WO2018180287A1 - 電気接点、それを備えた電磁リレー及び電気接点の製造方法 - Google Patents

電気接点、それを備えた電磁リレー及び電気接点の製造方法 Download PDF

Info

Publication number
WO2018180287A1
WO2018180287A1 PCT/JP2018/008650 JP2018008650W WO2018180287A1 WO 2018180287 A1 WO2018180287 A1 WO 2018180287A1 JP 2018008650 W JP2018008650 W JP 2018008650W WO 2018180287 A1 WO2018180287 A1 WO 2018180287A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
electrical contact
layer
conductive layer
conductive
Prior art date
Application number
PCT/JP2018/008650
Other languages
English (en)
French (fr)
Inventor
開 伊集院
青木 達也
西川 和宏
佑樹 河島
加本 貴則
前田 正史
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2018180287A1 publication Critical patent/WO2018180287A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/04Co-operating contacts of different material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/06Contacts characterised by the shape or structure of the contact-making surface, e.g. grooved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/04Apparatus or processes specially adapted for the manufacture of electric switches of switch contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements

Definitions

  • the present invention relates to an electrical contact, an electromagnetic relay including the electrical contact, and a method for manufacturing the electrical contact.
  • an electromagnetic relay for example, as disclosed in Patent Document 1, an electrical contact disposed on a fixed contact spring and an electrical contact disposed on a movable contact spring are operated by an operation of an electromagnet including an iron core magnetic pole and a coil.
  • an electromagnet including an iron core magnetic pole and a coil.
  • the arrangement of contacting or separating is known.
  • the electrical contact used for the electromagnetic relay having the above-described configuration is required not only to be conductive but also to be durable. Therefore, as disclosed in Patent Document 2, for example, a configuration is known in which a material in which a metal oxide is dispersed in Ag is used as the material of the electrical contact. Thus, conductivity can be ensured by using Ag as the material of the electrical contact. Moreover, the durability as the electrical contact can be improved by dispersing a metal oxide in Ag. *
  • Patent Document 3 a composite contact in which a contact portion is formed of an alloy of Ag and a metal oxide (hereinafter referred to as an Ag alloy) and a base portion is formed of a Cu alloy is used as an electrical contact. It is done.
  • a Cu alloy strand and an Ag alloy strand having a smaller outer diameter than the Cu alloy strand are forged in a state where they are abutted in the hole of the molding die.
  • the Cu alloy wire and the Ag alloy wire are joined together. Thereafter, a composite contact is obtained by molding the collar.
  • the bonding strength between the Cu alloy and the Ag alloy can be improved by bonding the Cu alloy strand and the Ag alloy strand.
  • the Ag alloy is dissolved by adding a metal (for example, Sn) to Ag. Then, it is obtained by performing a thermal oxidation treatment. In this thermal oxidation treatment, the metal is oxidized into a metal oxide.
  • the amount of metal oxide obtained in the Ag alloy by the thermal oxidation treatment as described above has a limit.
  • the addition amount of the metal oxide in the Ag alloy is limited. Therefore, in the conventional configuration, there is a limit in improving the durability of the electrical contact by the metal oxide in the Ag alloy.
  • the objective of this invention is providing the electrical contact which can improve durability, and its manufacturing method.
  • the electrical contact which concerns on one Embodiment of this invention is an electrical contact which supplies with electricity by contacting a to-be-contacted part.
  • the electrical contact includes a base including a conductive metal material, a conductive layer positioned on the base and including a noble metal, and a contact layer positioned on the conductive layer.
  • the contact layer includes a contact layer conductive portion containing the same metal material as the conductive layer, and metal oxide particles partially located inside the surface side of the contact layer conductive portion. The contact layer conductive portion is exposed.
  • the manufacturing method of the electrical contact which concerns on one Embodiment of this invention is a manufacturing method of the electrical contact which supplies with electricity by contacting a to-be-contacted part.
  • the electrical contact manufacturing method includes a base forming step for forming a base including a conductive metal material, a conductive layer forming step for forming a conductive layer including a noble metal on the base, and a spray on the surface of the conductive layer. Forming a contact layer in which a part of the metal oxide particles are located inside and the noble metal is exposed by implanting metal oxide particles using a method.
  • the durability of the electrical contact can be improved.
  • FIG. 1 is a figure showing typically composition of a relay device provided with an electric contact concerning an embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the electrical contact.
  • FIG. 3 is a diagram schematically showing metal oxide particles by enlarging the Z portion of FIG. 2.
  • FIG. 4 is a diagram schematically showing how the lead frame is molded.
  • FIG. 5 is a diagram schematically showing a state in which a conductive layer is formed on the protruding portion of the lead frame by a spray method.
  • FIG. 6 is a diagram schematically showing a state in which metal oxide particles are driven into the conductive layer by a spray method.
  • FIG. 7 is a diagram schematically showing a state in which the contact layer is pressed by a molding die.
  • FIG. 1 is a figure showing typically composition of a relay device provided with an electric contact concerning an embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the electrical contact.
  • FIG. 3 is
  • FIG. 8 is a view corresponding to FIG. 2 showing a schematic configuration of an electrical contact according to another embodiment.
  • FIG. 9 is a diagram schematically showing how the base is fixed to the lead frame.
  • FIG. 10 is a diagram schematically illustrating a state in which a conductive layer is formed on the base fixed to the lead frame by a spray method.
  • fixed In the following description, the expressions “fixed”, “connected”, “attached”, etc. (hereinafter referred to as “fixed”, etc.) are fixed not only when the members are directly fixed, but also through other members. It includes cases where That is, in the following description, expressions such as fixation include the meanings of direct and indirect fixation between members. *
  • FIG. 1 is a diagram schematically showing a relay device 1 (electromagnetic relay) including an electrical contact 2 according to an embodiment of the present invention.
  • FIG. 1 is the figure which looked at the relay apparatus 1 from the side.
  • the relay device 1 has a pair of electrical contacts 2 and 3 that are arranged to face each other with a predetermined interval.
  • the relay device 1 controls energization and interruption of current by switching between contact and separation of the pair of electrical contacts 2 and 3.
  • the electrical contact 3 is a contacted portion that contacts the electrical contact 2.
  • the relay device 1 may have two or more pairs of electrical contacts that are arranged to face each other at a predetermined interval. *
  • the relay device 1 has a pair of flat lead frames 4 and 5 provided with electrical contacts 2 and 3, respectively, and a drive mechanism 6. *
  • the pair of lead frames 4 and 5 are flat members formed of a conductive metal material such as Cu or Cu alloy.
  • the electrical conductivity of the pair of lead frames 4 and 5 is preferably 50% IACS or more.
  • the pair of lead frames 4 and 5 are arranged to face each other with a predetermined interval, and one end side is fixed.
  • the other end side of the pair of lead frames 4 and 5 is a free end, and the electrical contacts 2 and 3 are arranged opposite to the other end side.
  • the electrical contact 2 is electrically connected to the lead frame 4.
  • the electrical contact 3 is electrically connected to the lead frame 5. *
  • a power source is electrically connected to the lead frame 4, and a device driven by power supplied from the power source is electrically connected to the lead frame 5.
  • the drive mechanism 6 includes a cylindrical coil 6a (shown in a longitudinal section in FIG. 1), an iron core 6b positioned inside the coil 6a, and an armature 6c.
  • the armature 6c is a crank-shaped member formed of a magnetic material when viewed from the side.
  • One end side of the armature 6c is in contact with one lead frame 4 provided with the electrical contact 2 of the pair of lead frames 4 and 5.
  • the other end side of the armature 6c is located in the vicinity of the coil 6a and the iron core 6b, and is separated from the coil 6a and the iron core 6b toward the tip.
  • the bending part of the armature 6c is supported rotatably.
  • the rotation center of the armature 6c is indicated by P. *
  • a current is supplied to the coil 6a from a power source (not shown). Supply of current to the coil 6a is performed when an instruction to energize the relay device 1 is received from a control device (not shown). When a current is supplied to the coil 6a, a magnetic field is generated in the coil 6a and the iron core 6b. On the other hand, when the control device instructs the relay device 1 to shut off, no current is supplied to the coil 6a. *
  • the relay device 1 may include a return spring that separates the lead frame 4 from the lead frame 5 when no magnetic field is generated in the coil 6a and the iron core 6b.
