface.
  • the outer diameter and thickness of the pipe before bending are the same as in Example 4.
  • FIG. 24 shows the relationship between the circumferential position of the bent portion of Example 6 manufactured by the stabilizer manufacturing apparatus 50A and the radius of curvature of the outer surface.
  • FIG. 25 shows the relationship between the circumferential position of Example 6 and the curvature radius of the inner surface.
  • the outer diameter and thickness of the pipe before bending are the same as in Example 4.
  • FIG. 26 shows the relationship between the circumferential position of each bent portion of the conventional products 1, 2, and 3 manufactured by the pipe bender and the curvature radius of the outer surface.
  • FIG. 27 shows the relationship between the respective circumferential positions of the bent portions of the conventional products 1, 2, and 3 and the curvature radius of the inner surface.
  • the outer diameter and thickness of the pipe before bending are both the same as in the first embodiment.
  • FIG. 28 shows the relationship between the circumferential position of each bent portion of the conventional products 4, 5, and 6 manufactured by the pipe bender and the curvature radius of the outer surface.
  • FIG. 29 shows the relationship between the circumferential positions of the bent parts of the conventional products 4, 5 and 6 and the curvature radius of the inner surface.
  • the outer diameter and thickness of the pipe before bending are both the same as in Example 4.
  • Examples 1 to 6 have the following characteristic regarding the outer peripheral surface 40e of the bent portion. It has a different shape. That is, in Examples 1 to 6, the fourth part no. 4 and 5th part No. 5 is compared with the radii of curvature R4 and R5 of the respective outer surfaces. 3 and 7th part No. 7 have large radii of curvature R3, R7 and the second part No. 2 and 6th part no. 6 have small radii of curvature R2 and R6 on the outer surface. This feature cannot be seen in the conventional products 1-6.
  • the inner peripheral surface 40f also has a characteristic shape. That is, in Examples 1 to 6, the fourth part no. 4 and 5th part No. 5 is compared with the curvature radii d4 and d5 of the respective inner surfaces of the third portion No. 5. 3 and 7th part No. 7 has large radii of curvature d3 and d7 on the inner surface of each of the second portion Nos. 2 and 6th part no. 6 have small curvature radii d2 and d6. This feature cannot be seen in the conventional products 1-6.
  • the hollow stabilizer having the bent portions of Examples 1 to 6 has a smaller flatness than a bent portion bent by a conventional pipe bender, and has a shape close to a perfect circle. For this reason, it is suppressed that the dispersion
  • the hollow stabilizer having such a bent portion can be formed by the stabilizer manufacturing apparatus 50A according to the embodiment.
  • the present invention can also be applied to a stabilizer for a suspension mechanism of a vehicle other than an automobile.
  • the specific shapes and dimensions of the torsion part, the arm part, and the bending part can be variously changed including the metal pipe which is the material of the hollow stabilizer.
  • SYMBOLS 10 Hollow stabilizer, 12 ... Suspension mechanism part, 20 ... Torsion part, 21,22 ... Bending part, 23, 24 ... Arm part, 40 ... Pipe, 40e ... Outer peripheral surface, 40f ... Inner peripheral surface, 41 ... First Cross section, 42 ... second cross section, 43 ... third cross section, 44 ... fourth cross section, S1 to S8 ... first to eighth regions, 1-No. 8 ... 1st to 8th parts, R1 to R8 ... radius of curvature of outer surface, d1 to d8 ... radius of curvature of inner surface, 50, 50A ... stabilizer manufacturing device, 60 ... base mold, 61 ... bottom wall, 62 ... support Wall 63, molding surface 70, clamp mold 80, pressing mold 82 cavities 83 taper surface 90 moving mold 91 actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

中空スタビライザ(10)の曲げ部(21)は、パイプ径方向の断面に関し、周方向に規定された8つの領域(S1-S8)を有している。曲げ内側の中心を0°、曲げ外側の中心を180°したとき、第1領域(S1)は90°の第1の部分(No.1)を含んでいる。第3領域(S3)は0°の第3の部分(No.3)を含んでいる。第5領域(S5)は270°の第5の部分(No.5)を含んでいる。第7領域(S7)は180°の第7の部分(No.7)を含んでいる。第4の部分(No.4)および第5の部分(No.5)のそれぞれの外面の曲率半径(R4,R5)と比較して、第3の部分(No.3)および第7の部分(No.7)のそれぞれの外面の曲率半径(R3,R7)が大きく、かつ、第2の部分(No.2)および第6の部分(No.6)のそれぞれの外面の曲率半径(R2,R6)が小さい。

