WO2018180276A1 - 圧電体膜、圧電素子、及び、圧電素子の製造方法 - Google Patents

圧電体膜、圧電素子、及び、圧電素子の製造方法 Download PDF

Info

Publication number
WO2018180276A1
WO2018180276A1 PCT/JP2018/008542 JP2018008542W WO2018180276A1 WO 2018180276 A1 WO2018180276 A1 WO 2018180276A1 JP 2018008542 W JP2018008542 W JP 2018008542W WO 2018180276 A1 WO2018180276 A1 WO 2018180276A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite oxide
piezoelectric film
piezoelectric
atm
content
Prior art date
Application number
PCT/JP2018/008542
Other languages
English (en)
French (fr)
Inventor
直樹 村上
大悟 澤木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18777381.7A priority Critical patent/EP3605625B1/en
Priority to JP2019509104A priority patent/JP6850870B2/ja
Publication of WO2018180276A1 publication Critical patent/WO2018180276A1/ja
Priority to US16/560,325 priority patent/US11793082B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a piezoelectric film, a piezoelectric element, and a method for manufacturing the piezoelectric element.
  • a piezoelectric film using a perovskite oxide (ABO 3 ) such as lead zirconate titanate is known.
  • a piezoelectric element having the piezoelectric film and an electrode provided so that an electric field can be applied to the piezoelectric film is used in various devices as an actuator, for example.
  • Patent Document 1 discloses that “A 1 -b B 1 -a X a O 3 is represented by a general formula, A includes Pb, and B includes at least one of Zr and Ti.
  • X is composed of at least one of V, Nb, Ta, Cr, Mo, and W, a is in the range of 0.05 ⁇ a ⁇ 0.3, and b is 0 ..
  • the inventors of the present invention have studied the piezoelectric film described in Patent Document 1, and have found that there is a problem that the leakage current increases in a high temperature environment.
  • an object of the present invention is to provide a piezoelectric film in which an increase in leakage current is suppressed even under a high temperature environment (hereinafter also referred to as “having the effect of the present invention”).
  • Another object of the present invention is to provide a piezoelectric element and a method for manufacturing the piezoelectric element.
  • the unit of q may be a in formula (2).
  • the content of Pb in the perovskite oxide is 20.7 atm% or more and less than 22 atm% with respect to the total number of atoms in the perovskite oxide, according to [1] or [2] Piezoelectric film.
  • a piezoelectric element comprising the piezoelectric film according to any one of [1] to [7] and an electrode.
  • a method of manufacturing a piezoelectric element comprising a substrate, a lower electrode, the piezoelectric film according to any one of [1] to [7], and an upper electrode in this order.
  • obtaining a substrate with electrode to form by maintaining the temperature of the electrode-attached substrate in T 1, by vapor deposition, depositing a perovskite oxide with electrodes on a substrate, perovskite oxide The temperature of the substrate with the electrode on which is deposited is maintained at T 2 , a step of obtaining a piezoelectric film by depositing a perovskite oxide by vapor phase growth, and an upper electrode is formed on the piezoelectric film
  • T 1 and T 2 satisfy the formula (3) 1.04 ⁇ T 1 / T 2 ⁇ 1.12.
  • the present invention it is possible to provide a piezoelectric film in which an increase in leakage current is suppressed even under a high temperature environment. Moreover, according to this invention, the manufacturing method of a piezoelectric element and a piezoelectric element can also be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • FIG. 1 is a schematic cross-sectional view of a piezoelectric element according to an embodiment of the present invention.
  • the piezoelectric element 10 includes a substrate 11, an adhesion layer 12, a lower electrode 13, a piezoelectric film 14, and an upper electrode 15.
  • the piezoelectric film 14 is sandwiched between a pair of electrodes (lower electrode 13 and upper electrode 15).
  • an electric field can be applied to the piezoelectric film 14 through a pair of electrodes.
  • the piezoelectric element 10 according to the present embodiment includes the adhesion layer 12, the piezoelectric element may not include the adhesion layer when there is no problem in the adhesion between the substrate and the lower electrode. Moreover, it may replace with the contact
  • the piezoelectric film according to the above embodiment contains a perovskite oxide represented by the following formula (1), and the Nb content q (atm%) relative to the total number of atoms in the perovskite oxide, A piezoelectric in which the ratio r of the diffraction peak intensity from the (200) plane to the diffraction peak intensity from the (100) plane of the perovskite oxide measured by the X-ray diffraction method satisfies the formula (2) described later. It is a body membrane.
  • the reason why the piezoelectric film according to the present embodiment having such a configuration can solve the above-mentioned problem is not necessarily clear, but the inventors presume as follows.
  • the mechanism by which an effect is acquired is not restrict
  • the leakage current means a current measured by the method described in the examples.
  • the piezoelectric film described in Patent Document 1 contains V, Nb, Ta, Cr, Mo, and W that can take a larger valence in addition to atoms that can take a tetravalence of Zr and Ti. According to the study by the present inventors, it is considered that when an element capable of having a large valence is added to the B site of the perovskite oxide (ABO 3 ), it becomes difficult to balance the charge in the perovskite oxide crystal. It is done.
  • the piezoelectric film according to the above embodiment is characterized in that the relationship between the diffraction intensity ratio (200) / (100) by X-ray diffraction and the lead content is controlled within a predetermined range.
  • (200) / (100) is a parameter estimated to reflect the amount of defects existing on the (200) plane. That is, it is estimated that (200) / (100) increases as the number of defects on the (200) plane decreases.
  • the (200) plane defect is presumed to be filled with Pb contained in the perovskite oxide. On the other hand, if there is too much Pb contained in the perovskite oxide, it is presumed that excess Pb is not taken into the crystal lattice and exists at the grain boundaries.
  • the piezoelectric film according to the above embodiment has an r (r is (r is the content of Nb (atm%) when the total number of atoms contained in the perovskite oxide is 100 atm%)). 200) / (100).) Ratio is 0.35 or more and less than 0.58. When r / q is 0.35 or more, there are few defects generated by containing Nb, and the above defects are filled with Pb. When r / q is less than 0.58, excessive Pb Leakage current hardly occurs. Therefore, according to the piezoelectric film according to the above embodiment, desired characteristics can be obtained even in a high temperature environment.
  • the piezoelectric film according to this embodiment preferably has a perovskite oxide preferentially oriented in the (100) plane and the (200) plane.
  • the preferential orientation refers to a state where the orientation direction of the crystal is not disordered and a specific crystal plane is oriented in a substantially constant direction.
  • “preferentially oriented in the (100) plane” means from the (100) plane, the (110) plane, and the (111) plane of the perovskite oxide generated when the piezoelectric film is measured by the X-ray diffraction method.
  • the ratio (100) / ((100) plane + (110) plane + (111) plane) of the diffraction peak intensity is greater than 0.5, and the same applies to the (200) plane.
  • the C axis of the columnar crystal is oriented in the film thickness direction (T direction in FIG. 1) of the piezoelectric film. It is preferable.
  • the piezoelectric film according to the embodiment contains a perovskite oxide represented by the following formula (1).
  • the content of the perovskite oxide in the piezoelectric film is not particularly limited, but 90% by mass or more based on the total mass of the piezoelectric film is obtained in that a piezoelectric film having a better effect of the present invention can be obtained.
  • 99 mass% or more is more preferable, and it is preferable that the piezoelectric film is substantially made of a perovskite oxide.
  • the phrase “substantially composed of a perovskite oxide” means that the piezoelectric film does not contain components other than the perovskite oxide (however, impurities that are not intentionally mixed are excluded).
  • A represents an A element containing Pb, and x and y each independently represent a number exceeding 0 and less than 1.
  • the perovskite oxide may contain an element other than the above as an impurity as long as the perovskite structure can be maintained.
  • A is referred to as an A site element, and Zr, Ti, and Nb are also referred to as a B site element.
  • A represents an A element containing Pb, and typically represents Pb. A may be partially substituted with a metal element other than Pb. Examples of metal elements other than Pb include Ba and Bi.
  • the perovskite oxide represented by the formula (1) is represented by the following formula (1-1).
  • the value of y is not particularly limited. However, a morphotropic phase boundary (MPB) is obtained in that a piezoelectric film having more excellent effects of the present invention can be obtained. Boundary) near 0.52 is preferable.
  • MPB morphotropic phase boundary
  • the value of r / q is determined based on the Nb content in the perovskite oxide (unit: atm%, two significant digits) and (100) and (100) of the perovskite oxide measured by the X-ray diffraction method.