  • the electrical contact 2 is located on the other end side of the lead frame 4.
  • the electrical contact 2 has a base portion 11 constituted by a part of the lead frame 4, a conductive layer 12 formed on the base portion 11, and a contact layer 13 formed on the conductive layer 12.
  • the base portion 11 is a protruding portion 4a in which a part of the lead frame 4 protrudes in a cylindrical shape with a bottom on one side (conductive layer side) in the thickness direction.
  • the lead frame 4 has a recess 4 b on the other side in the thickness direction with respect to the base 11.
  • the protruding portion 4a constituting the base portion 11 is formed by denting a part of the lead frame 4 to one side in the thickness direction. That is, the base 11 is a single member with the lead frame 4. *
  • the base 11 can be easily formed on the lead frame 4 by using the protruding portion 4 a obtained by denting a part of the lead frame 4 in one side in the thickness direction as the base 11.
  • the manufacturing cost can be reduced.
  • the conductive layer 12 includes a noble metal such as Ag, for example.
  • a noble metal such as Ag
  • the electrical resistance of the conductive layer 12 can be reduced as compared with the case where another conductive material is used. Therefore, Joule heat generated in the conductive layer 12 when the electrical contact 2 is energized can be reduced.
  • the thickness of the conductive layer 12 is larger than the thickness of the contact layer 13 described later. *
  • the conductive layer 12 is formed by causing fine particles containing Ag to collide with the protruding portion 4a of the lead frame 4 by, for example, a spray method or the like. That is, the conductive layer 12 is composed of a plurality of particles containing a noble metal and diffusion-bonded. As described above, when the fine particles collide with the protruding portion 4a of the lead frame 4, the surface of the base portion 11 of the electrical contact 2 on the side of the conductive layer 12 has irregularities on which some of the fine particles are located. *
  • the minimum size of the metal strand to be used is determined. Therefore, when forming an electrical contact, a noble metal more than a required amount is used.
  • the conductive layer 12 can be easily formed without making it thicker than necessary.
  • the noble metal contained in the conductive layer 12 is not limited to Ag, but may be Au, Pt, Ir, Ru, Pd, Ni, or W.
  • the conductive layer 12 is not limited to a noble metal, and may include an alloy containing a noble metal element as a main component. *
  • the contact layer 13 is located in the outermost layer of the electrical contact 2 and functions as a contact portion that contacts the electrical contact 3 in the electrical contact 2.
  • the contact layer 13 includes the same metal material as the conductive layer 12 (for example, a noble metal such as Ag) and metal oxide particles (metal oxide particles) such as Sn. *
  • FIG. 3 shows an enlarged Z portion of the electrical contact 2 in FIG.
  • the contact layer 13 includes a contact layer conductive part 21 containing the same metal material as that of the conductive layer 12, and metal oxide particles 22 located on the surface side of the contact layer conductive part 21.
  • the contact layer conductive portion 21 is a part of a single layer with the conductive layer 12.
  • a part of the metal oxide particles 22 is located inside the contact layer conductive portion 21.
  • the metal oxide particles 22 are driven into the contact layer conductive portion 21 by a spray method.
  • the contact layer conductive portion 21 and the metal oxide particles 22 are bonded by thermal diffusion bonding. Thereby, since the bonding force between the contact layer conductive portion 21 and the metal oxide particles 22 in the contact layer 13 can be improved, the durability of the contact layer 13 can be improved.
  • the metal oxide particles 22 are disposed only on a part of the surface of the contact layer 13 when the contact layer 13 is viewed from the stacking direction of the layers of the electrical contact 2. Therefore, the metal oxide particles 22 and the contact layer conductive portion 21 are exposed on the surface of the contact layer 13. As described above, the contact layer conductive portion 21 is exposed on the surface of the contact layer 13, so that a decrease in conductivity of the electrical contact 2 can be suppressed.
  • the metal oxide particles 22 are more on the surface side than the inside of the contact layer 13. That is, in the contact layer 13, the density of the metal oxide particles 22 increases toward the surface side.
  • the metal oxide particles 22 are schematically illustrated for the purpose of explanation. *
  • the metal oxide particles 22 are not limited to Sn oxide particles, but include Zn, Al, Cu, Mg, Ni, Sb, In, Cd, Ga, Se, Tl, Te, Pb, Bi, and Po. Oxide particles may also be used. *
  • the durability of the contact layer 13 can be improved by positioning the metal oxide particles 22 on the surface side of the contact layer 13.
  • the durability of the contact layer 13 can be improved by increasing the density of the metal oxide particles 22 toward the surface side of the contact layer 13.
  • the metal oxide particles 22 are located only on the surface side of the contact layer 13. Therefore, the contact layer conductive portion 21 and the conductive layer 12 of the contact layer 13 do not include a metal oxide. Therefore, compared with the conventional structure in which a metal oxide is contained inside the electrical contact, the electrical resistance inside the electrical contact 2 can be reduced. Thereby, since generation
  • the density of the metal oxide particles 22 in the contact layer 13 increases toward the surface side. Therefore, while being able to improve the durability of the surface of the electrical contact 2, the internal electrical resistance of the electrical contact 2 can be reduced. Therefore, the durability of the electrical contact 2 can be further improved.
  • the thickness of the conductive layer 12 is larger than the thickness of the contact layer 13.
  • the ratio of the conductive layer 12 having a high Ag ratio is larger than that of the contact layer 13 including the metal oxide particles 22. Therefore, the electrical resistance of the electrical contact 2 can be reduced. Therefore, since generation
  • the electrical contact 3 may have the same configuration as the electrical contact 2 or may have a different configuration. However, like the electrical contact 2, the contact part of the electrical contact 3 is also made of a material containing a noble metal, and from the viewpoint of durability, metal oxide particles similar to the electrical contact 2 are located on the surface side. Is preferred. *
  • a metal plate made of a material containing Cu or a Cu alloy is sandwiched in a thickness direction by a pair of molds 41 and 42 and pressed, whereby the protrusion 4 a and the recess 4 b are formed on the metal plate.
  • the mold 41 has a mold convex portion 41a for forming the concave portion 4b in the metal plate.
  • the mold 42 has a mold recess 42a for forming the protrusion 4a on the metal plate.
  • the metal plate 41 is sandwiched in the thickness direction by the molds 41 and 42 and pressed to form the lead frame 4 having the protrusions 4a and the recesses 4b.
  • the mold convex part 41a and the mold concave part 42a of the molds 41 and 42 are each circular in a plan view. Therefore, the protrusion 4a formed on the lead frame 4 has a bottomed cylindrical shape.
  • FIG. 5 is a diagram schematically showing the state of layer formation, and the positional relationship and size relationship between the layer forming apparatus 50 used in the spray method and the lead frame 4 are different from actual ones. *
  • the layer forming apparatus 50 forms the conductive layer 12 on the base 11 by a so-called cold spray method in which fine particles are made to collide with the base material in a solid phase state below the melting temperature.
  • the layer forming apparatus 50 includes a spray gun 51 that discharges particles X of noble metal (for example, Ag) using a high-pressure gas.
  • the spray gun 51 has a space 51a to which particles X are supplied from the outside, and a nozzle 51b for discharging the particles X in the space 51a.
  • Particles X are supplied to the space 51a of the spray gun 51 from the outside, and a high-pressure gas having a predetermined pressure (for example, a pressure higher than 1 MPa) and a predetermined temperature (below the melting temperature of the particles X) is supplied. Thereby, the particle
  • a high-pressure gas having a predetermined pressure for example, a pressure higher than 1 MPa
  • a predetermined temperature below the melting temperature of the particles X
  • the particles X ejected from the nozzle 51 b collide with the base 11 of the lead frame 4. Thereby, the conductive layer 12 is formed by the particles X on the base 11.
  • the particle X collides with the surface of the base 11 a part of the particle X bites into the base 11 and is diffusion bonded to the base 11.
  • the particles X collide with other particles X the particles X are bonded to each other by diffusion bonding.
  • the high pressure gas is preferably a gas capable of preventing the oxidation and alteration of the particles X.
  • the high-pressure gas is preferably a gas having a high sound speed in the gas. Examples of such a gas include H 2 , He, N 2 , O 2, and a gas containing them as a main component.
  • metal oxide particles 22 are implanted into the surface of the formed conductive layer 12 by the spray method. At this time, the metal oxide particles 22 are caused to collide with the conductive layer 12 using the layer forming apparatus 50 described above. Thereby, some of the metal oxide particles 22 bite into the surface side of the conductive layer 12. That is, some of the metal oxide particles 22 are located inside the surface side of the conductive layer 12. *