Description

中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法
 この発明は、自動車等の車両の懸架機構部に配置される中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法に関する。
 車両の懸架機構部に配置されるスタビライザは、車両の幅方向に延びるトーション部(ねじり部)と、トーション部の両端に連なる一対のアーム部と、トーション部とアーム部との間に形成された曲げ部とを有している。懸架機構部の一例では、前記トーション部がゴムブッシュ等を介して車体に支持される。前記アーム部が懸架機構部のサスペンションアーム等に連結される。懸架機構部に組付けられたスタビライザは、車両がカーブを走行する際などに生じる車体のローリング挙動に対して、前記アーム部や曲げ部およびトーション部が弾性変形し、ばねとして機能する。このようなスタビライザによって、車体のロール剛性を高めることができる。
 車両の軽量化を図るために、鋼管等の金属のパイプからなる中空スタビライザが実用化されている。中空スタビライザの材料であるパイプは、径方向の断面が実質的に円形の丸パイプである。このようなパイプを曲げ加工機(パイプベンダ)によって成形すると、前記曲げ部の断面(パイプ径方向の断面)がやや偏平となる。
 例えば特許文献1に開示されているように、曲げ部の内面を楕円形の断面とした中空スタビライザが提案されている。また特許文献2に開示されているように、パイプの肉厚を周方向に変化させた中空スタビライザも提案されている。これら中空スタビライザは、金属のパイプをパイプベンダによって曲げることにより、曲げ部などが形成される。
 パイプベンダは、例えば特許文献3,4に記載されているように、パイプの先端から所定長さの部分をパイプクランプ(チャック)によってつかむ。そしてパイプを引っ張りながら、パイプをローラに当てることによって、パイプを曲げている。このためパイプベンダは、曲げ部が偏平になることをある程度抑制することができ、比較的偏平度が小さい曲げ部を形成することができる。
特開昭62-224422号公報 特許第5851305号 特開2004-9125号公報 特許2010-162557公報
 スタビライザの仕様によっては、アーム部の先端から曲げ部までの距離が従来のスタビライザよりも短いものが要求されることがある。金属のパイプをパイプベンダによって成形するには、パイプの端部をパイプクランプ(チャック)によって保持する必要がある。この場合、パイプの端部にある程度の長さの「つかみしろ」が必要である。このためアーム部の先端から曲げ部までの距離が短いスタビライザは、パイプベンダによって曲げることが難しい。そこでパイプベンダに代わって、金型を用いてスタビライザの曲げ部を成形することが考えられた。
 しかし従来の金型によってパイプを径方向に押し曲げると、曲げた個所が偏平に潰れてしまうことが問題となった。例えばトーション部とアーム部との間の曲げ部(いわゆる肩部)のように、比較的小さな曲率半径で直角に近い角度に曲がる個所では、パイプベンダによって曲げた場合よりも偏平度が大きくなってしまう。偏平度の許容範囲は、例えばパイプの直径の±10%までである。従来の金型によって成形された曲げ部は、偏平度が大きいため曲げ部の応力が問題となることもある。また曲げ部の偏平度が大きいと、曲げ部がスタビライザの周囲の部品と干渉する可能性があるため好ましくない。
 従って本発明の目的は、曲げ部の断面の偏平度が大きくなることを抑制でき、かつ、曲げ部の断面の周方向の応力分布のばらつきが大きくなることを抑制できる中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法を提供することにある。
 1つの実施形態は車両の懸架機構部に配置される中空スタビライザであって、トーション部と、前記トーション部に連なる曲げ部と、前記曲げ部に連なるアーム部とを具備している。そして前記曲げ部のパイプ径方向の断面に関し、第1の断面部と、第2の断面部と、第3の断面部と、第4の断面部とを具備している。曲げ内側の中心を0°、曲げ外側の中心を180°としたとき、前記第1の断面部は、0°を中心に60°から300°の範囲である。前記第2の断面部は、180°を中心に120°から240°の範囲内に形成され、前記第1の断面部よりも曲率が小さい。前記第3の断面部は、90°を中心に60°を越え120°未満の範囲内に形成され、前記第2の断面部よりも曲率が小さい。前記第4の断面部は、270°を中心に240°を越え300°未満の範囲内に形成され、前記第2の断面部よりも曲率が小さい。前記曲げ部の断面の偏平度は、パイプの直径の±10%以内である。
 1つの実施形態に係るスタビライザ製造装置は、ベース金型と、クランプ金型と、押さえ金型と、移動金型とを具備している。前記ベース金型は、パイプを載置する底壁と、前記パイプの側面が接する支持壁と、前記パイプの曲げ部の曲げ内側の曲率に応じた円弧形の成形曲面とを有している。前記クランプ金型は、前記ベース金型の前記支持壁との間で前記パイプを径方向に挟むことにより前記パイプを保持する。前記押さえ金型は、前記ベース金型の前記底壁と対向して配置され、前記底壁との間に前記パイプの前記曲げ部が入り込むキャビティを形成する。前記移動金型は、前記ベース金型の前記成形曲面に対向して配置される。この移動金型は、前記パイプの長手方向の一部で前記曲げ部となる部分よりも先端側の部分を保持した状態において前記パイプを曲げる方向に移動する。さらにこの移動金型は、前記曲げ部となる部分を前記キャビティに入り込ませ、前記成形曲面に押圧する。この実施形態において、前記押さえ金型の一部で前記底壁と対向する面に、前記キャビティの開口に向かって前記底壁との間の距離が大きくなるテーパ面が形成されているとよい。
 1つの実施形態に係る中空スタビライザの製造方法は、加熱工程と、載置工程と、曲げ工程とを具備している。前記加熱工程は、中空スタビライザの材料であるパイプを温間域まで加熱する。前記載置工程は、前記パイプをベース金型に載置する。前記曲げ工程は、前記パイプの曲げ部となる個所が偏平に潰れることを、前記ベース金型とクランプ金型および押さえ金型によって規制した状態において、前記パイプを移動金型によって曲げることにより、曲げ部を形成する。
 他の実施形態に係る中空スタビライザは、前記曲げ部のパイプ径方向の断面に関し、曲げ内側の中心を0°、曲げ外側の中心を180°としたとき、前記断面の周方向に規定された8つの領域を有している。すなわち、90°に位置する第1の部分を含む第1領域と、0°に位置する第3の部分を含む第3領域と、270°に位置する第5の部分を含む第5領域と、180°に位置する第7の部分を含む第7領域と、前記第1領域と前記第3領域との間の第2の部分を含む第2領域と、前記第3領域と前記第5領域との間の第4の部分を含む第4領域と、前記第5領域と前記第7領域との間の第6の部分を含む第6領域と、前記第1領域と前記第7領域との間の第8の部分を含む第8領域とを有している。さらに、前記第4の部分および前記第5の部分のそれぞれの外面の曲率半径と比較して、前記第3の部分および前記第7の部分のそれぞれの外面の曲率半径が大きくかつ前記第2の部分および前記第6の部分のそれぞれの外面の曲率半径が小さい、外周面を有している。前記曲げ部の断面の偏平度は、パイプの直径の±10%以内である。