  • 200 represents the ratio of two significant digits obtained from the measurement result of diffraction peak intensity from the plane (three significant digits).
  • (200) / (100) is 0.830
  • the Nb content is 2.4 atm%
  • the third digit is rounded off to calculate r / q of 0.35.
  • the Nb content (atm%) in the perovskite oxide means a value measured by XRF (X-ray Fluorescence) or ICP (Inductively Coupled Plasma).
  • the lower limit of r / q is 0.35 or more, but it is preferably more than 0.36, more preferably 0.37 or more, in that the obtained piezoelectric film has more excellent effects of the present invention. 0.39 or more is more preferable. Although an upper limit is less than 0.58, 0.57 or less is preferable and 0.55 or less is more preferable at the point which the piezoelectric material film obtained has the effect of this invention more excellent.
  • the content of Nb at the B site (representing the content of Nb when the total number of atoms at the B site is 100 atm%, the unit is atm%) is not particularly limited. From the standpoint of obtaining a piezoelectric film having a more excellent effect of the present invention, when the total number of atoms at the B site is 100 atm%, 10 to 15 atm% is preferable, and 10 to 12 atm% is more preferable.
  • x is preferably 0.10 to 0.15, more preferably 0.10 to 0.12.
  • the Nb content (atm%) in the perovskite oxide is not particularly limited, but when the total number of atoms contained in the perovskite oxide is 100 atm%, the lower limit is 2.0 atm% or more.
  • the upper limit is preferably 3.0 atm% or less, more preferably less than 3.0 atm%, further preferably 2.9 atm% or less, and particularly preferably 2.4 atm% or less.
  • the Pb content (atm%) in the perovskite oxide is not particularly limited, but when the total number of atoms contained in the perovskite oxide is 100 atm%, the lower limit is 20.0 atm% or more.
  • the upper limit is preferably 22.0 atm% or less, more preferably less than 22.0 atm%, further preferably 21.5 atm% or less.
  • the ratio of the number of atoms contained in the Pb content (atm%) to the Nb content (atm%) in the perovskite oxide is not particularly limited, a piezoelectric film having a more excellent effect of the present invention can be obtained. Therefore, the Pb content (atm%) / Nb content (atm%) is preferably 6.9 or more, more preferably more than 7.0, still more preferably more than 8.6, 8 .7 or higher is particularly preferable, and 8.8 or higher is most preferable. As an upper limit, 12 or less is preferable and 11 or less is more preferable.
  • the unit of Nb content and Pb content is atm% when the total number of atoms contained in the perovskite oxide is 100 atm%.
  • the piezoelectric film has a more excellent effect of the present invention.
  • the Pb content (atm%) / Nb content (atm%) is a coefficient calculated with two significant digits.
  • the Nb content in Example 2 described later is 2.0 atm%
  • the Pb content (atm%) / Nb content (atm%) is more than 7.0, and all atoms contained in the perovskite oxide are included.
  • the number is 100 atm%
  • the Nb content (atm%) is 2.3 atm% or less
  • the Pb content (atm%) is 20.8 atm% or more.
  • the piezoelectric film is preferably a columnar crystal film made of columnar crystals in which the crystal structure of the perovskite oxide extends in the film thickness direction of the piezoelectric film (direction T in FIG. 1).
  • the columnar crystal film is preferably composed of a large number of the columnar crystals.
  • the average column diameter of the columnar crystals is not particularly limited, but is preferably 30 nm to 1.0 ⁇ m. When the average column diameter of the columnar crystals is 30 nm or more, the influence of the domain boundary portion is further reduced, so that a piezoelectric film in which leakage current is further suppressed can be obtained.
  • the average column diameter of the columnar crystals is 1.0 ⁇ m or less, a piezoelectric film having better shape accuracy can be obtained when the piezoelectric film is patterned.
  • the film thickness of the piezoelectric film is not particularly limited, but is preferably 500 nm or more, more preferably 1.0 ⁇ m or more, and even more preferably 2.0 ⁇ m or more, from the viewpoint that the durability of the piezoelectric film is more excellent.
  • the upper limit of the thickness of the piezoelectric film is not particularly limited, but is preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the method for producing the piezoelectric film (hereinafter also referred to as “film formation”) is not particularly limited, and a known method can be used.
  • the method for forming the piezoelectric film include vapor deposition methods such as sputtering, plasma CVD (Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition), and PLD (Pulse Laser Deposition).
  • vapor deposition methods such as sputtering, plasma CVD (Chemical Vapor Deposition), MOCVD (Metal Organic Chemical Vapor Deposition), and PLD (Pulse Laser Deposition).
  • liquid phase methods such as sol-gel method and organometallic decomposition method; aerosol deposition method.
  • the vapor phase growth method is preferable as the method for manufacturing the piezoelectric film because the film forming conditions are easily controlled. Further, according to the vapor phase growth method, it is possible to suppress the generation of lateral streaks in the piezoelectric film during film formation, and a piezoelectric film having higher durability can be obtained.
  • the method for producing the piezoelectric film by the vapor phase growth method is not particularly limited, but typically, the substrate and the target are opposed to each other, and a film containing the constituent elements of the target is formed on the substrate using plasma. A method is mentioned.
  • substrate the base material mentioned later, a board
  • Examples of the vapor phase growth method include a bipolar sputtering method, a tripolar sputtering method, a direct current sputtering method, a radio frequency sputtering method (RF: Radio Frequency Sputtering method), an ECR (Electron Cyclotron Resonance) sputtering method, a magnetron sputtering method, and a counter target. Examples thereof include a sputtering method, a pulse sputtering method, and an ion beam sputtering method.
  • RF Radio Frequency Sputtering method
  • ECR Electro Cyclotron Resonance
  • a sputtering method (especially a high frequency sputtering method is preferable), an ion plating method, or a plasma CVD method is preferable in that a piezoelectric film having the better effect of the present invention can be obtained.
  • Sputtering is preferable.
  • the manufacturing method of the piezoelectric film is a sputtering method, the perovskite oxide of the obtained piezoelectric film tends to be columnar crystals that are C-axis oriented in the thickness direction of the piezoelectric film (T direction in FIG. 1).
  • the substrate 11 in the piezoelectric element 10 according to the present embodiment is not particularly limited, and a known substrate can be used.
  • the substrate include silicon, glass, stainless steel, yttrium-stabilized zirconia (YSZ), SrTiO 3 , alumina, sapphire, and silicon carbide.
  • YSZ yttrium-stabilized zirconia
  • SrTiO 3 alumina, sapphire, and silicon carbide.
  • a laminated substrate such as an SOI (Silicon on Insulator) substrate in which a SiO 2 film and a Si active layer are sequentially laminated on silicon may be used.
  • the piezoelectric element 10 includes an adhesion layer 12 between the substrate 11 and the lower electrode 13 for improving the adhesion between them.
  • the adhesion layer 12 is not particularly limited, and a known material can be used. Examples of the material for the adhesion layer include Ti and TiW.
  • the lower electrode 13 is an electrode for applying an electric field to the piezoelectric film 14 and makes a pair with the upper electrode 15.
  • the material for the lower electrode 13 is not particularly limited, and a known material can be used.
  • the material of the lower electrode 13 include metals such as Au, Pt, Ir, IrO 2 , RuO 2 , LaNiO 3 , SrRuO 3 , ITO (Indium Tin Oxide), and TiN (titanium nitride), metal oxides, And transparent conductive materials, and combinations thereof.
  • the lower electrode contains Ir.
  • the thickness of the lower electrode is not particularly limited, but is preferably 50 to 500 nm.
  • the material of the upper electrode 15 is not particularly limited, and a known material can be used.
  • Examples of the material of the upper electrode 15 include the materials described as the material of the lower electrode 13, electrode materials generally used in semiconductor processes such as Al, Ta, Cr, and Cu, and combinations thereof. Can be mentioned.
  • the thickness of the upper electrode is not particularly limited, but is preferably 50 to 500 nm.
  • the piezoelectric element according to this embodiment can be used for various applications.
  • the piezoelectric element according to the present embodiment can be used as an actuator, and specifically, can be applied to a wearable device, a touch pad, a display, a controller, and the like.
  • the piezoelectric element according to the present embodiment can also be used as a sensor or the like.
  • the piezoelectric element according to the present embodiment can exhibit predetermined characteristics even in a high temperature environment, and thus is suitable for a machine part or the like that requires high reliability.
  • the method for manufacturing the piezoelectric element according to the embodiment of the present invention is not particularly limited, and a known method can be used. For example, a method of laminating a lower electrode, an adhesion layer, a piezoelectric film, and an upper electrode in this order on a substrate by using the film forming method described in the method for manufacturing a piezoelectric film. Especially, it is preferable to have the following processes as a manufacturing method of a piezoelectric element at the point from which the piezoelectric element which has the more excellent effect of this invention is obtained.