  • the contact layer 13 having the metal material containing the noble metal and the metal oxide particles 22 is formed on the surface side of the conductive layer 12.
  • the portion where the metal oxide particles 22 are partially cut in is the contact layer conductive portion 21 of the contact layer 13.
  • the noble metal contained in the particle X is not limited to Ag, but may be Au, Pt, Ir, Ru, Pd, Ni, or W.
  • the conductive layer 12 is not limited to a noble metal, and may include an alloy containing a noble metal element as a main component. *
  • the metal oxide particles 22 are not limited to Sn oxide particles, but are oxides of Zn, Al, Cu, Mg, Ni, Sb, In, Cd, Ga, Se, Tl, Te, Pb, Bi, and Po.
  • the particles may also be *
  • the molding die 31 heats the conductive layer 12 and the contact layer 13 while applying a force compressing in the stacking direction (a force indicated by a white arrow in FIG. 7).
  • a force compressing in the stacking direction a force indicated by a white arrow in FIG. 7.
  • the bonding strength between the metal oxide particles 22 and the contact layer conductive portion 21 can be improved by sintering the contact layer 13 as described above. Therefore, the durability of the contact layer 13 of the electrical contact 2 can be improved.
  • the contact layer 13 is pressed in the stacking direction against the contact layer 13 using the molding die 31, and the contact layer 13 is pushed into the contact layer conductive portion 21 by pushing the metal oxide particles 22 into the contact layer conductive portion 21.
  • the surface shape of the contact layer 13 can be controlled, and the metal oxide particles 22 and the contact layer conductive portion 21 can be more firmly brought into contact with each other.
  • the metal oxide particles 22 and the contact layer conductive portion 21 are thermally diffusion bonded (sintered). As a result, the metal oxide particles 22 and the contact layer conductive portion 21 can be bonded more firmly.
  • the electric conductivity of the conductive layer 12 and the contact layer 13 can be improved by thermally diffusing (sintering) the particles X with the conductive layer 12 and the contact layer 13 as described above.
  • the step of forming the base portion 11 corresponds to the base portion forming step.
  • the step of forming the conductive layer 12 on the base 11 corresponds to the conductive layer forming step.
  • the step of forming the contact layer 13 by implanting metal oxide particles 22 on the surface of the conductive layer 12 corresponds to the contact layer forming step.
  • the step of pressurizing the contact layer 13 using the molding die 31 corresponds to the contact layer pressurizing step.
  • the process of heating and bonding the conductive layer 12 and the contact layer 13 corresponds to the sintering process.
  • the conductive layer 12 and the contact layer 13 are sintered. However, the conductive layer 12 and the contact layer 13 may not be sintered. *
  • the above-described method eliminates the need for processing a material containing a metal oxide as in the conventional configuration. Therefore, when forming the electrical contact 2, it can prevent receiving the influence of the workability by a metal oxide.
  • the metal oxide particles 22 are driven into the conductive layer 12 by the spray method, so that the amount of the metal oxide particles can be easily adjusted. Therefore, in order to improve the durability of the electrical contact 2, the amount of the metal oxide can be easily adjusted.
  • the conductive layer 12 is formed by a cold spray method.
  • any method other than the cold spray method may be used as long as the conductive layer 12 can be formed.
  • Examples of other forming methods include plasma spraying using plasma, methods using flame spraying such as flame spraying, and methods such as vapor deposition.
  • the formation method of a conductive layer is not limited to the film-forming method, You may use another method, Furthermore, you may form a conductive layer combining various formation methods. In addition, it can avoid that component elements, such as Ag in the particle
  • the conductive layer 12 is formed on the base 11.
  • an antioxidant layer may be formed on the base 11 and the conductive layer 12 may be formed on the antioxidant layer.
  • the antioxidant layer contains a noble metal such as Ag.
  • the formation method of the antioxidant layer may be any formation method as long as it can be formed, such as spraying or plating. *
  • the antioxidant layer By forming the antioxidant layer on the base 11 as described above, the base 11 can be prevented from being oxidized when the conductive layer 12 is formed. Therefore, it is possible to suppress an increase in electrical resistance inside the electrical contact.
  • the base 11 is a bottomed cylindrical shape.
  • the shape of the base may be any shape such as a polyhedral shape as long as the conductive layer can be formed on the base.
  • the base 11 is constituted by a part of the lead frame 4.
  • the base of the electrical contact may be a member different from the lead frame.
  • FIG. 8 shows an example in which the base 111 of the electrical contact 102 is a member different from the lead frame 104. *
  • the flat lead frame 104 has a through hole 104a on the other end side which is a free end.
  • the lead frame 104 is formed of a conductive metal material containing Cu or a Cu alloy, like the lead frame 4 of the above embodiment. *
  • the electrical contact 102 includes a base 111, which is a member different from the lead frame 104, a conductive layer 112, and a contact layer 113. *
  • the base 111 is formed of a conductive metal material containing Cu or a Cu alloy, like the lead frame 104.
  • the base 111 includes a shaft 121 and a flange 122 located on one end side of the shaft 121. *
  • the shaft portion 121 can be disposed in the through hole 104 a of the lead frame 104. That is, the lead frame 104 has a through hole 104 a that can accommodate the shaft portion 121.
  • the shaft 121 is crushed on the other end side in a state of being disposed in the through hole 104 a of the lead frame 104. Therefore, the base 111 is fixed to the peripheral edge of the lead frame 104 facing the through hole 104 a in a state where the shaft 121 is disposed in the through hole 104 a of the lead frame 104. Thereby, the base 111 can be formed separately from the lead frame 104 and attached to the lead frame 104. *
  • the conductive layer 112 is located on the surface of the flange portion 122 of the base portion 111.
  • the conductive layer 112 contains Ag, for example like the conductive layer 12 of the said embodiment. Thereby, the electrical resistance of the conductive layer 112 can be reduced.
  • a contact layer 113 is located on the conductive layer 112.
  • the contact layer 113 includes the same metal material as that of the conductive layer 112 and metal oxide particles such as Sn. Thereby, durability of the electrical contact 102 can be improved.
  • the lead frame 104 having the through hole 104a is formed, and the base 111 having the shaft portion 121 and the flange portion 122 is formed. Both the lead frame 104 and the base 111 are made of a conductive metal material containing Cu or a Cu alloy. *
  • the lead frame 104 and the base 111 are set to the pair of molds 141 and 142 in a state where the shaft 121 of the base 111 is disposed in the through hole 104 a of the lead frame 104.
  • the mold 141 has a pin 141a and a guide hole 141b.
  • the pin 141a moves in the guide hole 141b of the mold 141.
  • the other end side of the shaft portion 121 of the base portion 111 is disposed.
  • the mold 142 has a mold recess 142a.
  • the flange 122 of the base 111 is disposed in the mold recess 142a. Accordingly, the flange 122 of the base 111 can be held by the mold 142.
  • the lead frame 104 is held while being sandwiched between the pair of molds 141 and 142. *
  • the shaft 141 of the base 111 is moved by moving the pin 141a within the guide hole 141b of the mold 141 in a state where the pair of molds 141 and 142 is disposed with respect to the lead frame 104 and the base 111. Crush the other end of the.
  • the base 111 is fixed to the peripheral portion of the lead frame 104 facing the through hole 104a in a state where a part of the shaft 121 is disposed in the through hole 104a of the lead frame 104. Therefore, the shaft 121 of the base 111 can be fixed to the lead frame 104.
  • the conductive layer 112 and the contact layer 113 are formed on the flange 122 of the base 111 by the layer forming apparatus 50 having the same configuration as that of the above embodiment.
  • the formation method of the conductive layer 112 and the contact layer 113 by the layer forming apparatus 50 is the same as that of the case of the said embodiment, detailed description is abbreviate
  • the process of fixing the base 111 to the lead frame 104 corresponds to the base forming process.
  • the step of forming the conductive layer 112 on the base 111 corresponds to the conductive layer formation step.
  • the step of forming the contact layer 113 on the conductive layer 112 corresponds to the contact layer forming step.
  • the base 111 can be formed separately from the lead frame 104. Thereby, the base 111 can be formed of a metal material different from that of the lead frame 104, or the base 111 can be formed in a free shape. Therefore, the design freedom of the base 111 can be improved.
  • the present invention can be used for electrical contacts including noble metals and metal oxides.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Contacts (AREA)