 この実施形態において、前記第4の部分および前記第5の部分のそれぞれの内面の曲率半径と比較して、前記第3の部分および前記第7の部分のそれぞれの内面の曲率半径が大きくかつ前記第2の部分および前記第6の部分のそれぞれの内面の曲率半径が小さい、内周面を有していてもよい。
 本実施形態に係る曲げ部を有した中空スタビライザは、従来の金型によって曲げた曲げ部と比較して偏平度が小さく、前記曲げ部の断面が真円に近い形状である。このため曲げ部の応力分布のばらつきが大きくなることが抑制される。この曲げ部は、本実施形態に係るスタビライザ製造装置によって形成することができる。
図1は、車両の一部とスタビライザを示す斜視図である。 図2は、1つの実施形態に係る中空スタビライザの一例を模式的に示す平面図である。 図3は、図2中のF3-F3線に沿う中空スタビライザの曲げ部の断面図である。 図4は、図3に示された中空スタビライザの曲げ部の周方向の位置と応力との関係を表した図である。 図5は、1つの実施形態に係るスタビライザ製造装置の斜視図である。 図6は、図5に示されたスタビライザ製造装置によってパイプを曲げる途中の状態を示す斜視図である。 図7は、同スタビライザ製造装置によってパイプの曲げが終了した状態の斜視図である。 図8は、同スタビライザ製造装置を模式的に表した平面図である。 図9は、同スタビライザ製造装置によってパイプを曲げる途中の状態を模式的に表した平面図である。 図10は、同スタビライザ製造装置によってパイプの曲げが終了した状態を模式的に表した平面図である。 図11は、図10中のF11-F11線に沿うスタビライザ製造装置の断面図である。 図12は、スタビライザ製造装置の他の実施形態を示す断面図である。 図13は、中空スタビライザの他の実施形態の曲げ部の径方向の断面を示す断面図である。 図14は、実施例1の曲げ部の周方向の位置と外面の曲率半径との関係を表した図である。 図15は、実施例1の曲げ部の周方向の位置と内面の曲率半径との関係を表した図である。 図16は、実施例2の曲げ部の周方向の位置と外面の曲率半径との関係を表した図である。 図17は、実施例2の曲げ部の周方向の位置と内面の曲率半径との関係を表した図である。 図18は、実施例3の曲げ部の周方向の位置と外面の曲率半径との関係を表した図である。 図19は、実施例3の曲げ部の周方向の位置と内面の曲率半径との関係を表した図である。 図20は、実施例4の曲げ部の周方向の位置と外面の曲率半径との関係を表した図である。 図21は、実施例4の曲げ部の周方向の位置と内面の曲率半径との関係を表した図である。 図22は、実施例5の曲げ部の周方向の位置と外面の曲率半径との関係を表した図である。 図23は、実施例5の曲げ部の周方向の位置と内面の曲率半径との関係を表した図である。 図24は、実施例6の曲げ部の周方向の位置と外面の曲率半径との関係を表した図である。 図25は、実施例6の曲げ部の周方向の位置と内面の曲率半径との関係を表した図である。 図26は、従来品1-3の曲げ部の位置と外面の曲率半径との関係を表した図である。 図27は、従来品1-3の曲げ部の位置と内面の曲率半径との関係を表した図である。 図28は、従来品4-6の曲げ部の位置と外面の曲率半径との関係を表した図である。 図29は、従来品4-6の曲げ部の位置と内面の曲率半径との関係を表した図である。
 以下に1つの実施形態に係る中空スタビライザ10について、図1から図4を参照して説明する。 
 図1は、中空スタビライザ10を備えた車両11の一部を示している。中空スタビライザ10は、車両11の懸架機構部12に配置されている。中空スタビライザ10は、車体13の幅方向(図1に矢印Wで示す方向)に延びるトーション部20と、トーション部20の両端に連なる一対の曲げ部21,22と、曲げ部21,22に連なる一対のアーム部23,24とを含んでいる。
 トーション部20は、ゴムブッシュ等を備えた一対の支持部30,31を介して、例えば車体13の一部に支持されている。一対のアーム部23,24は、それぞれ、リンク部材32,33を介して、懸架機構部12のサスペンションアームに接続されている。車両11がカーブを走行する際などに、アーム部23,24に互いに逆相の荷重が入力すると、アーム部23,24に曲げの力がかかるとともに、曲げ部21,22に曲げとねじりの力がかかる。そしてトーション部20がねじられることにより、車体13のローリングを抑制する反発荷重が発生する。
 図2は、中空スタビライザ10を模式的に示す平面図である。中空スタビライザ10の材料は、焼入れ等の熱処理によって強度を向上させることが可能な金属(例えばばね鋼)からなるパイプ40である。パイプ40の外径の一例は22mm、肉厚3mmである。曲げ部21,22の曲率半径(中心曲率半径r)の一例は50mmである。耐久試験(両振り試験)の際には、一方のアーム部23が固定点Aにて固定された状態のもとで、他方のアーム部24の荷重点Bに上下方向の荷重が負荷される。
 図2に示されるように中空スタビライザ10は、長手方向の中央を対称軸X1として左右対称形である。曲げ部21,22の形状は実質的に互いに共通であるため、これ以降は一方の曲げ部21を代表して説明する。他方の曲げ部22も同様の構成であるため説明を省略する。中空スタビライザ10の具体的な形状は、3次元的に曲げた形状も含めて、アーム部23,24に1箇所以上の曲げ部が形成されていてもよい。またトーション部20の長手方向の途中に1箇所以上の曲げ部を有していてもよい。
 図3は、中空スタビライザ10の曲げ部21の断面(パイプ40の径方向の断面)を示している。図3はトーション部20と曲げ部21との境界から角度θ1(図2に示す)をなす位置の断面を示している。この明細書では、パイプ径方向の断面(図3)において、曲げ内側(曲げ中心方向)の中心を0°、曲げ外側の中心を180°と規定する。
 図3に示されるように曲げ部21は、パイプ径方向の断面に関して、第1の断面部41と、第2の断面部42と、第3の断面部43と、第4の断面部44とを有している。ここでは曲げ内側の中心を0°、曲げ外側の中心を180°とする。第1の断面部41は、0°を中心に60°から300°の範囲である。第2の断面部42は、180°を中心に120°から240°の範囲である。第3の断面部43は、90°を中心に60°を越え120°未満の範囲内である。第4の断面部44は、270°を中心に240°を越え300°未満の範囲内である。図3中の2点鎖線Q1は、曲げる前のパイプ40の表面の輪郭を表している。他方の曲げ部22の断面も同様の形状である。
 第1の断面部41の曲率半径r1は、第1の曲率中心C1(パイプ40の中心)から第1の断面部41の表面までの距離である。第1の断面部41のうち0°に近い領域は、曲げる前のパイプ40の表面と同等の円の一部(円弧)をなしている。
 第2の断面部42の曲率半径r2は、第2の曲率中心C2から第2の断面部42の表面までの距離である。第2の断面部42の曲率半径r2は、第1の断面部41の曲率半径r1よりも大きい。すなわち第2の断面部42の曲率は第1の断面部41の曲率よりも小さい。