  • Step of forming a lower electrode on a substrate to obtain a substrate with an electrode (2) Step of depositing perovskite oxide on substrate with electrode by vapor phase growth method while maintaining temperature of substrate with electrode at T 1 (initial step) (3) A step of obtaining a piezoelectric film by depositing a perovskite oxide by vapor phase growth method while maintaining the temperature of the electrode-attached substrate on which the perovskite oxide is deposited at T 2 (later step) (4) Step of forming an upper electrode on a piezoelectric film to obtain a piezoelectric element (upper electrode forming step)
  • each process is explained in full detail. In the following description, the members and materials used are as already described, and the description is omitted.
  • the lower electrode forming step is a step of forming the lower electrode on the substrate.
  • a method for forming the lower electrode is not particularly limited, and a known method can be used.
  • As a method for forming the lower electrode for example, the method already described as the method for forming the piezoelectric film can be cited.
  • the initial step is a step of depositing a perovskite oxide on the substrate with electrodes obtained in the lower electrode formation step by vapor deposition.
  • the temperature T 1 of the substrate with electrodes in the initial step is not particularly limited, but the temperature at which the perovskite oxide can be deposited on the substrate, in other words, the oxide represented by the formula (1) can be grown as the perovskite. It is preferable to set the temperature. Under general film forming conditions, the temperature T 1 is preferably 450 ° C. to 700 ° C., more preferably 500 ° C. to 650 ° C., and further preferably 550 ° C. to 600 ° C.
  • T 1 / T 2 is not particularly limited as long as it is larger than 1.04, preferably 1.05 or more, and more preferably 1.06 or more.
  • the upper limit is not particularly limited as long as it is less than 1.12 and is preferably 1.10 or less.
  • the perovskite oxide deposited in the initial step has a thickness of 100 nm or more.
  • the perovskite oxide film functions as a seed layer when further depositing the perovskite oxide in a later step to be described later.
  • the upper limit of the thickness of the perovskite oxide deposited in the initial step is not particularly limited, but is generally preferably not more than half of the total film thickness of the piezoelectric film.
  • the vapor phase growth method is not particularly limited, and may be a known method (the method already described). Among these, the sputtering method is preferable and the high-frequency sputtering method is more preferable in terms of easier control of the film thickness.
  • Late step is to hold the temperature of the electrode substrate with perovskite oxide is deposited T 2, by vapor deposition, and further, a step of obtaining a piezoelectric film by depositing perovskite oxide.
  • the temperature T 2 of the electrode-bearing substrate in later steps includes the temperature T 2 of the electrode-bearing substrate in later steps, perovskite oxide on the substrate deposition temperature capable, in other words, as the oxide perovskites represented by the formula (1), capable of growth It is preferable to set the temperature.
  • the temperature T 2 is preferably 400 ° C. to 650 ° C., more preferably 450 ° C. to 600 ° C., and further preferably 500 ° C. to 550 ° C.
  • the temperature T 2 of the electrode-bearing substrate as compared to the initial step is controlled to be low, it is easy to control the content of Pb perovskite oxide (so-called lead loss hardly occurs).
  • the relationship between the temperature T 1 , the temperature T 2 , and x in the formula (1) is not particularly limited, but a piezoelectric film having a more excellent effect of the present invention can be obtained. It is preferable to satisfy
  • the vapor phase growth method is not particularly limited, and may be a known method (the method already described). Among these, the sputtering method is preferable and the high-frequency sputtering method is more preferable in terms of easier control of the film thickness.
  • the upper electrode formation step is a step of obtaining a piezoelectric element by forming an upper electrode on the piezoelectric film obtained in the later step.
  • the method for forming the upper electrode is not particularly limited, and a known method can be used.
  • As a method for forming the upper electrode for example, the method already described as the method for forming the piezoelectric film can be cited.
  • the piezoelectric element manufacturing method according to the embodiment of the present invention may have other steps as long as the effects of the present invention are exhibited. Examples of other steps include an adhesion layer forming step.
  • the adhesion layer forming step typically includes a step of forming an adhesion layer between the substrate and the lower electrode, and a known method can be used.
  • a 10-nm-thick Ti adhesion layer (corresponding to an adhesion layer) and a film on a 25 mm square SOI (corresponding to a silicon on insulator, substrate).
  • a substrate with an electrode was prepared in which an Ir lower electrode (corresponding to a lower electrode) having a thickness of 300 nm was sequentially laminated.
  • the substrate with the electrode is placed in an RF (Radio Frequency) sputtering apparatus, and the target is used under the conditions of a vacuum degree of 0.3 Pa and an Ar / O 2 mixed atmosphere (O 2 volume fraction of 2.0%).
  • RF Radio Frequency
  • Tb whose Zr / (Zr + Ti) ratio is 0.52 and whose Nb content is adjusted to 10%, 12%, and 15% at the B site of the formed piezoelectric film in advance.
  • a piezoelectric film having a thickness of 2 ⁇ m was formed using a lead zirconate acid target.
  • the diffraction peak intensity r ((200) / (100) ratio) of the perovskite oxide was changed by controlling the substrate temperature during film formation. Specifically, in the manufacturing process of the piezoelectric film, an initial process in which the film thickness of the piezoelectric film reaches 100 nm or more, and a later process in which the film thickness to the target piezoelectric film thickness is formed following the initial process.
  • the film shown in Table 1 was produced by changing the film formation temperature stepwise.
  • the film-forming conditions regarding each example and each comparative example are as shown in Table 1.
  • the piezoelectric films of the examples and comparative examples formed by the method described in Table 1 were analyzed for crystal structures by X-ray diffraction, and both were preferentially oriented in the (100) plane and (200) plane.
  • the piezoelectric film was a single-phase film of a perovskite oxide represented by the formula (1).
  • a Pt upper electrode having a thickness of 100 nm was laminated on the piezoelectric film to obtain a piezoelectric element.
  • A The increase in leakage current density was less than 1.0 ⁇ 10 ⁇ 8 A / cm 2 .
  • B The increase in leakage current density was 1.0 ⁇ 10 ⁇ 8 A / cm 2 or more and less than 1.0 ⁇ 10 ⁇ 7 A / cm 2 .
  • C The increase in leakage current density was 1.0 ⁇ 10 ⁇ 7 A / cm 2 or more and less than 5.0 ⁇ 10 ⁇ 6 A / cm 2 .
  • D The increase in leakage current density was 5.0 ⁇ 10 ⁇ 6 A / cm 2 or more and less than 1.0 ⁇ 10 ⁇ 5 A / cm 2 .
  • E Increase in leakage current density was 1.0 ⁇ 10 ⁇ 5 A / cm 2 or more.
  • the film formation conditions, structures, and evaluations relating to the piezoelectric films of the respective examples and comparative examples are described for each row over Table 1 part 1 and Table 1 part 2.
  • the Nb doping amount to the B site is adjusted to be 10 atm% when the total of B site atoms is 100 atm%, and the film formation temperature in the initial step is set to 570.
  • the film formation temperature in the latter step was 540 ° C. (thus T 1 / T 2 was 1.06), and the film formation conditions were such that the thickness of the piezoelectric film was 2.0 ⁇ m.
  • the ratio r of the diffraction peak intensity from the (200) plane to the diffraction peak intensity from the (100) plane is 0.82
  • Nb in the perovskite oxide is Nb.
  • the content of Pb was 2.0 atm% and the content of Pb was 20.7 atm% (therefore, the Pb content / Nb content was 10).
  • the increase in leakage current density of the piezoelectric film of Example 1 was 6.1 ⁇ 10 ⁇ 9 A / cm 2 , and the evaluation was “A”.
  • it measured by the method similar to the above also about the other Example and the comparative example, and was described in Table 1.
  • the piezoelectric films of Examples 1 to 7 had the effects of the present invention.
  • the piezoelectric films of Comparative Examples 1 and 2 did not have the effect of the present invention.
  • the piezoelectric film of Example 1 in which the atomic ratio of the content of Pb to the content of Nb in the perovskite oxide exceeds 7.0 is higher than that of the piezoelectric film of Example 7 in terms of leakage current density. The increase was smaller. Further, when the total number of atoms contained in the perovskite oxide is 100 atm%, the Nb content is 2.3 atm% or less, or the Pb content is 20.8 atm% or more. Compared with the piezoelectric film of Example 4, the piezoelectric film of Example 1 had a smaller increase in leakage current density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