Abstract

【課題】耐久性を向上可能な電気接点及びその製造方法を提供する。【解決手段】電気接点2は、導電性の金属材料を含む基部11と、基部11上に位置し、貴金属を含む導電層12と、導電層12上に位置する接点層13と、を備える。接点層13は、導電層12と同一の金属材料を含む接点層導電部21と、接点層導電部21の表面側の内部に一部が位置する金属酸化物の粒子22と、を有する。接点層導電部21は、露出している。

Description

電気接点、それを備えた電磁リレー及び電気接点の製造方法
本発明は、電気接点、それを備えた電磁リレー及び電気接点の製造方法に関する。
一般に、自動車及び事務機などには、各種の電磁リレーが用いられる。このような電磁リレーとして、例えば特許文献1に開示されるように、鉄心磁極及びコイルを含む電磁石の動作によって、固定接点ばねに配置された電気接点と可動接点ばねに配置された電気接点とを、接触または離間させる構成が知られている。 
上述のような構成を有する電磁リレーに用いられる電気接点は、導電性だけでなく、耐久性も要求される。そのため、例えば特許文献2に開示されるように、前記電気接点の材料として、Agに金属酸化物を分散させた材料を用いる構成が知られている。このように前記電気接点の材料としてAgを用いることによって、導電性を確保できる。また、Agに金属酸化物を分散させることによって、前記電気接点としての耐久性を向上できる。 
しかしながら、Agは高価な金属であるため、前記電気接点を全てAgによって形成した場合、電気接点の製造コストが増大する。そのため、電気接点として、例えば特許文献3に開示されるように、接点部がAg及び金属酸化物の合金(以下、Ag合金という)によって形成され、基部がCu合金によって形成された複合接点が用いられる。 
前記特許文献3に開示される複合接点では、Cu合金素線と、該Cu合金素線よりも外径の小さいAg合金素線とを成形金型の孔内で突き合わせた状態で鍛造することにより、前記Cu合金素線と前記Ag合金素線とを接合する。その後、鍔部を成形することによって複合接点を得る。上述のように前記Cu合金素線と前記Ag合金素線とを接合することにより、Cu合金とAg合金との接合強度を向上できる。
特開2005-166341号公報 特開2011-86563号公報 特開2013-30475号公報
前記特許文献3に開示される複合接点のように、Ag及び金属酸化物からなるAg合金を用いる場合、該Ag合金は、例えば、Ag中に金属(例えばSnなど)を添加して固溶させた後、熱酸化処理を行うことにより得られる。この熱酸化処理において、前記金属は酸化されて金属酸化物になる。 
ところで、前記熱酸化処理中では、金属酸化物がAg合金の外側に凝集する。そのため、Ag合金の外側に凝集した金属酸化物によって、他の金属の酸化が妨げられる。よって、Ag合金内で、必要量の金属酸化物が得られない可能性がある。したがって、上述のような熱酸化処理によって、Ag合金内で得られる金属酸化物の量には、限界がある。 
また、上述のようにAg合金の外側に凝集した金属酸化物によって、Ag合金の加工性が低下する。そのため、前記特許文献3に開示されるような従来の電気接点の形成方法では、Ag合金の加工性の観点から、Ag合金中の金属酸化物の添加量が制限される。 
上述のように、従来の構成では、Ag合金中の金属酸化物の添加量が制限されていた。そのため、従来の構成では、Ag合金中の金属酸化物による電気接点の耐久性の向上には限界があった。 
なお、仮にAg合金中で金属酸化物の添加量を増大させることができたとしても、Ag合金中でのAgの比率が低下するため、電気接点の導電率が低下する。そうすると、電気接点に通電した際に、前記電気接点の内部で生じるジュール熱が増大する。その結果、接点間で生じたアークによって、電気接点に生じるダメージが促進される。 
以上のように、従来の構成では、電気接点の耐久性の向上は困難であった。 
本発明の目的は、耐久性を向上可能な電気接点及びその製造方法を提供することにある。
本発明の一実施形態に係る電気接点は、被接触部と接触することにより通電する電気接点である。この電気接点は、導電性の金属材料を含む基部と、前記基部上に位置し、貴金属を含む導電層と、前記導電層上に位置する接点層と、を備える。前記接点層は、前記導電層と同一の金属材料を含む接点層導電部と、前記接点層導電部の表面側の内部に一部が位置する金属酸化物の粒子と、を有する。前記接点層導電部は、露出している。 
本発明の一実施形態に係る電気接点の製造方法は、被接触部と接触することにより通電する電気接点の製造方法である。この電気接点の製造方法は、導電性の金属材料を含む基部を形成する基部形成工程と、前記基部上に貴金属を含む導電層を形成する導電層形成工程と、前記導電層の表面に、スプレー法を用いて金属酸化物の粒子を打ち込むことにより、前記金属酸化物の粒子の一部が内部に位置し且つ前記貴金属が露出した接点層を形成する接点層形成工程と、を有する。
本発明の一実施形態に係る電気接点及び電気接点の製造方法によれば、電気接点の耐久性を向上できる。
図1は、実施形態に係る電気接点を備えたリレー装置の構成を模式的に示す図である。 図2は、電気接点の概略構成を示す断面図である。 図3は、図2のZ部を拡大して、金属酸化物の粒子を模式的に示す図である。 図4は、リードフレームの成形の様子を模式的に示す図である。 図5は、リードフレームの突出部上にスプレー法によって導電層を形成する様子を模式的に示す図である。 図6は、導電層にスプレー法によって金属酸化物の粒子を打ち込む様子を模式的に示す図である。 図7は、接点層を成形型によって加圧する様子を模式的に示す図である。 図8は、その他の実施形態に係る電気接点の概略構成を示す図2相当図である。 図9は、リードフレームに基部を固定する様子を模式的に示す図である。 図10は、リードフレームに固定された基部上にスプレー法によって導電層を形成する様子を模式的に示す図である。
以下、図面を参照し、本発明の実施の形態を詳しく説明する。なお、図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。また、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。 
なお、以下の説明において、“固定”、“接続”及び“取り付ける”等(以下、固定等)の表現は、部材同士が直接、固定等される場合だけでなく、他の部材を介して固定等される場合も含む。すなわち、以下の説明において、固定等の表現には、部材同士の直接的及び間接的な固定等の意味が含まれる。 
(リレー装置) 図1は、本発明の実施形態に係る電気接点2を備えたリレー装置1(電磁リレー)を模式的に示す図である。なお、図1は、リレー装置1を側方から見た図である。リレー装置1は、所定の間隔をあけて対向して配置される一対の電気接点2,3を有する。リレー装置1は、一対の電気接点2,3の接触と離間とを切り替えることにより、電流の通電及び遮断を制御する。電気接点3が、電気接点2と接触する被接触部である。なお、リレー装置1は、所定の間隔をあけて対向して配置される電気接点を二対以上、有してもよい。 
リレー装置1は、電気接点2,3がそれぞれ設けられた平板状の一対のリードフレーム4,5と、駆動機構6とを有する。 
一対のリードフレーム4,5は、例えばCuまたはCu合金などの導電性の金属材料によって形成された平板状の部材である。一対のリードフレーム4,5の電気伝導度は、50%IACS以上が好ましい。 