 第3の断面部43は、図3にΔS1で示す領域を有している。この領域ΔS1は、スタビライザ製造装置50によって曲げ部21を曲げた際に、押さえ金型80の押さえ壁81に接したことにより、平坦に近い形状となっている。スタビライザ製造装置50については後に詳しく説明する。第3の断面部43の曲率半径r3は、第3の曲率中心C3から第3の断面部43の表面までの距離である。第3の断面部43の曲率半径r3は、第2の断面部42の曲率半径r2よりも大きい。すなわち第3の断面部43の曲率は、第2の断面部42の曲率よりも小さい。第3の断面部43が完全な平面の場合には、曲率半径r3は無限大である。
 第4の断面部44は、スタビライザ製造装置50のベース金型60の底壁61に接する。このことにより、図3にΔS2で示す領域が平坦に近い形状となっている。第4の断面部44の曲率半径r4は、第4の曲率中心C4から第4の断面部44の表面までの距離である。第4の断面部44の曲率半径r4は、第2の断面部42の曲率半径r2よりも大きい。すなわち第4の断面部44の曲率は、第2の断面部42の曲率よりも小さい。第4の断面部44が完全な平面の場合、曲率半径r4は無限大である。そして第3の断面部43の表面と第4の断面部44の表面とは互いに実質的に平行である。
 中空スタビライザ10は一対のアーム部23,24を有している。図3は曲げ部21のパイプ径方向の断面を示している。図4は、アーム部23,24に互いに逆相の荷重を負荷した場合に、曲げ部21の断面の周方向の位置と曲げ部21に生じる応力との関係(応力分布)の一例を示している。図4中の実線L1は、一方のアーム部23を固定した状態で他方のアーム部24に下向きの荷重(プラス荷重)を負荷した場合の応力分布である。アーム部24に上向きの荷重(マイナス荷重)を負荷した場合には、図4の横軸の180°を対称軸X2として、実線L1とは左右対称の応力分布となる。
 中実スタビライザを曲げる際に、従来の金型が使用されていた。従来の金型を用いてパイプを曲げた場合には、曲げ部が偏平に過剰に潰れ、その偏平度が±10%を越えることもあった。偏平度は、パイプの直径に対する変形の割合である。従来の曲げ部は偏平度が大きかったため、製品として使用することができない。しかも潰れた個所の内面の形状変化が大きい。このため従来の曲げ部は、図4にP1,P2で示すように応力のピークが大きくなることがあり、応力のばらつきも大きくなっていた。
 これに対し本実施形態の中空スタビライザ10の曲げ部21は、図3に示すようなパイプ径方向の断面を有している。この断面は正確には円形ではないが円に近い形状である。曲げ部21の断面の偏平度は、パイプの直径の±10%以内である。本実施形態のスタビライザ10は、以下に説明するスタビライザ製造装置50(図5から図11に示す)によって成形することができる。本実施形態の曲げ部21の断面は偏平度の絶対値が10%未満である。このような曲げ部21は、従来の金型によって曲げられた偏平度が大きい曲げ部と比較して、応力分布のばらつきを小さくすることができた。
 中空スタビライザ10の外面には、ショットピーニングを行なうことによって、耐久性に有効な圧縮残留応力を生じさせることができる。しかし中空スタビライザ10の内面にショットピーニングを行なうことは実際には難しい。中空スタビライザ10の内面(パイプ40の内面)に生じる応力のピークが高かったり、内面の形状変化が大きかったりすることは好ましくない。なぜなら、万一、パイプ40の内面に傷等の欠陥が存在している場合に、折損の起点になることがあるためである。このため中空スタビライザ10は特に内面側の応力のピークを極力小さくすることが望まれる。本実施形態の中空スタビライザ10の曲げ部21は、偏平度が抑制された円形に近い断面である。このため、偏平度が大きい従来の曲げ部の応力と比較すると、応力のピーク値を下げることが可能である。
 以下に、本実施形態に係るスタビライザ製造装置50について、図5から図11を参照して説明する。図5はスタビライザ製造装置50の一部を示す斜視図である。図6は、スタビライザ製造装置50によってパイプ40の一部(曲げ部21)を曲げる途中の状態を示している。図7は、スタビライザ製造装置50による曲げ工程が終了した状態を示している。図8から図11は、それぞれスタビライザ製造装置50を模式的に表した平面図である。図11は、図10中のF11-F11線に沿うスタビライザ製造装置50の断面図である。
 スタビライザ製造装置50は、ベース金型60と、クランプ金型70と、押さえ金型80と、移動金型90と、移動金型90を駆動するための油圧シリンダ等のアクチュエータ91などを含んでいる。
 図11に示されるようにベース金型60は、底壁61と、支持壁62と、円弧形の成形曲面63とを有している。底壁61にパイプ40の下面40aが接する。支持壁62にはパイプ40の側面40bが接する。成形曲面63は、曲げ部21の曲げ内側の曲率に応じて湾曲している。成形曲面63は、底壁61と支持壁62との間に形成されている。この成形曲面63は、パイプ40の外径に応じた曲率の4分の1の円弧をなしている。
 図8から図10に示されるように、ベース金型60の上方から見て、成形曲面63は円弧をなしている。成形曲面63の曲率半径は、曲げ部21の曲げ内側の曲率半径r5(図10に示す)に対応している。成形曲面63に連続して、縦壁64が形成されている。ベース金型60の底壁61に、パイプ40が載置される。
 クランプ金型70は、第1のクランプ壁71(図7から図9に示す)と、第2のクランプ壁72とを有している。第1のクランプ壁71とベース金型60の底壁61との間に、パイプ40が径方向に挟まれる。第2のクランプ壁72とベース金型60の支持壁62との間に、パイプ40が径方向に挟まれる。第1のクランプ壁71には、パイプ40の上面40cが接する。これらベース金型60とクランプ金型70とによって、パイプ40が固定される。
 押さえ金型80は、ベース金型60の底壁61の上方に対向して配置されている。図11に示されるように、押さえ金型80の下面に押さえ壁81が形成されている。押さえ壁81は、ベース金型60の底壁61と対向している。押さえ壁81と底壁61との間に、パイプ40が入り込むことができるキャビティ82が形成されている。キャビティ82の上下方向の開口幅G1は、パイプ40の直径よりも僅かに大きい。
 押さえ金型80の一部(押さえ壁81の一部)に、テーパ面83が形成されている。テーパ面83は、ベース金型60の底壁61と対向している。図11に示された開口幅G1は、テーパ面83と底壁61との間の距離である。テーパ面83は、キャビティ82の開口82aに向かって、開口幅G1が次第に大きくなるように傾斜している。テーパ面83の傾斜角、すなわち底壁61と平行な線分L4に対してテーパ面83がなす角度αは、例えば10~20°程度である。この角度αは、パイプ40の直径や肉厚等に応じて変化する値である。
 移動金型90は、ベース金型60の成形曲面63に対し、水平方向に対向して配置されている。図5から図7に示されるように、移動金型90はアーム93に取付けられている。アクチュエータ91によってアーム93を回転させると、移動金型90がパイプ40を曲げる方向に移動する。すなわち移動金型90は、アクチュエータ91によって、軸92を中心に、初期位置(図5と図8に示す位置)から、曲げ終了位置(図7と図10に示す位置)にわたり、往復回動する。