本発明は、高温環境下でも優れた圧電特性が得られる圧電体膜、圧電素子、及び、圧電素子の製造方法を提供する。 本発明の圧電体膜は、下記式(1)で表されるペロブスカイト型酸化物を含有し、ペロブスカイト型酸化物中における、全原子数に対するNbの含有量qと、X線回折法によって測定される、ペロブスカイト型酸化物の(100)面からの回折ピーク強度に対する、(200)面からの回折ピーク強度の比rとが、式(2)を満たす、圧電体膜であり、式(1) A1+δ[(ZryTi1-y)1-xNbx]Oz、式(2)0.35≦r/q<0.58、この場合、式(1)中、AはPbを含有するAサイト元素を表し、x及びyはそれぞれ独立に0を超え、1未満の数を表し、δ=0かつz=3が標準値だが、これらの値はペロブスカイト型酸化物がペロブスカイト構造を取り得る範囲で標準値からずれてもよく、かつ、式(2)中、qの単位はatm%である。

Description

圧電体膜、圧電素子、及び、圧電素子の製造方法
 本発明は、圧電体膜、圧電素子、及び、圧電素子の製造方法に関する。
 チタン酸ジルコン酸鉛等のペロブスカイト型酸化物(ABO)を用いた圧電体膜が知られている。上記圧電体膜と、圧電体膜に電界を印加することができるように備えられた電極と、を有する圧電素子は、例えばアクチュエータとして様々な機器に利用されている。
 上記のような技術として、特許文献1には、「A1-b1-aの一般式で示され、Aは、Pbを含み、Bは、Zr及びTiのうちの少なくとも一つからなり、Xは、V、Nb、Ta、Cr、Mo、及びWのうちの少なくとも一つからなり、aは、0.05≦a≦0.3の範囲であり、bは、0.025≦b≦0.15の範囲である、圧電体膜。」が記載されている。
特開2005-150694号公報
 本発明者らは、特許文献1に記載された圧電体膜について検討したところ、高温環境下において、リーク電流が増加する問題があることを明らかとした。
 そこで、本発明は、高温環境下でもリーク電流の増加が抑制された(以下、「本発明の効果を有する」ともいう。)圧電体膜を提供することを課題とする。また、本発明は、圧電素子、及び、圧電素子の製造方法を提供することも課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、以下の構成により課題を達成することができることを見出した。
 [1] 式(1)で表されるペロブスカイト型酸化物を含有し、ペロブスカイト型酸化物中における、全原子数に対するNbの含有量qと、X線回折法によって測定される、ペロブスカイト型酸化物の(100)面からの回折ピーク強度に対する、(200)面からの回折ピーク強度の比rとが、式(2)を満たす、圧電体膜であり、式(1) A1+δ[(ZrTi1-y1-xNb]O、式(2)0.35≦r/q<0.58、この場合、式(1)中、AはPbを含有するAサイト元素を表し、x及びyはそれぞれ独立に0を超え、1未満の数を表し、δ=0かつz=3が標準値だが、これらの値はペロブスカイト型酸化物がペロブスカイト構造を取り得る範囲で標準値からずれてもよく、かつ、式(2)中、qの単位はatm%である、圧電体膜。
 [2] 式(1)におけるxが0.1~0.15である、[1]に記載の圧電体膜。
 [3] ペロブスカイト型酸化物中におけるPbの含有量が、ペロブスカイト型酸化物中における全原子数に対して、20.7atm%以上、22atm%未満である、[1]又は[2]に記載の圧電体膜。
 [4] ペロブスカイト型酸化物中におけるNbの含有量に対するPbの含有量の含有原子数比が7.0を超える、[1]~[3]のいずれかに記載の圧電体膜。
 [5] ペロブスカイト型酸化物に含有される全原子数を100atm%としたとき、Nbの含有量が2.3atm%以下であるか、又は、Pbの含有量が20.8atm%以上である、[4]に記載の圧電体膜。
 [6] ペロブスカイト型酸化物の柱状結晶からなる柱状結晶膜である、[1]~[5]のいずれかに記載の圧電体膜。
 [7] 膜厚が1μm以上である、[1]~[6]のいずれかに記載の圧電体膜。
 [8] [1]~[7]のいずれかに記載の圧電体膜と、電極と、を有する圧電素子。
 [9] 基板と、下部電極と、[1]~[7]のいずれかに記載の圧電体膜と、上部電極と、をこの順に備える圧電素子の製造方法であって、基板上に下部電極を形成して電極付き基板を得る工程と、電極付き基板の温度をTに保持して、気相成長法によって、電極付き基板上にペロブスカイト型酸化物を堆積させる工程と、ペロブスカイト型酸化物が堆積された電極付き基板の温度をTに保持して、気相成長法によって、更に、ペロブスカイト型酸化物を堆積して圧電体膜を得る工程と、圧電体膜上に上部電極を形成して圧電素子を得る工程と、を有し、T及びTが式(3)1.04<T/T<1.12を満たす、圧電素子の製造方法。
 [10] 気相成長法がスパッタリングである、[9]に記載の圧電素子の製造方法。
 本発明によれば、高温環境下でもリーク電流の増加が抑制された圧電体膜を提供することができる。また、本発明によれば、圧電素子、及び、圧電素子の製造方法を提供することもできる。
本発明の実施形態に係る圧電素子の断面模式図である。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[圧電素子]
 図1は、本発明の実施形態に係る圧電素子の断面模式図である。圧電素子10は、基板11、密着層12、下部電極13、圧電体膜14、及び、上部電極15を備える。圧電体膜14は、一対の電極(下部電極13及び上部電極15)により挟まれる。圧電素子10においては、一対の電極を介して圧電体膜14に電界を印加できる。
 本実施形態に係る圧電素子10は、密着層12を備えるが、基板と下部電極との間の密着性に問題が無い場合には圧電素子は密着層を備えなくてもよい。また、密着層12に代えて、又は、密着層12とともに、バッファ層を備える形態であってもよい。以下では、上記実施形態に係る圧電素子10の各部材について、その形態を説明する。
〔圧電体膜〕
 上記実施形態に係る圧電体膜は、後述する式(1)で表されるペロブスカイト型酸化物を含有し、ペロブスカイト型酸化物中における、全原子数に対するNbの含有量q(atm%)と、X線回折法によって測定される、ペロブスカイト型酸化物の(100)面からの回折ピーク強度に対する、(200)面からの回折ピーク強度の比rとが、後述する式(2)を満たす、圧電体膜である。
 このような構成を有する本実施形態に係る圧電体膜が上記課題を解決できる理由としては、必ずしも明らかではないが、本発明者らは以下のとおり推測する。なお、下記推測により、効果が得られる機序が制限されるものではない。言い換えれば、下記の機序以外の機序により効果が得られる場合でも、本発明の範囲に含まれる。
 本発明者らは、特許文献1に記載された圧電体膜を高温環境下で使用した場合、リーク電流が増加する理由を鋭意検討した。なお、本明細書においてリーク電流とは、実施例に記載した方法により測定される電流を意味する。
 特許文献1に記載された圧電体膜は、Zr及びTiという4価をとり得る原子に加えて、より大きな価数をとり得るV、Nb、Ta、Cr、Mo、及び、Wを含有する。本発明者らの検討によれば、ペロブスカイト型酸化物(ABO)のBサイトに大きな価数をとり得る元素が加わると、ペロブスカイト型酸化物結晶内において電荷のバランスがとりにくくなるものと考えられる。そのようなペロブスカイト型酸化物を用いた圧電体膜を高温環境下において使用すると、ペロブスカイト型酸化物の結晶内に欠陥が生成されやすくなるものと推測している。この欠陥は、高温環境下においてリーク電流を生じさせ、また、発生したリーク電流を増加させる原因となるものと推測される。すなわち、ペロブスカイト中のNbの含有量が多すぎると、リーク電流も大きくなってしまう可能性がある。
 上記実施形態に係る圧電体膜は、X線回折による回折強度の比(200)/(100)と、鉛の含有量との関係を所定の範囲に制御したことを特徴の一つとする。
 ここで、(200)/(100)は、(200)面に存在する欠陥の量を反映すると推測されるパラメータである。すなわち、(200)面における欠陥が少なくなるほど(200)/(100)が大きくなるものと推測される。(200)面の欠陥は、上記ペロブスカイト型酸化物に含有されるPbによって埋められるものと推測される。一方で、ペロブスカイト型酸化物に含有されるPbが多すぎると、過剰のPbは結晶格子に取り込まれず、その粒界に存在すると推測される。この場合、Pbがリークパスとして働き、結果として高温環境下でのリーク電流は増加してしまう。
 上記実施形態に係る圧電体膜は、q(qはペロブスカイト型酸化物が含有する全原子数を100atm%としたときの、Nbの含有量(atm%)を表す。)に対するr(rは(200)/(100)を表す。)の比を、0.35以上、0.58未満とするものである。r/qが0.35以上であると、Nbを含有することによって発生する欠陥が少なく、かつ、上記の欠陥がPbによって埋められ、r/qが0.58未満だと、過剰のPbによるリーク電流が発生しにくい。従って、上記実施形態に係る圧電体膜によれば、高温環境下においても所望の特性が得られる。
 本実施形態に係る圧電体膜は、(100)面及び(200)面に優先配向したペロブスカイト型酸化物を有していることが好ましい。本明細書において、優先配向とは、結晶の配向方向が無秩序ではなく、特定の結晶面がほぼ一定の方向に向いている状態をいう。例えば「(100)面に優先配向する」とは、X線回折法によって、圧電体膜を測定した際に生じるペロブスカイト型酸化物の(100)面、(110)面及び(111)面からの回折ピーク強度の比率(100)/((100)面+(110)面+(111)面)が0.5より大きいことを意味し、(200)面についても同様である。
 特に、本発明の実施形態における圧電体膜がペロブスカイト型酸化物の柱状結晶膜である場合には、柱状結晶のC軸が、圧電体膜の膜厚方向(図1のT方向)に配向していることが好ましい。
 上記実施形態に係る圧電体膜は、下記式(1)で表されるペロブスカイト型酸化物を含有する。圧電体膜中におけるペロブスカイト型酸化物の含有量としては特に制限されないが、より優れた本発明の効果を有する圧電体膜が得られる点で、圧電体膜の全質量に対し、90質量%以上が好ましく、99質量%以上がより好ましく、圧電体膜が実質的にペロブスカイト型酸化物からなることが好ましい。なお、実質的にペロブスカイト型酸化物からなる、とは、圧電体膜がペロブスカイト型酸化物以外の成分を含有しない(但し、意図せず混入する不純物等は除く)ことを意味する。
 式(1) A1+δ[(ZrTi1-y1-xNb]O