一対のリードフレーム4,5は、所定の間隔をあけて対向して配置され、一端側が固定される。一対のリードフレーム4,5の他端側は自由端であり、該他端側に電気接点2,3が対向して配置される。電気接点2は、リードフレーム4に対して電気的に接続される。電気接点3は、リードフレーム5に対して電気的に接続される。 
なお、特に図示しないが、例えば、リードフレーム4には、電源が電気的に接続され、リードフレーム5には、前記電源から供給される電力によって駆動する装置が電気的に接続される。 
駆動機構6は、筒状のコイル6a(図1では長手方向の断面で示す)と、コイル6aの内側に位置する鉄心6bと、接極子6cとを有する。接極子6cは、磁性材料によって形成された、側方から見てクランク状の部材である。接極子6cの一端側は、一対のリードフレーム4,5のうち、電気接点2が設けられた一方のリードフレーム4に接触する。接極子6cの他端側は、コイル6a及び鉄心6bの近傍に位置し、先端に向かうほどコイル6a及び鉄心6bから離間している。なお、詳しい説明は省略するが、接極子6cの屈曲部は、回転可能に支持される。図1に、接極子6cの回転中心をPで示す。 
コイル6aには、図示しない電源から電流が供給される。コイル6aに対する電流の供給は、図示しない制御装置からリレー装置1に通電の指示があった場合に行われる。コイル6aに電流が供給された場合には、コイル6a及び鉄心6bに磁界が生じる。一方、前記制御装置からリレー装置1に遮断の指示があった場合には、コイル6aに対して電流は供給されない。 
コイル6a及び鉄心6bに磁界が生じた場合、該磁界によって、接極子6cの他端側がコイル6a及び鉄心6bに対して近づく。すなわち、接極子6cは、回転中心Pを中心として、他端側がコイル6a及び鉄心6cに近づく方向に回転する(図1の矢印参照)。これにより、接極子6cの一端側がリードフレーム4をリードフレーム5側に押す。よって、リードフレーム4に設けられた電気接点2が、リードフレーム5に設けられた電気接点3に接触する。したがって、電気接点2,3を介して、一対のリードフレーム4,5に電流が流れる。すなわち、コイル6a及び鉄心6bに磁界が生じた場合には、リレー装置1は通電状態である。 
一方、コイル6a及び鉄心6bに磁界が生じていない場合、接極子6cの他端側はコイル6a及び鉄心6bに対して離間している。この場合、接極子6cがリードフレーム4をリードフレーム5側に押していないため、電気接点2,3は接触しない。したがって、一対のリードフレーム4,5には電流が流れない。すなわち、コイル6a及び鉄心6bに磁界が生じていない場合には、リレー装置1は遮断状態である。 
なお、特に図示しないが、リレー装置1は、コイル6a及び鉄心6bに磁界が生じていない場合にリードフレーム4をリードフレーム5から離間させる復帰ばね等を有してもよい。 
(電気接点) 次に、電気接点2の構成について、図2を用いて詳細に説明する。 
電気接点2は、リードフレーム4の他端側に位置する。電気接点2は、リードフレーム4の一部によって構成される基部11と、基部11上に形成された導電層12と、導電層12上に形成された接点層13とを有する。 
基部11は、リードフレーム4の一部が厚み方向の一方側(導電層側)に有底円筒状に突出した突出部4aである。リードフレーム4は、基部11に対して、厚み方向の他方側に凹部4bを有する。詳しくは後述するように、基部11を構成する突出部4aは、リードフレーム4の一部を厚み方向の一方側に凹ませることにより形成される。すなわち、基部11は、リードフレーム4と単一の部材である。 
このように、リードフレーム4の一部を厚み方向の一方側に凹ませることによって得られる突出部4aを基部11とすることで、リードフレーム4に基部11を容易に形成することができる。しかも、基部を別部材によって構成する場合に比べて、部品点数が少なくなるため、製造
コストを低減できる。 
導電層12は、例えば、Agなどの貴金属を含む。このように、導電層12がAgなどの貴金属を含むことにより、他の導電材料を用いた場合に比べて、導電層12の電気抵抗を小さくできる。よって、電気接点2に通電した際に、導電層12に生じるジュール熱を低減できる。導電層12の厚みは、後述の接点層13の厚みよりも大きい。 
詳しくは後述するように、導電層12は、例えばスプレー法等によって、リードフレーム4の突出部4a上にAgを含む微小な粒子を衝突させることにより形成される。すなわち、導電層12は、貴金属を含み且つ拡散接合された複数の粒子によって構成される。このようにリードフレーム4の突出部4a上に微小な粒子を衝突させることにより、電気接点2の基部11における導電層12側の面は、前記微小な粒子の一部が位置する凹凸を有する。 
従来の方法のように、2種類の金属素線を突き合わせた状態で鍛造することによって電気接点を得る場合には、用いる金属素線の最小のサイズが決まっている。そのため、電気接点を形成する際には、必要量以上の貴金属が用いられる。しかしながら、上述のように、スプレー法を用いて導電層12を形成することにより、導電層12を容易に且つ必要以上に厚くすることなく形成できる。 
しかも、上述のようにリードフレーム4の突出部4aである基部11上に導電層12を形成することにより、基部11の分だけ、導電層12を形成する必要がなくなる。 
したがって、導電層12を形成する際に用いる貴金属の量を減らすことができる。よって、電気接点2の製造コストを低減できる。 
なお、導電層12に含まれる貴金属は、Agに限らず、Au、Pt、Ir、Ru、Pd、Ni、Wであってもよい。また、導電層12は、貴金属に限らず、貴金属の元素を主成分とする合金を含んでもよい。 
接点層13は、電気接点2の最外層に位置し、電気接点2において、電気接点3と接触する接点部として機能する。接点層13は、導電層12と同一の金属材料(例えば、Agなどの貴金属)と、Snなどの金属の酸化物の粒子(金属酸化物の粒子)とを含む。 
図3に、図2における電気接点2のZ部を拡大して示す。接点層13は、導電層12と同一の金属材料を含む接点層導電部21と、接点層導電部21の表面側に位置する金属酸化物の粒子22とを有する。 
接点層導電部21は、導電層12と単一の層の一部である。金属酸化物の粒子22は、一部が接点層導電部21の表面側の内部に位置する。金属酸化物の粒子22は、後述するように、スプレー法によって接点層導電部21に打ち込まれる。接点層導電部21と金属酸化物の粒子22とは、熱拡散結合によって結合される。これにより、接点層13において接点層導電部21と金属酸化物の粒子22との結合力を向上できるため、接点層13の耐久性を向上できる。 
金属酸化物の粒子22は、接点層13を電気接点2の各層の積層方向から見て、接点層13の表面の一部のみに配置される。よって、接点層13の表面には、金属酸化物の粒子22及び接点層導電部21が露出している。このように、接点層導電部21が接点層13の表面に露出することにより、電気接点2の導電性の低下を抑制できる。 
また、金属酸化物の粒子22は、接点層13の内部よりも表面側に多い。すなわち、接点層13において、金属酸化物の粒子22の密度は、表面側に向かうほど大きい。図3では、説明のために、金属酸化物の粒子22を模式的に図示している。 
なお、金属酸化物の粒子22は、Snの酸化物の粒子に限らず、Zn、Al、Cu、Mg、Ni、Sb、In、Cd、Ga、Se、Tl、Te、Pb、Bi、Poの酸化物の粒子であってもよい。 
上述のように、接点層13の表面側に金属酸化物の粒子22が位置することにより、接点層13の耐久性を向上できる。特に、金属酸化物の粒子22の密度を、接点層13の表面側に向かうほど大きくすることにより、接点層13の耐久性を向上できる。 