 移動金型90は、パイプ40を保持する保持部95を有している。保持部95は、パイプ40の一部、すなわち曲げ部21となる部分よりも先端側の部分40dを保持する。保持部95によって、パイプ40の先端側の部分40dが保持される。この状態において、移動金型90が軸92を中心に回動する。これにより、保持部95がパイプ40を曲げる方向に移動する。そうすると、曲げ部21となる部分がキャビティ82に入り込み、成形曲面63に押圧される。
 図5と図8に示されるように、ベース金型60とクランプ金型70との間にパイプ40が挿入された状態となり、パイプ40が固定される。このとき移動金型90は、パイプ40と干渉しない位置に退避している。パイプ40の先端側の部分40dは、ベース金型60の外側に突き出た状態となっている。パイプ40は、例えば700℃以下の温間域(鋼がオーステナイト化する温度よりも低い温度)に予め加熱手段によって加熱されている。加熱されたパイプ40は、曲げ加工を行う際に、冷間(室温)のときと比較して、塑性加工することが容易な硬さとなっている。前記加熱手段の一例は加熱炉であるが、通電加熱や高周波誘導加熱が採用されてもよい。
 図6と図9に示されるように、アクチュエータ91が作動することによって、移動金型90が軸92を中心にベース金型60の縦壁64に向かって回動する。この回動の途中で、パイプ40の曲げ部21となる部分がキャビティ82に入り込んでゆく。このときパイプ40の上面40cがテーパ面83に接しながらキャビティ82の奥の成形曲面63に向かって移動する。このため、パイプ40の上面40cに傷がつくことが抑制される。そして図7と図10に示されるように、移動金型90が曲げ終了位置まで移動することにより、曲げ部21が形成される。
 このように本実施形態の中空スタビライザの製造方法は、加熱工程と、載置工程と、曲げ工程とを具備している。中空スタビライザ10の材料はパイプ40である。前記加熱工程では、パイプ40が加熱手段によって温間域まで加熱される。載置工程では、パイプ40がスタビライザ製造装置50のベース金型60に載置される。曲げ工程では、曲げ部21となる個所が偏平に潰れることを、スタビライザ製造装置50のベース金型60とクランプ金型70と押さえ金型80とによって規制した状態において、パイプ40を移動金型90によって曲げることにより曲げ部21が形成される。
 本実施形態のスタビライザ製造装置50によれば、パイプ40の長手方向の一部(曲げ部21)を曲げる途中において、曲げ部21がキャビティ82に入り込む。これにより、曲げ部21が偏平に潰れることを底壁61と押さえ壁81とによって抑制できる。キャビティ82は底壁61と押さえ壁81との間に形成されている。しかも曲げ部21の上面が押さえ壁81に接した状態で拘束される。このため、曲率が小さい第3の断面部43が形成される。曲げ部21の下面が底壁61に接した状態で拘束される。これにより、曲率が小さい第4の断面部44が形成される。底壁61と押さえ壁81とが互いに平行であれば、第3の断面部43の表面と第4の断面部44の表面とが互いに平行となる。
 スタビライザ製造装置50によって曲げ部21を曲げると、曲げの外側が引き伸ばされる。このため曲げの外側が僅かに偏平となる。よって曲げの外側(第2の断面部42)の曲率は、曲げの内側(第1の断面部41)の曲率よりも小さくなる。つまり第2の断面部42の曲率半径r2が第1の断面部41の曲率半径r1よりも大きくなる。
 第3の断面部43は、押さえ金型80の押さえ壁81によって径方向に加圧されることにより塑性変形を生じる。このため押さえ壁81と接している個所が平坦となる。加圧が解除されると形状が少し戻るが、第3の断面部43の表面は平坦に近い形状となる。このため第3の断面部43の曲率は、第2の断面部42の曲率よりも小さくなる。
 第4の断面部44は、ベース金型60の底壁61によって径方向に加圧されることにより塑性変形を生じる。このため底壁61と接している個所が平坦となる。加圧が解除されると形状が少し戻るが、第4の断面部44の表面は平坦に近い形状となる。このため第4の断面部44の曲率は、第2の断面部42の曲率よりも小さくなる。
 このように本実施形態のスタビライザ製造装置50によって曲げ部21を成形すると、曲げ部21の断面は正確には真円ではないが、偏平度が大きくなることを抑制できる。しかも押さえ金型80の下面(押さえ壁81)にテーパ面83が形成されている。このテーパ面83に沿って、曲げ途中のパイプ40の上面が移動し、成形曲面63に向かう。このため、曲げ部21の上面が押さえ金型80の側面84に当たることによって傷がつくことを防止できる。
 本実施形態のスタビライザ製造装置50によれば、パイプベンダによってパイプを曲げる場合に必要としていたパイプの端部の「つかみしろ」が不要となる。このためパイプの先端から曲げ部までの距離が短いスタビライザの曲げ部も曲げることができる。しかも曲げ部の断面が過剰に偏平に潰れることを抑制でき、より真円に近い、偏平度が抑制された曲げ部を成形することができる。曲げ部の断面の偏平度は、パイプの直径の±10%以内である。
 温間域まで加熱されて変形抵抗が低下したパイプ40は、曲げた個所の扁平度が大きくなる傾向がある。しかるに本実施形態のスタビライザ製造装置50によれば、温間域まで予め加熱され、変形抵抗が低下したパイプ40であっても、曲げ加工を行うに当たり、扁平度が抑制された曲げ部21を成形することができる。
 図12は他の実施形態に係るスタビライザ製造装置50Aの一部を示している。この実施形態の場合、ベース金型60の底壁61に載置されたパイプ40の上面と押さえ金型80との間に、数十~数百μm程度の微小な隙間ΔGが形成されている。パイプ40はこの隙間ΔGにより、ベース金型60に対して微小量動くことが許容される。それ以外の構成について、このスタビライザ製造装置50Aは前記スタビライザ製造装置50(図5~図11)と共通であるため、両者に共通の符号を付して説明を省略する。
 図13は、スタビライザ製造装置50Aによって製造された中空スタビライザ10の曲げ部21の断面(パイプ径方向の断面)を示している。図13にパイプ40の外周面40eと内周面40fとが示されている。曲げ部21の外周面40eと内周面40fは、以下に詳しく説明するように真円ではなく、少し歪んだ円形である。曲げ部21の断面の偏平度は、パイプの直径の±10%以内である。
 図13に示されるように、曲げ部21の径方向の断面は、周方向に45°ずつ規定された8つの領域S1-S8を有している。すなわちこの断面は、90°を中心とする第1領域S1と、0°を中心とする第3領域S3と、270°を中心とする第5領域S5と、180°を中心とする第7領域S7とを有している。第1領域S1に第1の部分No.1が含まれている。第3領域S3に第3の部分No.3が含まれている。第5領域S5に第5の部分No.5が含まれている。第7領域S7に第7の部分No.7が含まれている。