 式(1)中、AはPbを含有するA元素を表し、x及びyはそれぞれ独立に0を超え、1未満の数を表す。δ=0かつz=3が標準値だが、これらの値はペロブスカイト型酸化物がペロブスカイト構造を取り得る範囲で標準値からずれてもよい。
 また、上記ペロブスカイト型酸化物は、ペロブスカイト構造が保持できる範囲内であれば、上記以外の元素を不純物として含有してもよい。
 なお、本明細書において、AをAサイト元素といい、Zr、Ti、及び、NbをBサイト元素ともいう。
 式(1)中、AはPbを含有するA元素を表し、典型的には、Pbを表す。Aは、一部がPb以外の金属元素により置換されていてもよい。Pb以外の金属元素としては、例えば、Ba、及び、Bi等が挙げられる。
 AがPbからなる場合、式(1)で表されるペロブスカイト型酸化物は以下の式(1-1)で表される。
式(1-1) Pb1+δ[(ZrTi1-y1-xNb]O
 xは0超1未満、yは0超1未満であり、δ=0及びz=3が標準であるが、これらの値はペロブスカイト構造を取り得る範囲内で標準値からずれてもよい。
 式(1)及び式(1-1)においてyの値としては、特に制限されないが、より優れた本発明の効果を有する圧電体膜が得られる点で、モルフォトロピック相境界(MPB:Morphotropic phase boundary)の0.52近傍が好ましい。
 上記ペロブスカイト型酸化物におけるNbの含有量q(atm%)と、X線回折法によって測定される、ペロブスカイト型酸化物の(100)面からの回折ピーク強度に対する、(200)面からの回折ピーク強度の比rとは、式(2)を満たす。
 式(2)0.35≦r/q<0.58
 ここで、r/qの値は、ペロブスカイト型酸化物におけるNbの含有量(単位はatm%、有効数字2桁)と、X線回折法によって測定されるペロブスカイト型酸化物の(100)及び(200)面からの回折ピーク強度の測定結果(有効数字3桁)とから求められる有効数字2桁の比を表す。例えば、後述する実施例4では、(200)/(100)が0.830で、Nb含有量が2.4atm%であり、3桁目を四捨五入してr/qは0.35と計算される。
 なお、本明細書において、ペロブスカイト型酸化物におけるNbの含有量(atm%)は、XRF(X-ray Fluorescence)又はICP(Inductively Coupled Plasma)で測定される値を意味する。
 r/qの下限値は0.35以上であるが、得られる圧電体膜がより優れた本発明の効果を有する点で、0.36を超えることが好ましく、0.37以上がより好ましく、0.39以上が更に好ましい。上限値は0.58未満であるが、得られる圧電体膜がより優れた本発明の効果を有する点で、0.57以下が好ましく、0.55以下がより好ましい。
 上記ペロブスカイト型酸化物において、BサイトにおけるNbの含有量(Bサイトの全原子数を100atm%としたときの、Nbの含有量を表す、単位はatm%である。)としては特に制限されないが、より優れた本発明の効果を有する圧電体膜が得られる点で、Bサイトにおける全原子数を100atm%としたときに、10~15atm%が好ましく、10~12atm%がより好ましい。これは上記式(1)及び式(1-1)におけるxで表すと、xは0.10~0.15が好ましく、0.10~0.12がより好ましい。
 上記ペロブスカイト型酸化物中におけるNbの含有量(atm%)としては特に制限されないが、ペロブスカイト型酸化物に含有される全原子数を100atm%としたとき、下限値としては2.0atm%以上が好ましく、上限値としては3.0atm%以下が好ましく、3.0atm%未満がより好ましく、2.9atm%以下が更に好ましく、2.4atm%以下が特に好ましい。
 上記ペロブスカイト型酸化物中におけるPbの含有量(atm%)としては特に制限されないが、ペロブスカイト型酸化物に含有される全原子数を100atm%としたとき、下限値としては20.0atm%以上が好ましく、上限値としては22.0atm%以下が好ましく、22.0atm%未満がより好ましく、21.5atm%以下が更に好ましい。
 上記ペロブスカイト型酸化物中におけるNbの含有量(atm%)に対するPbの含有量(atm%)の含有原子数比としては特に制限されないが、より優れた本発明の効果を有する圧電体膜が得られるで、Pbの含有量(atm%)/Nbの含有量(atm%)が、6.9以上が好ましく、7.0を超えることがより好ましく、8.6を超えるのが更に好ましく、8.7以上が特に好ましく、8.8以上が最も好ましい。上限値としては、12以下が好ましく、11以下がより好ましい。なお、Nbの含有量及びPbの含有量の単位は、ペロブスカイト型酸化物中に含有される全原子数を100atm%としたときのatm%である。
 Pbの含有量(atm%)/Nbの含有量(atm%)が8.8以上、11以下であると、圧電体膜はより優れた本発明の効果を有する。
 なお、本明細書において、Pbの含有量(atm%)/Nbの含有量(atm%)は、有効数字2桁で計算される係数である。例えば後述する実施例2におけるNb含有量は、2.0atm%であり、Pb含有量は21.0atm%である。従ってPbの含有量(atm%)/Nbの含有量(atm%)は、21.0/2.0=10.5となり、3桁目を四捨五入して11となる。
 上記ペロブスカイト型酸化物の他の好適態様としては、Pbの含有量(atm%)/Nbの含有量(atm%)が7.0超であり、かつ、ペロブスカイト型酸化物に含有される全原子数を100atm%としたとき、Nbの含有量(atm%)が2.3atm%以下であるか、または、Pbの含有量(atm%)が20.8atm%以上である態様が挙げられる。
 上記圧電体膜は、ペロブスカイト型酸化物の結晶構造が圧電体膜の膜厚方向(図1における方向T)に延びる柱状結晶からなる柱状結晶膜であることが好ましい。ペロブスカイト型酸化物が柱状結晶を有すると、圧電体膜の膜厚をより厚くしやすい。なお、柱状結晶膜は、多数の上記柱状結晶からなることが好ましい。
 柱状結晶の平均柱径としては特に制限されないが、30nm~1.0μmが好ましい。柱状結晶の平均柱径が30nm以上であると、ドメイン境界部分の影響がより小さくなるため、リーク電流がより抑制された圧電体膜が得られる。一方、柱状結晶の平均柱径が1.0μm以下であると、圧電体膜をパターニングした場合に、より優れた形状精度を有する圧電体膜が得られる。
 圧電体膜の膜厚は特に制限されないが、圧電体膜の耐久性がより優れる点で、500nm以上が好ましく、1.0μm以上がより好ましく、2.0μm以上が更に好ましい。圧電体膜の膜厚の上限としては特に制限されないが、20μm以下が好ましく、10μm以下がより好ましい。
<圧電体膜の製造方法>
 上記圧電体膜を製造する(以下、「成膜する」ともいう。)方法としては特に制限されず、公知の方法を用いることができる。
 圧電体膜の成膜方法としては、例えば、スパッタ法、プラズマCVD(Chemical Vapor Deposition)法、MOCVD(Metal Organic Chemical Vapor Deposition)法、及び、PLD(Pulse Laser Deposition)法等の気相成長法;ゾルゲル法及び有機金属分解法等の液相法;エアロゾルデポジション法;等が挙げられる。
 なかでも、圧電体膜の製造方法としては、成膜条件を制御しやすいことから気相成長法が好ましい。また、気相成長法によれば、成膜時に圧電体膜に横スジが発生するのを抑制することができ、より耐久性の高い圧電体膜が得られる。
 気相成長法による圧電体膜の製造方法としては特に制限されないが、典型的には、基板とターゲットを対向させて、プラズマを用いて基板上にターゲットの構成元素を含有する膜を成膜する方法が挙げられる。なお、基板としては、後述する基材、及び、電極付き基板等が挙げられる。
 気相成長法としては、例えば、2極スパッタリング法、3極スパッタリング法、直流スパッタリング法、高周波スパッタリング法(RF:Radio Frequencyスパッタリング法)、ECR(Electron Cyclotron Resonance)スパッタリング法、マグネトロンスパッタリング法、対向ターゲットスパッタリング法、パルススパッタリング法、及び、イオンビームスパッタリング法等が挙げられる。
 なかでも、より優れた本発明の効果を有する圧電体膜が得られる点で、気相成長法としては、スパッタリング法(特に高周波スパッタリング法が好ましい)、イオンプレーティング法、又は、プラズマCVD法が好ましく、スパッタリング法がより好ましい。
 圧電体膜の製造方法がスパッタリング法であると、得られる圧電体膜のペロブスカイト型酸化物が圧電体膜の厚さ方向(図1のT方向)にC軸配向した柱状結晶となりやすい。
〔基板〕
 本実施形態に係る圧電素子10における基板11としては特に制限されず、公知の基板を用いることができる。基板としては、例えば、シリコン、ガラス、ステンレス鋼、イットリウム安定化ジルコニア(YSZ:Yttria-stabilized zirconia)、SrTiO、アルミナ、サファイヤ、及び、シリコンカーバイド等の基板が挙げられる。
 また、基板としては、シリコン上にSiO膜とSi活性層とが順次積層されたSOI(Silicon on Insulator)基板等の積層基板を用いてもよい。
〔密着層〕
 本実施形態に係る圧電素子10は、基板11と下部電極13との間に、両者の密着性を良好にするための密着層12を備えている。密着層12としては、特に制限されず、公知の材料を用いることができる。密着層の材料としては、例えば、Ti、及び、TiW等が挙げられる。
〔下部電極〕
 下部電極13は、圧電体膜14に電界を印加するための電極であり、上部電極15と一対をなす。下部電極13の材料としては特に制限されず、公知の材料を用いることができる。下部電極13の材料としては、例えば、Au、Pt、Ir、IrO、RuO、LaNiO、SrRuO、ITO(Indium Tin oxide)、及び、TiN(窒化チタン)等の金属、金属酸化物、及び、透明導電性材料、並びに、これらの組合せが挙げられる。なかでも、下部電極は、Irを含有することが特に好ましい。
 下部電極の膜厚は特に制限されないが、50~500nmが好ましい。
〔上部電極〕
 上部電極15の材料としては特に制限されず、公知の材料を用いることができる。上部電極15の材料としては、例えば、下部電極13の材料として説明した材料、Al、Ta、Cr、及び、Cu等の一般的に半導体プロセスで用いられている電極材料、並びに、これらの組合せが挙げられる。
 上部電極の膜厚は特に制限されないが、50~500nmが好ましい。