ところで、従来の構成のように電気接点の内部に金属酸化物が含まれると、該電気接点の内部でのAgの比率が低下する。そのため、従来の構成では、電気接点をAgのみによって構成した場合に比べて、電気接点の内部での抵抗が大きい。これにより、従来の構成の電気接点では、通電した際に内部で生じるジュール熱が大きいため、内部の温度が上昇しやすい。そうすると、電気接点同士の間で生じるアークによって電気接点にダメージが生じやすくなり、電気接点の耐久性が低下する。 
これに対し、本実施形態では、金属酸化物の粒子22は、接点層13の表面側のみに位置する。そのため、接点層13の接点層導電部21及び導電層12には、金属酸化物が含まれない。よって、電気接点の内部に金属酸化物が含まれる従来の構成に比べて、電気接点2の内部の電気抵抗を小さくすることができる。これにより、電気接点2に通電した際のジュール熱の発生を抑制できるため、アークによって電気接点2がダメージを受けることを抑制できる。 
以上より、導電層12上に位置する接点層13によって、電気接点2と電気接点3との間でアークが生じた場合に、該アークによって電気接点2の表面がダメージを受けることを抑制できる。しかも、接点層13の表面側のみに金属酸化物の粒子22を配置することにより、電気接点2の電気抵抗が小さくなるため、アークによる電気接点2に対するダメージを軽減できる。したがって、電気接点2の耐久性を向上できる。 
また、本実施形態では、接点層13において、金属酸化物の粒子22の密度は、表面側に向かうほど大きい。これにより、電気接点2の表面の耐久性をより向上できるとともに、電気接点2の内部の電気抵抗を低減できる。したがって、電気接点2の耐久性をより向上できる。 
本実施形態では、導電層12の厚みは、接点層13の厚みよりも大きい。これにより、電気接点2において、Agの比率が高い導電層12の割合は、金属酸化物の粒子22を含む接点層13よりも大きい。よって、電気接点2の電気抵抗を低減できる。したがって、電気接点2におけるジュール熱の発生を抑制できるため、アークによる電気接点2のダメージを軽減できる。 
なお、電気接点3も、電気接点2と同様の構成を有してもよいし、異なる構成を有してもよい。ただし、電気接点3の接点部も、電気接点2と同様、貴金属を含む材料によって構成されるとともに、耐久性の観点から、表面側に電気接点2と同様の金属酸化物の粒子が位置することが好ましい。 
(電気接点の製造方法) 次に、上述のような構成を有する電気接点2の製造方法について、図4及び図5を用いて説明する。 
図4に示すように、例えばCuまたはCu合金を含む材料からなる金属板を、一対の金型41,42によって厚み方向に挟み込んでプレスすることにより、前記金属板に突出部4a及び凹部4bを形成する。具体的には、金型41は、前記金属板に凹部4bを形成するための金型凸部41aを有する。金型42は、前記金属板に突出部4aを形成するための金型凹部42aを有する。金型41,42によって、前記金属板を厚み方向に挟み込んでプレスすることにより、突出部4a及び凹部4bを有するリードフレーム4が形成される。 
なお、金型41,42の金型凸部41a及び金型凹部42aは、それぞれ、平面視で円形状である。よって、リードフレーム4に形成される突出部4aは、有底円筒状である。 
次に、図5に示すように、上述のように形成されたリードフレーム4の突出部4a上に、スプレー法を用いて導電層12を形成する。なお、図5は、層形成の様子を模式的に示した図であり、スプレー法に用いる層形成装置50とリードフレーム4との位置関係及び大小関係等は、実際とは異なる。 
層形成装置50は、微小な粒子を溶融温度以下の固相状態で基材に衝突させることによって該基材上に形成する、いわゆるコールドスプレー法によって、基部11上に導電層12を形成する。層形成装置50は、高圧ガスを用いて貴金属(例えばAg)の粒子Xを吐出するスプレーガン51を有する。スプレーガン51は、内部に、外部から粒子Xが供給される空間51aを有するとともに、空間51a内の粒子Xを吐出するためのノズル51bを有する。 
スプレーガン51の空間51aには、外部から粒子Xが供給されるとともに、所定の圧力(例えば1MPaよりも高い圧力)及び所定の温度(粒子Xの溶融温度以下)の高圧ガスが供給される。これにより、スプレーガン51のノズル51bから、空間51a内の粒子Xが吐出される。 
ノズル51bから吐出された粒子Xは、リードフレーム4の基部11に衝突する。これにより、基部11上に、粒子Xによって導電層12が形成される。なお、粒子Xは、基部11の表面に対して衝突した際には、基部11に一部が食い込んで基部11に対して拡散接合される。一方、粒子Xは、他の粒子Xと衝突した際には、拡散接合によって粒子X同士が接合される。 
高圧ガスは、粒子Xの酸化及び変質を防止可能なガスが好ましい。また、高圧ガスは、ガス中での音速が速いガスが好ましい。このようなガスとして、例えば、H、He、N、O及びそれらを主成分とするガスが挙げられる。 
スプレー法によって基部11上に導電層12を形成した後、図6に示すように、形成された導電層12の表面に対して、スプレー法によって、金属酸化物の粒子22を打ち込む。この際も、上述の層形成装置50を用いて、金属酸化物の粒子22を導電層12に衝突させる。これにより、金属酸化物の粒子22の一部が導電層12の表面側に食い込む。すなわち、金属酸化物の粒子22の一部が、導電層12の表面側の内部に位置する。 
これにより、導電層12の表面側に、貴金属を含む金属材料と金属酸化物の粒子22とを有する接点層13が形成される。なお、導電層12のうち、金属酸化物の粒子22の一部が食い込んでいる部分が、接点層13の接点層導電部21である。 
なお、粒子Xに含まれる貴金属は、Agに限らず、Au、Pt、Ir、Ru、Pd、Ni、Wであってもよい。導電層12は、貴金属に限らず、貴金属の元素を主成分とする合金を含んでいてもよい。 
金属酸化物の粒子22は、Snの酸化物の粒子に限らず、Zn、Al、Cu、Mg、Ni、Sb、In、Cd、Ga、Se、Tl、Te、Pb、Bi、Poの酸化物の粒子であってもよい。 
上述のようにリードフレーム4の基部11上に導電層12及び接点層13を形成した後、導電層12及び接点層13の焼結を行う。この際、図7に示すように、成形型31によって、導電層12及び接点層13に対して積層方向に圧縮する力(図7中に白抜き矢印方向で示す力)を加えつつ加熱する。これにより、上述のようにスプレー法によって形成された導電層12及び接点層13において、粒子X同士、及び、粒子Xと金属酸化物の粒子22とが、熱拡散結合される。したがって、導電層12及び接点層13の強度を向上できる。 
特に、上述のように接点層13の焼結を行うことにより、金属酸化物の粒子22と接点層導電部21との結合強度を向上できる。よって、電気接点2の接点層13の耐久性を向上できる。 
具体的には、成形型31を用いて接点層13に対して積層方向に加圧することにより、接点層13を金属酸化物の粒子22を接点層導電部21に押し込んで接点層導電部21に塑性変形を生じさせる。これにより、接点層13の表面形状をコントロールすることができるとともに、金属酸化物の粒子22と接点層導電部21とをより強固に接触させることができる。そして、上述のように接点層13を加圧した状態で、接点層13を加熱することにより、金属酸化物の粒子22と接点層導
電部21とを熱拡散結合(焼結)させる。これにより、金属酸化物の粒子22と接点層導電部21とをより強固に結合できる。 