 さらにこの曲げ部21は、第1領域S1と第3領域S3との間の第2領域S2と、第3領域S3と第5領域S5との間の第4領域S4と、第5領域S5と第7領域S7との間の第6領域S6と、第1領域S1と第7領域S7との間の第8領域S8とを有している。第2領域S2に第2の部分No.2が含まれている。第4領域S4に第4の部分No.4が含まれている。第6領域S6に第6の部分No.6が含まれている。第8領域S8に第8の部分No.8が含まれている。
 図13に示された断面の場合、第1領域S1は、67.5°から112.5°までの範囲に規定されている。第1の部分No.1は、90°を中心として第1領域S1に存在する。第3領域S3は、22.5°から337.5°までの範囲に規定されている。第3の部分No.3は、0°を中心として第3領域S3に存在する。第5領域S5は、247.5°から292.5°までの範囲に規定されている。第5の部分No.5は、270°を中心として第5領域S5に存在する。第7領域S7は、157.5°から202.5°までの範囲に規定されている。第7の部分No.7は、180°を中心として第7領域S7に存在する。
 図13に示された断面の場合、第2領域S2は、第1領域S1と第3領域S3との間に規定されている。第2の部分No.2は、45°を中心として第2領域S2に存在する。第4領域S4は、第3領域S3と第5領域S5との間に規定されている。第4の部分No.4は、315°を中心として第4領域S4に存在する。第6領域S6は、第5領域S5と第7領域S7との間に規定されている。第6の部分No.6は、225°を中心として第6領域S6に存在する。第8領域S8は、第1領域S1と第7領域S7との間に規定されている。第8の部分No.8は、135°を中心として第8領域S8に存在する。
 図13中のR1~R8は、第1の部分から第8の部分(No.1~No.8)のそれぞれの外面の曲率半径を表している。また図13中のd1~d8は、第1の部分から第8の部分(No.1~No.8)のそれぞれの内面の曲率半径を表している。
 図14は、スタビライザ製造装置50Aによって試作された実施例1の曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図15は、実施例1の周方向の位置と内面の曲率半径との関係を表している。曲げる前のパイプの外径は22.2mm、パイプの厚さ3.1mmである。
 図16は、スタビライザ製造装置50Aによって試作された実施例2の曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図17は、実施例2の周方向の位置と内面の曲率半径との関係を表している。曲げる前のパイプの外径と厚さは実施例1と同じである。
 図18は、スタビライザ製造装置50Aによって試作された実施例3の曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図19は、実施例3の周方向の位置と内面の曲率半径との関係を表している。曲げる前のパイプの外径と厚さは実施例1と同じである。
 図20は、スタビライザ製造装置50Aによって試作された実施例4の曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図21は、実施例4の周方向の位置と内面の曲率半径との関係を表している。曲げる前のパイプの外径は22.2mm、パイプの厚さ4.4mmである。
 図22は、スタビライザ製造装置50Aによって試作された実施例5の曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図23は、実施例5の周方向の位置と内面の曲率半径との関係を表している。曲げる前のパイプの外径と厚さは実施例4と同じである。
 図24は、スタビライザ製造装置50Aによって試作された実施例6の曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図25は、実施例6の周方向の位置と内面の曲率半径との関係を表している。曲げる前のパイプの外径と厚さは実施例4と同じである。
 これに対し図26は、パイプベンダによって製造された従来品1,2,3のそれぞれの曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図27は、同じく従来品1,2,3の曲げ部のそれぞれの周方向の位置と、内面の曲率半径との関係を表している。曲げる前のパイプの外径と厚さは、いずれも実施例1と同じである。
 図28は、パイプベンダによって製造された従来品4,5,6のそれぞれの曲げ部の周方向の位置と、外面の曲率半径との関係を表している。図29は、同じく従来品4,5,6の曲げ部のそれぞれの周方向の位置と、内面の曲率半径との関係を表している。曲げる前のパイプの外径と厚さは、いずれも実施例4と同じである。
 実施例1~6(図14~図25)と従来品1~6(図26~図29)とを比較すると、曲げ部の外周面40eに関し、実施例1~6は次のような特徴的な形状を有している。すなわち実施例1~6は、第4の部分No.4および第5の部分No.5のそれぞれの外面の曲率半径R4,R5と比較して、第3の部分No.3および第7の部分No.7のそれぞれの外面の曲率半径R3,R7が大きくかつ第2の部分No.2および第6の部分No.6のそれぞれの外面の曲率半径R2,R6が小さい。この特徴は従来品1~6には見ることができない。
 しかも実施例1~6は、内周面40fも特徴的な形状を有している。すなわち実施例1~6は、第4の部分No.4および第5の部分No.5のそれぞれの内面の曲率半径d4,d5と比較して、第3の部分No.3および第7の部分No.7のそれぞれの内面の曲率半径d3,d7が大きくかつ第2の部分No.2および第6の部分No.6のそれぞれの内面の曲率半径d2,d6が小さい。この特徴も、従来品1~6には見ることができない。
 実施例1~6の曲げ部を有した中空スタビライザは、従来のパイプベンダによって曲げた曲げ部と比較して偏平度が小さく、前記曲げ部の断面が真円に近い形状である。このため曲げ部の応力分布のばらつきが大きくなることが抑制される。このような曲げ部を有する中空スタビライザは、前記実施形態に係るスタビライザ製造装置50Aによって形成することができる。
 本発明は自動車以外の車両の懸架機構部のスタビライザに適用することもできる。また本発明を実施するに当たり、中空スタビライザの材料である金属のパイプをはじめとして、トーション部とアーム部および曲げ部の具体的な形状や寸法等を種々に変更して実施できることは言うまでもない。
 10…中空スタビライザ、12…懸架機構部、20…トーション部、21,22…曲げ部、23,24…アーム部、40…パイプ、40e…外周面、40f…内周面、41…第1の断面部、42…第2の断面部、43…第3の断面部、44…第4の断面部、S1~S8…第1~第8領域、No.1~No.8…第1~第8の部分、R1~R8…外面の曲率半径、d1~d8…内面の曲率半径、50,50A…スタビライザ製造装置、60…ベース金型、61…底壁、62…支持壁、63…成形曲面、70…クランプ金型、80…押さえ金型、82…キャビティ、83…テーパ面、90…移動金型、91…アクチュエータ。