 本実施形態に係る圧電素子は、様々な用途に用いることができる。典型的には、本実施形態に係る圧電素子はアクチュエータとして用いることができ、具体的には、ウェアラブルデバイス、タッチパッド、ディスプレイ、及び、コントローラ等に適用できる。また、本実施形態に係る圧電素子はセンサ等としても用いることができる。なかでも本実施形態に係る圧電素子は、高温環境下においても所定の特性を発揮できるため、高い信頼性を求められる機械部品等に好適である。
[圧電素子の製造方法]
 本発明の実施形態に係る圧電素子の製造方法としては、特に制限されず、公知の方法を用いることができる。例えば、圧電体膜の製造方法の部分で説明した成膜方法を用いて、基板上に、下部電極、密着層、圧電体膜、及び、上部電極をこの順に積層する方法が挙げられる。なかでも、より優れた本発明の効果を有する圧電素子が得られる点で、圧電素子の製造方法としては、以下の工程を有することが好ましい。
(1)基板上に下部電極を形成して電極付き基板を得る工程(下部電極形成工程)
(2)電極付き基板の温度をTに保持して、気相成長法によって、電極付き基板上にペロブスカイト型酸化物を堆積させる工程(初期工程)
(3)ペロブスカイト型酸化物が堆積された電極付き基板の温度をTに保持して、気相成長法によって、更に、ペロブスカイト型酸化物を堆積して圧電体膜を得る工程(後期工程)
(4)圧電体膜上に上部電極を形成して圧電素子を得る工程(上部電極形成工程)
 以下では、各工程について詳述する。なお、以下の説明において、用いられる部材、及び、材料については、既に説明したとおりであり、説明を省略する。
〔下部電極形成工程〕
 下部電極形成工程は、基板上に下部電極を形成する工程である。下部電極を形成する方法としては特に制限されず、公知の方法を用いることができる。下部電極を形成する方法としては、例えば、圧電体膜の成膜方法として既に説明した方法等が挙げられる。
〔初期工程〕
 初期工程は、下部電極形成工程で得られた電極付き基板上に、気相成長法によってペロブスカイト型酸化物を堆積させる工程である。
 初期工程における電極付き基板の温度Tとしては特に制限されないが、基板上にペロブスカイト型酸化物が堆積可能な温度、言い換えれば、式(1)で表される酸化物がペロブスカイトとして、成長可能な温度とすることが好ましい。一般的な成膜条件であれば、温度Tは、450℃~700℃が好ましく、500℃~650℃がより好ましく、550℃~600℃が更に好ましい。
 また、上記初期工程における電極付き基板の温度Tと、後述する温度Tとは、以下の式(3)を満たす。
式(3)1.04<T/T<1.12
 T/Tは1.04より大きければ特に制限されず、1.05以上が好ましく、1.06以上がより好ましい。上限値としては1.12未満であれば特に制限されず、1.10以下が好ましい。T/Tが1.04より大きいと、成膜時の電極付き基板の温度Tが相対的に高く、初期工程においてペロブスカイト型酸化物が確実に合成され、後述する後期工程において、ペロブスカイト型酸化物を更に堆積する際のシードとして働きやすい。
 初期工程で堆積させるペロブスカイト型酸化物は100nm以上の厚みとすることが好ましい。上記ペロブスカイト型酸化物膜は、後述する後期工程で、ペロブスカイト型酸化物を更に堆積する際のシード層として機能する。初期工程で堆積するペロブスカイト型酸化物の厚みの上限としては特に制限されないが、一般に圧電体膜の総膜厚の半分以下が好ましい。
 気相成長法としては特に制限されず、公知の方法(すでに説明した方法)が挙げられる。なかでも、膜厚の制御がより容易な点で、スパッタリング法が好ましく、高周波スパッタリング法がより好ましい。
〔後期工程〕
 後期工程は、ペロブスカイト型酸化物が堆積された電極付き基板の温度をTに保持して、気相成長法によって、更に、ペロブスカイト型酸化物を堆積して圧電体膜を得る工程である。
 後期工程における電極付き基板の温度Tとしては特に制限されないが、基板上にペロブスカイト型酸化物が堆積可能な温度、言い換えれば、式(1)で表される酸化物がペロブスカイトとして、成長可能な温度とすることが好ましい。一般的な成膜条件であれば、温度Tは、400℃~650℃が好ましく、450℃~600℃がより好ましく、500℃~550℃が更に好ましい。
 後期工程では、初期工程と比較して電極付き基板の温度Tが低く制御されるため、ペロブスカイト型酸化物中のPbの含有量を制御しやすい(いわゆる、鉛抜けが起こりにくい)。
 温度T、温度T、及び、式(1)におけるx(言い換えれば、BサイトへのNbドープ量)の関係としては特に制限されないが、より優れた本発明の効果を有する圧電体膜が得られる点で、以下の式(4)を満たすことが好ましい。
式(4)T/T>0.8x+0.96
 また、気相成長法としては特に制限されず、公知の方法(すでに説明した方法)が挙げられる。なかでも、膜厚の制御がより容易な点で、スパッタリング法が好ましく、高周波スパッタリング法がより好ましい。
〔上部電極形成工程〕
 上部電極形成工程は、後期工程で得られた圧電体膜上に上部電極を形成して圧電素子を得る工程である。上部電極を形成する方法としては特に制限されず、公知の方法を用いることができる。上部電極を形成する方法としては、例えば、圧電体膜の成膜方法として既に説明した方法等が挙げられる。
〔その他の工程〕
 本発明の実施形態に係る圧電素子の製造方法は、本発明の効果を奏する限りにおいて、他の工程を有していてもよい。他の工程としては例えば、密着層形成工程が挙げられる。 密着層形成工程としては、典型的には、基板と下部電極との間に密着層を形成する工程が挙げられ、公知の方法を用いることができる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、「本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 まず、圧電体膜を成膜するための基板として、25mm角のSOI(Silicon on Insulater、基板に該当する。)上に、膜厚10nmのTi密着層(密着層に該当する。)と、膜厚300nmのIr下部電極(下部電極に該当する。)とが順次積層された電極付き基板を準備した。
 次に、RF(Radio Frequency)スパッタリング装置内に上記電極付き基板を載置し、真空度0.3Pa、Ar/O混合雰囲気(O体積分率2.0%)の条件下で、ターゲット中のZr/(Zr+Ti)比を0.52とし、形成される圧電体膜のBサイトへのNbドープ量が10%、12%、15%となるように予めNbの含有量を調整したチタン酸ジルコン酸鉛ターゲットを用いて、膜厚2μmの圧電体膜を成膜した。
 なお、成膜時の基板温度を制御することでペロブスカイト型酸化物の回折ピーク強度r((200)/(100)比)を変化させた。具体的には、圧電体膜の製造工程において圧電体膜の膜厚が100nm以上になるまで成膜する初期工程と、その初期工程に引き続き目標の圧電体膜の膜厚まで成膜する後期工程とで、成膜温度を段階的に変化させることで表1の膜を作製した。なお、各実施例、及び、各比較例に関する成膜条件は、表1に示したとおりである。
 表1に記載した方法で成膜した各実施例及び比較例の圧電体膜について、X線回折法により結晶構造の解析を実施したところ、いずれも(100)面及び(200)面に優先配向していた。また、元素分析をXRF及びICPで実施したところ、圧電体膜は、式(1)で表されるペロブスカイト型酸化物の単相膜であった。
 次に、上記圧電体膜上に、膜厚100nmのPt上部電極を積層して、圧電素子を得た。
〔リーク電流密度の増加の評価〕
 25℃の環境下において、各実施例及び比較例の圧電体膜の電極間に、-2V~-50Vまで-2V間隔で電圧を変えるスイ―プを5回繰り返し実施し、5回目と1回目の測定における-50V印加時の電流差をリーク電流として測定した。このリーク電流の大きさを、電極面積で除して、リーク電流密度(A/cm)を算出した。次に、200℃の環境で、上記と同様の試験を実施し、リーク電流密度(A/cm)を算出した。その結果から、以下の式を用いてリーク電流密度の増加(A/cm)を計算し、以下の基準で評価した。計算されたリーク電流密度の増加、及び、その結果を表1に示した。
(式)リーク電流密度の増加(A/cm)=200℃環境下でのリーク電流密度(A/cm)-25℃環境下でのリーク電流密度(A/cm
-評価基準-
A:リーク電流密度の増加が、1.0×10-8A/cm未満だった。
B:リーク電流密度の増加が、1.0×10-8A/cm以上、1.0×10-7A/cm未満だった。
C:リーク電流密度の増加が、1.0×10-7A/cm以上、5.0×10-6A/cm未満だった。
D:リーク電流密度の増加が、5.0×10-6A/cm以上、1.0×10-5A/cm未満だった。
E:リーク電流密度の増加が、1.0×10-5A/cm以上だった。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 表中、各実施例及び比較例の圧電体膜に係る成膜条件、構造、及び、評価は、行ごとに表1その1、及び、表1その2にわたって記載した。例えば、実施例1の圧電体膜であれば、BサイトへのNbドープ量が、Bサイト原子の合計を100atm%としたとき、10atm%となるよう調整され、初期工程の成膜温度を570℃、後期工程の成膜温度を540℃とし(従ってT/Tは1.06であり)圧電体膜の厚みが2.0μmとなる成膜条件とした。一方、得られたペロブスカイト型酸化物の構造として、(100)面からの回折ピーク強度に対する、(200)面からの回折ピーク強度の比rは0.82であり、ペロブスカイト型酸化物中におけるNbの含有量が2.0atm%であり、Pbの含有量が20.7atm%であった(従ってPb含有量/Nb含有量は10)。ここで、実施例1の圧電体膜のリーク電流密度の増加は、6.1×10-9A/cmであり、評価は「A」だった。なお、他の実施例及び比較例についても上記と同様の方法で測定し、表1に記載した。
 表1に示した結果から、実施例1~7の圧電体膜は本発明の効果を有していた。一方、比較例1及び2の圧電体膜は本発明の効果を有していなかった。
 ペロブスカイト型酸化物中におけるNbの含有量に対するPbの含有量の含有原子数比が7.0を超える実施例1の圧電体膜は、実施例7の圧電体膜と比較してリーク電流密度の増加がより小さかった。
 また、ペロブスカイト型酸化物に含有される全原子数を100atm%としたとき、Nbの含有量が2.3atm%以下であるか、又は、Pbの含有量が20.8atm%以上である、実施例1の圧電体膜は、実施例4の圧電体膜と比較して、リーク電流密度の増加がより小さかった。
 10 圧電素子
 11 基板
 12 密着層
 13 下部電極
 14 圧電体膜
 15 上部電極