また、上述のように導電層12及び接点層13で粒子X同士を熱拡散結合(焼結)させることにより、導電層12及び接点層13の導電率を向上できる。 
ここで、基部11を形成する工程が、基部形成工程に対応する。基部11上に導電層12を形成する工程が、導電層形成工程に対応する。導電層12の表面に金属酸化物の粒子22を打ち込むことにより、接点層13を形成する工程が接点層形成工程に対応する。成形型31を用いて接点層13を加圧する工程が接点層加圧工程に対応する。導電層12及び接点層13を加熱して結合させる工程が焼結工程に対応する。 
なお、本実施形態では、導電層12及び接点層13の焼結を行っているが、導電層12及び接点層13の焼結を行わなくてもよい。 
上述の方法により、従来の構成のような金属酸化物を含む材料の加工が不要になる。よって、電気接点2を形成する際に、金属酸化物による加工性の影響を受けることを防止できる。しかも、上述の方法では、スプレー法によって導電層12に金属酸化物の粒子22を打ち込むため、金属酸化物の粒子の量を容易に調整できる。したがって、電気接点2の耐久性を向上するために、金属酸化物の量を容易に調整できる。 
(その他の実施形態) 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 
前記実施形態では、導電層12は、コールドスプレー法によって形成される。しかしながら、導電層12を形成可能な方法であれば、コールドスプレー法以外の方法によって形成してもよい。他の形成方法としては、例えば、プラズマを利用したプラズマ溶射、フレーム溶射などの溶射を用いた方法、蒸着などの方法がある。また、導電層の形成方法は、成膜方法に限定されず、他の方法を用いてもよい、さらに、種々の形成方法を組み合わせて導電層を形成してもよい。なお、前記実施形態のように導電層の形成にコールドスプレー法を用いることにより、粒子X内のAg等の成分元素が酸化及び変質することを回避できる。 
前記実施形態では、基部11上に導電層12が形成される。しかしながら、基部11上に酸化防止層を形成し、該酸化防止層上に導電層12を形成してもよい。酸化防止層は、例えばAgなどの貴金属を含む。酸化防止層の形成方法は、スプレー法、めっきなど、形成可能な方法であればどのような形成方法であってもよい。 
上述のように基部11上に酸化防止層を形成することにより、導電層12が形成される際などに基部11が酸化することを防止できる。よって、電気接点の内部で電気抵抗が増大することを抑制できる。 
前記実施形態では、基部11は有底円筒状である。しかしながら、基部の形状は、基部上に導電層を形成可能な形状であれば、多面体形状など、どのような形状であってもよい。 
前記実施形態では、リードフレーム4の一部によって基部11が構成される。しかしながら、電気接点の基部がリードフレームとは別の部材であってもよい。図8に、電気接点102の基部111がリードフレーム104とは別の部材である一例を示す。 
図8に示すように、平板状のリードフレーム104は、自由端である他端側に、貫通穴104aを有する。なお、リードフレーム104は、前記実施形態のリードフレーム4と同様、CuまたはCu合金を含む導電性の金属材料によって形成される。 
電気接点102は、リードフレーム104とは別部材の基部111と、導電層112と、接点層113とを有する。 
基部111は、リードフレーム104と同様、CuまたはCu合金を含む導電性の金属材料によって形成される。基部111は、軸部121と、軸部121の一端側に位置する鍔部122とを有する。 
軸部121は、リードフレーム104の貫通穴104a内に配置可能である。すなわち、リードフレーム104は、軸部121を収容可能な貫通穴104aを有する。軸部121は、リードフレーム104の貫通穴104a内に配置された状態で、他端側が潰される。よって、基部111は、リードフレーム104の貫通穴104a内に軸部121が配置された状態で、リードフレーム104における貫通穴104aに面する周縁部に固定される。これにより、基部111を、リードフレーム104とは別に形成して、リードフレーム104に取り付けることができる。 
基部111の鍔部122の表面上には、導電層112が位置する。なお、導電層112は、前記実施形態の導電層12と同様、例えば、Agを含む。これにより、導電層112の電気抵抗を小さくすることができる。 
導電層112上には、接点層113が位置する。なお、接点層113は、導電層112と同一の金属材料と、例えばSnなどの金属の酸化物の粒子とを含む。これにより、電気接点102の耐久性を向上できる。 
次に、上述の構成を有する電気接点102の製造方法について、図9及び図10を用いて説明する。 
まず、貫通穴104aを有するリードフレーム104を形成するとともに、軸部121及び鍔部122を有する基部111を形成する。リードフレーム104及び基部111は、いずれも、CuまたはCu合金を含む導電性の金属材料によって形成される。 
図9に示すように、リードフレーム104の貫通穴104a内に基部111の軸部121を配置した状態で、一対の金型141,142に対して、リードフレーム104及び基部111をセットする。 
金型141は、ピン141aと、ガイド穴141bとを有する。ピン141aは、金型141のガイド穴141b内を移動する。金型141のガイド穴141b内には、基部111の軸部121の他端側が配置される。 
金型142は、金型凹部142aを有する。金型凹部142a内には、基部111の鍔部122が配置される。これにより、金型142によって、基部111の鍔部122を保持できる。 
なお、リードフレーム104は、一対の金型141,142の間に挟まれた状態で保持される。 
上述のように、リードフレーム104及び基部111に対して一対の金型141,142を配置した状態で、金型141のガイド穴141b内でピン141aを移動させることにより、基部111の軸部121の他端側を押しつぶす。これにより、基部111は、軸部121の一部がリードフレーム104の貫通穴104a内に配置された状態で、リードフレーム104において貫通穴104aに面する周縁部に固定される。よって、基部111の軸部121を、リードフレーム104に対して固定することができる。 
その後、図10に示すように、前記実施形態と同様の構成を有する層形成装置50によって、基部111の鍔部122上に導電層112及び接点層113を形成する。なお、層形成装置50による導電層112及び接点層113の形成方法は、前記実施形態の場合と同様なので、詳しい説明を省略する。 
ここで、基部111をリードフレーム104に対して固定する工程が基部形成工程に対応する。基部111上に導電層112を形成する工程が導電層形成工程に対応する。導電層112上に接点層113を形成する工程が接点層形成工程に対応する。 
以上により、基部111をリードフレーム104とは別に形成できる。これにより、基部111をリードフレーム104とは異なる金属材料によって形成したり、基部111を自由な形状によって形成したりすることができる。したがって、基部111の設計自由度を向上できる。
本発明は、貴金属及び金属酸化物を含む電気接点に利用可能である。
1 リレー装置2、102 電気接点3 電気接点(被接触部)4、5、104 リードフレーム11、111 基部12、112 導電層13、113 接点層21 接点層導電部22 金属酸化物の粒子31 成形型50 層形成装置51 スプレーガンX 貴金属の粒子