Claims (6)

  1.  車両の懸架機構部に配置される中空スタビライザ(10)であって、
     トーション部(20)と、
     前記トーション部(20)に連なる曲げ部(21,22)と、
     前記曲げ部(21,22)に連なるアーム部(23,24)とを具備し、
     前記曲げ部(21,22)のパイプ径方向の断面に関し、曲げ内側の中心を0°、曲げ外側の中心を180°としたとき、
     0°を中心に60°から300°の範囲の第1の断面部(41)と、
     180°を中心に120°から240°の範囲内に形成され、前記第1の断面部(41)よりも曲率が小さい第2の断面部(42)と、
     90°を中心に60°を越え120°未満の範囲内に形成され、前記第2の断面部(42)よりも曲率が小さい第3の断面部(43)と、
     270°を中心に240°を越え300°未満の範囲内に形成され、前記第2の断面部(42)よりも曲率が小さい第4の断面部(44)と、
     を具備したことを特徴とする中空スタビライザ。
  2.  パイプ(40)を載置する底壁(61)と、前記パイプ(40)の側面(40b)が接する支持壁(62)と、前記パイプ(40)の曲げ部(21)の曲げ内側の曲率に応じた円弧形の成形曲面(63)とを有したベース金型(60)と、
     前記ベース金型(60)の前記支持壁(62)との間で前記パイプ(40)を径方向に挟むことにより前記パイプ(40)を保持するクランプ金型(70)と、
     前記ベース金型(60)の前記底壁(61)と対向して配置され、前記底壁(61)との間に前記パイプ(40)の前記曲げ部(21)が入り込むキャビティ(82)を形成する押さえ金型(80)と、
     前記ベース金型(60)の前記成形曲面(63)に対向して配置され、前記パイプ(40)の長手方向の一部で前記曲げ部(21)となる部分よりも先端側の部分を保持した状態において前記パイプ(40)を曲げる方向に移動し、前記曲げ部(21)となる部分を前記キャビティ(82)に入り込ませ、前記成形曲面(63)に押圧する移動金型(90)と、
     を具備したことを特徴とするスタビライザ製造装置。
  3.  前記押さえ金型(80)の一部で前記底壁(61)と対向する面に形成され、前記キャビティ(82)の開口に向かって前記底壁(61)との間の距離が大きくなるテーパ面(83)を有したことを特徴とする請求項2に記載のスタビライザ製造装置。
  4.  中空スタビライザの材料であるパイプ(40)を温間域まで加熱する加熱工程と、
     前記パイプ(40)をベース金型(60)に載置する載置工程と、
     前記パイプ(40)の曲げ部(21)となる個所が偏平に潰れることを前記ベース金型(60)とクランプ金型(70)および押さえ金型(80)によって規制した状態において、前記パイプ(40)を移動金型(90)によって曲げることにより、曲げ部(21)を形成する曲げ工程と、
     を具備したことを特徴とする中空スタビライザの製造方法。
  5.  車両の懸架機構部に配置される中空スタビライザ(10)であって、
     トーション部(20)と、
     前記トーション部(20)に連なる曲げ部(21,22)と、
     前記曲げ部(21,22)に連なるアーム部(23,24)とを具備し、
     前記曲げ部(21,22)のパイプ径方向の断面に関し、曲げ内側の中心を0°、曲げ外側の中心を180°としたとき、
     前記断面の周方向に規定された8つの領域(S1-S8)、すなわち、
     90°に位置する第1の部分(No.1)を含む第1領域(S1)と、
     0°に位置する第3の部分(No.3)を含む第3領域(S3)と、
     270°に位置する第5の部分(No.5)を含む第5領域(S5)と、
     180°に位置する第7の部分(No.7)を含む第7領域(S7)と、
     前記第1領域(S1)と前記第3領域(S3)との間の第2の部分(No.2)を含む第2領域(S2)と、
     前記第3領域(S3)と前記第5領域(S5)との間の第4の部分(No.4)を含む第4領域(S4)と、
     前記第5領域(S5)と前記第7領域(S7)との間の第6の部分(No.6)を含む第6領域(S6)と、
     前記第1領域(S1)と前記第7領域(S7)との間の第8の部分(No.8)を含む第8領域(S8)と、
    を有し、
     前記第4の部分(No.4)および前記第5の部分(No.5)のそれぞれの外面の曲率半径(R4,R5)と比較して、前記第3の部分(No.3)および前記第7の部分(No.7)のそれぞれの外面の曲率半径(R3,R7)が大きくかつ前記第2の部分(No.2)および前記第6の部分(No.6)のそれぞれの外面の曲率半径(R2,R6)が小さい、外周面(40e)を有したことを特徴する中空スタビライザ。
  6.  前記第4の部分(No.4)および前記第5の部分(No.5)のそれぞれの内面の曲率半径(d4,d5)と比較して、前記第3の部分(No.3)および前記第7の部分(No.7)のそれぞれの内面の曲率半径(d3,d7)が大きくかつ前記第2の部分(No.2)および前記第6の部分(No.6)のそれぞれの内面の曲率半径(d2,d6)が小さい、内周面(40f)を有したことを特徴する請求項5に記載の中空スタビライザ。
PCT/JP2018/009309 2017-03-30 2018-03-09 中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法 WO2018180381A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2019011474A MX2019011474A (es) 2017-03-30 2018-03-09 Estabilizador hueco, dispositivo de fabricacion de estabilizador, y metodo para fabricar el estabilizador hueco.
CN201880023157.2A CN110475626B (zh) 2017-03-30 2018-03-09 一种中空稳定器、稳定器制造装置和中空稳定器的制造方法
EP18775833.9A EP3603835A4 (en) 2017-03-30 2018-03-09 HOLLOW STABILIZER, STABILIZER MANUFACTURING DEVICE AND PROCESS FOR MANUFACTURING A HOLLOW STABILIZER
EP24186852.0A EP4417445A3 (en) 2017-03-30 2018-03-09 Hollow stabilizer, stabilizer manufacturing device, and method for manufacturing hollow stabilizer
KR1020197028043A KR102180825B1 (ko) 2017-03-30 2018-03-09 중공 스태빌라이저와, 스태빌라이저 제조 장치와, 중공 스태빌라이저의 제조 방법
BR112019020540-3A BR112019020540B1 (pt) 2017-03-30 2018-03-09 Estabilizador oco
US16/586,692 US11167615B2 (en) 2017-03-30 2019-09-27 Hollow stabilizer, stabilizer manufacturing device, and method for manufacturing hollow stabilizer
US17/355,520 US11571943B2 (en) 2017-03-30 2021-06-23 Hollow stabilizer, stabilizer manufacturing device, and method for manufacturing hollow stabilizer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017066800 2017-03-30
JP2017-066800 2017-03-30
JP2018-030036 2018-02-22
JP2018030036A JP6703022B2 (ja) 2017-03-30 2018-02-22 中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/586,692 Continuation US11167615B2 (en) 2017-03-30 2019-09-27 Hollow stabilizer, stabilizer manufacturing device, and method for manufacturing hollow stabilizer

Publications (1)

Publication Number Publication Date
WO2018180381A1 true WO2018180381A1 (ja) 2018-10-04

Family

ID=63675376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009309 WO2018180381A1 (ja) 2017-03-30 2018-03-09 中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法

Country Status (3)

Country Link
EP (1) EP4417445A3 (ja)
MX (1) MX2023007024A (ja)
WO (1) WO2018180381A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851305B2 (ja) 1980-12-18 1983-11-15 オムロン株式会社 電子式キヤツシユレジスタ
JPS62224422A (ja) 1986-03-25 1987-10-02 Nhk Spring Co Ltd 中空スタビライザの製造方法
JPH02112828A (ja) * 1988-10-22 1990-04-25 Usui Internatl Ind Co Ltd 細径金属管の曲げ加工装置
JPH07266837A (ja) * 1994-03-29 1995-10-17 Horikiri Bane Seisakusho:Kk 中空スタビライザの製造法
JPH08142632A (ja) * 1994-11-16 1996-06-04 Nhk Spring Co Ltd 中空スタビライザ
JP2004009125A (ja) 2002-06-11 2004-01-15 Sango Co Ltd パイプベンダー用のワイパー
JP2010162557A (ja) 2009-01-13 2010-07-29 Jfe Steel Corp パイプベンダー

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690137A (en) * 1979-12-22 1981-07-22 Nhk Spring Co Ltd Hollow stabilizer for vehicle
JP5851305B2 (ja) 2012-03-29 2016-02-03 日本発條株式会社 中空スタビライザ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851305B2 (ja) 1980-12-18 1983-11-15 オムロン株式会社 電子式キヤツシユレジスタ
JPS62224422A (ja) 1986-03-25 1987-10-02 Nhk Spring Co Ltd 中空スタビライザの製造方法
JPH02112828A (ja) * 1988-10-22 1990-04-25 Usui Internatl Ind Co Ltd 細径金属管の曲げ加工装置
JPH07266837A (ja) * 1994-03-29 1995-10-17 Horikiri Bane Seisakusho:Kk 中空スタビライザの製造法
JPH08142632A (ja) * 1994-11-16 1996-06-04 Nhk Spring Co Ltd 中空スタビライザ
JP2004009125A (ja) 2002-06-11 2004-01-15 Sango Co Ltd パイプベンダー用のワイパー
JP2010162557A (ja) 2009-01-13 2010-07-29 Jfe Steel Corp パイプベンダー

Also Published As

Publication number Publication date
MX2023007024A (es) 2023-06-28
EP4417445A2 (en) 2024-08-21
EP4417445A3 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
US11571943B2 (en) Hollow stabilizer, stabilizer manufacturing device, and method for manufacturing hollow stabilizer
US7896983B2 (en) Hollow stabilizer and method of manufacturing the same
JP4331300B2 (ja) 中空スタビライザの製造方法
KR102105350B1 (ko) 자동차용 부품의 제조 방법 및 자동차용 부품
WO2009139379A1 (ja) 異形断面筒状部材のプレス成形方法とこのプレス成形方法により成形した異形断面筒状部材
JP2013035309A (ja) トーションビーム式サスペンション
US11701943B2 (en) Method of manufacturing a hollow spring member
JP6518780B2 (ja) 車両用スタビライザと、スタビライザの目玉部の加工装置と、目玉部の加工方法
JP5851305B2 (ja) 中空スタビライザ
WO2018180381A1 (ja) 中空スタビライザと、スタビライザ製造装置と、中空スタビライザの製造方法
KR20020019737A (ko) 코일스프링 및 그 제조방법
JPH08142632A (ja) 中空スタビライザ
JP6115554B2 (ja) ショットピーニング方法
WO2023189958A1 (ja) スタビライザの製造方法
BR122022021597B1 (pt) Dispositivo de fabricação de estabilizador e método de fabricação de um estabilizador oco
JP7314417B2 (ja) スタビライザ製造装置と、スタビライザの製造方法
WO2024204400A1 (ja) スタビライザの製造方法
JPS62224422A (ja) 中空スタビライザの製造方法
KR102698601B1 (ko) 중공 스프링 및 그 제조 방법
KR101551178B1 (ko) 코일 스프링 피그테일 성형장치
KR100297093B1 (ko) 볼스터드및그의제조방법
JPS62224421A (ja) 中空スタビライザの製造方法
JP2021041856A (ja) トーションビームの製造方法
JPS62224423A (ja) 中空スタビライザの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197028043

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 122022021597

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020540

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018775833

Country of ref document: EP

Effective date: 20191030

ENP Entry into the national phase

Ref document number: 112019020540

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190930