Claims (10)

  1.  式(1)で表されるペロブスカイト型酸化物を含有し、
     前記ペロブスカイト型酸化物中における、全原子数に対するNbの含有量qと、
     X線回折法によって測定される、前記ペロブスカイト型酸化物の(100)面からの回折ピーク強度に対する、(200)面からの回折ピーク強度の比rとが、式(2)を満たす、圧電体膜であり、
     式(1) A1+δ[(ZrTi1-y1-xNb]O
     式(2)0.35≦r/q<0.58
     この場合、式(1)中、AはPbを含有するAサイト元素を表し、x及びyはそれぞれ独立に0を超え、1未満の数を表し、δ=0かつz=3が標準値だが、これらの値は前記ペロブスカイト型酸化物がペロブスカイト構造を取り得る範囲で標準値からずれてもよく、かつ、式(2)中、qの単位はatm%である、圧電体膜。
  2.  前記式(1)におけるxが0.1~0.15である、請求項1に記載の圧電体膜。
  3.  前記ペロブスカイト型酸化物中におけるPbの含有量が、前記ペロブスカイト型酸化物中における全原子数に対して、20.7atm%以上、22atm%未満である、請求項1又は2に記載の圧電体膜。
  4.  前記ペロブスカイト型酸化物中におけるNbの含有量に対するPbの含有量の含有原子数比が7.0を超える、請求項1~3のいずれか一項に記載の圧電体膜。
  5.  前記ペロブスカイト型酸化物に含有される全原子数を100atm%としたとき、Nbの含有量が2.3atm%以下であるか、又は、Pbの含有量が20.8atm%以上である、請求項4に記載の圧電体膜。
  6.  前記ペロブスカイト型酸化物の柱状結晶からなる柱状結晶膜である、請求項1~5のいずれか一項に記載の圧電体膜。
  7.  膜厚が1μm以上である、請求項1~6のいずれか一項に記載の圧電体膜。
  8.  請求項1~7のいずれか一項に記載の圧電体膜と、電極と、を有する圧電素子。
  9.  基板と、下部電極と、請求項1~7のいずれか一項に記載の圧電体膜と、上部電極と、をこの順に備える圧電素子の製造方法であって、
     基板上に下部電極を形成して電極付き基板を得る工程と、
     前記電極付き基板の温度をTに保持して、気相成長法によって、前記電極付き基板上にペロブスカイト型酸化物を堆積させる工程と、
     前記ペロブスカイト型酸化物が堆積された電極付き基板の温度をTに保持して、気相成長法によって、更に、ペロブスカイト型酸化物を堆積して圧電体膜を得る工程と、
     前記圧電体膜上に上部電極を形成して圧電素子を得る工程と、を有し、
     前記T及びTが以下の式(3)
     式(3)1.04<T/T<1.12
    を満たす、圧電素子の製造方法。
  10.  前記気相成長法がスパッタリングである、請求項9に記載の圧電素子の製造方法。
     
PCT/JP2018/008542 2017-03-31 2018-03-06 圧電体膜、圧電素子、及び、圧電素子の製造方法 WO2018180276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18777381.7A EP3605625B1 (en) 2017-03-31 2018-03-06 Piezoelectric body membrane, piezoelectric element, and piezoelectric element manufacturing method
JP2019509104A JP6850870B2 (ja) 2017-03-31 2018-03-06 圧電体膜、圧電素子、及び、圧電素子の製造方法
US16/560,325 US11793082B2 (en) 2017-03-31 2019-09-04 Piezoelectric body film, piezoelectric element, and method for manufacturing piezoelectric element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-070558 2017-03-31
JP2017070558 2017-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/560,325 Continuation US11793082B2 (en) 2017-03-31 2019-09-04 Piezoelectric body film, piezoelectric element, and method for manufacturing piezoelectric element

Publications (1)

Publication Number Publication Date
WO2018180276A1 true WO2018180276A1 (ja) 2018-10-04

Family

ID=63675421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008542 WO2018180276A1 (ja) 2017-03-31 2018-03-06 圧電体膜、圧電素子、及び、圧電素子の製造方法

Country Status (4)

Country Link
US (1) US11793082B2 (ja)
EP (1) EP3605625B1 (ja)
JP (1) JP6850870B2 (ja)
WO (1) WO2018180276A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123649A (ja) * 2019-01-30 2020-08-13 セイコーエプソン株式会社 圧電素子、液体吐出ヘッド、およびプリンター
WO2021134606A1 (en) 2019-12-31 2021-07-08 Applied Materials, Inc. Method and apparatus for deposition of piezo-electric materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (ja) 2003-10-23 2005-06-09 Seiko Epson Corp 圧電体膜、圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
JP2006083040A (ja) * 2004-09-17 2006-03-30 Seiko Epson Corp 前駆体溶液、前駆体溶液の製造方法、pztn複合酸化物、pztn複合酸化物の製造方法、圧電素子、インクジェットプリンタ、強誘電体キャパシタ、強誘電体メモリ
JP2007251388A (ja) * 2006-03-14 2007-09-27 Seiko Epson Corp 圧電体積層体、および圧電体積層体を含むデバイス
JP2009065049A (ja) * 2007-09-07 2009-03-26 Fujifilm Corp 圧電素子及びそれを用いる液滴吐出ヘッド並びに圧電素子の製造方法
JP2011181720A (ja) * 2010-03-02 2011-09-15 Seiko Epson Corp 圧電素子、液滴吐出ヘッド、および液滴吐出装置
JP2012009677A (ja) * 2010-06-25 2012-01-12 Fujifilm Corp 圧電体膜および圧電素子
JP2016103567A (ja) * 2014-11-28 2016-06-02 富士フイルム株式会社 圧電体膜及びそれを備えた圧電素子、及び液体吐出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709544B2 (ja) * 2004-05-31 2011-06-22 セイコーエプソン株式会社 前駆体組成物、前駆体組成物の製造方法、強誘電体膜の製造方法、圧電素子、半導体装置、圧電アクチュエータ、インクジェット式記録ヘッド、およびインクジェットプリンタ
US7964571B2 (en) * 2004-12-09 2011-06-21 Egen, Inc. Combination of immuno gene therapy and chemotherapy for treatment of cancer and hyperproliferative diseases
JP2013197522A (ja) * 2012-03-22 2013-09-30 Ricoh Co Ltd 圧電体薄膜素子とその製造方法、該圧電体薄膜素子を用いた液滴吐出ヘッドおよびインクジェット記録装置
JP2019067861A (ja) * 2017-09-29 2019-04-25 セイコーエプソン株式会社 圧電アクチュエーター、圧電駆動装置、ロボット、電子部品搬送装置およびプリンター

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005150694A (ja) 2003-10-23 2005-06-09 Seiko Epson Corp 圧電体膜、圧電素子、圧電アクチュエーター、圧電ポンプ、インクジェット式記録ヘッド、インクジェットプリンター、表面弾性波素子、薄膜圧電共振子、周波数フィルタ、発振器、電子回路、および電子機器
JP2006083040A (ja) * 2004-09-17 2006-03-30 Seiko Epson Corp 前駆体溶液、前駆体溶液の製造方法、pztn複合酸化物、pztn複合酸化物の製造方法、圧電素子、インクジェットプリンタ、強誘電体キャパシタ、強誘電体メモリ
JP2007251388A (ja) * 2006-03-14 2007-09-27 Seiko Epson Corp 圧電体積層体、および圧電体積層体を含むデバイス
JP2009065049A (ja) * 2007-09-07 2009-03-26 Fujifilm Corp 圧電素子及びそれを用いる液滴吐出ヘッド並びに圧電素子の製造方法
JP2011181720A (ja) * 2010-03-02 2011-09-15 Seiko Epson Corp 圧電素子、液滴吐出ヘッド、および液滴吐出装置
JP2012009677A (ja) * 2010-06-25 2012-01-12 Fujifilm Corp 圧電体膜および圧電素子
JP2016103567A (ja) * 2014-11-28 2016-06-02 富士フイルム株式会社 圧電体膜及びそれを備えた圧電素子、及び液体吐出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020123649A (ja) * 2019-01-30 2020-08-13 セイコーエプソン株式会社 圧電素子、液体吐出ヘッド、およびプリンター
WO2021134606A1 (en) 2019-12-31 2021-07-08 Applied Materials, Inc. Method and apparatus for deposition of piezo-electric materials
EP4085159A4 (en) * 2019-12-31 2023-09-27 Applied Materials, Inc. METHOD AND DEVICE FOR DEPOSITING PIEZOELECTRIC MATERIALS

Also Published As

Publication number Publication date
JP6850870B2 (ja) 2021-03-31
JPWO2018180276A1 (ja) 2019-12-19
EP3605625A1 (en) 2020-02-05
US20200006622A1 (en) 2020-01-02
EP3605625B1 (en) 2021-04-28
EP3605625A4 (en) 2020-02-12
US11793082B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP5692329B2 (ja) 圧電薄膜素子
EP2846370B1 (en) Piezoelectric element
JP5790759B2 (ja) 強誘電体薄膜およびその製造方法
US20220093843A1 (en) Piezoelectric element
JP7166987B2 (ja) 圧電素子
US11985899B2 (en) Piezoelectric element
WO2018180276A1 (ja) 圧電体膜、圧電素子、及び、圧電素子の製造方法
JP6426310B2 (ja) 圧電素子
WO2017018078A1 (ja) スパッタリング装置及び絶縁膜の製造方法
JP6698596B2 (ja) ZnO系圧電体膜、及び、圧電素子
WO2022024529A1 (ja) 圧電膜付き基板及び圧電素子
JP6767956B2 (ja) 圧電素子、及び、圧電素子の製造方法
JP6661771B2 (ja) 圧電体膜、圧電素子および圧電体膜の製造方法
US20230263066A1 (en) Substrate with a piezoelectric film and piezoelectric element
US20230301193A1 (en) Piezoelectric laminate and piezoelectric element
WO2021132602A1 (ja) 強誘電性薄膜、それを用いた電子素子および強誘電性薄膜の製造方法
KR20110105197A (ko) 무연계의 압전박막 및 상기 압전박막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509104

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018777381

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018777381

Country of ref document: EP

Effective date: 20191031