Claims (11)

  1. 被接触部と接触することにより通電する電気接点であって、 導電性の金属材料を含む基部と、 前記基部上に位置し、貴金属を含む導電層と、 前記導電層上に位置する接点層と、を備え、 前記接点層は、  前記導電層と同一の金属材料を含む接点層導電部と、  前記接点層導電部の表面側の内部に一部が位置する金属酸化物の粒子と、 を有し、 前記接点層導電部は、露出している、電気接点。
  2. 請求項1に記載の電気接点において、 前記導電層の厚みは、前記接点層の厚みよりも大きい、電気接点。
  3. 請求項1または2に記載の電気接点において、 前記接点層は、表面側に向かうほど前記金属酸化物の粒子の密度が大きい、電気接点。
  4. 請求項1から3のいずれか一つに記載の電気接点において、 前記接点層において、前記接点層導電部と前記金属酸化物の粒子とは熱拡散結合によって結合されている、電気接点。
  5. 請求項1から4のいずれか一つに記載の電気接点において、 前記導電層は、貴金属を含み且つ拡散接合された複数の粒子によって構成される、電気接点。
  6. 請求項5に記載の電気接点において、 前記基部における前記導電層側の面は、前記複数の粒子の一部が位置する凹凸を有する、電気接点。
  7. 請求項1から6のいずれか一つに記載の電気接点を備えた電磁リレー。
  8. 被接触部と接触することにより通電する電気接点の製造方法であって、 導電性の金属材料を含む基部を形成する基部形成工程と、 前記基部上に貴金属を含む導電層を形成する導電層形成工程と、 前記導電層の表面に、スプレー法を用いて金属酸化物の粒子を打ち込むことにより、前記金属酸化物の粒子の一部が内部に位置し且つ前記貴金属が露出した接点層を形成する接点層形成工程と、を有する、電気接点の製造方法。
  9. 請求項8に記載の電気接点の製造方法において、 前記導電層形成工程は、スプレー法を用いて貴金属を含む複数の粒子によって前記導電層を形成する、電気接点の製造方法。
  10. 請求項8または9に記載の電気接点の製造方法において、 前記接点層形成工程の後に、成形型を用いて前記接点層を加圧する接点層加圧工程をさらに有する、電気接点の製造方法。
  11. 請求項8から10のいずれか一つに記載の電気接点の製造方法において、 前記接点層形成工程の後に、前記接点層及び前記導電層を焼結させる焼結工程をさらに有する、電気接点の製造方法。
PCT/JP2018/008650 2017-03-27 2018-03-06 電気接点、それを備えた電磁リレー及び電気接点の製造方法 WO2018180287A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017061825 2017-03-27
JP2017-061825 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180287A1 true WO2018180287A1 (ja) 2018-10-04

Family

ID=63677002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008650 WO2018180287A1 (ja) 2017-03-27 2018-03-06 電気接点、それを備えた電磁リレー及び電気接点の製造方法

Country Status (1)

Country Link
WO (1) WO2018180287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850401B1 (ja) * 2019-07-22 2021-03-31 日本碍子株式会社 接合体および弾性波素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166341A (ja) * 2003-12-01 2005-06-23 Mitsubishi Material Cmi Kk 高導電性を有する小寸化電磁リレー用内部酸化銀−酸化物系材料製電気接点
JP2012062564A (ja) * 2010-09-17 2012-03-29 Furukawa Electric Co Ltd:The めっき材およびその製造方法
WO2017094378A1 (ja) * 2015-11-30 2017-06-08 オムロン株式会社 接点部材、摺動接点、電気機器、および接点部材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166341A (ja) * 2003-12-01 2005-06-23 Mitsubishi Material Cmi Kk 高導電性を有する小寸化電磁リレー用内部酸化銀−酸化物系材料製電気接点
JP2012062564A (ja) * 2010-09-17 2012-03-29 Furukawa Electric Co Ltd:The めっき材およびその製造方法
WO2017094378A1 (ja) * 2015-11-30 2017-06-08 オムロン株式会社 接点部材、摺動接点、電気機器、および接点部材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6850401B1 (ja) * 2019-07-22 2021-03-31 日本碍子株式会社 接合体および弾性波素子

Similar Documents

Publication Publication Date Title
US9293286B2 (en) Electromagnetic relay
JP5284830B2 (ja) 電磁継電器
JP5724616B2 (ja) 電磁スイッチ
US20100066468A1 (en) Electromagnetic relay
WO2020170900A1 (ja) リレー
CN102668006B (zh) 用于继电器的电触点及其制造方法
WO2018180287A1 (ja) 電気接点、それを備えた電磁リレー及び電気接点の製造方法
JP5948385B2 (ja) 点火プラグ用電極を製造するためのクラッド構造を有するテープ材
JP4577290B2 (ja) 電磁継電器
JP2007087882A (ja) 電磁スイッチ
WO2018180217A1 (ja) 電気接点、それを備えた電磁リレー及び電気接点の製造方法
WO2018180216A1 (ja) 電気接点、それを備えた電磁リレー及び電気接点の製造方法
WO2017094378A1 (ja) 接点部材、摺動接点、電気機器、および接点部材の製造方法
US6798323B2 (en) Welded AC electromagnet lamination assembly incorporating shading coil
CN1988326B (zh) 电转动机器、电枢、制造电转动机器的方法以及形成电枢的机器
US20190280402A1 (en) Tape-shaped contact member and method for manufacturing same
US7786644B2 (en) Electric rotary machine, armature, method of manufacturing electric rotary machine and machine for forming armature
JP7434769B2 (ja) 電磁継電器
CN108475604B (zh) 继电器设备
JP2012256453A (ja) 電磁継電器
CN104135119A (zh) 用于制造用于换向装置的集电器的方法
JP2017135050A (ja) 電磁継電器
JP7135876B2 (ja) リレー
JP7285229B2 (ja) 電磁継電器
JPH0817319A (ja) 電磁リレー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18775943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18775943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP